
Combining Learning and Model Based Multivariable Control

G. S. Venkatesh† W. Steven Gray† Luis A. Duffaut Espinosa‡

Abstract— Artificial neural networks have traditionally been
used to implement machine learning algorithms. There are,
however, alternatives to these biologically inspired machine
learning architectures that offer potentially lower complexity
and stronger theoretical underpinnings. One such option in the
context of control is based on using a generic input-output
model known as a Chen-Fliess functional series. The main goal
of the paper is to describe a specific architecture that can be
used in the multivariable setting to combine both learning and
model based control. It builds on recent work by the authors
showing that a certain monoid structure underlies any recursive
implementation of such a system. The method is demonstrated
using a two-input, two-output Lotka-Volterra system.

I. INTRODUCTION

Artificial neural networks have traditionally been used
to implement machine learning algorithms. In the specific
context of control, so called recurrent networks are a standard
choice as they are capable of approximating the dynami-
cal behavior of certain classes of systems [1], [11]–[13].
There are, however, alternatives to these biologically inspired
machine learning architectures that offer potentially lower
complexity and stronger theoretical underpinnings. One such
option under development by the authors is based on using
a generic input-output model known as a Chen-Fliess func-
tional series or Fliess operator [3], [4], [10]. It is well known
that any control-affine analytic control system in continuous-
time has a Fliess operator representation. The main idea is
to discretize a given operator as described in [5] and then
identify its associated generating series via standard MSE
estimation methods using input-output data generated by the
error between the plant and a given model. Once the error
system is identified, it can be used along with the model to
apply, for example, predictive control [8]. The approach is
distinct from model based adaptive control in that the plant
is not made to track the output of the reference model, and
there is no adaptation of the model. In fact, the technique
can be used without a model as shown in [6] to provide a
purely data-driven controller. But generally the availability
of a model will improve performance when the error dy-
namics are smaller than the plant dynamics. One significant
limitation, however, in all the previous work is that this new
learning unit based on Fliess operator representations has
been restricted to the single-input case. This was entirely due
to the fact that constructing an efficient implementation of the
learning unit for multiple inputs is nontrivial. The underlying
noncommutative algebraic and combinatorial structures are
not well understood.

The main goal of this paper is to describe and demonstrate
one such implementation of the multivariable learning unit.
It is based on work in [7] where it is shown that a certain
monoid structure lies behind any recursive implementation

†Department of Electrical and Computer Engineering, Old Dominion
University, Norfolk, Virginia 23529 USA

‡Department of Electrical and Biomedical Engineering, University of
Vermont, Burlington, Vermont 05405 USA

of such a learning unit. The key result presented here is how
to select a basis so that a convenient matrix representation
of this monoid can be automatically generated and coded
for applications. The central tool employed is a certain tree
structure that can be systemically searched to construct the
desired basis. The method is demonstrated using a two-input,
two-output Lotka-Volterra system so that its performance
can be directly compared against the existing single-input
studies reported in the earlier work cited above. As expected,
additional actuation dramatically improves closed-loop per-
formance.

The paper is organized as follows. In the next section, a
brief summary of the key concepts used from [5] and [7]
is provided. The main results addressing the implementation
of the multivariable learning unit are given in Section III.
The simulation case study is presented in Section IV. The
conclusions and comments regarding future work are given
in the last section.

II. PRELIMINARIES

A brief overview of some key concepts used later in the
paper is given in this section. First, a class of discrete-time
input-output maps used as approximators for continuous-time
analytic input-output systems is defined. A more complete
treatment of the topic can be found in [5]. Next, a type of
learning unit based on these approximators is described. See
[6], [7] for more details.

A. Discrete-Time Fliess Operator

An alphabet X = {x0, x1, . . . , xm} is any nonempty and
finite set of noncommuting symbols referred to as letters. A
word η = xi1 · · ·xik is a finite sequence of letters from X .
The number of letters in a word η, written as |η|, is called
its length. The empty word, ∅, is taken to have length zero.
The collection of all words having length k is denoted by
Xk. Define X∗ =

⋃

k≥0 X
k. This set is a monoid under the

catenation product. Any mapping c : X∗ → Rℓ is called a
formal power series. Often c is written as the formal sum
c =

∑

η∈X∗(c, η)η, where the coefficient (c, η) is the image
of η ∈ X∗ under c. The set of all noncommutative formal
power series over the alphabet X is denoted by Rℓ〈〈X〉〉. It
forms an associative R-algebra under catenation.

