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Abstract—The notion of a shuffle-rational formal power se-
ries is introduced. Then two equivalent characterizations are
presented, one in terms of an analogue of Schiitzenberger’s
recognizability of a series, and the other in the context of state
space realizations of nonlinear input-output systems represented
by Chen-Fliess series. An underlying computational framework
is also described which employs the Hopf algebra associated with
the shuffle group. As an application, it is shown how to model a
bilinear system with output saturation in this context.

Index Terms—formal power series, Chen-Fliess series, bilinear
systems

I. INTRODUCTION

Let X = {xo,x1,...,%,} be a fixed set of noncommuting
symbols. Let R(X) and R((X)) denote, respectively, the set
of polynomials and formal power series over X with real
coefficients. Each set forms an R-vector space and an asso-
ciative R-algebra under the catenation (Cauchy) product. The
smallest subset of R((X)) containing R(X) which is closed
under addition, scalar multiplication, the Cauchy product, and
inversion (in the Cauchy product sense), that is, the rational
closure of R(X), constitutes the set of rational series [2]. Let
F, denote the Chen-Fliess series having ¢ € R{(X)) as its
generating series [5], [6]. The following statements are known
to be equivalent:

1) Series c is rational.

2) Series c is recognizable (Schiitzenberger’s theorem [20]).

3) Series ¢ has a Hankel matrix with finite rank [4].

4) Operator y = F.[u| has a bilinear state space realization
[5], [6].

5) Operator y = F.[u] satisfies a linear ordinary differential
equation in y of order equal to its Hankel rank and having
coefficients which are rational functions of {u,u,, ...}
[71, [8] (see also [24], [25]).

Bilinear systems, of course, play a special role in the theory
of nonlinear control systems [15], [17]. The definition of
rationality given above, however, is simply one instance of a
more general concept. Namely, given any associative algebra
on R((X)) and an arbitrary subalgebra .%#, the corresponding
set of rational series is defined as those series in the rational
closure of .%. Therefore, it is natural to ask whether any other
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notion of rationality has utility in the context of nonlinear
control theory. If so, are there equivalences analogous to those
given above in this alterative setting?

The goal of this paper is to partially answer this question to
the affirmative by providing one specific example, namely, by
replacing the Cauchy product on R ((X)) with the shuffle prod-
uct [18]. The latter forms a commutative algebra and is in some
sense the adjoint of the Cauchy product [19]. This product
appears naturally in nonlinear control theory when systems are
interconnected in parallel (taking the product of the outputs)
and in series [5], [10]. This alternative product leads directly
to the notion of shuffle-rationality. The next objective is to
provide two equivalent characterizations of shuffle-rationality,
namely, the analogues of statements 2 and 4 above. The
concept of shuffle-recognizability will be introduced and then
a shuffle version of Schiitzenberger’s theorem is proved. Next,
it is shown that there is a correspondence between shuffle-
rational series and a class of state space realizations which
are bilinear in the state but have rational output functions.
A common theme in all of the analysis is the evaluation of
rational functions on formal power series. To facilitate these
calculations, the underlying Hopf algebra (e.g., see [1], [21])
for the group of non proper formal power series under the
shuffle product is introduced. Finally, as an application, it is
shown how to model bilinear systems with output saturation
in this context. It should be stated that the question of whether
there exist analogous versions of statements 3 and 5 in this
setting is an open question at present.

The work is presented in six sections. The next section
provides a summary of the notation and terminology employed
in paper. The subsequent section describes the computational
framework used for developing the theory and doing exam-
ples. Section IV presents the concept of shuffle-rationality.
Section V introduces the notion of shuffle-recognizability and
gives the proof of the equivalence of statements analogous to 1
and 2 above. Finally, a state space characterization of shuffle-
rationality is presented in Section VI to prove the equivalence
of statements analogous to 1 and 4 above. Conclusions and
directions for future research are given in the last section.
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II. PRELIMINARIES

