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Abstract—The notion of a shuffle-rational formal power se-
ries is introduced. Then two equivalent characterizations are
presented, one in terms of an analogue of Schützenberger’s
recognizability of a series, and the other in the context of state
space realizations of nonlinear input-output systems represented
by Chen-Fliess series. An underlying computational framework
is also described which employs the Hopf algebra associated with
the shuffle group. As an application, it is shown how to model a
bilinear system with output saturation in this context.

Index Terms—formal power series, Chen-Fliess series, bilinear
systems

I. INTRODUCTION

Let X = {x0, x1, . . . , xm} be a fixed set of noncommuting

symbols. Let R〈X〉 and R〈〈X〉〉 denote, respectively, the set

of polynomials and formal power series over X with real

coefficients. Each set forms an R-vector space and an asso-

ciative R-algebra under the catenation (Cauchy) product. The

smallest subset of R〈〈X〉〉 containing R〈X〉 which is closed

under addition, scalar multiplication, the Cauchy product, and

inversion (in the Cauchy product sense), that is, the rational

closure of R〈X〉, constitutes the set of rational series [2]. Let

Fc denote the Chen-Fliess series having c ∈ R〈〈X〉〉 as its

generating series [5], [6]. The following statements are known

to be equivalent:

1) Series c is rational.

2) Series c is recognizable (Schützenberger’s theorem [20]).

3) Series c has a Hankel matrix with finite rank [4].

4) Operator y = Fc[u] has a bilinear state space realization

[5], [6].

5) Operator y = Fc[u] satisfies a linear ordinary differential

equation in y of order equal to its Hankel rank and having

coefficients which are rational functions of {u, u̇, ü, . . .}
[7], [8] (see also [24], [25]).

Bilinear systems, of course, play a special role in the theory

of nonlinear control systems [15], [17]. The definition of

rationality given above, however, is simply one instance of a

more general concept. Namely, given any associative algebra

on R〈〈X〉〉 and an arbitrary subalgebra F , the corresponding

set of rational series is defined as those series in the rational

closure of F . Therefore, it is natural to ask whether any other
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notion of rationality has utility in the context of nonlinear

control theory. If so, are there equivalences analogous to those

given above in this alterative setting?

The goal of this paper is to partially answer this question to

the affirmative by providing one specific example, namely, by

replacing the Cauchy product on R〈〈X〉〉 with the shuffle prod-

uct [18]. The latter forms a commutative algebra and is in some

sense the adjoint of the Cauchy product [19]. This product

appears naturally in nonlinear control theory when systems are

interconnected in parallel (taking the product of the outputs)

and in series [5], [10]. This alternative product leads directly

to the notion of shuffle-rationality. The next objective is to

provide two equivalent characterizations of shuffle-rationality,

namely, the analogues of statements 2 and 4 above. The

concept of shuffle-recognizability will be introduced and then

a shuffle version of Schützenberger’s theorem is proved. Next,

it is shown that there is a correspondence between shuffle-

rational series and a class of state space realizations which

are bilinear in the state but have rational output functions.

A common theme in all of the analysis is the evaluation of

rational functions on formal power series. To facilitate these

calculations, the underlying Hopf algebra (e.g., see [1], [21])

for the group of non proper formal power series under the

shuffle product is introduced. Finally, as an application, it is

shown how to model bilinear systems with output saturation

in this context. It should be stated that the question of whether

there exist analogous versions of statements 3 and 5 in this

setting is an open question at present.

The work is presented in six sections. The next section

provides a summary of the notation and terminology employed

in paper. The subsequent section describes the computational

framework used for developing the theory and doing exam-

ples. Section IV presents the concept of shuffle-rationality.

Section V introduces the notion of shuffle-recognizability and

gives the proof of the equivalence of statements analogous to 1

and 2 above. Finally, a state space characterization of shuffle-

rationality is presented in Section VI to prove the equivalence

of statements analogous to 1 and 4 above. Conclusions and

directions for future research are given in the last section.
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II. PRELIMINARIES

Let X = {x0, x1, . . . , xm} denote a fixed alphabet of

noncommuting symbols with m finite. Any finite sequence

of letters from X , η = xi1 · · ·xik , is a word over X having

length |η| , k. The empty word, ∅, is the word of length

zero. The set of all words is written as X∗, and X+ , X∗\∅.

The subset of words having prefix η is denoted by ηX∗.

It is easily verified that X∗ constitutes a monoid under the

catenation product C : (η, ξ) 7→ ηξ with ∅ acting as the unit.

Any mapping c : X∗ → R
ℓ : η 7→ (c, η) is called a formal

power series. It is customary to write c as a formal summation

c =
∑

η∈X∗(c, η)η. If (c, ∅) = 0, then c is said to be proper.

Here R
ℓ〈〈X〉〉 will represent the set of all such formal power

series over X . Extending C in a natural way to series with

coefficients in R
ℓ, (Rℓ〈〈X〉〉, C) is an associative unital R-

algebra. Rℓ〈〈X〉〉 is also an associative and commutative unital

R-algebra under the shuffle product. The latter is a product first

defined inductively for two words as

(xiη) ⊔⊔ (xjξ) = xi(η ⊔⊔ (xjξ)) + xj((xiη) ⊔⊔ ξ),

where η, ξ ∈ X∗, xi, xj ∈ X , and η ⊔⊔ ∅ = ∅ ⊔⊔ η ,

η. It is then extended bilinearly to series in R
ℓ〈〈X〉〉 [5].