Discrete-time inputs are real-valued sequences from the
normed linear space

lm+1
∞ [N0] := {û = (û(N0), û(N0 + 1), . . .) : ‖û‖∞ <∞},

where û := [û0 û1 . . . ûm]T , |û(N)| := maxi∈{0,1,...,m}

|ûi(N)|, and ‖û‖∞ := supN≥N0
|û(N)|.

Definition 2.1: Given a generating series c ∈ Rℓ〈〈X〉〉,
the corresponding discrete-time Fliess operator is defined
as

F̂c[û](N) =
∑

η∈X∗

(c, η)Sη[û](N)

2019 IEEE 58th Conference on Decision and Control (CDC)
Palais des Congrès et des Expositions Nice Acropolis
Nice, France, December 11-13, 2019

978-1-7281-1397-5/19/$31.00 ©2019 IEEE 1013

for any N ≥ 1, where

Sxiη[û](N) =
N
∑

k=1

ûi(k)Sη[û](k),

with xi ∈ X , η ∈ X∗, and û ∈ lm+1
∞ [1]. By assumption,

S∅[û](N) := 1.
Following [9], select some fixed u ∈ Lm

1 [0, T] with T > 0
finite. Choose an integer L ≥ 1, let ∆ := T/L and define
the sequence of real numbers

ûi(N) =

∫ N∆

(N−1)∆

ui(t) dt, i = 0, 1, . . . ,m,

where N ∈ [1, L]. Assume u0 = 1 so that û0(N) = ∆. A

truncated version of F̂c will be useful,

ŷ(N) = F̂ J
c [û](N) :=

J
∑

j=0

∑

η∈Xj

(c, η)Sη[û](N),

since numerically only finite sums can be computed. For each
output of the truncated discrete-time Fliess operator above,
define a column vector θ whose i-th component is given by

θi , (cj , ηi), j ∈ {1, . . . , ℓ}, (1)

where ηi ∈ X≤J :=
J
⋃

k=0

Xk. The main assertion proved

in [5] is that the class of truncated, discrete-time Fliess
operators acts as a set of universal approximators with com-
putable error bounds for their continuous-time counterparts
described in [3], [4], [10]. In which case, they can be used
to approximate any input-output system corresponding to a
control-affine analytic state space realization. This fact is
exploited in the next subsection to create a type of learning
unit for data generated by such dynamical systems.

B. Learning Unit

The proposed learning unit is shown in Figure 1. It is
comprised of a truncated discrete-time Fliess operator and
a mean square error (MSE) estimator used to learn the
parameter vectors defined in (1) from input-output data (u, y)
generated by an unknown continuous-time plant. Assuming
no a priori knowledge of the dynamics, the initial estimate

θ̂(0) is initialized to zero.1 The output of the learning unit
is given by

ŷp(N + 1) = θ̂T (N)φ(N + 1),

where φ(N+1) is the collection of iterated sums {Sη[û](N+
1)}|η|≤J in some fixed order {η1, η2, . . . , ηl}, where l =

card(X≤J) = ((m + 1)J+1 − 1)/m. The estimate θ̂(N) is
updated by the MSE estimator using the input-output data
available up to the N -th sample, that is,

θ̂(N) = argmin
θ̂

‖y(N∆)− ŷp(N)‖2 .

The architecture is designed to learn the dynamics in
real-time, thus avoiding the need to have pre-collected
data for training. Using monoid representation theory, it is

1The hat notation is used throughout to distinguish discrete-time signals
from continuous-time signals, for example, ŷ(N) = y(N∆). In this one
instance, however, it is also used to indicate an estimate of parameter θ.

 MSE

parameter

estimator

y

discrete-time

 Fliess

 operator

u

y
p

Fig. 1. Learning unit based on a discrete-time Fliess operator

shown in [7] that the predicted output ŷp(N + 1) can be
written in a purely inductive form. First define ûη(N) =
ûik(N) · · · ûi1(N) for any η = xik · · ·xi1 ∈ X∗ and N ≥ 1
with û∅(N) := 1. In addition, let cu(N) :=

∑

η∈X∗ ûη(N)η.
In which case,

ŷp(N + 1) = θ̂T (N)Π(S[û](N + 1))e1

= θ̂T (N)S(N + 1)Π(S[û](N))e1, (2)

where e1 := [1 0 · · · 0]T , and Π is a representation map

on End(R∞) defined as Π(S[û](N)) =
←−−−
∏N

i=1S(i) with
[S(i)]jk = (cu(i)ηk, ηj) = ûξ(i) and ξηk = ηj for all
ξ, ηj , ηk ∈ X∗. Of primary importance is the identification
of a convenient basis for these representations so that the
S(N +1) matrix can be inductively generated by code. This
boils down to selecting a certain partial ordering for the
words indexing the components of θ and φ. This issue is
addressed in the next section.

