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The nonlinear system identification problem is solved for a multivariable nonlinear input–output
system that can be represented in terms of a Chen–Fliess functional expansion. The problem is
formulated in terms of a regression which is linear in the parameters and has a nonlinear regressor.
An inductive implementation of the nonlinear regressor is developed using the underlying noncom-
mutative algebraic and combinatorial structures. The method is demonstrated in an adaptive control
application involving a two-input, two-output Lotka–Volterra dynamical system.
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1. Introduction

The system identification problem for nonlinear dynamical
systems is a vast subject intersecting many different disciplines
as described in the survey papers by Ljung (2010) and Schoukens
& Ljung (2019). The best approach and solution are highly de-
pendent on the particular nature of the application. In this paper,
the application is adaptive control of nonlinear input–output
systems that can be represented in terms of Chen–Fliess func-
tional series or Fliess operators (Fliess, 1981, 1983; Isidori, 1995).
For example, any analytic control affine state space system in
continuous-time has an input–output map with a Fliess operator
representation. Its form is independent of any coordinate system
and is uniquely specified by the coefficients of a noncommutative
formal power series. Perhaps the most closely related existing
methods in the literature are those related to the identification
of Volterra series, for example, Batselier et al. (2017a, 2017b),
Birpoutsoukis et al. (2017), Doyle III et al. (2002), Hu et al. (2019)
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and Pillonetto et al. (2014). (See Schoukens & Ljung, 2019 for
a more extensive list.) This is due to the fact that any continuous-
time Volterra series with analytic kernels can be written in terms
of a Fliess operator (Fliess, 1981). The primary advantage of the
proposed method is that the identification problem for kernel
functions is replaced with a much simpler linear parametric iden-
tification problem. In addition, the approach can easily accommo-
date terms from kernel functions beyond the second order, which
is the standard in most of the existing literature. The method
described in Padoan & Astolfi (2016) should also be mentioned
as it employs formal power series concepts, but it is restricted to
the autonomous case.

As most implementations are in discrete-time, the specific
model class will be the set of discrete-time Fliess operators, which
are known to be capable of approximating their continuous-
time counterparts to arbitrary precision (Gray et al., 2017a). The
problem is formulated in terms of a nonlinear regression which is
linear in the parameters. Thus, the parameter estimation problem
is solved by a standard recursive least-squares algorithm. What
makes the problem nontrivial is finding an inductive implemen-
tation of the nonlinear regressor. For single-input systems, the
problem can be bypassed by applying brute force methods (Gray
et al., 2017b, 2019b). But in the multivariable setting addressed
here, this is no longer feasible as the complexity becomes un-
manageable. Instead, it is necessary to exploit the underlying
noncommutative algebraic and combinatorial structures to pro-
duce a suitable induction. Finally, the method is demonstrated
using a two-input, two-output Lotka–Volterra dynamical system
in a deterministic setting. Here the identified Chen–Fliess series
is employed in an indirect adaptive control scheme where the
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control signal is computed using one-step ahead prediction. Some
of these results have appeared in preliminary form in Gray et al.
(2019a) and Venkatesh et al. (2019).

The paper is organized as follows. In the next section, a brief
summary of the key concepts concerning Chen–Fliess series is
given. The main results are developed in Section 3. The simulation
example is presented in the subsequent section. The conclusions
and directions for future research are given in the last section.

2. Chen–Fliess series

In this section, a brief review of Chen–Fliess series (Fliess,
1981, 1983; Gray & Wang, 2002) and their discrete-time coun-
terparts (Duffaut Espinosa et al., 2018; Gray et al., 2017a) is
provided.

An alphabet X = {x0, x1, . . . , xm} is any nonempty and finite
set of noncommuting symbols referred to as letters. A word
η = xi1 · · · xik is a finite sequence of letters from X . The number
of letters in a word η, written as |η|, is called its length. The
empty word, ∅, is taken to have length zero. The collection of all
words having length k is denoted by Xk, and X∗ =

⋃
k≥0 X

k. The
latter is a monoid under the concatenation product. Any mapping
c : X∗ → Rℓ is called a formal power series. Often c is written
as the formal sum c =

∑
η∈X∗ (c, η)η, where the coefficient (c, η)

is the image of η ∈ X∗ under c . The set of all noncommutative
formal power series over the alphabet X is denoted by Rℓ

⟨⟨X⟩⟩. It
forms an associative R-algebra under the Cauchy product.