The R-algebra of R
ℓ-valued polynomials over the set of

commutative indeterminates {y1, y2, . . . , yn} is denoted by

R
ℓ[y1, y2, . . . , yn].
Let Lm

p [t0, t1] be the set of Rm-valued measurable functions

on [t0, t1] with a finite p-norm. Every series c ∈ R
ℓ〈〈X〉〉 has

an associated Chen-Fliess series

Fc[u](t) =
∑

η∈X∗

(c, η)Eη[u](t, t0), (1)

where E∅[u] = 1 and

Exiη[u](t, t0) =

∫ t

t0

ui(τ)Eη[u](τ, t0) dτ

with xi ∈ X , η ∈ X∗, and u0 = 1 [5]. Such series are known

to converge absolutely and uniformed on a ball of radius R
center at the origin of Lm

1 [0, T ] whenever there exists real

numbers K,M > 0 such that

|(c, η)| ≤ KM |η||η|!, ∀η ∈ X∗,

and R and T are sufficiently small [13]. R
ℓ
LC〈〈X〉〉 will

denote the set of all such locally convergent generating series.

If instead the coefficients of c satisfy the Gevrey growth

condition

|(c, η)| ≤ KM |η|(|η|!)s, ∀η ∈ X∗, s ∈ [0, 1[,

then the series is called globally convergent, and the corre-

sponding Chen-Fliess series is known to converge for any

finite R and T [26]. The set of all such series is written

as R
ℓ
GC〈〈X〉〉. Whenever (1) converges in any sense, Fc is

called a Fliess operator. Given two Fliess operators Fc and

Fd, where c, d ∈ R
ℓ
LC〈〈X〉〉, their parallel and product con-

nections always produce another Fliess operator, specifically,

Fc + Fd = Fc+d and FcFd = Fc ⊔⊔ d [5]. It is known that

addition preserves both local and global convergence, while

the shuffle product preserves local convergence and global

convergence when s = 0 [22], [23].

III. RATIONAL FUNCTIONS OF FORMAL SERIES

This section describes the evaluation of commutative poly-

nomial maps and rational functions over noncommutative

formal power series. First observe that the set of non proper

series in R〈〈X〉〉 constitutes a group under the shuffle product

[11]. The shuffle inverse in this case is taken to be

c ⊔⊔ −1 = ((c, ∅)(1− c′)) ⊔⊔ −1 = (c, ∅)−1(c′) ⊔⊔ ∗, (2)

where c′ , 1 − c/(c, ∅) is proper, and (c′) ⊔⊔ ∗ ,
∑

k∈N0
(c′) ⊔⊔ k. Here (c′) ⊔⊔ k , c′ ⊔⊔ (c′) ⊔⊔ k−1 with

(c′) ⊔⊔ 0 = 1.

Example 3.1: Let c = 1 − x1 ∈ R〈〈X〉〉 so that c′ = x1.

Then c ⊔⊔ −1 = x ⊔⊔ ∗
1 =

∑

k∈N0
k!xk

1 .

Since R〈〈X〉〉 under the shuffle product is a commutative

and associative R-algebra, for any k ∈ N and c ∈ R〈〈X〉〉 one

can write c ⊔⊔ k = yk(c), where yk ∈ R[y]. Similarly, if d is a

proper series, then

(1− d) ⊔⊔ −1 = d ⊔⊔ ∗

= 1 + d+ d ⊔⊔ 2 + d ⊔⊔ 3 + · · ·

= (1 + y + y2 + y3 + · · · )(d)

=

(

1

1− y

)

(d).

Therefore, the shuffle inverse of a series can be written as a

rational function of the proper part of the series. The notions of

a polynomial map and a rational function of a noncommutative

formal power series is formalized by the following definition.

Definition 3.1: Let p, q ∈ R[y] and c ∈ R〈〈X〉〉. Assume

p(y) =
k
∑

i=0

aiy
i, where k ∈ N0, and q((c, ∅)) 6= 0. The

composition of p and c is defined as

p(c) =

k
∑

i=0

aic
⊔⊔ i.

Extending the definition to rational functions gives

p

q
(c) = p(c) ⊔⊔ q(c) ⊔⊔ −1.

