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1. Introduction

The study of interconnections of nonlinear control systems is
normally posed in a state space setting. Issues like controllability,
observability and synchronization are natural to consider in this
context [1,2]. The goal of this paper is to consider networks of
nonlinear systems described only in terms of Chen-Fliess series
without any assumption that finite dimensional state space mod-
els are available [3,4]. Such models are useful in the context
of system identification as relatively few parameters need to
be estimated to yield an accurate approximation of the input-
output map [5,6]. On the other hand, it is not automatically
evident that any interconnection of such systems has a Chen-
Fliess series representation. Dynamic output feedback systems,
for example, where both the plant and controller have Chen-
Fliess series representations have been shown to always have
such a representation [7,8]. The proof relies on the contraction
mapping theorem applied in the ultrametric space of noncom-
mutative formal power series. While a perfectly valid approach,
it does not scale easily to complex networks. So in this paper
an entirely different approach is taken based on the notion of a
universal control system due to Kawski and Sussmann [9]. The idea
is relatively straightforward in that networks of universal control
systems are synthesized leading to the notion of a formal real-
ization evolving on an n-fold direct product of formal Lie groups.
Then the generating series for any input-output pair in the net-
work is described using the notion of a formal representation, a
type of infinite dimensional analogue of differential represen-
tations that are common in nonlinear control theory [10,11]. It
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should be stated, however, that this does not prove that the re-
sulting Chen-Fliess series converges in any sense. The tools used
here are purely formal and algebraic. As is often the case when
working with Chen-Fliess series, the algebra and the analytic
issues can be considered separately with the former providing
the setting for the latter, which is actually quite convenient [12].
In particular, it will be shown that any additive or multiplicative
interconnection of a set of convergent single-input, single-output
Chen-Fliess series always has a Chen-Fliess series representa-
tion that can be computed explicitly in terms of iterated formal
Lie derivatives. The problem of determining convergence of the
network’s generating series will be deferred to future work.

The paper is organized as follows: Section 2 establishes the
notation and terminology of the paper. Section 3 presents the
concept of a formal realization. Formal representations are de-
scribed in Section 4. The main results of the paper along with
several examples are given in Section 5. The conclusions are
summarized in Section 6, as well as directions for future research.

2. Preliminaries

An alphabet X = {xg, X1, ..., Xn} is any nonempty and finite
set of noncommuting symbols referred to as letters. A word n =
Xi, - - Xj, is a finite sequence of letters from X. The number of
letters in a word n, written as |n|, is called its length. The empty
word, #, is taken to have length zero. The collection of all words
having length k is denoted by X*. Define X* = | J,., X¥, which is a
monoid under the concatenation (Cauchy) product. Any mapping
¢ : X* — R’ is called a formal power series. Often c is written as
the formal sum ¢ = Znex* (c, n)n, where the coefficient (c, n) €
R’ is the image of n € X* under c. The support of c, supp(c),
is the set of all words having nonzero coefficients. The set of
all noncommutative formal power series over the alphabet X
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is denoted by R‘((X)). The subset of series with finite support,
i.e., polynomials, is represented by R¢(X). For any c, d € R{(X)),
the scalar product is (c,d) = Znex* (c, n){d, ), provided the
sum is finite. The set R’((X)) is an associative R-algebra under
the concatenation product and an associative and commutative
R-algebra under the shuffle product, that is, the bilinear product
uniquely specified by the shuffle product of two words

(xim) W (%;8) = xi(n LU (%;§)) + x;((xim) LI &),

where x;,x; € X, n,§& € X* and with n LI = Juin =
n [3]. For any letter x; € X, let xi‘1 denote the R-linear left-
shift operator defined by x,.‘l(n) = n’ when n = x;n" and zero
otherwise. lt acts as a derlvatlon on the shuffle product. The Lie
bracket [x; ' ‘1] = x! ‘1 — x;'x;7! also acts as a derivation
on the shufﬂe product Fmally, tﬂe left-shift operator 1s defined
inductively for higher order shifts via (x;n)™! = 5~ X; , Where
n€X*. Forp e R(X),let p~' := 3" . (p, n)n”.