Let X = {xo,21,...,2mn} denote a fixed alphabet of
noncommuting symbols with m finite. Any finite sequence
of letters from X, n = x;, ---x;,, is a word over X having
length |n| = k. The empty word, (), is the word of length
zero. The set of all words is written as X*, and X+ £ X*\().
The subset of words having prefix 7 is denoted by nX™.
It is easily verified that X* constitutes a monoid under the
catenation product C : (n,£) — né with () acting as the unit.
Any mapping ¢ : X* — R : 5+ (c,n) is called a formal
power series. It is customary to write ¢ as a formal summation
c=3,ex-(cmn. If (c,0) = 0, then c is said to be proper.
Here R*((X)) will represent the set of all such formal power
series over X. Extending C in a natural way to series with
coefficients in RY, (R*((X)),C) is an associative unital R-
algebra. R*(({X)) is also an associative and commutative unital
R-algebra under the shuffle product. The latter is a product first
defined inductively for two words as

(2;€) = @i(n w (25€)) + z; (i) w E),

where 7, € X*, z;,z; € X, and nw = Qwn =
n. It is then extended bilinearly to series in R‘((X)) [5].
The R-algebra of R‘-valued polynomials over the set of
commutative indeterminates {y1,y2,...,yn} is denoted by
Ré[yl,ym---,yn]

Let Ly [to, t1] be the set of R"-valued measurable functions
on [t, tl] with a finite p-norm. Every series ¢ € R*((X)) has
an associated Chen-Fliess series

F[u)(t) = Y (c,n) Eyul(t, to), 1)

nex*

(zin) w

where Ey[u] =1 and

t

Eofultt) = [ w(r)Byful(rto) dr
to

with x; € X, n € X*, and ugp = 1 [5]. Such series are known

to converge absolutely and uniformed on a ball of radius R

center at the origin of L7"[0,7] whenever there exists real

numbers K, M > 0 such that

[(e.m)| < KMyl vy e X7,

and R and T are sufficiently small [13]. R, (X)) will
denote the set of all such locally convergent generating series.
If instead the coefficients of c satisfy the Gevrey growth
condition

l(e,n)| < KEMIM(In|h)*, vne X*, se(0,1],

then the series is called globally convergent, and the corre-
sponding Chen-Fliess series is known to converge for any
finite R and 7" [26]. The set of all such series is written
as RS ((X)). Whenever (1) converges in any sense, F, is
called a Fliess operator. Given two Fliess operators F,. and
F,, where c,d € RY (X)), their parallel and product con-
nections always produce another Fliess operator, specifically,
F.+F; = F.pq and F .F; = F. 4 [5] It is known that

addition preserves both local and global convergence, while
the shuffle product preserves local convergence and global
convergence when s = 0 [22], [23].

III. RATIONAL FUNCTIONS OF FORMAL SERIES

This section describes the evaluation of commutative poly-
nomial maps and rational functions over noncommutative
formal power series. First observe that the set of non proper
series in R ((X)) constitutes a group under the shuffle product
[11]. The shuffle inverse in this case is taken to be

T =601 - T = (60T, @
where ¢ 2 1 — ¢/(c,0) is proper and (d)w* £
> ke, (€ )Wk Here (¢)™F £ w(d)wF with
(@ =1,

Example 3.1: Let c=1—-a € R((X)} so that ¢ = ;.
Then ¢ ~! =z =37, o klaf. 0

Since R{(X)) under the shuffle product is a commutative
and associative R-algebra, for any &k € N and ¢ € R((X)) one
can write ¢ ' * = y¥(c), where y* € R[y]. Similarly, if d is a
proper series, then

—1:d|_u*
=1+d+d™?+
=(l4+y+y*+y>+ -

RER

Therefore, the shuffle inverse of a series can be written as a
rational function of the proper part of the series. The notions of
a polynomial map and a rational function of a noncommutative
formal power series is formalized by the following definition.