These definitions can be generalized to functions on k-tuples

of series by first observing that R〈〈X〉〉 is a commutative ring

with the shuffle product. Therefore, R〈〈X〉〉 is an R〈〈X〉〉-
module, where scalar multiplication of the ring with a module

element is also defined by the shuffle product. In other words,

R〈〈X〉〉
⊗

R〈〈X〉〉R〈〈X〉〉 is isomorphic to R〈〈X〉〉 in the

category of commutative R〈〈X〉〉-modules. Let A,B be R-

modules and denote the set of all R-linear morphisms by

Hom(A,B). Recall that Hom(A,B) forms an R-module by

itself. Let Γ ∈ R-module Hom

(

A,Hom
(

B,C
)

)

, where the

modules A ,
⊕

k∈N

⊗

R

k

i=1R[yi], B ,
⊕

k∈N

∏k
i=1 R〈〈X〉〉,
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and C ,
⊕

k∈N

⊗

R〈〈X〉〉
k

i=1
R〈〈X〉〉. The morphism Γ is

defined as

Γ

(

⊗

R

k

i=1

pi

)

(c1, c2, . . . , ck) =
⊗

R〈〈X〉〉

k

i=1

pi(ci),

where pi ∈ R[yi] and ci ∈ R〈〈X〉〉, i = 1, 2, . . . k. The right-

hand side is expanded using the shuffle product as

⊗

R〈〈X〉〉

k

i=1

pi(ci) = p1(c1) ⊔⊔ p2(c2) ⊔⊔ · · · ⊔⊔ pk(ck).

The image of Γ, denoted by Im(Γ), is an R-module. In fact,

it possesses an R-algebra structure as
⊗

R〈〈X〉〉
k

i=1
R〈〈X〉〉 is

an R-algebra. If p, p′ ∈
⊗

R

k

i=1R[yi], then

(Γ(p)Γ(p′))(c1, . . . , ck) = (Γ(p))(c1, . . . , ck) ⊔⊔

(Γ(p′))(c1, . . . , ck).

As the shuffle product has no zero divisors, it is simple to

check that the underlying ring structure in R-algebra Im(Γ)
is an integral domain. Hence, the quotient field Im(Γ) is the

set of rational functions

Γ(p)

Γ(p′)
(c1, . . . , ck) = Γ(p)(c1, . . . , ck) ⊔⊔

(Γ(p′)(c1, . . . , ck))
⊔⊔ −1,

where p, p′ ∈
⊗

R

k

i=1
R[yi]. The symbol Γ is suppressed for

brevity so that given p⊗ p′ ∈ R[y]⊗ R[y′],

p⊗ p′(c, c′) =
(

Γ(p⊗ p′)
)

(c, c′) = p(c) ⊔⊔ p′(c′).

Likewise, if p, q ∈
⊗

R

k

i=1
R[yi], then

p

q
(c1, . . . , ck) =

Γ(p)

Γ(q)
(c1, . . . , ck).

The evaluation of rational functions over a noncommutative

formal power series requires one to compute shuffle powers

and the shuffle inverse of series. Such computations can be

implemented algorithmically with the aid of the Hopf algebra

corresponding to the shuffle group as described next [9].

Consider the set

M , {1 + c : c ∈ R〈〈X〉〉, (c, ∅) = 0} ⊂ R〈〈X〉〉.

M is an Abelian group under the shuffle product with 1 as

the identity element. The shuffle inverse is defined as in (2).

The set of coordinate maps on R〈〈X〉〉 is taken to be

H = {aη : M −→ R, η ∈ X∗},

where aη(c) = (c, η). H constitutes a commutative R-algebra

with addition, scalar multiplication and product defined, re-

spectively, as

(aη + aζ)(c) = aη(c) + aζ(c)

(kaη)(c) = k(aη(c))

m(aη, aζ)(c) = aη(c)aζ(c),

where η, ζ ∈ X∗, k ∈ R. The unit for the product is 1 ∼ a∅
so that 1(c) = 1, ∀c ∈ M . Define the coproduct ∆ : H −→

H
⊗

H as ∆aη(c, d) = aη(c ⊔⊔ d), where c, d ∈ M and η ∈
X∗. It can be computed inductively as

∆1 = 1⊗ 1

∆ ◦ θi = (θi ⊗ 1+ 1⊗ θi) ◦∆,

where θi denotes the vector space endomorphism on H
specified by θiaη = axiη , i = 0, 1, . . . ,m. The counit map

ǫ is defined as

ǫ(aη) =

{

k : aη = ka∅

0 : otherwise.

It is simple to check that (H,m,1,∆, ǫ) forms a commuta-

tive and cocommutative bialgebra structure. The bialgebra is

graded based on word length. Hence, H =
⊕

k∈N0
Hk with

aη ∈ Hk if and only if |η| = k. Since R ∼= H0 in the category

of algebras with ǫ acting as the isomorphism, H is a connected

and graded bialgebra, and thus a Hopf algebra [3]. The reduced

coproduct ∆′ is defined as

∆′(aη) =

{

∆(aη)− aη ⊗ 1− 1⊗ aη : aη 6= a∅

0 : aη = a∅.

Using Sweedler’s notation, the coproduct can be written as

∆(aη) =
∑

a(η1) ⊗ a(η2),

where the sum is over all words η1, η2 such that η1 ⊔⊔ η2 = η
[21]. The antipode map S : H −→ H is given by S(aη)(c) =
aη(c

⊔⊔ −1). It can be computed inductively for any a ∈ H+

(where H+ ,
⊕

k≥1 Hk) by

S(aη) = −aη −
∑

a′(η1)
S(a′(η2)

),

where the summation is taken over all the components of the

reduced coproduct ∆′(aη) .