2.1. Continuous-time case

Given any c ∈ Rℓ
⟨⟨X⟩⟩ one can associate a causal m-input,

ℓ-output operator, Fc , in the following manner. Let p ≥ 1 and t0 <
t1 be given. For a Lebesgue measurable function u : [t0, t1] → Rm,
define ∥u∥p = max{∥ui∥p : 1 ≤ i ≤ m}, where ∥ui∥p is the
usual Lp-norm for a measurable real-valued function, ui, defined
on [t0, t1]. Let Lmp [t0, t1] denote the set of all measurable functions
defined on [t0, t1] having a finite ∥·∥p norm and Bm

p (R)[t0, t1] :=
{u ∈ Lmp [t0, t1] : ∥u∥p ≤ R}. Assume C[t0, t1] is the subset
of continuous functions in Lm1 [t0, t1]. Define inductively for each
η ∈ X∗ the map Eη : Lm1 [t0, t1] → C[t0, t1] by setting E∅[u] = 1
and letting

Exiη̄[u](t, t0) =
∫ t

t0

ui(τ )Eη̄[u](τ , t0) dτ ,

where xi ∈ X , η̄ ∈ X∗, and u0 = 1. The Chen–Fliess series
corresponding to c is

y(t) = Fc[u](t) =
∑
η∈X∗

(c, η) Eη[u](t, t0)

(Fliess, 1981, 1983). It can be shown that if there exist real
numbers K ,M ≥ 0 such that

|(c, η)| ≤ KM |η| |η|!, ∀η ∈ X∗

(|z| := maxi |zi| when z ∈ Rℓ) then the series defining Fc
converges absolutely and uniformly for sufficiently small R, T > 0
and constitutes a well defined mapping from Bm

p (R)[t0, t0+T ] into
Bℓ
q(S)[t0, t0+T ], where the numbers p, q ∈ [1,+∞] are conjugate

exponents, i.e., 1/p + 1/q = 1 (Gray & Wang, 2002). Any such
mapping is called a Fliess operator. A Fliess operator Fc defined on
Bm
p (R)[t0, t0 + T ] is said to be realizable when there exists a state

space model

ż(t) = g0(z(t))+
m∑
i=1

gi(z(t)) ui(t), z(t0) = z0 (1a)

yj(t) = hj(z(t)), j = 1, 2, . . . , ℓ, (1b)

where each gi is an analytic vector field expressed in local coor-
dinates on some neighborhood W of z0, and each output function
hj is an analytic function on W such that (1a) has a well defined
solution z(t), t ∈ [t0, t0+T ] for any given input u ∈ Bm

p (R)[t0, t0+
T ], and yj(t) = Fcj [u](t) = hj(z(t)), t ∈ [t0, t0 + T ], j = 1, 2, . . . , ℓ.
It can be shown that for any word η = xik · · · xi1 ∈ X∗

(cj, η) = Lgηhj(z0) := Lgi1 · · · Lgik hj(z0), (2)

where Lgihj is the Lie derivative of hj with respect to gi.

2.2. Discrete-time case

Inputs in the discrete-time setting are assumed to be se-
quences of vectors from the normed linear space

lm+1
∞

(N0) := {û = (û(N0), û(N0 + 1), . . .) :
û

∞
<∞},

where û(N) := [û0(N), û1(N), . . . , ûm(N)]T , N ≥ N0 with ûi(N) ∈
R,

⏐⏐û(N)
⏐⏐ := maxi∈{0,1,...,m}

⏐⏐ûi(N)
⏐⏐, and û

∞
:= supN≥N0

⏐⏐û(N)
⏐⏐.

The subspace of finite sequences over [N0,Nf ] is denoted by
lm+1
∞
[N0,Nf ]. Given a generating series c ∈ Rℓ

⟨⟨X⟩⟩, the corre-
sponding discrete-time Fliess operator is defined as

F̂c[û](N) =
∑
η∈X∗

(c, η)Sη[û](N)

for any N ≥ N0, where

Sxiη[û](N) =
N∑

k=1

ûi(k)Sη[û](k)

with xi ∈ X , η ∈ X∗, and û ∈ lm+1
∞
[N0]. By assumption, S∅[û](N)

:= 1.
Following Grüne & Kloeden (2001), select some fixed u ∈

Lm1 [0, T ] with T > 0 finite. Choose an integer L ≥ 1, let ∆ := T/L,
and define the sequence of real numbers

ûi(N) =
∫ N∆

(N−1)∆
ui(t) dt, i = 0, 1, . . . ,m,

where N ∈ {1, 2, . . . , L}. Assume u0 = 1 so that û0(N) = ∆.
Since numerically only finite sums can be computed, a truncated
version of F̂c will be useful,

ŷ(N) = F̂ J
c [û](N) :=

∑
η∈X≤J

(c, η)Sη[û](N), (3)

where X≤J :=
⋃J

k=0 X
k. The main assertion proved in Gray

et al. (2017a) (Theorems 6 and 7) is that the class of truncated,
discrete-time Fliess operators acts as a set of universal approxi-
mators with computable error bounds for their continuous-time
counterparts. In which case, they can be used to approximate any
input–output system corresponding to state space realization (1)
with increasing accuracy as L and J increase.