Definition 3.1: Let p,q € Ry] and ¢ € R((X)). Assume

k
> a;y', where k € Ny, and ¢((c,0)) # 0. The

(I—d)™
dws ...
)(d)

ply) =
compositilo:r(lj of p and c is defined as
k
p(c) = Z a;ct?
i=0

Extending the definition to rational functions gives
p -
~(c) = p(c) wq(e) ™ 7

These definitions can be generalized to functions on k-tuples
of series by first observing that R((X')) is a commutative ring
with the shuffle product. Therefore, R{{X)) is an R{(X))-
module, where scalar multiplication of the ring with a module
element is also defined by the shuffle product. In other words,
R((X))@R«X»R((X)) is isomorphic to R{(X)) in the
category of commutative R({(X))-modules. Let A, B be R-
modules and denote the set of all R-linear morphisms by
Hom(A, B). Recall that Hom(A, B) forms an R-module by

itself. Let I' € R-module Hom (A, Hom(B, C’)), where the

modules A2 @, . Q= Rlyil, B2 @pen [11o RUX)),
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and C £ @,y ®R(<X>)f:1R<<X>>. The morphism I is

defined as
k
r(Q® ®
R{(X))

R =1

pi)(clvc%wwck) = ' pilei),

i=1

where p; € R[y;] and ¢; € R((X)), i = 1,2,...k. The right-
hand side is expanded using the shuffle product as

k
®
REX)) =1

The image of T', denoted by Im(T"), is an R-module. In fact,

pi(ci) = pr(er) wpa(ea) w -+ v pr(er)-

it possesses an R-algebra structure as @) X>>f=1 R{(X)) is
an R-algebra. If p,p’ € ®Rf:1R[yi], then
CETE)) (e, en) = TP))(ers- . cx) o
(@) (e - - cr)-

As the shuffle product has no zero divisors, it is simple to
check that the underlying ring structure in R-algebra Im(T")
is an integral domain. Hence, the quotient field Im(T") is the
set of rational functions

PF((;)/)) (017 - 7Ck) = F(p)(cl, - 7ck) o
(F(p/)(cl, .. .,ck)) L —17

where p,p’ € ®Rf:1R[yi]. The symbol T is suppressed for
brevity so that given p ® p’ € R[y] ® R[y/],

p@p(c,d)=(C(pep))(c ) =plc)wp'(c).
Likewise, if p,¢ € Qg+ R[y], then
p

_I(p)
;(Clw-,%) =Ty (c1,...

The evaluation of rational functions over a noncommutative
formal power series requires one to compute shuffle powers
and the shuffle inverse of series. Such computations can be
implemented algorithmically with the aid of the Hopf algebra
corresponding to the shuffle group as described next [9].
Consider the set

M2 {1+c:ceRUX)Y, (c,0) =0} € R{X)).

ack)-

M is an Abelian group under the shuffle product with 1 as
the identity element. The shuffle inverse is defined as in (2).
The set of coordinate maps on R((X)) is taken to be

H={a,: M —R, neX*},

where a,(c) = (¢,n). H constitutes a commutative R-algebra
with addition, scalar multiplication and product defined, re-
spectively, as

(ay +ag)(e) = ay(c) + ac(c)
(kan)(c) = k(ay(c))
m(ay, ac)(c) = ap(c)ac(c),

where 7,( € X*, k € R. The unit for the product is 1 ~ ay
so that 1(¢) = 1, Yc € M. Define the coproduct A : H —

H@ H as Aay(c,d) = ay(cwd), where ¢,d € M and 7 €
X*. It can be computed inductively as

Al=1®1
AO&Z:(91®1+1®01)0A,

where 6; denotes the vector space endomorphism on H
specified by 6;a, = az,y, ¢ = 0,1,...,m. The counit map

€ is defined as
k -
a =
5( n) {O :

It is simple to check that (H, m,1,A, ¢) forms a commuta-
tive and cocommutative bialgebra structure. The bialgebra is
graded based on word length. Hence, H = @\, H) with
a, € Hj, if and only if || = k. Since R = H in the category
of algebras with € acting as the isomorphism, [ is a connected
and graded bialgebra, and thus a Hopf algebra [3]. The reduced
coproduct A’ is defined as

A,(an){A(an)—an@)l—l@an tay # ap
0 :ay,=ay.

a, = kay
otherwise.

Using Sweedler’s notation, the coproduct can be written as

Alay) =Y ag,) ® ag),

where the sum is over all words 71,72 such that 71 wny =17
[21]. The antipode map S : H — H is given by S(a,)(c) =
an(c™ ~1). It can be computed inductively for any a € H™
(where HY £ @, -, Hy,) by

S(an> =0y~ Z a/(m)S(CLan))’

where the summation is taken over all the components of the
reduced coproduct A’(ay,) .