Given any ¢ € RY((X)) one can associate a causal m-input, ¢-
output operator, F, in the following manner. Letp > 1and ty < t;
be given. For a Lebesgue measurable function u : [tg, t;] — R™,
define |lull, = max{llull, : 1 < i < m}, where |[lu|, is the
usual L,-norm for a measurable real-valued function, u;, defined
on [to, t1]. Let L;"[to, t1] denote the set of all measurable functions
defined on [to, t;] having a finite ||-|[, norm and B?(R)[to, t1] =
{fu e L;f[to,ﬁ] lull, < R}. Assume Clto, t;] is the subset
of continuous functions in LT'[to, t;]. Define inductively for each
word 1 = x;7 € X* the map E, : LT'[to, t1] — C[to, t1] by setting
Ey[u] = 1 and letting

t

Eymlul(t, to) = / ui(t)Ez[ul(z, to) dr,
to

where x; € X, n € X* and uy = 1. The Chen-Fliess series

corresponding to ¢ € R¢((X)) is

Y(6) = Felul(t) = ) _ (¢, n) EyLul(t, o) (1)

nex*
[3]. If there exist real numbers K., M. > 0 such that

(e, M| < KM )t Vi e X7,

then F, constitutes a well defined mapping from Bm( Nto, to+T]
into B(( )to, to + T] for sufficiently small R, T > 0 and some
S>0, where the numbers p, q € [1, oo] are conjugate exponents,
i, 1/p+ 1/q = 1 [13]. (Here, |z| := max; |z;| when z € R%.) The
set of all such locally convergent series is denoted by R!-((X)), and
F. is referred to as a Fliess operator.

Given Fliess operators F. and F4, where ¢, d € Rfc((X)), the
parallel and product connections satisfy F. + F; = F..4 and
F.Fy = F.. 4, respectively [3]. When Fliess operators F. and
Fq with ¢ € Rfc((X)) and d € Rj}((X)) are interconnected in
a cascade fashion, the composite system F. o F; has the Fliess
operator representation F..4, where the composition product of ¢
and d is given by

cod="y " (c,n) Yaln)1)

nex*

[14]. Here 1 denotes the monomial 1¢, and 4 is the continuous
(in the ultrametric sense) algebra homomorphism from R{(X)) to
the vector space endomorphisms on R{(X)), End(R{(X))),
uniquely specified by ¥a(xin) = ¥a(x;) o Ya(n) with Yy(x;)(e) =
Xxo(diwe), i = 0,1,...,m for any e € R({X)), and where
d; is the ith component series of d (dy := 1). By definition,
Yq4(A) is the identity map on R{(X)). It is sometimes useful to
associate a unique alphabet with each operator. For example let
X = {x0,X1,...,%n} and X = (o, %1, ..., Xp). If ¢ € R ((f())
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and d € R’Z}((X)), then the cascade connection F¢ o Fy has the
generating series in R¢((X))

cod= Y (c, i) va(@)1), (2)
nex*

where now ¥g(X;) : R{((X)) — R{(X)), e — xo(djLie), i =

0,1,...,m. In this case, the letters in X are identified with the

inputs of Fg4, and the letters of X are identified with the inputs of

F.. There is a natural isomorphism between xo and X, since both

symbols correspond to the unity input (iig = ug = 1).

Example 2.1. Suppose X = {xo, x1} and X = {Xo, %1}. Let ¢ = %1%
and d = x;. The generating series for the series interconnected
system, ¢ o d = X1X; o X1, can be computed directly from (2) as

cod = (c,X1X1) Ya(X1X1)(1) = ¥a(X1) 0 Ya(X1)(1)
= Xo(x1 LLI (Xo(x1 LI 1))) = XoX1X0X1 + 2X0X0X1X1.

It will be shown later (Examples 3.1 and 4.2) that this same
result can be produced using formal realizations and formal
representations. O

3. Formal realizations

For any finite T > 0, u € LT[0, T] and fixed t € [0, T], one can
associate the formal power series in R{{X))

Plul(t) = Y " nE,[ul(t, 0),
nex*

which is usually called a Chen series. If, for example, u;(t) = o; €

R,i=1,2,...,mon [0, T] («g := 1) then P[u](0) = 1 and
—P[u] Z n— E [u](t, 0)
nex*
=Y ) nuit)E, 1, [ul(t, 0)
nex* i=0 :
=Y > axinE,ult,0)
nex* i=0

= <Z OéiXi> Plu](t)
i—0

It follows directly that

%P[u] (Zaxl>, n=>o,

and, therefore

Plul(t) = Z (Za,x,) e exp (t éaixi) .