3. System identification for discrete-time Fliess operators

The main objective of this section is to solve the system
identification problem for the model class of truncated discrete-
time Fliess operators. This is done one output channel at a time,
so without loss of generality it is assumed that ℓ = 1. First the
problem is posed in terms of a nonlinear regression. Then an
inductive implementation of the regressor is developed.
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3.1. Nonlinear regression problem

The first step is to write (3) as the nonlinear regression

ŷ(N) = φT (N)θ0, N ≥ 1, (4)

where

φ(N) = [Sη1 [û](N) Sη2 [û](N) · · · Sηl [û](N)]T

θ0 = [(c, η1) (c, η2) · · · (c, ηl)]T

with l = card(X≤J ) =
∑J

k=0(m + 1)k = ((m + 1)J+1 − 1)/m
and assuming some ordering (η1, η2, . . .) has been imposed on
the words in X∗. If an estimate of θ0 is available at time N − 1,
say θ̂ (N − 1),1 then (4) gives a corresponding prediction of ŷ(N):

ŷp(N) := φT (N)θ̂ (N − 1). (5)

Since the parameters appear linearly in (5), the following recur-
sive least-squares algorithm is used to update the series coeffi-
cients:

θ̂ (N) = θ̂ (N − 1)+ g(N − 1)e(N) (6a)

e(N) = y(N∆)− φT (N)θ̂ (N − 1) (6b)

g(N − 1) =
P(N − 2)φ(N)

1+ φT (N)P(N − 2)φ(N)
(6c)

P(N − 1) = P(N − 2)−
P(N − 2)φ(N)φT (N)P(N − 2)

1+ φT (N)P(N − 2)φ(N)
(6d)

for any N ≥ 1 with the initial estimate θ̂ (0) given, and P(−1)
being any positive definite matrix P0 (Goodwin & Sin, 2009,
p. 65). Covariance resetting is done periodically to enhance con-
vergence. The corresponding one-step ahead predictor is shown
in Fig. 1. Here input–output data (u, y) from some unknown
continuous-time plant (or the error system between the plant and
an assumed model) is fed into the unit. The only assumption is
that the data came from a system which has a Fliess operator rep-
resentation, for example, any system modeled by (1). In general,
the predictor has no a priori knowledge of the system, so θ̂ (0) is
initialized to zero. Setting P0 = I , it is known that this algorithm
minimizes the performance index

JN̄ (θ ) :=
N̄∑

N=1

[y(N∆)− φT (N)θ ]2 +
1
2

θ − θ̂ (0)
2

with respect to the parameter θ . It should be stated that since
the model class consists of truncated versions of F̂c , there is no
reason to expect the parameter vector θ̂ (N) to converge to c
in any fashion as N increases. But this is not a problem since
the only objective is to ensure that the underlying continuous-
time input–output map Fc is well approximated by F̂ J

θ̂ (N)
. On the

other hand, the approximation theory presented in Gray et al.
(2017a) guarantees that if the underlying system has such a
Fliess operator representation then the true generating series c
similarly truncated is a feasible limit point for the sequence θ̂ (N),
N ≥ 0. What is not so clear is how to efficiently compute the
update of the regressor φ(N+1) given the next input–output pair
(u(N + 1), y(N + 1)). This issue is addressed next.

1 The hat notation is used throughout to distinguish discrete-time signals
from continuous-time signals, for example, ŷ(N) = y(N∆). In this one instance,
however, it is also used to indicate an estimate of the parameter θ .

Fig. 1. One-step ahead predictor based on a discrete-time Fliess operator.

3.2. Inductive implementation of the regressor

To devise an inductive implementation of the regressor, it is
necessary to identify the algebraic structure underlying the iter-
ated sums in the definition of the discrete-time Fliess operator.
The starting point for this is the following concept.

Definition 1 (Gray et al., 2017a). Given any N ≥ N0 and û ∈
lm+1
∞

(N0), a discrete-time Chen series is defined as

S[û](N,N0) =
∑
η∈X∗

ηSη[û](N,N0),

where

Sxiη[û](N,N0) =
N∑

k=N0

ûi(k)Sη[û](k,N0) (7)

with xi ∈ X , η ∈ X∗, and S∅[û](N,N0) := 1. If N0 = 0 then
S[û](N, 0) is abbreviated as S[û](N).

Given the bijection between the letters of X = {x0, x1 . . . , xm}
and components of û = [û0, û1, . . . , ûm]

T , define the monomial
ûη(N) = ûik (N) · · · ûi1 (N) for any η = xik · · · xi1 ∈ X∗ and
N ≥ N0 with û∅(N) := 1. Hence, for fixed any û ∈ lm+1

∞
(N0)

and N ≥ N0, there is a corresponding formal power series in
R⟨⟨X⟩⟩ whose coefficients are given by these monomials, namely,
cu(N) :=

∑
η∈X∗ ûη(N)η. Observe that

Sxiη[û](N0,N0) = ûxi (N0)Sη[û](N0,N0)

so that Sη[û](N0,N0) = ûη(N0), and thus, S[û](N0,N0) = cu(N0).