III. INDUCTIVE GENERATION OF S(N + 1) MATRIX

A partial ordering � is first defined on all words in X∗.
For all ζ, η ∈ X∗, let ζ � η if and only if there exists
a γ ∈ X∗ such that γ−1(η) = ζ, where γ−1 denotes the
left-shift operator.

Theorem 3.1: (X∗,�) is a partially ordered set.

Proof: Let η, ζ, γ, α, β ∈ X∗. Reflexivity is trivial since
∅−1(η) = η if and only if η � η. To prove transitivity, first
observe that

(η � ζ)⇒ ∃β : β−1(ζ) = η

(ζ � γ)⇒ ∃α : α−1(γ) = ζ

so that

((αβ)−1(γ) = η)⇒ η � γ.

Therefore,

(η � ζ) ∧ (ζ � γ)⇒ η � γ.

To prove anti-symmetry, note that

(η 6= ζ) ∧ (η � ζ)⇒ ∄β : β−1(η) = ζ,

and therefore,

(η � ζ) ∧ (ζ � η)⇒ η = ζ.

1014

Hence, (X∗,�) is a partially ordered set.

The partial order (X∗,�) can be graphically rendered by a
Hasse diagram. Starting with ∅ at the root, the Hasse diagram
of (X∗,�) when X = {x0, x1, . . . , xm} forms a (m+1)-ary
infinitely branching tree. Define an injective map R : X −→
C, where C is a set of colors. Color the edge between the
nodes η and xiη with the color R(xi) in the tree. As an
illustration, the tree for the case when m = 2 is shown in
Figure 2, where R(x0) = black, R(x1) = red, and R(x2) =
blue.

∅

x0

x2
0

...

x1x0

...

x2x0

...

x1

x0x1

...

x2
1

...

x2x1

...

x2

x0x2

...

x1x2

...

x2
2

...

Fig. 2. Hasse diagram for (X∗,�) when X = {x0, x1, x2}

In (2), the underlying discrete-time Fliess operator F̂c [û]
has been truncated up to words of length J . Therefore,
the tree is pruned at the J-th level. Next, a depth-first
search (DFS) algorithm is employed to traverse the graph
and generate words. The corresponding vector of words,
χJ(X), is called the order vector of degree J and is given
by χ0(X) = [∅] and

χJ+1(X)

=
[

∅ χJ(X)x0 χJ(X)x1 · · · χJ (X)xm

]T
(3)

for J ≥ 0.
Example 3.1: The tree for words η ∈ X≤2 when X =
{x0, x1, x2} is given by

∅

x0

x2
0 x1x0 x2x0

x1

x0x1 x2
1 x2x1

x2

x0x2 x1x2 x2
2

The DFS algorithm gives the order vector

χ
2(X)

=
[

∅ x0 x
2
0 x1x0 x2x0 x1 x0x1 x

2
1 x2x1 x2 x0x2 x1x2 x

2
2

]T

.

Let SJ (N + 1) denote the matrix S(N + 1) but trun-
cated for words up to length J . An inductive algorithm
to build such matrices is presented next. For c ∈ R〈〈X〉〉
and υ a k-tuple of words [η1 η2 · · · ηk], let (c, υ) :=
[(c, η1) (c, η2) · · · (c, ηk)]. Consider the following definition.

Definition 3.1: Define Ci as the colored tree of the Hasse
diagram of (X∗,�) up to the i-th level, that is, the (m+1)-
ary tree with ∅ as the root and η ∈ X i as leaves of the Hasse
diagram. Let C , {Ci : i ∈ No} be the set of colored trees
given by (X∗,�) of all levels.

It is useful to define a product † on C as follows: Ci†Cj ,

tree with each leaf node β ∈ X i replaced by the tree Cj ,
where all the nodes of Cj are right concatenated with β. The
following theorem can be proved directly by induction and
basically states that there is a monoid isomorphism between
(C, †) and the additive monoid (N0,+).

