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Abstract—A new learning methodology in terms of a dis-
cretization of a so-called Chen-Fliess series of a control affine
nonlinear system was recently proposed, in part, for the purpose
of systematically including system structure and expert knowl-
edge into control strategies. The main objective of this paper
is to appropriately embed this learning unit as a supporting
predictive controller for power dynamical systems. In particular,
an infinite bus system is used for the prototype design of a smart
and active control policy to regulate voltage and frequency. It
is demonstrated by simulation how a controller employing a
Chen-Fliess learning unit can recover from a fault and address
modeling mismatch.

Index Terms—power dynamical systems, infinite bus, learn-
ing/adaptive control, Chen-Fliess series

I. INTRODUCTION

Today’s standards for managing power systems require high
levels of learning and adaptation to the conditions under
which they operate. This is particularly the case when there
is an abundance of renewable resources available. Controllers
regulating these systems must predict and respond quickly to
a constantly changing environment. Machine learning algo-
rithms have conventionally used artificial neural networks for
their realization. In the context of power/control systems, the
closest approximation for their dynamic behavior is given by
so called recurrent networks but with well documented theo-
retical limitations [14], [16], [19], [23]. However, other less
complex architectures with stronger theoretical foundations are
desired.

The authors in [7]–[9] have employed the discretization of
the notion of a Chen-Fliess functional series (or Fliess operator
[3]) to create a novel type of learning algorithm for control
affine nonlinear systems. It is known that arbitrary control
affine systems in continuous-time have a representation as the
one given by Fliess in [3], [4], [13]. Therefore, the proposed
learning system structure is comprised of learning units that
are capable of approximating such systems to arbitrary desired
accuracy [6] Furthermore, this new technology is suited for
taking advantage of a known model description or can be
employed for control purposes using solely real-time data. The
former allows one to include expert knowledge in the control
strategy. When these learning units are employed in the context
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of predictive control, they have been shown to robustify the
closed-loop system when the plant is poorly modelled or even
completely unknown modulo the assumption of being in the
class of control affine nonlinear systems [10], [21]. In this vein,
power systems have been analyzed in the context of predictive
control [12], [15], [20]. These works addressed stability and
voltage/frequency regulation from the perspectives of one
step ahead prediction and centralized/decentralized distributed
consensus. But the concept of learning was not utilized in
these works.

The main objective of this paper is to appropriately embed
this new type of learning unit into the standard framework of
power system operations. As a starting point, the focus will be
on a simple power system model comprised of a synchronous
generator connected to an infinite bus (SMIB) [18]. The learn-
ing unit will be configured to work in tandem with standard
power systems controllers such as droop and automatic voltage
regulators (AVRs). It will be shown that these systems do not
perform well when there is significant model mismatch. The
learning unit will recognize such deficiencies and adapt to
these conditions by introducing additional compensation for
voltage and/or frequency regulation. In particular, this paper
focuses on a synchronous generator described by the flux-
decay model connected to the afore mentioned infinite bus.
The objective is to first show that when there is a mismatch
between the inertia of the plant and the model used for
control, the SMIB system settles to an undesired voltage.
However, if the learning controller developed in [9], [10]
is used in tandem, the closed-loop system can achieve the
desired voltage despite the inertia error in the SMIB model.
Additionally and under the same conditions, the case in which
the controller has no knowledge of the plant (free model)
is also presented. The latter shows that the approximation
provided by the discrete-time Fliess operator theory performs
reasonable well in providing an input-output model for one-
step ahead predictive control for power system regulation.

The organization of the work in this manuscript is as
follows. Section II provides preliminaries and describes prior
work with the objective of keeping the manuscript succinct and
self-contained. It includes a brief introduction to discrete-time
Fliess operators and a description of the learning unit. A high
level implementation of the learning algorithm is also given.
This is followed by Section III, where the SMIB system is
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described. Section IV presents simulations results when the
predictive learning controller is used for two cases: expert
knowledge of the plant is available and the free-model case.
Conclusions and some future research directions are provided
in the final section.