Example 2. If X = {x1} and ûx1 (N0) = û1(N0), then

S[û](N0,N0) =
∞∑
k=0

(û1(N0)x1)k =: (1− û1(N0)x1)−1.

A key observation is that a discrete-time Chen series S[û]
(N,N0) satisfies a difference equation as described next and
proved in Appendix A.

Theorem 3 (Gray et al., 2019a). For any û ∈ lm+1
∞

(N0) and N ≥ N0

S[û](N + 1,N0) = cu(N + 1)S[û](N,N0)

with S[û](N0,N0) = cu(N0) so that

S[û](N,N0) =

←−
N∏

i=N0

cu(i), (8)

where
←−∏

denotes a directed product from right to left.
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Fig. 2. Concatenation of inputs û and v̂ at time N = M .

Example 4. Consider the case in Example 2 where X = {x1}
and ûx1 (i) = û1(i) for all i ≥ N0. Then cu(i) =

∑
k≥0(û1(i)x1)k =

(1− û1(i)x1)−1 and

S[û](N,N0) = (1− û1(N)x1)−1 · · · (1− û1(N0)x1)−1.

For instance,

S[û](1, 0) = cu(1)cu(0)

= 1+ (û1(1)+ û1(0))x1 + (û2
1(1)+

û1(1)û1(0)+ û2
1(0))x

2
1 + (û3

1(1)+

û2
1(1)û1(0)+ û1(1)û2

1(0)+ û3
1(0))x

3
1 + · · ·

In this case, S[û](N,N0) is always a rational series (Berstel &
Reutenauer, 1988).

Consider next two input sequences (û, v̂) ∈ lm+1
∞
[Na,Nb] ×

lm+1
∞
[Nc,Nd] with Nb > Na and Nd > Nc . The concatenation of

û and v̂ at M ∈ [Na,Nb] is taken to be

(v̂#M û)(N)

=

{
û(N) : Na ≤ N ≤ M

v̂((N −M)+ Nc) : M < N ≤ M + (Nd − Nc)

as shown in Fig. 2. Define the set of sequences

lm+1
∞,e (0) := lm+1

∞
(0) ∪ {0̂},

where 0̂ denotes the empty sequence with duration zero so that
formally v̂#M 0̂ = 0̂#M v̂ := v̂ for all v̂ ∈ lm+1

∞,e (0). In which
case, lm+1

∞,e (0) is a monoid under this input concatenation operator.
Define S[0̂] = 1. The following is a straightforward generalization
of Theorem 3.

Theorem 5 (Gray et al., 2019a, Discrete-Time Chen’s Identity). Given
(û, v̂) ∈ lm+1

∞
[Na,Nb] × lm+1

∞
[Nc,Nd], M ∈ [Na,Nb], and N ∈

[M,M + (Nd − Nc)] it follows that

S[v̂]((N −M)+ Nc,Nc)S[û](M,Na) = S[v̂#M û](N,Na).

In particular, when Na = Nc = 0 then

S[v̂](N −M)S[û](M) = S[v̂#M û](N). (9)

Define the set of discrete-time Chen series

MC (X) = {S[û](N) ∈ R⟨⟨X⟩⟩ : û ∈ lm+1
∞
[0,Nf ],

0 ≤ N ≤ Nf <∞}.

The next theorem follows directly from (9).

Theorem 6 (Gray et al., 2019a). MC (X) is a monoid under the
Cauchy product. In addition, S : lm+1

∞,e (0) → MC (X) is a monoid
homomorphism.

Let End(R∞) be the set of endomorphisms on the R-vector
space of real right-sided infinite sequences. This set can be viewed
as the monoid of doubly infinite matrices with well defined
matrix products and unit I = diag(1, 1, . . .). A monoid M is
said to have an infinite dimensional real representation, Π , if the

mapping Π : M → End(R∞) is a monoid homomorphism. The
representation is faithful if Π is injective.

Theorem 7 (Gray et al., 2019a). The monoid MC (X) has a faithful
infinite dimensional real representation Π given by Π (S[û](N)) =
←−−∏N

i=0S(i), where S(i) is any matrix representation of the R-linear
map on R⟨⟨X⟩⟩ given by the left concatenation map C : d ↦→ cu(i)d.

Proof. The representation claim follows from (8). To see that
Π is injective, assume a fixed ordering of the words in X∗, say
{η1, η2, . . .}. Then define the matrix [S(i)]jk = (cu(i)ηk, ηj) = ûξ (i),
where ξηk = ηj. Thus, S(i) is a lower triangular matrix with ones
along the diagonal since u∅(i) = 1, i ≥ 0. The first column is
comprised of the coefficients of cu(i) in the order given to X∗.
Hence, the map Π on the monoid MC (X) is injective since cu(i)
can be uniquely identified from S(i) = Π (S[û](i, i)).