The coproduct ∆ is useful for computing shuffle powers

of formal power series. For example, if c ∈ R〈〈X〉〉 is non

proper, then c = (c, ∅)c′, where c′ ∈ M . For any η ∈ X∗, it

follows that

(c ⊔⊔ 2, η) = (c, ∅)2(c′ ⊔⊔ 2, η)

= (c, ∅)2aη(c
′ ⊔⊔ 2)

= (c, ∅)2∆aη(c
′, c′).

In the case where c is proper, one can use the corresponding

group element (1 + c) and compute the reduced coproduct

since (c ⊔⊔ 2, η) = ∆′aη((1 + c), (1 + c)). The shuffle inverse

of a non proper series c ∈ R〈〈X〉〉 can be computed directly

using the antipode S as

(c ⊔⊔ −1, η) = (c, ∅)−1(c′ ⊔⊔ −1, η)

= (c, ∅)−1S(aη)(c
′).

The coproduct can be linearly extended to computing the

polynomial map of arbitrary formal power series. Let ∆◦k

denote the composition of the coproduct ∆ with itself k
times where k ≥ 1. If c ∈ M and η ∈ X∗, for brevity

∆◦kaη(c, c, . . . , c) with the argument c repeated (k+1) times
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is written as ∆◦kaη(c). Suppose p ∈ R[x] is written as

p(x) =
m
∑

i=0

aix
i. Then for c ∈ R〈〈X〉〉 observe

(p(c), η) = aη(p(c))

= {a0ǫ+ a1 + a2∆+ · · ·

+ am−1∆
◦(m−2) + am∆◦(m−1)}(aη)(c).

Now assume p(x), q(x) ∈ R[x] such that

p

q
(x) =

m
∑

i=0

aix
i

n
∑

j=0

bjxj

,

and q(1) = 1 without loss of generality. The computation of

(p/q)(c) is done as follows

(

p

q
(c), η

)

=
(

P (ǫ,∆)⊗Q(ǫ,∆, S)
)

◦∆aη(c),

where

P (ǫ,∆) = a0ǫ+ a1 + a2∆+ · · ·

+ am−1∆
◦(m−2) + am∆◦(m−1). (3a)

Q(ǫ,∆, S) = b0(ǫ ◦ S) + b1S + b2(∆ ◦ S) + · · ·

+ bn−1(∆
◦(n−2) ◦ S) + bn(∆

◦(n−1) ◦ S).
(3b)

Here P (ǫ,∆) and Q(ǫ,∆, S) are the operator polynomials

corresponding to the rational function p/q. This computation

is abbreviated as
(

p

q
(c), η

)

= Υ(ǫ,∆, S)(aη)(c),

where Υ(ǫ,∆, S) ,
(

P (ǫ,∆)
⊗

Q(ǫ,∆, S)
)

◦∆. The opera-

tor Υ is viewed as the computational block for the rational

function p/q. The computation of a rational function of a

series in M is naturally extended when p, q ∈
⊗

R

k

i=1R[yi].
Let p = p1 ⊗ p2 ⊗ · · · ⊗ pk and q = q1 ⊗ q2 ⊗ · · · ⊗ qk,

where pi, qi ∈ R[yi]. Let Υ1,Υ2, . . . ,Υk be the corresponding

computational blocks. Therefore,

(

p

q
(c1, . . . , ck), η

)

=

(

k
⊗

i=1

Υi

)

◦∆◦(k−1)aη(c1, . . . , ck),

(4)

where c1, c2, . . . , ck ∈ M .

The computational framework above can be further ex-

tended to rational functions of arbitrary non proper formal

power series. Let c ∈ R〈〈X〉〉 be non proper with (c, ∅) =
α 6= 0 and c = αc′. Fix p(x), q(x) ∈ R[x] such that

p

q
(x) =

m
∑

i=0

aix
i

n
∑

j=0

bjxj

and q(α) = 1 without loss of generality. The computation of

(p/q)(c) is done as
(

p

q
(c), η

)

=

(

(

αP (α−1ǫ, (α∆))
)

⊗

(

αQ(α−1ǫ, (α∆), S)
)

◦∆

)

(aη)(c
′),

where the operator polynomials P and Q are defined as in (3).

The computation is abbreviated as the computational block Υ
so that

(

p

q
(c), η

)

= Υ(ǫ,∆, S)(aη)(c
′)

with Υ(ǫ,∆, S) ,
(

αP (α−1ǫ, (α∆))
⊗

αQ(α−1ǫ, (α∆), S)
)

◦∆. The computation of a rational function of a non proper

series is naturally extended when p, q ∈
⊗

R

k

i=1
R[yi]. Let

p = p1 ⊗ p2 ⊗ · · · ⊗ pk and q = q1 ⊗ q2 ⊗ · · · ⊗ qk, where

pi, qi ∈ R[yi]. Let Υ1,Υ2, . . . ,Υk be the corresponding

computational blocks and c1, c2, . . . , ck be all non proper

series such that (ci, ∅) = αi 6= 0, i = 1, 2, . . . , k. Let

c′i ∈ M be the corresponding group element of ci defined as

ci = αic
′
i. In which case,

(

p

q
(c1, . . . , ck), η

)

=

(

k
⊗

i=1

Υi

)

◦∆◦(k−1)aη(c
′
1, . . . , c

′
k).