n=0
In general, P[u] is the solution to the formal differential equation

%P[u] = (inui) Pul, P[u}(0)=1, 3)

i=0
so that P[u] is always the exponential of some Lie element over
X. That is, if £(X) is the free Lie algebra generated by X, then
any d € R{(X)) is a Lie series if it can be written in the form
d = Zn>1 Dn, Where each polynomial p, € £(X) has support
residing in X". The set of all Lie series will be denoted by Z(X).
An exponential Lie series is any series e = exp(d) :== > ., d"/n!,

where d is a Lie series [15, Chapter 3]. In general, (3) has a
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solution of the form P[u](t) = exp(U(t)) with U(t) € £(X), t > 0
[15, Corollary 3.5]. As a consequence of the Baker-Campbell-
Hausdorff formula, which states that log(exp(x;) exp(x;)) is a Lie
series, the set of all exponential Lie series forms a group, G(X), un-
der the Cauchy product with unit 1 [16, Lemma 3] and
[15, Corollary 3.3].

Following the approach of Kawski and Sussmann in [9,17],
G(X) can be viewed as a formal Lie group with Z(X) as its cor-
responding Lie algebra.! A commutative algebra of real-valued
functions on G(X) is defined using the shuffle algebra on the R-
vector space R;c((X)). Specifically, for any fixed ¢ € Ric((X))

define f. : G(X) — R in terms of the scalar product as
2> f(z) = (c,z) = ) _(c,n){z, ). (4)
nex*

Ree’s criterion states that p € £(X) if and only if (n LLIv,p) =0
for all nonempty words 7, v € X* [Theorem 2.2][20]. This implies
that z is an exponential Lie series if and only if (c LLId,z) =
(c,z)(d, z) for all c,d € R({(X)) [15, Theorem 3.2]. Therefore,

fe(2)fa(z) = (c.2){d, 2) = = fewa(2).

Convergence follows from the fact that the shuffle product is
known to preserve local convergence [21].2 Often f.(z) will be
abbreviated as c(z), which is more natural in the present context.
Analogous to standard Lie group theory, the formal tangent space
at the unit 1, T;6(X), is identified with £(X). Thus, for any fixed
p € Z(X), there is a corresponding tangent vector at 1 written
as the linear functional V(1) : Ric((X)) — R, ¢ = Vj(1)(c) =
(c, p1) and satisfying the Leibniz rule>

(cud,z)

Vp(1)(c L d) = (c L d, p1)
= ({p Y cwid),1
=(p~(c)wid, 1)+ (cwip~'(d), 1)
= (p~'(c). 1){d. 1) + (c, 1)(p~'(d). 1)
= {(c,p1){d, 1) + (c, 1){d, p1)
= Vp(1)(c)d(1) + c(1)Vp(1)(d).

In turn, the tangent space at z € G(X), denoted as T,G(X), is
defined via right translation to be the vector space of linear

functionals V,(z) : Ric{((X)) — R, ¢ = Vy(z)(c) = (c,pz),
p e LX) satlsfylng
Vp(z)(c Wi d) = (c i d, pz)

= {c, pz){d, z) + (¢, z){d, pz)

= Vp(2)(c)d(z) + c(2)Vp(2)(d). (5)

From a Hopf algebraic viewpoint [22], elements z € G(X) are
group-like, that is, for c,d € Ric{((X)) one has (cLLid,z) =
(c®d, Az) ={c®d,z®z) = (c,z)(d, z). Here A, is the
unshuffle coproduct dualizing the shuffle product. On the other
hand, elements p € £(X) are primitive, ie, A,p = p® 1+
1® p such that (c LI d, p) = (c, p)(d, 1) + (c, 1){(d, p). Moreover,
Anpz = AL pAnz yields (cuwid,pz) = {c,pz){d,z) +
(c, z)(d, pz). However, in this work a Hopf algebraic approach has
been suppressed in favor of a purely Lie theoretic presentation.
For any p € Z(X), the mapping

Vp : G(X) = T,6(X), z+> Vp(z) :=pz

T Certain aspects of this framework can also be found in [18,19].

2 The authors of [9,17] defined their algebra on R(X), which entirely avoids
the convergence issue. But here R;-((X)) is more suitable for the applications
to follow.

3 Recall the definition of the scalar product in the previous section.
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is a formal right-invariant vector field on G(X). Here X will denote
the set of all such right-invariant vector fields. In addition, the
formal Lie derivative is defined to be the mapping

Ly : Ruc (X)) = Ruc((X)), ¢ > Lyc:=p~'c
so that
Lyc(z) =
and, in particular,
Ly(c L d)(z) = (Ly(c L d), z)

= {(c wd, pz)

= (Lpe(2))d(z) + c(z)Lpd(2),

which is just an alternative form of (5).