Note that the above theorem implies that (5) can be written
in the form

ŷp(N + 1) = θ̂ T (N)Π (S[û](N + 1))e1
= θ̂ T (N)S(N + 1)Π (S[û](N))e1 (10)

for N ≥ N0, where S(N + 1) and S[û](N) have been suitable
truncated, and e1 := [1 0 0 · · · 0]T ∈ Rl. Equation (10) can also
be written in the form ŷp(N + 1) = Q (û(N + 1)), where Q is a
polynomial in the components of û(N+1) with maximum degree
l− 1.

Example 8. Suppose X = {x1} as in Example 4. Assuming the
ordering on X∗ to be {∅, x1, x21, . . .}. Then for all i ≥ 0

S(i) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · ·

û1(i) 1 0 0 · · ·

û2
1(i) û1(i) 1 0 · · ·

û3
1(i) û2

1(i) û1(i) 1 · · ·

...
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎦
and cu(i) =

∑
k≥0 û

k
1(i)x

k
1. In addition,

Π (S[û](1))
= S(1)S(0)

=

⎡⎢⎢⎢⎢⎢⎢⎣

1
û1(1)+ û1(0)

û2
1(1)+ û1(1)û1(0)+ û2

1(0)
û3
1(1)+ û2

1(1)û1(0)+ û1(1)û2
1(0)+ û3

1(0)
...

0 0 0 · · ·

1 0 0 · · ·

û1(1)+ û1(0) 1 0 · · ·

û2
1(1)+ û1(1)û1(0)+ û2

1(0) û1(1)+ û1(0) 1 · · ·

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎥⎦ .

As expected, the first column coincides with the coefficients of
S[û](1) in Example 4. Setting J = 3 so that l = card(X≤J ) = 4
gives the truncated versions

θ̂ T (N) =
[

(c,∅) (c, x1) (c, x21) (c, x31)
]

(11a)

S(N) =

⎡⎢⎢⎢⎣
1 0 0 0

û1(N) 1 0 0
û2
1(N) û1(N) 1 0

û3
1(N) û2

1(N) û1(N) 1

⎤⎥⎥⎥⎦ (11b)
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Fig. 3. Predictor output ŷp versus true output y in Example 8.

Π (S[û](N)) =

⎡⎢⎢⎢⎣
1 0 0 0

Sx1 (N) 1 0 0
Sx21 (N) Sx1 (N) 1 0

Sx31 (N) Sx21 (N) Sx1 (N) 1

⎤⎥⎥⎥⎦ , (11c)

where Sxk1 (N) := (S[û](N), xk1). Therefore, the output

ŷp(N + 1) = Q (û(N + 1))

=

3∑
i=0

qi(N)ûi
1(N + 1),

where the coefficients qi(N) are functions of (c, xk1) and Sxk1 (N),
k = 0, 1, 2, 3.

As a specific example, consider a plant modeled by the Fliess
operator

y = Fc[u] =
∞∑
k=0

(c, xk1)Exk1 [u](t, 0),

where the generating series is c =
∑

k≥0 x
k
1. The system has the

state space realization

ż(t) = u(t), z(0) = 0, y(t) = ez(t) (12)

since for all t ≥ 0

y(t) =
∞∑
k=0

Ek
x1 [u](t, 0)

1
k!
=

∞∑
k=0

Exk1 [u](t, 0) = Fc[u](t).

The output y shown in Fig. 3 is computed from a numerical
simulation of the state space model (12) when the input u(t) =
2e−t/3 sin(2π t) is applied. The output of the predictor ŷp(N), N ≥
0 as implemented using (6), (10), and (11) is also shown in the
figure. As the predictor processes more data, its estimate of the
output y improves asymptotically.

The more challenging problem is systematically building a real
representation of MC (X) when X has more than one letter, as
in the multivariable case or when the drift letter x0 is present.
A partial ordering ⪯ is first defined on all words in X∗. For all
ζ , η ∈ X∗, let ζ ⪯ η if and only if there exists a γ ∈ X∗ such
that γ−1(η) = ζ , where γ−1 denotes the left-shift operator. The
following theorem is proved in Appendix B.

Theorem 9 (Venkatesh et al., 2019). The pair (X∗,⪯) is a partially
ordered set.