Theorem 3.2: For all Ci, Cj ∈ C it follows that Ci †Cj =
Ci+j .

Example 3.2: Let X = {x0, x1} and define the color map
R as: R(x0) = red, R(x1) = blue. Observe that

C1 =

∅

x0 x1

C2 =

∅

x0

x2
0 x1x0

x1

x0x1 x2
1

C1 † C2 =

∅

C2x0 C2x1

The above tree can be expanded as

∅

x0

x2
0

x3
0 x1x

2
0

x1x0

x0x1x0 x2
1x0

x1

x0x1

x2
0x1 x1x0x1

x2
1

x0x
2
1 x3

1

This final tree is identified as C3 so that C1 † C2 = C3.

Now assume that each color R(xi), xi ∈ X , is given the
weight ûi(N + 1) at the discrete time instant N + 1. Then
it follows for any ηj , ηk ∈ X∗ that

S(N + 1)jk = (cu(N + 1)ηk, ηj)

=

{

weight of the path from ηk to ηj in Cn

where n ≥ |ηj |.

By Theorem 3.2, in the case where X = {x0, x1} with color
map R defined as in Example 3.2, CJ+1 = C1 † CJ . That
is,

CJ+1 =

∅

CJx0 CJx1

Hence, from the structure of the order vector in (3) and the
above tree recursion, one can deduce that the block structure
of the matrix SJ+1(N + 1) can be written inductively in
terms of SJ (N + 1) as:

SJ+1(N + 1) =











(c
u
,
χ
J
+
1
(X

)) 0 0 0 · · · · · · · · · 0

SJ (N + 1) 0

0 SJ (N + 1)











.

1015

The above block structure can be generalized to the (m+1)
letter case to give the following algorithm for generating
SJ (N + 1) from SJ−1(N + 1).

Pseudo-code to generate the SJ (N + 1) matrix

S(û(N + 1), J)

1 if J = 0 then return 1 // Base case
2 else
3 call S(û(N + 1), J − 1) // Recursive call
4 A ←− S(û(N + 1), J − 1)
5 B ←−block diag(A, X. length)
6 // Repeat the matrix as m+ 1 diagonal blocks
7 C ←−Concatenate a row of zeros to B
8 D ←−Concatenate the column (cu, χ

J(X)) to C
9 return D

The DFS algorithm used in the computation of χJ(X)
runs as O((m + 1)J), which is exponential in J . The
complexity of the learning unit is also exponential in J ,
namely, O((m + 1)2J). However, if the truncation length
is fixed, and the necessary order vectors are stored in a
dictionary, the algorithm can be sped up, but the complexity
still remains in the exponential class of order J .

Example 3.3: Let X = {x0, x1} with R map as defined
in Example 3.2. For J = 2, the words are indexed by the
order vector as computed in Example 3.1. S2(N +1) can be
computed directly from C2 to be

S2(N + 1) =



















1 0 0 0 0 0 0
û0 1 0 0 0 0 0
û2
0 û0 1 0 0 0 0

û1û0 û1 0 1 0 0 0
û1 0 0 0 1 0 0

û0û1 0 0 0 û0 1 0
û2
1 0 0 0 û1 0 1



















.

For brevity, the argument (N + 1) is suppressed in the
elements of the matrix. The same matrix is now computed by
the algorithm given above. For the base case S0(N+1) = 1.
The matrix S1(N+1) is computed using χ1(X), which from
the DFS on C1 gives

χ1(X) = [∅ x0 x1] .

From the proposed algorithm it follows that

S1(N + 1) =

[

1 0 0
û0 1 0
û1 0 1

]

.

Applying the algorithm once more to compute S2(N + 1):

S2(N + 1) =



















1 0 0 0 0 0 0
û0 1 0 0 0 0 0
û2
0 û0 1 0 0 0 0

û1û0 û1 0 1 0 0 0
û1 0 0 0 1 0 0

û0û1 0 0 0 û0 1 0
û2
1 0 0 0 û1 0 1



















.