II. PRELIMINARIES

The learning controller employed in this manuscript is based
on the theory of Fliess operators and their discretization. In
the next section, a concise summary of discrete-time Fliess
operators is given. See [2], [6] for more specific content.

A. Discrete-Time Fliess Operators

Consider a nonempty set X = {x0, x1, . . . , xm} known as
an alphabet and its elements as letters. A juxtaposition (or con-
catenation) of letters is called a word (e.g., η = xi1xi2 · · ·xik ).
One denotes the number of letters in a word by |η|. This
is referred to as the length of η. The special word having
length zero is the empty word, written as ∅. Xk is the set
of all words whose length is k. Define X∗ =

⋃
k≥0X

k and
X≤J =

⋃J
k=0X

k. X∗ forms a monoid under concatenation. A
formal power series is any mapping c : X∗ → R`. It is usually
expressed as c =

∑
η∈X∗(c, η)η, which should be viewed as a

formal sum. In this sum, (c, η) represents the coefficient of c.
The set of all such noncommutative formal power series over
X is denoted by R`〈〈X〉〉.

An input in this paper is taken to be a sequence in

lm+1
∞ (N0) := {û = (û(N0), û(N0 + 1), . . .) : ‖û‖∞ <∞},

where û(N) := [û0(N), û1(N), . . . , ûm(N)]T , N ≥ N0

with ûi(N) ∈ R, |û(N)| := maxi∈{0,1,...,m} |ûi(N)|, and
‖û‖∞ := supN≥N0

|û(N)|. The subspace of finite sequences
over [N0, Nf ] is denoted by lm+1

∞ [N0, Nf ].
Definition 1: A discrete-time Fliess operator for a generat-

ing series c ∈ R`〈〈X〉〉 is defined as

F̂c[û](N) =
∑
η∈X∗

(c, η)Sη[û](N)

for any N ≥ N0, where

Sxiη[û](N) =

N∑
k=N0

ûi(k)Sη[û](k)

with xi ∈ X , η ∈ X∗, and û ∈ lm+1
∞ [N0]. Here it is assumed

that S∅[û](N) := 1.
Following [11], pick a fixed u ∈ Lm1 [0, T ] for T > 0 finite.

Select an integer L ≥ 1, let ∆ := T/L, and define the real-
valued sequence

ûi(N) =

∫ N∆

(N−1)∆

ui(t) dt, i = 0, 1, . . . ,m,

where N ∈ {1, 2, . . . , L}. By assuming u0 = 1 one has that
û0(N) = ∆. For applications, the series F̂c must be truncated.
That is, for any J ≥ 0 let

ŷ(N) = F̂ Jc [û](N) :=
∑

η∈X≤J

(c, η)Sη[û](N). (1)

In [6, Theorems 6 and 7], the class of discrete-time Fliess
operators truncated to finite length was shown to provide a set
of universal approximators for which the approximation error
with respect to its continuous-time counterpart ( [3], [4], [13])
could be explicitly computed. Thus, these truncated operators
can be used to approximate the behavior of any control affine
state space realization

ż(t) = g0(z(t)) +

m∑
i=1

gi(z(t))ui(t), z(t0) = z0 (2a)

yj(t) = hj(z(t)), j = 1, . . . , `. (2b)

Needless to say, the accuracy of the approximation increases as
L and J increase. A novel learning unit is described in the next
section that leverages this universal approximation property to
process input-output information produced by systems having
the form (2).

B. Learning Unit Based on Discrete-Time Fliess Operator

In this section, the structure of the learning unit is described
first, and then the algorithm for its inductive implementation
is presented. For simplicity and without loss of generality,
only the case where ` = 1 is considered. The most complete
treatment of this subject appears in [10].