Finally, note that (1) can be written componentwise as y(t) =
(ck, z(t)), k = 1,2, ..., £, where ¢, € Ric{(X)) denotes the kth
component of ¢ € Rfc((X» and z(t) = P[u](t). This leads to the
following definition.

(LPC’Z> = (p_lca Z) = <C7 pZ) = Vp(Z)(C),

Definition 3.1. For any c € R{C((X )), the formal realization of
the Fliess operator y = F.[u] is

m
Z= Zx,-zui, z(0)=1
i=0

Ye={2), k=1,2,...,¢.

Observe that
Lyci(1) = % 'er(1) = (% ek, 1) = (ck, xi)

LyLyc(1) = %7 'x; Te(1) = (' e, 1)

= (Ck, XiXj),
j j

so that the coefficients of ¢, can always be written in terms of
formal Lie derivatives as

= (C, Xi, = - " Xip,)
'Lx,'1 (1) = ank(l)- (6)

(k> m)

=Ly, -

The notion of a formal realization in Definition 3.1 is now
extended by taking a finite number of direct products of G(X),
ie, G"(X) = 6(X) x G(X) x --- x G(X), where G(X) appears n
times. For any ¢ = ¢; ® - - - ® ¢, € R ((X)) define
fi:6"X)—>R

Zi—)(C]®---®Cn)(Z1,...,Zn):

(C],Z]) o (Cnszn)-

A commutative algebra on the R-vector space of all such real-
valued functions on G"(X) is given by defining

fe(2)fy(2) = [cr, z1) - - - {Cns Z0)1[{d1, 21) - - - {dns Zn)]
= (c1 Wi dy,2z1) -~ {Ccp L dp, Zp)
= (wdz1, 22, ...,20)
= El_u&(z)'

As earlier, f;(z) will often be abbreviated as ¢(z). The Lie al-
gebra of ¢"(X), denoted by £"(X), is similarly defined as the
n-fold direct sum of the Lie algebra Z(X) for ¢(X) with itself.

The formal tangent space at the unit 1, := (1,..., 1), T1,6"(X),
is identified with Z"(X) via the one-parameter subgroup H(t) :=
(exp(tp1), exp(tp2). . . .. exp(tpy)), p = (P1. P2, - .. Pn) € L(X) 50

that H(0) = p. For any fixed p € £"(X), there is a corresponding
tangent vector at 1, represented by the linear functional
d

Vp(1) s REZ((X)) = R, €+ E(é o H(t))lt=o-
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Observe that

V(16 = o ((er, exp(tp1) -
(Cn» €Xp(tpn)))li=o

(ci, exp(tp;)) - - -

—Z 1, 1 “{ci, pil) -+ {c, 1)
satisfies the Lelbmz rule:
Vp(1,)( L d)
n
=Y crtdy, 1) - (G L di, i) -+ Gy L dn, 1)
i=1

= (ertdy, 1) (o (G U di), 1) -+ (e L dy, 1)
i=1

=Y ertdy, 1) (py(G) L diy 1) -+ (e L dy, 1)+
i=1
D (e widy, 1) (i p d), 1) - (o W da, 1)

i=1
= Vp(1)(@)d(15) + E(1)V, (1, )(d).

The tangent space at z € G"(X), denoted as T,G"(X), is defined via
right translation to be the vector space of linear functionals

V(2) 'R?E"<(X)> — R

¢ E C],Z]

S0 as to satlsfy
Vp(z)(€ L d) =

-{Ci, pizi) * - {Cn, Zn)

Vo(2)(@)d(z) + é(2)V,(2)(d).

For any p € £"(X), the mapping

Vp 1 6"X) = T,6"(X), z+> (p1z1, ..., PnZn)

is a formal right-invariant vector field on G"(X). Here X" will
denote the set of all such right-invariant vector fields. In this
context, the formal Lie derivative is defined to be the mapping

Ly : RiZ (X)) — RiZ (X))

C1®"'®Cn'—>ZC1®""®pi_l(Ci)®"‘®Cn

i=1

so that
Lyé(z <ZC1® @p (@) ® - ®Cn)(z1,...,z)
i=1
= ) (c1,z1) - {Ci, Dizi) - -+ {Cns Zn)
i=1
= Vp(2)(©), (7)

and directly
L,(& L1 d)(z2) = (Lyé(2)) d(z) + E(2)Lyd(z).