The coproduct A is useful for computing shuffle powers
of formal power series. For example, if ¢ € R((X)) is non
proper, then ¢ = (¢, 0)c’, where ¢/ € M. For any n € X*, it
follows that

(2 m) = (c,0)*( 2, n)
= (c,0)%a, (' *?)
= (c,0)*Aay,(c, ).
In the case where c is proper, one can use the corresponding
group element (1 + ¢) and compute the reduced coproduct
since (c™'2,n) = Aa,((1+c¢), (1 +¢)). The shuffle inverse

of a non proper series ¢ € R({X)) can be computed directly
using the antipode S as

(Cu‘l_l,’l]) _ (070)—1(011_:4—1,77)

= (c,0)7"S(ay)(¢).
The coproduct can be linearly extended to computing the
polynomial map of arbitrary formal power series. Let A°F
denote the composition of the coproduct A with itself &

times where £k > 1. If ¢ € M and n € X*, for brevity
A°*a,(c,c,. .., c) with the argument c repeated (k+ 1) times
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is WritteTI:L as A°%q,(c). Suppose p € R[z] is written as

p(x) = Y a;x". Then for ¢ € R{(X)) observe
i=0

(p(c),n) = ay(p(c))
={ape+ar +aA+---

+ amile(m—2) + aon(m_l)}(an)(c).

Now assume p(z), ¢(x) € R[z] such that

and ¢

(r/q)

1) = 1 without loss of generality. The computation of
¢) is done as follows

—~ —~

({;(c), n) — (Ple,A) ® Q(e, A, 5)) 0 Ay (0),
where

P(ﬁ,A) =ape+ai +asA+---
+ am_le(m72) + aon(mfl)'
Q(E,A,S) :b0(608)+b1S+b2(AOS)+

+ b, 1 (AP 0 §) 4+ b, (A D o 9).
(3b)

(3a)

Here P(e,A) and Q(e,A,S) are the operator polynomials
corresponding to the rational function p/q. This computation
is abbreviated as

<Z<C>,n) — (e, A, S)(a,)(0)

where T(e,A, S) £ (P(e, A) @ Q(¢,A, S)) o A. The opera-
tor Y is viewed as the computational block for the rational
function p/q. The computation of a rational function of a
series in M is naturally extended when p,q € ®Rf:1R[yi].
Letp =p1®@p2®@---Qprand ¢ = 1 Qg2 ® - Q g,
where p;, q; € R[y;]. Let Y1, Ta, ..., T be the corresponding
computational blocks. Therefore,

k
(z(ch o 7Ck)777> = <® Tz) o Ao(k_l)&n(cl, ey Ck)7
1=1

“)
where c¢1,ca,...,cp € M.

The computational framework above can be further ex-
tended to rational functions of arbitrary non proper formal
power series. Let ¢ € R((X)) be non proper with (¢, ) =
a # 0 and ¢ = ac. Fix p(z), ¢(z) € R[z] such that

m

3 a2t
i=0

n .
2 byt
j=0

Do\ _
g(x) =

and ¢(«) = 1 without loss of generality. The computation of
(p/q)(c) is done as

(2@) = ((@Pa e tean)e

where the operator polynomials P and () are defined as in (3).
The computation is abbreviated as the computational block Y
so that

ESE ST

(on(ofle, (aA), S)) o A) (an)(c),

<§(C),n> = T(e. A, 5)(a,)(¢)

with T(e, A, S) £ (aP(a e, (@A) Q@ aQ(a™te, (aA), S))
oA. The computation of a rational function of a non proper
series is naturally extended when p,q € ®Rf:1R[yi]. Let
P=p1@p2®---@pgand ¢ = q1 ® g2 @ -+ X g, where
pi,qi € Rly;]. Let YT1,Ys,..., T, be the corresponding
computational blocks and c¢j,cs,...,c, be all non proper
series such that (¢;,0) = «a; # 0,9 = 1,2,..., k. Let
¢ € M be the corresponding group element of ¢; defined as
¢; = a;¢. In which case,