Assuming some ordering has been imposed on the elements
of X∗, equation (1) can be expressed as

ŷ(N) = φT (N)θ0, N ≥ 1, (3)

assuming N0 = 1, and where

φ(N) = [Sη1 [û](N) Sη2 [û](N) · · ·Sηl [û](N)]T

θ0 = [(c, η1) (c, η2) · · · (c, ηl)]T

with l = card(X≤J) =
∑J
k=0(m + 1)k = ((m + 1)J+1 −

1)/m. Therefore, if at time N−1 there is an estimate θ̂(N−1)
of θ0, then (3) provides an estimate of ŷ(N):

ŷp(N) := φT (N)θ̂(N − 1). (4)

The coefficients of the truncated operator are then updated
with a standard recursive least-squares algorithm [5, p. 65]. A
block diagram of the learning unit is shown in Figure 1. Here
the unit is fed with input-output data (u, y) coming from a
plant that is running in continuous-time (or the error between
some model of the plant and the plant itself). The primary
underlying assumption is that the data comes from a plant
that can be express as a Fliess operator, for instance, any
plant described by (2). Observe also that there is no reason
for θ̂(N) to converge exactly to the coefficients of c since
the approximator is a truncated version of F̂c. Nevertheless,
since the objective is solely to approximate Fc with F̂ J

θ̂(N)
as

accurately as possible, this is not a problem. But one can argue
from the theory presented in [6] that the series c is at least a
feasible limit point for the sequence θ̂(N), N ≥ 0.
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Fig. 1. Learning unit based on a discrete-time Fliess operator

C. Inductive Implementation of Learning Algorithm

The inductive implementation of the learning algorithm
requires some knowledge of the underlying algebra of iterated
sums appearing in (1). This is best seen using the following
concept.

Definition 2: [6] Given any N ≥ N0 and û ∈ lm+1
∞ (N0), a

discrete-time Chen series is given by

S[û](N,N0) :=
∑
η∈X∗

ηSη[û](N,N0),

where

Sxiη[û](N,N0) =

N∑
k=N0

ûi(k)Sη[û](k,N0)

with xi ∈ X , η ∈ X∗, and S∅[û](N,N0) := 1. If N0 = 0
then S[û](N, 0) is written as S[û](N).

Let X be arbitrary and define ûη(N) = ûik(N) · · · ûi1(N)
for any η = xik · · ·xi1 ∈ X∗ and N ≥ N0 with û∅(N) := 1.
In addition, cu(N) :=

∑
η∈X∗ ûη(N)η. Then

Sxiη[û](N0, N0) = ûxi
(N0)Sη[û](N0, N0)

so that Sη[û](N0, N0) = ûη(N0), and thus, S[û](N0, N0) =
cu(N0). It is important to note that a discrete-time Chen series
S[û](N,N0) satisfies a difference equation as described in the
next theorem.

Theorem 1: [8] For any û ∈ lm+1
∞ (N0) and N ≥ N0

S[û](N + 1, N0) = cu(N + 1)S[û](N,N0)

with S[û](N0, N0) = cu(N0) so that S[û](N,N0) =←−−−−∏N
i=N0

cu(i), where
←−∏

denotes a directed product from right
to left.

Consider next two input sequences (û, v̂) ∈ lm+1
∞ [Na, Nb]×

lm+1
∞ [Nc, Nd] with Nb > Na and Nd > Nc. The concatena-

tion of û and v̂ at M ∈ [Na, Nb] is taken to be

(v̂#M û)(N)

=

{
û(N) : Na ≤ N ≤M

v̂((N −M) +Nc) : M < N ≤M + (Nd −Nc).

Define the set of sequences

lm+1
∞,e (0) := lm+1

∞ (0) ∪ {0̂},

where 0̂ denotes the empty sequence with duration zero so that
formally v̂#M 0̂ = 0̂#M v̂ := v̂ for all v̂ ∈ lm+1

∞,e (0). In which
case, lm+1

∞,e (0) is a monoid under this input concatenation
operator. Define S[0̂] = 1. The following is a straightforward
generalization of Theorem 1.

Theorem 2: [8] (Discrete-time Chen’s identity) Given
(û, v̂) ∈ lm+1

∞ [Na, Nb] × lm+1
∞ [Nc, Nd], M ∈ [Na, Nb], and

N ∈ [M,M + (Nd −Nc)] it follows that

S[v̂]((N −M) +Nc, Nc)S[û](M,Na) = S[v̂#M û](N,Na).