In this generalized setting, a set of n systems with state z =
(z1, 22, ..., zy) evolves on the group G"(X) according to the formal
state equations

Exzjuu, i(0) =1,

where u; € L,[0,T] and ug;

1,2,...,n. Define ¢ outputs y, = (X

( ) where ck € R®“( ),
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k =1,2,..., ¢ Therefore, the corresponding input-output map
u +— y takes an m x n matrix of inputs to £ outputs. Consider now
the situation where a network is formed by allowing each system
input to be interconnected to some function of other systems’
outputs and a new external input v;; to yield a new input-output
map v > y, for example, u; = aij(z) + vj;, where a,-,- € Rﬁ"((X)).
In this case, the state equations for the interconnected system
become

m
Zj = Xozj + ina,j(z)zj + xizjvy, z(0)=1.

i=1
Note, in particular the appearance of state dependent vector
fields pjz; with p;(t) = Y., xid;j(z(t)) € L(X). The solution to
zj = piz, z(0) = 1 has the form z](t) = exp(Uj(t)), where
Uj(t) e L(X). The corresponding tangent vector at z(t) is

Voo (2(0)) : REM((X)) — R

¢ %(6 o 2(t))

= E (c1, zy(t

= me(Z( ))- (8)

Substituting p;(t) = Z:" 1 x,a,](z(t)) on the right-hand side above,
where di(z(t)) = (d{, z:(0)) - - - (. zu(t), gives

n

Lynye(z(t)) = Z(q, zi(t)) - - -
j=1
Zfi i(Z(£))(cj, xizj(t)) - - - {cn, Za(t))
i=1

_Z c1,Z9(t
ZZ (er d, zy(0)) - -

i=1 j=1

-{G, p}( )z (t» <+ {(Cn, Zy(1))

(), pi(t)zi(£)) - - - (Cn, Za(t))

(g L ), zi(6)

e en L df, zy(6))

=: ¢/(2(1)). (9)

In this way, a second Lie derivative can now be computed di-
rectly using (8), thus circumventing the difficult task of explicitly
composing time-varying vector fields. Henceforth, all such state
dependent Lie series will be written as p(z). No other type of
state dependent series will appear in this paper. In this context,
a generalization of Definition 3.1 is presented.

Definition 3.2. Let V; € X", i=0, 1, ..., m with
Vi1 G"(X) — T,G6"(X)
=(21,...,20) => Vi(z) = (Viu(2)z1, . . ., Vin(2)zn),

where Vji(z(t)) € Z(X). The jth component of the corresponding
state equation on G"(X) is

m
zj = Z Vl-j(z)zjui]-, Zj(O) = Zjp. (]O)
i=0

Given ¢, € R
defined to be
Vi = C(2). (11)

Collectively, (V, zo, ¢) is a formal realization on G"(X) of the
formal input-output map u — y.

(X)), k=1,2,...,¢, the kth output equation is

For convenience the integer n will be referred to here as the
dimension of the realization, though this is a misnomer as the
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underlying group G(X) is not finite dimensional, therefore neither
is the state z. The following example illustrates how the concept
naturally arises when Chen-Fliess series are composed.

Example 3.1. Reconsider the systems y, = Fc[uy] and y; =
Fy4[uq] in Example 2.1 using the same alphabet X = {xq, x1} for
both series. Each has a formal realization of the form given in
Definition 3.1. Setting u, = y; so that y, = F. o Fs[u,] yields a
formal realization of dimension two:

Z1 = Xoz1 + X1Z1u1, z1(0) =1

= (X0 +x1(d, z1))z2, z(0)=1
Y2 = (1, z1){c, z2).
(Note that (1

X0Z X1Z
=) =[]

and ¢ = 1 ® c. Observe that the composition F. o F; = Feoq
introduces in the second component of the tangent vector Vy(z)
a z; dependence. The aim is to express ¢ o d directly in terms
of (V, 15, ¢). This leads to the notion of a formal representation of
a series as presented in the next section. It can be viewed as a
generalization of (6). O

,z1) = 1 and uq; := u;.) Therefore,

4. Formal representations

The following definition is a formal analog of a differential
representation as appears, for example, in [10,11].

Definition 4.1. A formal representation of a series d € R((X)) is
any triple (u, zg, ¢), where

wiX = X" x>V

defines a monoid homomorphism, zy € ¢"(X), and ¢ € R ((X)),

so that for any word n = Xx; x;,_, - - - X;;, € X*

. Lu(x,»k)é(zol (12)

By definition, (d, ¥) = LyC(zo) := €(2o). The integer n > 1 will be
called the dimension of the representation.