k
<§(Cl7 o ,Ck)ﬂl) - <®TL> o Ao(kil)an(c/l, ey C;‘)
1=1

The framework for the computation of a rational function of
a proper series ¢ with ¢(0) = 1 (without loss of generality) is
extended from (3) similarly except that the coproduct A in the
operator polynomials is replaced with the reduced coproduct
A’. The extension to the computation of rational functions of
ordered collections of proper series ¢y, ca, . . ., i is immediate
with respect to (4) except that again the coproduct is replaced
with the reduced coproduct. The case where cq,ca,...,cp 18
a mixture of proper and non proper series is difficult and does
not fit well in the current scheme.

IV. RATIONAL SERIES

This section describes the concept of rationally closed
subalgebras, and hence, the notion of rational series in the
broadest sense. Next, the classical example is briefly reviewed
followed by the notion of a shuffle-rational series.

Definition 4.1: [4] An R-subalgebra .# of an R-algebra on
R({(X)) is said to be rationally closed if and only if the inverse
of all invertible elements of .%# belongs to .%. The rational
closure of an R-subalgebra .7’ of an R-algebra on R{(X)) is
the smallest rationally closed subalgebra .# containing .%'.

Classically, rational series are defined to be those in the
rational closure of the R-subalgebra of polynomials R({X),
where the R-algebra structure on R((X)) is under Cauchy
product [2]. This noncommutative algebra of rational series is
denoted by R{(X)). Since R((X)) also forms a commutative
R-algebra under the shuffle product, a corresponding notion
of rationality is possible as described next.

Definition 4.2: The rational closure of the R-subalgebra
R(X) of the shuffle algebra on R{(X)) is called the algebra
of shuffle-rational series and denoted by R = ((X)).
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In other words, R* ((X)) is the smallest rationally
closed subalgebra of R((X)) under the shuffle product
that contains R(X). The next example establishes that
R{(X)) ¢ R ((X)), while the subsequent example shows
that R (X)) ¢ R((X)).

Example 4.1: Let c be the rational series

c=(1—mx)"

=14z +a]+a7+

_ 1 xlu_i 2 Ilm 3
SRR TR R T
=:exp(z;").

Observe that ¢ cannot be represented by a finite number of

shuffle products as the exponential map is an entire function

and cannot be represented by a finite number of terms or as a

rational function. Hence, it is not shuffle-rational. 0
Example 4.2: Let c be the shuffle-rational series

c=1—z)+!
=14z +o 2+
=14z +22? +35 +---

Clearly, ¢ ¢ R{(X)) since all rational series have Gevrey order
s=0[2].

In the case of a single indeterminate X = {z}, it is simple
verify that

—M'x T
(0 = {29 o) ato) € x|
(X

R
R (X)) = {p(x) wq(z) ™ " : p(z), q(x) € R[X]},
where ¢(z) # 0 in both the cases.

V. RECOGNIZABLE SERIES

In this section, the classical definition of a recognizable
series is first introduced. Schiitzenberger showed in [20] that a
series is rational under the Cauchy product if and only if it is
recognizable. Next, the shuffle analogue of Schiitzenberger’s
theorem is stated and proved.

Definition 5.1: [2] A series ¢ € R((X)) is said to be
recognizable if 3N € N, a monoid morphism p : X* —
RNXN “and vectors A,y € RY such that (c,w) = AT pu (w) 7,
Vw € X*. Note that RV > is considered to be a multiplicative
monoid. The tuple (A, u, ) is called a representation of ¢ with
dimension N. The set of all recognizable series is denoted by
R7ee((X)).

The following lemma will be useful in the work that follows.

Lemma 5.1: A series ¢ € R((X)) is a polynomial if and
only if it has a representation (\, p,~y) with p(z;) being a
strictly upper triangular matrix Vz; € X.