Hence, the algorithm computes the S2(N + 1) matrix as
expected.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 z
1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 z
2

Fig. 3. Desired orbit transfer given full knowledge of the plant

IV. CASE STUDY: MULTIVARIABLE LOTKA-VOLTERRA

SYSTEM

The classical Lotka-Volterra model

żi = βizi +
n
∑

j=1

αijzizj , i = 1, . . . , n, (4)

is often used to describe the population dynamics of n
species in competition [2]. Here zi is the biomass of the i-th
species, βi represents the growth rate of the i-th species, and
the parameter αij describes the influence of the j-th species
on the i-th species (normally, αii = 0). Consider the case
where a subset of system parameters βij , j = 1, . . . ,m in (4)
can be actuated and thus viewed as inputs ui, i = 1, . . . ,m.
Assume some set of output functions is given

yj = hj(z), j = 1, . . . , ℓ. (5)

Since the inputs enter the dynamics linearly, it is clear
that (4)-(5) constitutes a control-affine analytic state space
system. In which case, the input-output system u 7→ y has an
underlying Fliess operator representation Fc with generating
series c ∈ Rℓ〈〈X〉〉 computable from the Lotka-Volterra
dynamics and a given initial condition z0 [3], [4], [10]. Of
particular interest here is the special case of a predator-prey
system, which is a two dimensional Lotka-Volterra system

ż1 = β1z1 − α12z1z2 (6)

ż2 = −β2z2 + α21z1z2, (7)

where y1 = z1 and y2 = z2 are taken to be the population
of prey and predator species respectively, and (4) has been
re-parameterized so that βi, αij > 0. This positive system
has precisely two equilibria when all the parameters are
fixed, namely, a saddle point equilibrium at the origin and a
center at ze = (β2/α21, β1/α12) corresponding to periodic
solutions.

Taking the system inputs in (6) and (7) to be u1 = β1 and
u2 = β2 , the orbit transfer problem as shown in Figure 3 is
to determine an input to drive the system from some initial
orbit to within an ǫ = 0.05 neighborhood of a final orbit.
The proposed controller for this task is shown in Figure 4.
It is the multivariable version of the controller used for the

1016

yd
u

y

model
predictive

controller

plante1

y

+

-

e

learning

 unit

y

e p,1

u

u
learning

 unit
e2

e p,2

Fig. 4. Closed-loop system with MIMO predictive controller and two
learning units

TABLE I

NORMALIZED RMS ERRORS FOR THE SIMULATIONS

∆α12 ∆α21 δy1 δy2 ‖û‖∞
0 0 8.66×10−9 1.25×10−8 2
-5 0 0.012 0.007 2
0 -5 0.020 0.016 2
5 0 0.004 0.006 2
0 5 0.018 0.015 2

-10 0 0.016 0.012 1.5
0 -10 0.056 0.041 1.5

10 0 0.010 0.009 1.5
0 10 0.037 0.025 1.5

-20 0 0.023 0.024 0.5
0 -20 0.144 0.113 0.5

20 0 0.012 0.016 0.5
0 20 0.071 0.047 0.5

-50 0 0.092 0.096 0.5
50 0 0.010 0.028 0.5
0 50 0.062 0.095 0.5

same task in [6], [8], where only β1 was used as an input. Its
basic function is to use the learning unit in Figure 1 to learn
the error system between the given model and the plant.
The predicted modeling error êp and the plant model are
then employed by a one step ahead predictive controller to
track the desired orbit transfer trajectory. As in practice, the
model is used to generate this trajectory. The learning units
were implemented using (2) and the algorithm for generating
SJ(N +1) with J = 3 as described in the previous section.
The expectation is a significant improvement in tracking
performance over the single-input case.

The following simulations assume that all the plant’s
parameters are set to unity. The model’s parameters are
fixed and distinct from those of the plant. The sampled
input was bounded by ‖û‖∞, and the positivity constraint
was not enforced. For more implementation and simulation
details, see [6], [8]. The tracking performance for various
choices of model parameter errors is shown in Table I. For
each plant parameter λ, ∆λ := (λmodel − λplant) ∗ 100%. In
addition, δyi for i = 1, 2 is the RMS error normalized by the
desired trajectory in each output channel. As an example, the
simulation results for the cases with +20% error in α21 and
−20% error in α12 are shown in Figures 5-8. The case of
∆α21 = −20, (marked red in Table I) was the extreme case
as decreasing α21 any further resulted in the plant’s response
being oscillatory. The simulation results pertaining to this

0 0.5 1 1.5 2 2.5 3 3.5 4

 z
1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 z
2

Fig. 5. Orbit transfer with +20% error in α21

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 t

0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 6. State trajectories with +20% error in α21

case are shown in Figures 9 and 10. Overall the simulation
data demonstrated at least an order of magnitude reduction in
the tracking error over the single-input cases studied in [6],
[8] and significantly more robustness with respect to model
parameter uncertainty. This came at the cost, however, of
higher dimensional learning units, i.e., increased controller
complexity.