The framework for the computation of a rational function of

a proper series c with q(0) = 1 (without loss of generality) is

extended from (3) similarly except that the coproduct ∆ in the

operator polynomials is replaced with the reduced coproduct

∆′. The extension to the computation of rational functions of

ordered collections of proper series c1, c2, . . . , ck is immediate

with respect to (4) except that again the coproduct is replaced

with the reduced coproduct. The case where c1, c2, . . . , ck is

a mixture of proper and non proper series is difficult and does

not fit well in the current scheme.

IV. RATIONAL SERIES

This section describes the concept of rationally closed

subalgebras, and hence, the notion of rational series in the

broadest sense. Next, the classical example is briefly reviewed

followed by the notion of a shuffle-rational series.

Definition 4.1: [4] An R-subalgebra F of an R-algebra on

R〈〈X〉〉 is said to be rationally closed if and only if the inverse

of all invertible elements of F belongs to F . The rational

closure of an R-subalgebra F ′ of an R-algebra on R〈〈X〉〉 is

the smallest rationally closed subalgebra F containing F ′.

Classically, rational series are defined to be those in the

rational closure of the R-subalgebra of polynomials R〈X〉,
where the R-algebra structure on R〈〈X〉〉 is under Cauchy

product [2]. This noncommutative algebra of rational series is

denoted by R〈(X)〉. Since R〈〈X〉〉 also forms a commutative

R-algebra under the shuffle product, a corresponding notion

of rationality is possible as described next.

Definition 4.2: The rational closure of the R-subalgebra

R〈X〉 of the shuffle algebra on R〈〈X〉〉 is called the algebra

of shuffle-rational series and denoted by R
⊔⊔ 〈(X)〉.
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In other words, R
⊔⊔ 〈(X)〉 is the smallest rationally

closed subalgebra of R〈〈X〉〉 under the shuffle product

that contains R〈X〉. The next example establishes that

R〈(X)〉 6⊂ R
⊔⊔ 〈(X)〉, while the subsequent example shows

that R ⊔⊔ 〈(X)〉 6⊂ R〈(X)〉.
Example 4.1: Let c be the rational series

c = (1− x1)
−1

= 1 + x1 + x2
1 + x3

1 + · · ·

= 1 +
x1

1!
+

x ⊔⊔ 2
1

2!
+

x ⊔⊔ 3
1

3!
+ · · ·

=: exp(x ⊔⊔

1 ).

Observe that c cannot be represented by a finite number of

shuffle products as the exponential map is an entire function

and cannot be represented by a finite number of terms or as a

rational function. Hence, it is not shuffle-rational.

Example 4.2: Let c be the shuffle-rational series

c = (1− x1)
⊔⊔ −1

= 1 + x1 + x ⊔⊔ 2
1 + x ⊔⊔ 3

1 + · · ·

= 1 + x1 + 2!x2
1 + 3!x3

1 + · · ·

Clearly, c 6∈ R〈(X)〉 since all rational series have Gevrey order

s = 0 [2].

In the case of a single indeterminate X = {x}, it is simple

verify that

R〈(X)〉 =

{

p(x)

q(x)
: p(x), q(x) ∈ R[X]

}

R
⊔⊔ 〈(X)〉 =

{

p(x) ⊔⊔ q(x) ⊔⊔ −1 : p(x), q(x) ∈ R[X]
}

,

where q(x) 6= 0 in both the cases.

V. RECOGNIZABLE SERIES

In this section, the classical definition of a recognizable

series is first introduced. Schützenberger showed in [20] that a

series is rational under the Cauchy product if and only if it is

recognizable. Next, the shuffle analogue of Schützenberger’s

theorem is stated and proved.

Definition 5.1: [2] A series c ∈ R〈〈X〉〉 is said to be

recognizable if ∃N ∈ N, a monoid morphism µ : X∗ −→
R

N×N , and vectors λ, γ ∈ R
N such that (c, w) = λTµ (w) γ,

∀w ∈ X∗. Note that RN×N is considered to be a multiplicative

monoid. The tuple (λ, µ, γ) is called a representation of c with

dimension N . The set of all recognizable series is denoted by

R
rec〈〈X〉〉.
The following lemma will be useful in the work that follows.

Lemma 5.1: A series c ∈ R〈〈X〉〉 is a polynomial if and

only if it has a representation (λ, µ, γ) with µ(xi) being a

strictly upper triangular matrix ∀xi ∈ X .

Proof: If c has a representation with µ(xi) strictly upper

triangular ∀xi ∈ X , then ∃k ∈ N such that µ(w) = 0
when |w| ≥ k, as strictly upper triangular matrices are

always nilpotent. Hence, c is a polynomial. Conversely, if

c is a polynomial, then the underlying vector fields of any

realization of Fc form a nilpotent distribution [16]. Since

R〈X〉 ⊂ R〈(X)〉, and the underlying vector fields associated

with any generating series in R〈(X)〉 comes from the Lie

algebra gl(RN ), the fact that the subalgebra of strictly upper

triangular matrices is a nilpotent Lie subalgebra of the Lie

algebra gl(RN ) completes the proof [14].