Proof: If ¢ has a representation with u(x;) strictly upper
triangular Vz; € X, then 3k € N such that pu(w) = 0
when |w| > k, as strictly upper triangular matrices are
always nilpotent. Hence, c¢ is a polynomial. Conversely, if
c is a polynomial, then the underlying vector fields of any
realization of F, form a nilpotent distribution [16]. Since
R(X) C R((X)), and the underlying vector fields associated

with any generating series in R((X)) comes from the Lie
algebra gl(R™), the fact that the subalgebra of strictly upper
triangular matrices is a nilpotent Lie subalgebra of the Lie
algebra gl(R™) completes the proof [14]. [ ]

Example 5.1: It is easily checked that ¢ = xpx; has the
representation

01 0 0 00
/J’(Z‘O) =0 0 0 ) /’[’(‘rl) =10 0 1 ’
0 0 0 0 0 0

A=¢e; =[100]T, and v = e3 = [0 0 1]7. Note that u(z¢)
and p(xq) are strictly upper triangular matrices and nilpotent
of index 2. 0
Next the definition of shuffle-recognizability is given.
Definition 5.2: Let k € N such that {Ny, Ny,... Ng} is
a multiset of k positive integers. Let {\;}*_ ,, {vi}% , be
ordered collections of k vectors such that \;,7; € RM.
Assume {s;}¥_, is an ordered collection of k& monoid mor-
phisms p; : X* — RN*Ni guch that u;(z;) is a strictly
upper triangular matrix Vz; € X, i = 1,...,k. Define two
polynomials p,q € ®Rf:1R[y1;] such that q(Afvy;) # 0,
i = 1,...,k A series ¢ € R((X)) is said to be shuffle-

recognizable if ¢ = p/q( Y, _x+ AT p(w)yw ), where AT =

AT x AT x o x AT, o= (g X pg X -+ X pg), and 7y =
(71 %72 % -x). The tuple (p, ¢, {Ai} oy, {pi} oy, {7iHizy)
is called a k order shuffle-representation of c. The set of all
such shuffle-recognizable series is denoted by R "¢¢((X)).

Given a shuffle-recognizable series ¢ with shuffle-
representation (p, g, {\}e_;, {u}*_,, {7}~ ,). the computation
of (¢,m), n € X* can be made algorithmic using the Hopf
algebra corresponding to the shuffle group. By Lemma 5.1,
observe that the expression Y., . A j(w)y is a Cartesian
product of k polynomials, say di,ds,---di. Hence, for all
neXx*

(C7 77) = (z(d17d27 ceey dk)7n> )
which can be computed directly using (4). In addition,

Rree((X)) = {p(er, e, yer) wq(er,ea, ...y cx
P, q € G}, (5)

yut

where c1,...,c, € R(X), (q(cr,...,cx),0) # 0, and ¥4, =
k
®Ri:1R[yi]'
Example 5.2: Suppose
c:1+x1+m1w2+...+x1wk+...
= (]. — xl) it
1
= (fy)(fvl)-
* 2x2 01
Note that x4 : X* — R**% where u(x;) = 0 0)
v = eg, and A = e; give a representation of xp, that
is, 11 = Y, ex- AN u(w)yw. Hence, ¢ = z~* is a
shuffle-recognizable series with shuffle-representation (1,1 —
y. {ea}, {n}, {e2}). |
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Equation (5) states that the set of shuffle-recognizable series
are generated by finite shuffle products of polynomials and
their shuffle inverses. Hence, R "*¢((X)) C R ((X)) in
the category of sets. This leads to the central question of
whether R 7¢((X)) = R ((X)). The following theorem
states this is the case.

Theorem 5.1: A series is shuffle-rational if and only if it is

shuffle-recognizable.
Proof: It is sufficient to prove that R* ((X)) C
R 7ree((X)). First it is shown that all polynomials and those
that are shuffle-invertible are shuffle-recognizable. As every
shuffle-rational series is in the rational closure of the polyno-
mials, it only remains to be shown that shuffle-recognizability
is preserved under the remaining shuffle-rational operations:
scalar multiplication, addition, and the shuffle product.