(d 7]) —Lu(n)C(Zo) =1L X;I)L nixiy) *

Example 4.1. For the trivial case where n = 1, u(x;) = xi, 20 = 1,
and d = ¢ = c it is immediate that (12) reduces to (6) with
¢=1. O

The following lemma provides a sufficient condition under
which formal representations are always well defined.

Lemma 4.1. Given (i, 2o, C), if for each x; € X [u(x)]j(2z) == Vij(2)z;
with Vjj(z) being some Lie polynomial in £(X), then there exists a
well defined d € R((X)) satisfying (12).

Proof. If (i, zg, €) is a formal representation of d then necessarily
for any n = x;, - - - x;, € X*

s X -+ Xiy) = Lty bty -+ Lt )€(20),

where each Vjj(z) is assumed to be a Lie polynomial. Therefore,
each Lie derivative can be written as a polynomial in functions of
the form (e, piz;) withp; € £(X),i=1,2,...,n,and e € R {((X)),
implying that d is well defined, in fact, locally finite [23]. =

Example 4.2. Continuing Examples 2.1 and 3.1, the claim is that
c od has a formal representation (., 1,, ¢), where . is defined in
terms of the vector fields Vy and V; in Example 3.1and ¢ = 1®c.
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Note that both vector fields satisfy the condition in Lemma 4.1.
As an example, it is verified that

(xox%, cod) = L) €(1) = Ly, Ly, Ly Ly, £(1) = 2.
First apply (8) (suppressing all t dependence)
Ly, €(z) = (c, Voa(2)z2)

= (X1, (X0 + X1(x1, 21))22).
Regarding the z; dependence of Vy,(z), use (9) to get
Ly,C(z) =
Applying (8) and (9) a second time gives:

A

(X1, 21) (X1, 22) = (X1 ® X1)(21, 22) = €'(2).
Ly,Ly,C(2z) = Ly,C'(2)
= (X1, Vo1(2)z1) (x1, 22) + (X1, 21) (X1, V02(2)22)
= (X1, X0Z1) (X1, 22) + (X1, Z1) (X1, (X0 + X1{X1, Z1))22)
= (x1,21)*(1, 23)
= (X1 LI X1, 21)(1, 22)
= (% WX ® 1)(z1,22)
= (24 ®1)(z1,2,) = &"(2).
Continuing in this fashion,

Ly, Lyy Ly, C(z) = Ly, ¢"(2) = (2x1,21)(1, 22)

and
LV] L\/1 LVOLVOe(Z) = L\/1 fl”(Z) =

Therefore, (x2x2, ¢ o d) = Ly, Ly,Ly,Ly,¢(1) = 2 as anticipated. O

(21, 21)(1, z2).

The proposition in the previous example is established in the
general case by the following theorem.

Theorem 4.1. If d € R{(X)) has a well defined formal repre-
sentation (i, Zo, Cx), then the input-output map u — Yy, of the
corresponding formal realization (10)-(11) has a Chen-Fliess series
representation with generating series d.

Proof. Without loss of generality, assume there is a single output
so that the subscripts on ¢, and y; can be dropped. Likewise,
assume n = 1 so the index on the state can be omitted. Since
z(t) is a tangent vector at z(t) € G(X) for any t > 0, it follows
directly from (7) that

Integrating both sides on [0, t] and applying (9) gives

&z(t)) = é(z0) +Z/ Ly,é(z (t)dt
=E(zo)+2/ &(z(0)ui(z) dr., (13)
i=0 70

&a(r) = (&,

where Ly, ((z(t)) =
above yields

z(t)). Substituting ¢/ for ¢

m

&) = @) + Y f &/ (2(c)ui(z) dr. (14)
0

i=0
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Noting that y(t) =

ZO +ZL\/C Zo/
5 / / Ly, &2y (12 s w71 .

i1,ip=0

C(z(t)) and substituting (14) into (13) gives

T)dt+

Continuing in this way yields

=Y Lugy&(z0)Ey [ul(t)

nex*

= > (d, ME,[ul(t)

nex*

which proves the theorem. ®
5. Networks of Chen-Fliess series

In this section specific types of networks of Chen-Fliess se-
ries are considered for which both Lemma 4.1 and Theorem 4.1
apply. To avoid a barrage of indices, the component systems are
assumed to be single-input, single-output. There is, however, no
technical reason for avoiding the multivariable case. A variety of
different configurations are possible. The following is perhaps the
simplest.