In particular, S[v̂](N −M)S[û](M) = S[v̂#M û](N) when
Na = Nc = 0.

In [8], the theorem above was used to show that (4) can be
written in the form

ŷp(N + 1) = θ̂T (N)Π(S[û](N + 1))e1

= θ̂T (N)S(N + 1)Π(S[û](N))e1 (5)

for N ≥ N0, where S(N+1) and S[û](N) have been suitable
truncated, and e1 := [1 0 0 · · · 0]T ∈ Rl. Another form for (5)
is ŷp(N + 1) = Q(û(N + 1)), where Q is a polynomial
with maximum degree l − 1 in the components of û(N + 1).
Furthermore, the matrix SJ+1(N + 1) can be expressed in
terms of SJ(N + 1) as:

SJ+1(N + 1) = 1 0 · · · 0

û(N + 1)⊗ (SJ(N + 1)e1)
block diag(SJ(N + 1),

. . . ,SJ(N + 1))

 ,

where ‘⊗’ denotes the Kronecker product, and the bottom
right block is a block diagonal matrix with m + 1 blocks.
The pseudo-code for the generation of SJ(N + 1) is given in
[21, Section III].

D. Predictive Controller with Learning

Next it is shown how the learning units in Figure 1 running
the learning algorithm described in the previous section can
be used for predictive control. Consider an arbitrary plant and
a model of the plant given by a dynamical system of the form
(2). The latter can be an approximation of the plant over some
range of operation. There is no additional complication if the
plant is allowed to be time varying. The proposed one-step
ahead predicative controller with learning, first proposed in
[21], is shown in Figure 2 assuming the plant has two outputs.
One learning unit is required for each output, while the number
of inputs can be arbitrary. The learning units process the
error data in order to build approximations of the input-output
system u 7→ e. These error predications are then combined
with the assumed plant model to construct an input to make
the plant output y track some desired output yd via one-step
ahead predictive control. If the model is set to zero so that
ŷ = 0, then the learning units have to learn the full plant input-
output model u 7→ y. The general expectation is that some
reasonable model for the plant should improve performance.
Some interesting case studying comparing model based control
to model free control using this scheme appear in [9], [10],
[21]. In the next section, this type of controller is applied for
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the case of a synchronous generator connected to an infinite
bus.
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Fig. 2. Closed-loop system with MIMO predictive controller and two learning
units

III. SINGLE MACHINE INFINITE BUS SYSTEM

The single machine infinite bus system (SMIB) shown in
Figure 3 has been classically used to study the interaction
between a large power network (acting as an unmovable
voltage and frequency sink) and a single generator. With this
type of system it is also possible to understand the small signal
stability of synchronous generators [1] and to determine the
efficacy of control algorithms for the purpose of improving
voltage regulation and transient stability [22]. A complete

Fig. 3. Single machine infinite bus system

general model of a single synchronous machine is described
in [18]. This manuscript focuses in particular on the one axis
flux decay model. This results in the control affine dynamical
system:

dδ

dt
=ω − ωs (6a)

2H

ωs

dω

dt
=Tm − E′qIq − (xq − x′d)IdIq −D(ω − ωs) (6b)

τ ′d0

dE′q
dt

= − E′q − (xd − x′d)Id + Efd (6c)

τe
dEfd
dt

= − keEfd + Vr (6d)

τa
dVr
dt

= − Vr −Ka(Vref − Vs − Vpss) (6e)

τch
dTm
dt

= − Tm + Psv (6f)

τsv
dPsv
dt

= − Psv + Pc −
1

Rd

(
ω

ωs
− 1

)
, (6g)

TABLE I
SYNCHRONOUS MACHINE - INFINITE BUS PARAMETERS

Field winding time constant τ ′d0 = 3.0 s

Inertia constant (model) H = 3 s

Inertia constant (plant) H = 6 s

Damping constant D = 0.0125 p.u
rad/s

AVR time constant τa = 0.01 s

Direct axis reactance xd = 0.8958 p.u.