Let ¢ € R(X). From Lemma 5.1 there exists a nilpotent
representation (\, i, y) such that

c= Z M p(w)yyw = % ( Z )\T/,L(w)’yw> .

weX* weX*

Therefore, trivially, ¢ is shuffle-recognizable with tuple
(y, L, {\}, {p}, {7})- It is equally clear that if ¢ is non proper,
and ¢ =1 — (¢/(c,0)) has a representation (N, u’,~"), then
d = ¢~ is . -recognizable with tuple ((c,0)~%,1 —
g INH A D)

Shuffle-recognizability is also preserved by scalar
multiplication. If o« € R and d is shuffle- recognizable
with representation (P, @ AN Yimr, (i {vidizo)s
then ad is shufﬂe-recogmzable with  representation
(ozp,q7{)\ }z 17{:“1 i= 17{%}5'?:1)-

It is next shown that shuffle-recognizability is
closed under addition. Let d,d € R"™ ((X)) with
representations (p.g. (A} (b (3 }y) - and
(p q {)‘;}1 17{/’L’L = 17{71}1 1) respectlvely Define

A= Hf 1 )\Z .y =11 % o= T15_, pi, and likewise for
NT, ~" and 4. In which case,

/

p
d+d = q(Cl)-l—?(Cg)
= (p(cr) wgle) 7 + (¢ (e2) ' (c2) = 71
with e; =3 oo A p(w)yw and ¢ = 30 oo XN/ (w)y/

w. Multiplying by g(c1) wq(er) " wq'(c2) g/ (e2) 71
on both sides of the expression on the right gives
[(p(e1) e q'(c2)) + (p'(c2) w qler))] w
[a(cr) g/ (e2)] = 7
={(p®r d) + (¢®rp)}c1, c2) w
({q ®r ¢'}(c1, 02)) e

d+d =

Hence, d + d’ is shuffle-recognizable with representation
((p2rd)+(qrp), q@rd, {NHH AW AT,
where A; =\, U; =y, and I'; =, if 1 <i <k,and A; =
N o Wy =gl y,and Ty =~ if (k+1) <i < (k+n).

nilpotent
bilinear system

P
q

Fig. 1: Wiener-Fliess system comprised of a nilpotent bilinear
system and a static rational function

Finally, the case of the shuffle product is addressed. Using
the same notation as in the previous case, observe

)P P
duwd *5(01) wq*(@)
=pler) wgler) 7w/ (e2) wg'(ea)
= (p(er) wp'(e2)) w (gler) wq'(e2)) 71
= (p@rp)(c1,c2) v ((q@r ¢)(e1,e2)) 71

= (por p’)< DO X NT) (e x ) (w)(y x v’)w> :

weX*

Hence, d . d’ is shuffle-recognizable with representation (p®g
P q ®r ¢ {AFET {0 (T, B

The final theorem is useful in the next section where
shuffle-rational series are used as generating series for Fliess
operators.

Theorem 5.2: A series ¢ € R ((X)) is globally convergent
if c = p(c1,ca,. .. c1) waqler,ca, ... cp)” with deg(q) = 0
and locally convergent otherwise.
Proof: If deg(q) = 0, then ¢ is a polynomial, which is
always globally convergent. It is known that if ¢ € Ry ((X))
then ¢~ =1 € Ry ((X)) [11]. Hence, if deg(q) # O then,
q(c) = ~Lis locally convergent. Therefore, p(c) s g(c) = ~t €
Rro((X)). u

VI. STATE SPACE REALIZATIONS

This section presents a realization theory for Fliess operators
with shuffle-rational generating series. The classical result is
given first for rational series as a point of comparison. Then
it is shown that a series is shuffle-rational if and only if
its corresponding Fliess operator has a certain Wiener-Fliess
realization as shown in Figure 1 [12]. Finally, the concept is
applied to bilinear systems with output saturation.

Theorem 6.1: [4], [5] A series ¢ € R{(X)) if and only if the
Fliess operator y = F.[u] has a bilinear state space realization

Z(t) = (Ao + iAzuz(t

u(t) = NT=(t),

where A; € RY*N fori=0,1...,m, and v, A € RV,

The following is the shuffle-rational analogue of this the-
orem. Note that convergence of the underlying operator is
ensured by Theorem 5.2.

Theorem 6.2: A series ¢ € R™ ((X)) if and only if
the Fliess operator y = F.[u] has a state space realization
consisting of a nilpotent bilinear system followed by a static
rational function.