Example 5.1: It is easily checked that c = x0x1 has the

representation

µ(x0) =





0 1 0
0 0 0
0 0 0



 , µ(x1) =





0 0 0
0 0 1
0 0 0



 ,

λ = e1 = [1 0 0]T , and γ = e3 = [0 0 1]T . Note that µ(x0)
and µ(x1) are strictly upper triangular matrices and nilpotent

of index 2.

Next the definition of shuffle-recognizability is given.

Definition 5.2: Let k ∈ N such that {N1, N2, . . . Nk} is

a multiset of k positive integers. Let {λi}
k
i=1, {γi}

k
i=1 be

ordered collections of k vectors such that λi, γi ∈ R
Ni .

Assume {µi}
k
i=1 is an ordered collection of k monoid mor-

phisms µi : X∗ −→ R
Ni×Ni such that µi(xj) is a strictly

upper triangular matrix ∀xj ∈ X , i = 1, . . . , k. Define two

polynomials p, q ∈
⊗

R

k

i=1
R[yi] such that q(λT

i γi) 6= 0,

i = 1, . . . , k. A series c ∈ R〈〈X〉〉 is said to be shuffle-

recognizable if c = p/q

(

∑

w∈X∗ λTµ(w)γ w

)

, where λT =

(λT
1 × λT

2 × · · · × λT
k ), µ = (µ1 × µ2 × · · · × µk), and γ =

(γ1×γ2×· · ·×γk). The tuple (p, q, {λi}
k
i=1, {µi}

k
i=1, {γi}

k
i=1)

is called a k order shuffle-representation of c. The set of all

such shuffle-recognizable series is denoted by R
⊔⊔ rec〈〈X〉〉.

Given a shuffle-recognizable series c with shuffle-

representation (p, q, {λ}ki=1, {µ}
k
i=1, {γ}

k
i=1), the computation

of (c, η), η ∈ X∗ can be made algorithmic using the Hopf

algebra corresponding to the shuffle group. By Lemma 5.1,

observe that the expression
∑

w∈X∗ λTµ(w)γ is a Cartesian

product of k polynomials, say d1, d2, · · · dk. Hence, for all

η ∈ X∗

(c, η) =

(

p

q
(d1, d2, . . . , dk), η

)

,

which can be computed directly using (4). In addition,

R
⊔⊔ rec〈〈X〉〉 = {p(c1, c2, . . . , ck) ⊔⊔ q(c1, c2, . . . , ck)

⊔⊔ −1 :

p, q ∈ Gk}, (5)

where c1, . . . , ck ∈ R〈X〉, (q(c1, . . . , ck), ∅) 6= 0, and Gk =
⊗

R

k

i=1R[yi].
Example 5.2: Suppose

c = 1 + x1 + x ⊔⊔ 2
1 + · · ·+ x ⊔⊔ k

1 + · · ·

= (1− x1)
⊔⊔ −1

=
( 1

1− y

)

(x1).

Note that µ : X∗ −→ R
2×2, where µ(x1) =

(

0 1
0 0

)

,

γ = e2, and λ = e1 give a representation of x1, that

is, x1 =
∑

w∈X∗ λTµ(w)γ w. Hence, c = x ⊔⊔ ∗
1 is a

shuffle-recognizable series with shuffle-representation (1, 1 −
y, {e1}, {µ}, {e2}).
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Equation (5) states that the set of shuffle-recognizable series

are generated by finite shuffle products of polynomials and

their shuffle inverses. Hence, R ⊔⊔ rec〈〈X〉〉 ⊆ R
⊔⊔ 〈(X)〉 in

the category of sets. This leads to the central question of

whether R
⊔⊔ rec〈〈X〉〉 = R

⊔⊔ 〈(X)〉. The following theorem

states this is the case.

Theorem 5.1: A series is shuffle-rational if and only if it is

shuffle-recognizable.

Proof: It is sufficient to prove that R
⊔⊔ 〈(X)〉 ⊆

R
⊔⊔ rec〈〈X〉〉. First it is shown that all polynomials and those

that are shuffle-invertible are shuffle-recognizable. As every

shuffle-rational series is in the rational closure of the polyno-

mials, it only remains to be shown that shuffle-recognizability

is preserved under the remaining shuffle-rational operations:

scalar multiplication, addition, and the shuffle product.

Let c ∈ R〈X〉. From Lemma 5.1 there exists a nilpotent

representation (λ, µ, γ) such that

c =
∑

w∈X∗

λTµ(w)γ w =
y

1

(

∑

w∈X∗

λTµ(w)γ w

)

.

Therefore, trivially, c is shuffle-recognizable with tuple

(y, 1, {λ}, {µ}, {γ}). It is equally clear that if c is non proper,

and c′ = 1 − (c/(c, ∅)) has a representation (λ′, µ′, γ′), then

d = c ⊔⊔ −1 is ⊔⊔ -recognizable with tuple ((c, ∅)−1, 1 −
y, {λ′}, {µ′}, {γ′}).

Shuffle-recognizability is also preserved by scalar

multiplication. If α ∈ R and d is shuffle-recognizable

with representation (p, q, {λi}
k
i=1, {µi}

k
i=1, {γi}

k
i=1),

then αd is shuffle-recognizable with representation

(αp, q, {λi}
k
i=1, {µi}

k
i=1, {γi}

k
i=1).