Definition 5.1. A set of m single-input, single-output Chen-Fliess
series mapping u; — y; with generating series ¢; € Ryc{((Xi)),
where X; = {xo, x;}, and weighting matrix M € R™™ is said to be
additively interconnected if u; = vi+Zj";1 My, i=1,2,....,m

In the following theorem, let ¢; € R%.((X)) denote the series
with the ith component series being the monomial 1, and the
remaining components are the series having all coefficients equal
to zero. In addition, given CJ € Ric{(X)), define ¢ =1® --- ®
13¢®1---®1 € RLC ({X)), where ¢; appears in the jth
position.

Theorem 5.1. The input-output map v — y of any additive inter-
connection of m single-input, single-output Chen-Fliess series with
generating series ¢; € Ryc((X;)) has a well defined generating series
d € R™((X)), where d; has the formal representation (i, 1, ¢j) with
u defined in terms of the vector fields

X0Z1 (€1, 1)

X022 ] (c2,22)
Vo(z) = + diag(x1z1, . . ., Xmzm)M . ,

X0Zm (Cm» Zm)
and Vi(z) = xizie; fori=1,2,...,m.

Proof. It is straightforward to show that the set of interconnected
Chen-Fliess series constitutes an m input, m output system with
formal realization given by the vector fields as shown. Therefore,
the claim follows directly from Lemma 4.1 and Theorem 4.1

with u(x) =V;,i=0,1,...,m,2zy = 1, and § € RY"((X)). =
Example 5.1. A single system additively interconnected with

itself as shown in Fig. 1 would correspond to propositional output
feedback, i.e,, u = v + My (dropping all subscripts). Thus, the
corresponding representation is given by

Vo(z) =

zo = 1; = 1, and ¢ = c. For a unity feedback system, i.e., M =
1, applying (12) gives the following generating series for the
closed-loop system:

(d. 1) =c(1)={c.1)

(X0 +x1M(c, z))z, Vi(z) = x:2,

Systems & Control Letters 147 (2021) 104827

c

M

Fig. 1. Single system additively interconnected.

(d, x1) = Ly, c(1) = (¢, x1)
(d, x0) = Lyyc(1) = (¢, x0) + (¢, x1){c, 1)
(d, 3) = Ly, Ly,c(1) = {c, x3)
{d, x0x1) = Ly, Ly,c(1) = {c, Xox1) + (C, X1){C, X1)+
(c,x3)(c, 1)
(d, x1%0) = Ly,Ly,c(1) = (¢, X1Xo) + (¢, x})(c, 1)

(
(d, x3) = LyyLyyc(1) = (€, x3) + (c, x1)(c, x0)+
(c, x1x0)(c, 1) + {(c, xox1)(c, 1)+
(e, x1)(c, x1)(c, 1) + (¢, x]){(c, 1){c, 1)

These expressions are consistent with those in [7], where d =
S(—c), and S is the antipode of the output feedback Hopf
algebra. O

Example 5.2. Consider two additively interconnected systems as
shown in Fig. 2, where M;; = 0 when i = j. Setting M;; = 1 for
i # j gives a representation of d; specified by

_ | (%0 +x1(c2, 22))21 () — xre i —
VO(Z)_|:(X()+X2<C1,Z1>)ZZ , Vilz) =xizie;, i=1,2,

zp = 13, and ¢;. For example, the generating series d; for the
mapping v > Yy is:

(di,1) = &4(12) = (c1, 1)
(dy, x1) = Ly, 61(12) = (cq, x1)
(dq, X2) = Ly, C1(15) = 0
(dy, X0) = LyyC1(12) = {c1, Xo0) + {1, X1){c2, 1)
(d1, %%) = Ly, Ly, &1(13) = {c1, %3)
(d1, X1x2) = Ly, Ly, C1(13) = 0
(dy, X2x1) = Ly, Ly, €1(12)=0
(dq,x5) = Ly, Ly, €1(12) = 0
(d1, X1%0) = Ly, Ly, ¢1(12) = (c1, x1Xo) + (€1, x3) (c2, 1)
(d1, XoX1) = Lvllvoe (12) = (c1, XoX1) + (€1, X7) (€2, 1)

and similarly for d, corresponding to the map v — y,. Unlike the
first example, for networks with more than one system, there is
at present no known alternative algebraic method against which
to compare all of these results. Coefficient (dy, n), where n € X*
and j = 1,2 can be determined using the feedback product as
described in [7], but mixed coefficients like (dq, X1x,) cannot. O

Example 5.3. Consider three additively interconnected systems
as shown in Fig. 3, where again M;; = 0 when i = j, and the output
branches have been suppressed. For the case where M;; = 1 when
i # j, a representation of d; is given by

(%0 + x1(C2, 22) + x1(C3, 23))71
(2) |:(Xo + x2(c1, 21) + x2(c3, 23))Zz:|
(%0 + x3{(C1, 21) + X3(C2, 22) )73
Vi(Z) = XiZi€;, i= 1, 2, 3,



W.S. Gray and K. Ebrahimi-Fard
€

U Y
Y v
5}

Fig. 2. Two systems additively interconnected.