The partial order (X∗,⪯) can be graphically represented by a
Hasse diagram. Starting with ∅ at the root, the Hasse diagram of
(X∗,⪯) when X = {x0, x1, . . . , xm} forms an (m+1)-ary infinitely
branching tree. Define an injective map R : X −→ C, where C
is a set of colors. Color the edge between the nodes η and xiη in
the tree with the color R(xi). In (10), the underlying discrete-time
Fliess operator F̂c

[
û
]
has been truncated up to words of length

J . Therefore, the tree is pruned at the Jth level. Next, a depth-
first search (DFS) algorithm is employed to traverse the graph
and generate words. The corresponding vector of words, χ J (X),
is called the order vector of degree J and is given by χ0(X) = [∅]
and

χ J+1(X) =
[
∅ χ J (X)x0 χ J (X)x1 · · · χ J (X)xm

]T (13)

for J ≥ 0.
Let S J (N+1) denote the matrix S(N+1) truncated for words up

to length J , i.e., S J (N + 1) ∈ Rl×l with l = card(X≤J ). An inductive
algorithm to build such matrices is developed next.

Definition 10. Define Ci as the colored tree of the Hasse diagram
of (X∗,⪯) up to the ith level, that is, the (m + 1)-ary tree with
∅ as the root and η ∈ X i as leaves of the Hasse diagram. Let
C := {Ci : i ∈ N0} be the set of colored trees given by (X∗,⪯)
of all levels.

It is useful to define a product † on C as follows: Ci †Cj :={tree
with each leaf node β ∈ X i replaced by the tree Cj, where all the
nodes of Cj are right concatenated with β}. The following theorem
is proved in Appendix C.

Theorem 11. (C, †) is a commutative monoid isomorphic to the
additive monoid (N0,+). Specifically, Ci † Cj = Ci+j for all Ci, Cj ∈ C.

Example 12. Let X = {x0, x1} and define the color map R as:
R(x0) = red, R(x1) = blue. Observe that

C1 =

∅

x0 x1

C2 =

∅

x0

x20 x1x0

x1

x0x1 x21

C1 † C2 =

∅

C2x0 C2x1

The tree above can be expanded as
∅

x0

x20

x30 x1x20

x1x0

x0x1x0 x21x0

x1

x0x1

x20x1 x1x0x1

x21

x0x21 x31

This final tree is identified as C3 so that C1 † C2 = C3.

Now assume that each color R(xi), xi ∈ X , is given the weight
ûi(N + 1) at the discrete time instant N + 1. Then it follows for
any ηj, ηk ∈ X∗ that

[S(N + 1)]jk = (cu(N + 1)ηk, ηj)

=

{
weight of the path from ηk to ηj in Cn,
where n ≥ |ηj|.
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Fig. 4. Closed-loop system with a two-input, two-output predictive controller.

By Theorem 11, in the case where X = {x0, x1} with color map R
defined as in Example 12, CJ+1 = C1 † CJ . That is,

CJ+1 =

∅

CJx0 CJx1

Hence, from the structure of the order vector in (13) and the
above tree recursion, one can deduce for any m ≥ 1 that the block
structure of the matrix S J+1(N + 1) can be written inductively in
terms of S J (N + 1) as:

S J+1(N + 1) =⎡⎣ 1 0 · · · 0

û(N + 1)⊗ (S J (N + 1)e1)
block diag(S J (N + 1),

. . . , S J (N + 1))

⎤⎦ , (14)

where ‘⊗’ denotes the Kronecker matrix product, and the block
diagonal matrix is comprised on m+ 1 blocks.

Example 13. Let X = {x0, x1}. For J = 2, the words are indexed
by the order vector χ2(X) = [∅ x0 x20 x1x0 x1 x0x1 x21]. S

2(N + 1)
can be computed directly from C2 to be

S2(N + 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
û0 1 0 0 0 0 0
û2
0 û0 1 0 0 0 0

û1û0 û1 0 1 0 0 0
û1 0 0 0 1 0 0

û0û1 0 0 0 û0 1 0
û2
1 0 0 0 û1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

(For brevity, the argument (N + 1) is suppressed in the en-
tries of the matrix.) But the same matrix can also be computed
inductively from (14). For the base case, S0(N + 1) = 1 so that

S1(N + 1) =

[ 1 0 0
û0 1 0
û1 0 1

]
.

Applying (14) once more gives (15).

4. Application to adaptive control

Suppose yd is a desired output known to be in the range of
a given plant with an underlying but unknown Fliess operator
representation Fc . It is most likely in applications that yd was
designed using an assumed model (1). When both the plant and
model are given the same input, a modeling error ei = yi − ỹi
is generated for the ith channel of the plant’s output as shown
in Fig. 4. This signal and the applied input are then fed to a

Table 1
Discretization parameters for simulations.
L J T ∆ ϵ

100 3 6 0.06 0.05

predictor of the type presented in the previous section in order
to learn the input–output behavior of each error map u ↦→ ei,
i = 1, . . . ,m, which in this case must also have a Fliess operator
representation. At any sample time the output of the plant is
approximated by ỹ(N∆) + êp(N) = ỹ(N∆) + Q (û(N)), where Q
was defined using (10). The input u generated by the predictive
controller to track yd is a piecewise constant function taking
values for N ∈ {1, 2, . . . , L} equivalent to