Infinite bus frequency ws = 60 Hz

AVR gain ka = 20

Transient direct-axis reactance x′d = 0.1198 p.u.

Transmission network resistance re = 0.025 p.u.

Transmission network reactance xe = .6 p.u.

Quadrature axis reactance xq = 0.8645 p.u.

Excitation time constant τe = 0.314 s

AVR integral gain kai = 10

Mechanical torque time constant τch = 1 s

Valve time constant τsv = 2 s

Droop gain Rd = 0.05

Ininite bus voltage Vs = 1 p.u.

where δ is the rotor’s angle, ω is the angular frequency, E′q
is the quadrature axis transient voltage, Efd is the excitation
voltage, Vr is the automatic voltage regulator (AVR) state,
Tm is the mechanical torque, and Psv is the valve on the
turbine gate state. The definitions and assumed values of the
parameters in (6) are summarized in Table I. The model above
includes the valve dynamics in (6g) which regulate the force
(e.g., steam) applied to the turbine and produces mechanical
torque obeying (6f) in the synchronous machine [17]. The
AVR is realized by (6e). The system is naturally limited by
how much the gate is open to the turbine and by how much
AVR voltage can be supplied for regulation. That is,

0 ≤Psv ≤ 1

V min
r ≤Vr ≤ V max

r .

Also observe that (6e) contains the input Vpss, which acts
as a power system stabilizer control action on the system. In
addition, the input Pc is a control input that can either be
constant or driven by the output of an automatic controller.
In this paper, Vpss and Pc are the points of interaction
between the infinite bus system, the learning unit, and the
predictive controller described in Section II. However, the
droop controller and AVR are built-in linear controllers that
one always encounters in a synchronous generator and as such
these inner feedback loops will have to be taken into account
when designing the predicative controller in the outer feedback
loop. The droop gain is usually given by the relation

Rd =
No load frequency − Full load frequency

No load frequency
= 0.05%.
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The terminal voltage of the system is computed as

Vt =
√
V 2
d + V 2

q ,

where the direct-axis and quadrature-axis terminal voltages are
given, respectively, by

Vd = Iqxq, Vq = E′q − Idx′d
with Id and Iq (the direct-axis and quadrature-axis currents)
defined as

Id = − Vsxe cos(δ)− (xq + xe)E
′
p + Vsxq cos(δ)

+
reVs sin(δ)

(xex′d + xexq + x′dxq + r2
e + x2

e)

Iq = reE
′
q − reVs cos(δ) + Vsxe sin(δ)

+
x′dVs sin(δ)

(xex′d + xexq + x′dxq + r2
e + x2

e)
.

Also, one can add integral action to (6e) on the error signal
eV := Vref − Vs − Vpss inside the AVR block in Figure 4. It
is assumed that the integral gain is fixed at kia = 10.

Figure 5 shows the frequency and voltage response for a
SMIB modeled as in (6) when a fault occurs at t = 2 s for
a duration of 2.5 s. The fault constitutes a short circuit on

the transmission line (the resistance and reactance suddenly
and dramatically increase) between the synchronous generator
and the infinite bus. Once the fault occurs, the frequency and
terminal voltage begin to oscillate and drop below acceptable
levels. The internal linear controllers eventually stabilize the
system, as they are designed to do, but the terminal voltage
set point (≈ 0.98 p.u.) never fully recovers. More importantly,
the transient response as a result of the fault is extremely poor,
not acceptable in most cases. This points out the limitations
of linear control in the face of large disturbances. To further
complicate the situation, prediction, as mentioned in the intro-
duction, is key to handling challenges such as the penetration
of renewable resources. So adding an outer prediction loop to
(6) while maintaining acceptable disturbance responses is a
nontrivial problem. The next section deals with this issue.