)> z(t), 2(0) =~
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Proof: If ¢ € R"™ ((X)), then there exists a k order
shuffle-representation (p, ¢, {\:}*_,, {pi}*_ 1, {7} ;). From
Lemma 5.1 and Theorem 6.1 it follows that each tuple
(Niy i, y:) corresponds to a nilpotent bilinear realization

Ajo+ Z A juj(t)
=1

yi(t) = A z(t),

where z;(t) € RYi, and the matrices A; ; are strictly upper
triangular matrices. Let d; = ), -y~ AP i (w)v; w denote the
corresponding generating polynomials so that

C_sz

It then follows directly that

k
o =15 (Fuled)

Z(t) = zi(t), #(0) =y

()

'UJQz

so that y = F.[u] has the desired realization with state
z = [zf ZQT -~ 21T, and A; = blkdiag(A; ..., k),
1=0,1,.

Conversely, consider an arbitrary nilpotent system

= (Ao + Zi‘h%) z(t), z(0) =z (6a)
i=1
(6b)

where each A; € RV XN is strictly upper triangular, and p, ¢ €
R[z1, 22, ..., 2zn] such that ¢(z) # 0 on a neighborhood of
zp. First observe that the following set of N nilpotent bilinear
systems

i=1
yi(t) = zi(1),
has a corresponding representation (e;, uu,y) with respect to
Lemma 5.1, where p(z;) = A;, i =1,2,...,N, and v = z.
If di £ x+ el p(w)y, then Fy[u] =z, i=1,2,...,N.
As the tensor algebras R[z1, 2o, ..., zy] and ®f\;1 R[z;] are
isomorphic, there exists p’, ¢’ € ®f\;1 R[z;] such that

> z(t), z(0) =z

/

Py
*(Z)—q,

Therefore, the input-output behavior of system (6) is described
by a Fliess operator Fy;, where

/

p
d: ?(dl,dg,...

(2’1,2’2, .. .,ZN).

7dN)

Hence, d € R™ ((X)) since it has the shuffle-representation
(' ' e il {pa by, {7 L), where pi; = pand 5; =
fori=1,2,...,N. |
The following example illustrates how a system with a
shuffle-rational generating series can appear in practice.

05 -~ A

o
T

05 T~

-~ I(z)
-1 + tanh(1.15z) |
———fxn(z)
— ale)
8| B

-40 -30 -20 -10 0 10 20 30 40

Fig. 2: Saturation function I'(z) and its approximations

Example 6.1: Consider a double integrator system with zero
initial conditions followed by a saturation nonlinearity

Ix) = {nnin(as7 1)

max(z, —1)

x>0
cx < 0.

As shown in Figure 2, I" is well approximated by the inverse
hyperbolic tangent function as

exp(1.15z) — exp(—1.15x)
exp(1.15x) + exp(—1.15x)

Using a Taylor series approximation of the exponential func-
tions up to /N degree gives

tanh(1.15z) =

@ s (1.5z)2k+1

p(z k=0 " (2k-+1)!

tanh(1.15z) = f,(x) £ (r) (1 5:)2)’< ’
4 > k=0 (2k)]

where n = [£7. The quality of the approximation of I'(z)
for a few values of n is shown in Figure 2. The input-output
behavior of the overall system is given by

yw=rmnnznmmn=§nw)
where ¢ = xgx; and

(S (o)

k=0

= Fulu],

The output response y(t) of the given system and its shuffle-
rational approximation ¢(¢f) when n = 100 is shown in
Figure 3 for the applied input u(t) = cos(t). 0

VII. CONCLUSIONS AND FUTURE WORK

This paper introduced the notion of a shuffle-rational formal
power series and two equivalent characterizations, one in
terms of an analogue of recognizability of a series, and the
other in the context of state space realizations for nonlinear
input-output systems represented by Chen-Fliess series. An
underlying computational framework was also described using
the Hopf algebra of the shuffle group. As an application, it is
shown how to model a bilinear system with output saturation in
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Fig.

—y(t) \
— U \

3 4 5 6
t

3: QOutput response y(¢) and its shuffle-rational approxi-

mation §(t) in Example 6.1

this context. Future work will be in the direction of providing

the

shuffle analogues of statements 3 and 5 given in the

introduction.
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