It is next shown that shuffle-recognizability is

closed under addition. Let d, d′ ∈ R
⊔⊔ 〈(X)〉 with

representations (p, q, {λi}
k
i=1, {µi}

k
i=1, {γi}

k
i=1) and

(p′, q′, {λ′
i}

n
i=1, {µ

′
i}

n
i=1, {γ

′
i}

n
i=1), respectively. Define

λT =
∏k

i=1 λ
T
i , γ =

∏n
i=1 γi, µ =

∏k
i=1 µi, and likewise for

λ′T , γ′ and µ′. In which case,

d+ d′ =
p

q
(c1) +

p′

q′
(c2)

= (p(c1) ⊔⊔ q(c1)
⊔⊔ −1) + (p′(c2) ⊔⊔ q′(c2)

⊔⊔ −1)

with c1 =
∑

w∈X∗ λTµ(w)γ w and c2 =
∑

w∈X∗ λ′Tµ′(w)γ′

w. Multiplying by q(c1) ⊔⊔ q(c1)
⊔⊔ −1

⊔⊔ q′(c2) ⊔⊔ q′(c2)
⊔⊔ −1

on both sides of the expression on the right gives

d+ d′ = [(p(c1) ⊔⊔ q′(c2)) + (p′(c2) ⊔⊔ q(c1))] ⊔⊔

[q(c1) ⊔⊔ q′(c2)]
⊔⊔ −1

= {(p⊗R q′) + (q ⊗R p′)}(c1, c2) ⊔⊔

(

{q ⊗R q′}(c1, c2)
)

⊔⊔ −1
.

Hence, d + d′ is shuffle-recognizable with representation
(

((p⊗Rq
′)+(q⊗Rp

′)), q⊗Rq
′, {Λi}

k+n
i=1 , {Ψi}

k+n
i=1 , {Γi}

k+n
i=1

)

,

where Λi = λi, Ψi = µi, and Γi = γi if 1 ≤ i ≤ k, and Λi =
λ′
i−k, Ψi = µ′

i−k, and Γi = γ′
i−k if (k + 1) ≤ i ≤ (k + n).

y u 
nilpotent 

bilinear system

p 

q 

_ 

Fig. 1: Wiener-Fliess system comprised of a nilpotent bilinear

system and a static rational function

Finally, the case of the shuffle product is addressed. Using

the same notation as in the previous case, observe

d ⊔⊔ d′ =
p

q
(c1) ⊔⊔

p′

q′
(c2)

= p(c1) ⊔⊔ q(c1)
⊔⊔ −1

⊔⊔ p′(c2) ⊔⊔ q′(c2)
⊔⊔ −1

= (p(c1) ⊔⊔ p′(c2)) ⊔⊔ (q(c1) ⊔⊔ q′(c2))
⊔⊔ −1

= (p⊗R p′)(c1, c2) ⊔⊔ ((q ⊗R q′)(c1, c2))
⊔⊔ −1

= (p⊗R p′)

(

∑

w∈X∗

(λT × λ′T )(µ× µ′)(w)(γ × γ′)w

)

.

Hence, d ⊔⊔ d′ is shuffle-recognizable with representation (p⊗R

p′, q ⊗R q′, {Λi}
k+n
i=1 , {Ψi}

k+n
i=1 , {Γi}

k+n
i=1 ).

The final theorem is useful in the next section where

shuffle-rational series are used as generating series for Fliess

operators.

Theorem 5.2: A series c ∈ R
⊔⊔ 〈(X)〉 is globally convergent

if c = p(c1, c2, . . . , ck) ⊔⊔ q(c1, c2, . . . , ck)
−1 with deg(q) = 0

and locally convergent otherwise.

Proof: If deg(q) = 0, then c is a polynomial, which is

always globally convergent. It is known that if c ∈ RLC〈〈X〉〉
then c ⊔⊔ −1 ∈ RLC〈〈X〉〉 [11]. Hence, if deg(q) 6= 0 then,

q(c) ⊔⊔ −1 is locally convergent. Therefore, p(c) ⊔⊔ q(c) ⊔⊔ −1 ∈
RLC〈〈X〉〉.

VI. STATE SPACE REALIZATIONS

This section presents a realization theory for Fliess operators

with shuffle-rational generating series. The classical result is

given first for rational series as a point of comparison. Then

it is shown that a series is shuffle-rational if and only if

its corresponding Fliess operator has a certain Wiener-Fliess

realization as shown in Figure 1 [12]. Finally, the concept is

applied to bilinear systems with output saturation.

Theorem 6.1: [4], [5] A series c ∈ R〈(X)〉 if and only if the

Fliess operator y = Fc[u] has a bilinear state space realization

ż(t) =

(

A0 +

m
∑

i=1

Aiui(t)

)

z(t), z(0) = γ

y(t) = λT z(t),

where Ai ∈ R
N×N for i = 0, 1 . . . ,m, and γ, λ ∈ R

N .

The following is the shuffle-rational analogue of this the-

orem. Note that convergence of the underlying operator is

ensured by Theorem 5.2.