S
Uy

Fig. 3. Three systems additively interconnected.

zp = 15, and ¢;. For example, the generating series d; for the
mapping v — y; is:
(di, 1) =6i(13) = (c1, 1)
(d1, x1) = Ly, C1(13) = (Cl,Xl)
(d1, x3) = Ly, C1(13) =
(d1,x3) = Ly C1(13)
(d1, X0) = Ly, C1(13) = (C17X0)+(C1,X1)(C2,1)+
(Cl’ x1){(c3, 1)
(di,x3) = LvlLvle (13) = (Cl,Xf)
(d1, X1X2) = Ly,Ly,C4(13) =
(d1, X1x3) = Ly,Ly,C1(13) =
(d1, X1X0) = LvoLvl6 (13) = (c1, X1X0) + (c1, X7){(C2, 1)+
(c1. x3)(cs3, 1)
(dy, xo%1) = Ly, Ly, C1(13) = (c1, XoX1) + (€1, X7){C2, 1)+
(c1.x9)(c3. 1)

and similarly for d; corresponding to the map v +— y;,i=2,3. O

Free from the bonds of linearity, other types of interconnec-
tions are also possible as considered next.

Definition 5.2. A set of m single-input, single-output Chen-Fliess
series mapping u; — y; with generating series ¢; € Ryc({X;)),
where X; = {xo, x;}, and weighting matrix M € R™"™ is said
to be multiplicatively interconnected if u; = v; ]_[j";1 Miy;, i =
1,2,...,m

Theorem 5.2. Every input-output map v — y of any multiplicative
interconnection of m single-input, single-output Chen-Fliess series
with generating series ¢; € Ryc((X;)) has a well defined generat-
ing series d € R™((X)), where d; has the formal representation
(i, 1, Gj) with  defined in terms of the vector fields

X021
Xo0Zo m
Voz)=1| . |, Vilz)=xi l_[ Mii(c;, zj)zie;.
: i
X0Zm

Proof. The proof is perfectly analogous to that of Theorem 5.1. ®
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Example 54. Reconsider the single system network in
Example 5.1 except now multiplicatively interconnected, that is,
u = wvMy (again dropping all subscripts). The corresponding

representation is given by
Vo(2) = X0z, Vi(z) = x:1M(c, 2)z,

Zzo = 1,and ¢ = c. Setting M = 1 and applying (12) gives the
following generating series for the closed-loop system:

(d, 1) =c(1)={c, 1)
(d, x1) = Ly,c(1) = (¢, x1){c, 1)
(d, x0) = Ly,c(1) = (c, Xo)

(d, x}) = Ly, Ly,c(1) = (¢, 5){(c,
(¢, x1){c, x1)(c, 1)

{d, x0X1) = Ly, Ly,c(1) =
(1=

<d’ X?) = LV] LV1 LV1 C(1)

1){(c, )+

(c, xox1)(c, 1)
{c, x1x0)(c, 1) + (c, x1)(c, Xo)
(c.x3){c. (e, 1) {c, )+

4(c, x3)(c, x1)(c, 1){c, 1)+

{d, x1X0) = Ly,Ly,cC

(¢, x1){c, x1){c, x1){c, 1)

(d, x5) = Ly,Lv,c(1) = (c, x3)

Consider the particular case wherec = )", k!x’{. Applying the
formulas above gives the closed-loop generating series

d=1+x +3x+ 150+,

which is consistent with what was computed in [8, Example 4.10]
using the antipode of the output affine feedback Hopf algebra. O

6. Conclusions and future work

Using the concept of a formal realization and a formal rep-
resentation, it was shown that any additive or multiplicative
interconnection of a set of convergent single-input, single-output
Chen-Fliess series always has a Chen-Fliess series representation
whose generating series can be computed explicitly in terms of
iterated formal Lie derivatives. This of course does not exhaust
the list of possible network topologies for which this method
is suitable. For example, there can be mixtures of additive and
multiplicative nodes in a given network. There is also no technical
barrier to applying the methodology in the full multivariable set-
ting. Finally, the issue of convergence of the network’s generating
series needs to be addressed in every case.
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