IV. PREDICTIVE LEARNING CONTROL FOR SMIB SYSTEM

In this section, the model described in Section III is used to-
gether with two learning units and a one-step ahead predictive
controller as shown in Figure 6 for the purpose of augmenting
the linear controllers embedded in the SMIB system. The
objective is not to compete with these internal controllers
but rather to compensate them whenever the system leaves
the linear regime for which these controllers are known to
be most effective. To achieve this goal, a simple switching
rule was implemented so that the learning units and predictive
controllers are inactive when the droop controller and AVR
are working properly. That is,

u =

{
0, |y − yd| ≤ 0.02 p.u.
ū, |y − yd| > 0.02 p.u.,

where in Figure 2, u = (Vpss, Pc)
>, y = (ω, Vt)

>, and
the desired regulation set point is yd = (ωd, Vt,d)

>. Here
the switching threshold was tuned empirically. Two scenarios
are considered next: the case in which one has erroneous
knowledge of the plant and the case where no knowledge of
the plant is assumed a priori.

A. Model Mismatch Scenario

It is rare to have complete knowledge of the plant in a
control problem since machines will age, vary with operat-
ing conditions, and are subject to measurement uncertainly.
Although the approach described in the previous section can
address mismatch on any subset of parameters in (6), the
focus here is on parametric error in the generator inertia H .
Inertia represents the energy stored in the spinning plant.
Its presence limits the rate at which frequency can change.
Assuming that the expert model does not know H perfectly
or does not know it at all, any mismatch between plant and
expert model produces an output error e(t) (see Figure 2),
which activates the learning units. In this situation, an error
system is being fitted using a discrete-time Fliess operator
approximator as described in Sections II-A and II-B. The
predictive controller is then realized using the assumed model
and this identified error model. Figure 7 shows the result of
regulation under the fault described in the previous section
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(a 2.5 s duration short circuit in the transmission line) using
this predictive learning control (red dotted line) and compares
the performance against the case where there is no learning
(blue solid line). Specifically, the model inertia is chosen
to be Hmodel = 3 s, whereas the plant’s real inertia is
Hplant = 6 s. Observe that the transient response is improved
when compared to the case in the previous section (Vt reaches
below 0.6 p.u., and ω at points is below 56 Hz), but the steady-
state error in the voltage is increased. The new voltage set
point ≈ 0.9 p.u. is beyond the allowed range of 1± 0.05 p.u..
On the other hand, when the predictive learning controller is
enabled, the system recovers to the desired set point of 1 p.u.,
and thus the closed-loop system is robust to modeling errors
in the inertia.

B. Model Free Scenario

In this scenario it is assumed that the outer controller is
tuned with no knowledge of the SMIB system parameters
and/or structure. That is, ŷ(t) = 0 in Figure 2. Given that
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Fig. 8. Predictive model free learning control with AVR and droop regulation
versus response with only AVR and droop control (u = (Vpss, Pc)> =
(0, 0)>)

the plant is modeled by (6), which is control affine, the
learning system is mathematically capable of approximating
the behavior of the entire plant. Figure 8 shows the simulation
results for the same case considered above. As in the previous
scenario, the SMIB recovers to the correct set points for
voltage and frequency, but not having any model produces a
less ideal transient response. In particular, the voltage response
has more peaks outside the desired range of ±0.05 p.u., and
around the set point it takes longer to settle. This is essentially
the performance cost of knowing less about the plant.

V. CONCLUSIONS AND FUTURE WORK

This paper demonstrated how to employ a predictive learn-
ing control system based on discrete-time Fliess operators
to control a SMIB with build-in droop control and AVR.
The system used a switch to toggle between the linear and
nonlinear regimes to avoid inner loop and outer loop control
competition. The case studies included a plant with parametric
modeling error in the inertia and model free control. It was
shown that the addition of learning can eliminate set point
errors and improve the transient response, especially if a
physical model is available for the plant. In the absence of a
plant model, the scheme still produced acceptable regulation,
but at the cost of poorer transient response. Future research
directions include applying the proposed controller to more
realistic power system networks (i.e., ones with several gen-
erators) as well as the development of explicit closed-loop
stability conditions that can be used during the controller
design process.
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