û(N) := argmin
|û(N)|≤ū

ŷTe (N)Wŷe(N) (16)

for some fixed bound ū > 0 and where

ŷe(N) := yd(N∆)− [ỹ(N∆)+ Q (û(N))]

with W ∈ Rℓ×ℓ being a fixed symmetric positive semi-definite
weighting matrix. The MatLab command fmincon is used to
compute local minima over the interval [−ū, ū]. In summary then
equations (6), (10), and (16) provide a fully inductive implemen-
tation of a one-step ahead predictive controller. If the model is
omitted from this set up, the resulting controller is still viable and
can be viewed as a type of data-driven/model free closed-loop
system as first proposed for SISO systems in Gray et al. (2017b).

As an example, consider the Lotka–Volterra model

żi = βizi +
n∑

j=1

αijzizj, i = 1, . . . , n, (17)

used to describe the population dynamics of n species in com-
petition (Chauvet et al., 2002; May & Leonard, 1975; Smale,
1976). Here zi is the biomass of the ith species, βi represents the
growth rate of the ith species, and the parameter αij describes the
influence of the jth species on the ith species. Assume a subset
of system parameters βij , j = 1, . . . ,m in (17) can be actuated
and thus viewed as inputs ui, i = 1, . . . ,m, and a set of output
functions is given

yj = hj(z), j = 1, . . . , ℓ.

Since the inputs enter the dynamics linearly, the input–output
map u ↦→ y has an underlying Fliess operator representation Fc
with generating series c ∈ Rℓ

⟨⟨X⟩⟩ computable directly from (2)
for a given initial condition z0. Of particular interest here is the
two dimensional predator–prey system

ż1 = β1z1 − α12z1z2
ż2 = −β2z2 + α21z1z2,

where y1 = z1 and y2 = z2 are taken to be the population
of prey and predator species respectively, and (17) has been
re-parameterized so that βi, αij > 0. This positive system has pre-
cisely two equilibria when all the parameters are fixed, namely,
a saddle point equilibrium at the origin and a center at ze =
(β2/α21, β1/α12) corresponding to periodic solutions. Taking the
system inputs to be u1 = β1 and u2 = β2, the orbit transfer
problem is to determine an input to drive the system from some
initial orbit to within an ϵ neighborhood of a final orbit using a
given orbit transfer trajectory.

The proposed controller was tested in simulation assuming all
the plant’s parameters are set to unity. The discretization param-
eters are given in Table 1. The tracking performance for various
choices of model parameter errors and input bounds ∥û∥∞ (the



W.S. Gray, G.S. Venkatesh and L.A. Duffaut Espinosa / Automatica 119 (2020) 109085 7

Fig. 5. Orbit transfer with +20% model error in α21 .

Table 2
Normalized RMS tracking errors for MIMO system.

∆α12 ∆α21 δy1 δy2 ∥û∥∞

Exact model 8.66×10−9 1.25×10−8 2
−5 0 0.012 0.007 2
0 −5 0.020 0.016 2
5 0 0.004 0.006 2
0 5 0.018 0.015 2
−10 0 0.016 0.012 1.5
0 −10 0.056 0.041 1.5
10 0 0.010 0.009 1.5
0 10 0.037 0.025 1.5
−20 0 0.023 0.024 0.5
0 −20 0.144 0.113 0.5
20 0 0.012 0.016 0.5
0 20 0.071 0.047 0.5
−50 0 0.092 0.096 0.5
50 0 0.010 0.028 0.5
0 50 0.062 0.095 0.5
Model free 0.191 0.897 1

positivity constraint on the input was not enforced) is shown in
Table 2. For each plant parameter λ, ∆λ := (λmodel−λplant)×100%.
In addition, δyi for i = 1, 2 is the RMS error per sample normal-
ized by the sample value of the desired trajectory for the given
output channel. First the control system was tested assuming the
exact plant model is available. In which case, the modeling error
is zero and the predictors are inactive. The closed-loop perfor-
mance is therefore determined solely by the predictive controller,
which is quite accurate. Next a variety of parametric errors were
introduced in the model. For all such cases, the weighting matrix
W was set to the identity matrix. As an example, the simulation
results for the case of +20% error in α21 are shown in Fig. 5. The
case where ∆α21 = −20% is an extreme scenario as decreasing
α21 any further resulted in the plant’s response being oscillatory
as shown in Fig. 6. Finally, the model free case was also simulated
as shown in Fig. 7. Here it was necessary to select a nontrivial
weighting matrix, in this case W = [1 0.25; 0.25 1], in order for
the optimizer to compensate for the cross coupling between the
input–output channels, something that was done automatically
when a model was present. Note that tracking was achieved, but
the performance was about an order of magnitude worse than
most cases employing a model. While in practice input bounds
are dictated by the physical application, it was observed here
that the larger the modeling error, the more conservative the

Fig. 6. Orbit transfer with -20% model error in α21 .