Theorem 6.2: A series c ∈ R
⊔⊔ 〈(X)〉 if and only if

the Fliess operator y = Fc[u] has a state space realization

consisting of a nilpotent bilinear system followed by a static

rational function.
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Proof: If c ∈ R
⊔⊔ 〈(X)〉, then there exists a k order

shuffle-representation (p, q, {λi}
k
i=1, {µi}

k
i=1, {γi}

k
i=1). From

Lemma 5.1 and Theorem 6.1 it follows that each tuple

(λi, µi, γi) corresponds to a nilpotent bilinear realization

żi(t) =



Ai,0 +

m
∑

j=1

Ai,juj(t)



 zi(t), zi(0) = γi

yi(t) = λT
i zi(t),

where zi(t) ∈ R
Ni , and the matrices Ai,j are strictly upper

triangular matrices. Let di =
∑

w∈X∗ λT
i µi(w)γi w denote the

corresponding generating polynomials so that

c =

k
∐

i=1

pi(di) ⊔⊔ qi(di)
⊔⊔ −1.

It then follows directly that

Fc[u] =
k
∏

i=1

pi
qi

(

Fdi
[u]
)

,

so that y = Fc[u] has the desired realization with state

z = [zT1 zT2 · · · zTk ]
T , and Ai = blkdiag(A1,i, . . . , Ak,i),

i = 0, 1, . . . ,m.

Conversely, consider an arbitrary nilpotent system

ż(t) =

(

A0 +

m
∑

i=1

Aiui

)

z(t), z(0) = z0 (6a)

y(t) =
p

q
(z(t)), (6b)

where each Ai ∈ R
N×N is strictly upper triangular, and p, q ∈

R[z1, z2, . . . , zN ] such that q(z) 6= 0 on a neighborhood of

z0. First observe that the following set of N nilpotent bilinear

systems

ż(t) =

(

A0 +

m
∑

i=1

Aiui(t)

)

z(t), z(0) = z0

yi(t) = zi(t),

has a corresponding representation (ei, µ, γ) with respect to

Lemma 5.1, where µ(xi) = Ai, i = 1, 2, . . . , N , and γ = z0.

If di ,
∑

w∈X∗ eTi µ(w)γ, then Fdi
[u] = zi, i = 1, 2, . . . , N .

As the tensor algebras R[z1, z2, . . . , zN ] and
⊗N

i=1 R[zi] are

isomorphic, there exists p′, q′ ∈
⊗N

i=1 R[zi] such that

p

q
(z) =

p′

q′
(z1, z2, . . . , zN ).

Therefore, the input-output behavior of system (6) is described

by a Fliess operator Fd, where

d =
p′

q′
(d1, d2, . . . , dN ).

Hence, d ∈ R
⊔⊔ 〈(X)〉 since it has the shuffle-representation

(p′, q′, {ei}
N
i=1, {µi}

N
i=1, {γi}

N
i=1), where µi = µ and γi = γ

for i = 1, 2, . . . , N .

The following example illustrates how a system with a

shuffle-rational generating series can appear in practice.

-40 -30 -20 -10 0 10 20 30 40

-1.5

-1

-0.5

0

0.5

1

Fig. 2: Saturation function Γ(x) and its approximations

Example 6.1: Consider a double integrator system with zero

initial conditions followed by a saturation nonlinearity

Γ(x) =

{

min(x, 1) : x ≥ 0

max(x,−1) : x < 0.

As shown in Figure 2,Γ is well approximated by the inverse

hyperbolic tangent function as

tanh(1.15x) =
exp(1.15x)− exp(−1.15x)

exp(1.15x) + exp(−1.15x)
.

Using a Taylor series approximation of the exponential func-

tions up to N degree gives

tanh(1.15x) ≈ fn(x) ,
p(x)

q(x)
=

∑n
k=0

(1.5x)2k+1

(2k+1)!
∑n

k=0
(1.5x)2k

(2k)!

,

where n = ⌈N
2 ⌉. The quality of the approximation of Γ(x)

for a few values of n is shown in Figure 2. The input-output

behavior of the overall system is given by

y(t) = Γ(Fc[u]) ≈ fn(Fc[u]) =
p

q

(

Fc[u]
)

= Fd[u],

where c = x0x1 and

d =

( n
∑

k=0

(1.5c) ⊔⊔ (2k+1)

(2k + 1)!

)

⊔⊔

( n
∑

k=0

(1.5c) ⊔⊔ (2k)

(2k)!

)

⊔⊔ −1

.

The output response y(t) of the given system and its shuffle-

rational approximation ŷ(t) when n = 100 is shown in

Figure 3 for the applied input u(t) = cos(t).

VII. CONCLUSIONS AND FUTURE WORK

This paper introduced the notion of a shuffle-rational formal

power series and two equivalent characterizations, one in

terms of an analogue of recognizability of a series, and the

other in the context of state space realizations for nonlinear

input-output systems represented by Chen-Fliess series. An

underlying computational framework was also described using

the Hopf algebra of the shuffle group. As an application, it is

shown how to model a bilinear system with output saturation in
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Fig. 3: Output response y(t) and its shuffle-rational approxi-

mation ŷ(t) in Example 6.1

this context. Future work will be in the direction of providing

the shuffle analogues of statements 3 and 5 given in the

introduction.
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