V. CONCLUSIONS AND FUTURE WORK

It was shown in this paper how to implement a multi-
variable learning unit based on a discretization of a Fliess
operator for control applications. The main idea was to
construct a convenient basis for a matrix representation of
the underlying monoid structure using a Depth-First Search
on trees which themselves form a monoid isomorphic to the
additive monoid on the natural numbers. This implementa-
tion was then employed in a predictive controller to solve
the orbit transfer problem for a two-input, two-output Lotka-
Volterra system.

Future work will include the introduction of measurement
noise in the system, exercising the method on more complex

1017

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 z
1

0

1

2

3

4

5

6

 z
2

Fig. 7. Orbit transfer with -20% error in α12

0 1 2 3 4 5

 t

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Fig. 8. State trajectories with -20% error in α12

engineering plants, and identifying conditions under which
closed-loop stability can be guaranteed.

ACKNOWLEDGMENTS

This research was supported by the National Sci-
ence Foundation under grants CMMI-1839378 and CMMI-
1839387.

REFERENCES

[1] P. Baldi and K. Hornik, Universal approximation and learning of
trajectories using oscillators, in Advances in Neural Information Pro-
cessing Systems, D. Touretzky, M. Mozer, and M. Hasselmo, Eds.,
vol. 8, MIT Press, Cambridge, MA, 1996, pp. 451–457.

[2] E. Chauvet, J. E. Paullet, J. P. Previte, and Z. Walls, A Lotka-Volterra
three-species food chain, Mathematics Magazine, 75 (2002) 243–255.

[3] M. Fliess, Fonctionnelles causales non linéaires et indéterminées non
commutatives, Bull. Soc. Math. France, 109 (1981) 3–40.

[4] M. Fliess, Réalisation locale des systèmes non linéaires, algèbres
de Lie filtrées transitives et séries génératrices non commutatives,
Invent. Math., 71 (1983) 521–537.

[5] W. S. Gray, L. A. Duffaut Espinosa, and K. Ebrahimi-Fard, Discrete-
time approximations of Fliess operators, Numer. Math., 137 (2017)
35–62.

0 1 2 3 4 5 6

 z
1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 z
2

Fig. 9. Orbit transfer with -20% error in α21

0 1 2 3 4 5 6

 t

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Fig. 10. State trajectories with -20% error in α21

[6] W. S. Gray, L. A. Duffaut Espinosa, and L. T. Kell, Data-driven
SISO predictive control using adaptive discrete-time Fliess operator
approximations, Proc. 21st Inter. Conf. on System Theory, Control and
Computing, Sinaia, Romania, 2017, pp. 383–388.

[7] W. S. Gray, G. S. Venkatesh, and L. A. Duffaut Espinosa, Discrete-time
Chen series for time discretization and machine learning, Proc. 53rd
2019 Conf. on Information Sciences and Systems, Baltimore, MD,
2019.

[8] W. S. Gray, G. S. Venkatesh, and L. A. Duffaut Espinosa, Combining
learning and model based control: Case study for single-input Lotka-
Volterra system, Proc. 2019 American Control Conf., Philadelphia, PA,
2019, pp. 928–933.

[9] L. Grüne and P. E. Kloeden, Higher order numerical schemes for
affinely controlled nonlinear systems, Numer. Math., 89 (2001) 669–
690.

[10] A. Isidori, Nonlinear Control Systems, 3rd Ed., Springer-Verlag, Lon-
don, 1995.

[11] L. Jin, P. Nikiforuk, and M. Gupta, Approximation of discrete-time
state-space trajectories using dynamic recurrent neural networks, IEEE
Trans. Automat. Control, 40 (1995) 1266–1270.

[12] C. Kambhampati, F. Garces, and K. Warwick, Approximation of non-
autonomous dynamic systems by continuous time recurrent neural
networks, Proc. Inter. Joint Conf. on Neural Networks, Como, Italy,
2000, pp. 64–69.

[13] A. Schäfer and H. Zimmermann, Recurrent neural networks are
universal approximators, in Artificial Neural Networks – ICANN 2006,
S. Kollias, A. Stafylopatis, W. Duch, and E. Oja, Eds., Springer, Berlin,
2006, pp. 632–640.

1018