Fig. 7. Orbit transfer with no model.

input bounds needed to be in order to avoid instabilities. On
the other hand, if the bounds were too conservative, then there
was not enough actuation energy available to follow the desired
trajectory.

5. Conclusions and future research

The nonlinear system identification problem was solved for
multivariable nonlinear input–output systems that can be repre-
sented in terms of Chen–Fliess functional expansions. The prob-
lem was formulated in terms of a regression which is linear
in the parameters and has a nonlinear regressor. An inductive
implementation of the nonlinear regressor was developed us-
ing the underlying noncommutative algebraic and combinatorial
structures. The method was demonstrated in an adaptive con-
trol application involving a two-input, two-output Lotka–Volterra
dynamical system.

Future work will include the introduction of measurement
noise in the identification problem, considering the persistency of
excitation problem in this setting, exercising the method on more
complex engineering plants, and identifying conditions under
which closed-loop stability can be guaranteed.
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Appendix A. Proof of Theorem 3

The first identity is addressed by proving that

Sη[û](N + 1,N0) = (cu(N + 1)S[û](N,N0), η), ∀η ∈ X∗

via induction on the length of η. When η = ∅ then trivially
S∅[û](N + 1,N0) = 1 = û∅(N + 1)S∅[û](N,N0). If η = xi ∈ X
then from (7)

Sxi [û](N + 1,N0) = ûxi (N + 1)+ Sxi [û](N,N0)

=

∑
xi=ξν

ûξ (N + 1)Sν[û](N,N0)

= (cu(N + 1)S[û](N,N0), xi).

Finally, assume the identity holds for all words up to some fixed
length n ≥ 0. Then for any η ∈ Xn and xi ∈ X it follows that

Sxiη[û](N + 1,N0)
= ûxi (N + 1)Sη[û](N + 1,N0)+ Sxiη[û](N,N0)

=

∑
η=ξν

ûxi (N + 1)ûξ (N + 1)Sν[û](N,N0)+

û∅(N + 1)Sxiη[û](N,N0)

=

∑
xiη=ξν

ûξ (N + 1)Sν[û](N,N0)

= (cu(N + 1)S[û](N,N0), xiη),

which proves the claim for all η ∈ X∗. The second identity in the
theorem follows directly from the first.

Appendix B. Proof of Theorem 9

Let η, ζ , γ , α, β ∈ X∗. Reflexivity is trivial since ∅−1(η) = η if
and only if η ⪯ η. To prove transitivity, first observe that

(η ⪯ ζ )⇒ ∃β : β−1(ζ ) = η

(ζ ⪯ γ )⇒ ∃α : α−1(γ ) = ζ

so that

((αβ)−1(γ ) = η)⇒ η ⪯ γ .

Therefore,

(η ⪯ ζ ) ∧ (ζ ⪯ γ )⇒ η ⪯ γ .

To prove anti-symmetry, note that

(η ̸= ζ ) ∧ (η ⪯ ζ )⇒ ∄β : β−1(η) = ζ ,

and therefore,

(η ⪯ ζ ) ∧ (ζ ⪯ η)⇒ η = ζ .

Hence, (X∗,⪯) is a partially ordered set.

Appendix C. Proof of Theorem 11

A preliminary lemma is needed first. For any fixed η ∈ X∗
define the right concatenation map as

Rη(ζ ) = ζη, ∀ζ ∈ X∗.

Lemma 14. Every right concatenation map is an order embedding
map on (X∗,⪯). That is, ζ ⪯ γ if and only if ζη ⪯ γ η for all
ζ , γ , η ∈ X∗.

Proof. From the definition of ⪯ it follows that

ζ ⪯ γ ⇐⇒ ∃λ ∈ X∗ : γ = λζ .

Applying Rη to both sides of the equality above gives

ζ ⪯ γ ⇐⇒ γ η = λζη

⇐⇒ ζη ⪯ γ η.

Proof (Theorem 11). First the identity Ci †Cj = Ci+j is proved. From
the definition of the tree Cj and Lemma 14 it is clear that Cjη has a
Hasse diagram with η as the root and X jη as the set of leaf nodes.
By the definition of the dagger product, every leaf node η of Ci is
replaced by ηCj since

X i+j
=

⨆
η∈X i

X jη.

Therefore, Ci†Cj has a Hasse diagram with ∅ as the root and X i+j as
the set of leaf nodes, that is, Ci †Cj = Ci+j. It is now easily checked
using this identity that (C, †) is associative, commutative, and has
C0 as the unit. Hence, (C, †) forms a commutative monoid. The
monoid isomorphism between N0 and C is given by the bijection
i ↦→ Ci for all i ∈ N0.
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