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Consider a set of single-input, single-output nonlinear systems whose input–output maps are described
only in terms of convergent Chen–Fliess series without any assumption that finite dimensional state
space models are available. It is shown that any additive or multiplicative interconnection of such
systems always has a Chen–Fliess series representation that can be computed explicitly in terms of
iterated formal Lie derivatives.
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1. Introduction

The study of interconnections of nonlinear control systems is
ormally posed in a state space setting. Issues like controllability,
bservability and synchronization are natural to consider in this
ontext [1,2]. The goal of this paper is to consider networks of
onlinear systems described only in terms of Chen–Fliess series
ithout any assumption that finite dimensional state space mod-
ls are available [3,4]. Such models are useful in the context
f system identification as relatively few parameters need to
e estimated to yield an accurate approximation of the input–
utput map [5,6]. On the other hand, it is not automatically
vident that any interconnection of such systems has a Chen–
liess series representation. Dynamic output feedback systems,
or example, where both the plant and controller have Chen–
liess series representations have been shown to always have
uch a representation [7,8]. The proof relies on the contraction
apping theorem applied in the ultrametric space of noncom-
utative formal power series. While a perfectly valid approach,

t does not scale easily to complex networks. So in this paper
n entirely different approach is taken based on the notion of a
niversal control system due to Kawski and Sussmann [9]. The idea

is relatively straightforward in that networks of universal control
systems are synthesized leading to the notion of a formal real-
zation evolving on an n-fold direct product of formal Lie groups.
hen the generating series for any input–output pair in the net-
ork is described using the notion of a formal representation, a
ype of infinite dimensional analogue of differential represen-
ations that are common in nonlinear control theory [10,11]. It
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should be stated, however, that this does not prove that the re-
ulting Chen–Fliess series converges in any sense. The tools used
ere are purely formal and algebraic. As is often the case when
orking with Chen–Fliess series, the algebra and the analytic

ssues can be considered separately with the former providing
he setting for the latter, which is actually quite convenient [12].
n particular, it will be shown that any additive or multiplicative
nterconnection of a set of convergent single-input, single-output
hen–Fliess series always has a Chen–Fliess series representa-
ion that can be computed explicitly in terms of iterated formal
ie derivatives. The problem of determining convergence of the
etwork’s generating series will be deferred to future work.
The paper is organized as follows: Section 2 establishes the

otation and terminology of the paper. Section 3 presents the
oncept of a formal realization. Formal representations are de-
cribed in Section 4. The main results of the paper along with
everal examples are given in Section 5. The conclusions are
ummarized in Section 6, as well as directions for future research.

. Preliminaries

An alphabet X = {x0, x1, . . . , xm} is any nonempty and finite
et of noncommuting symbols referred to as letters. A word η =

i1 · · · xik is a finite sequence of letters from X . The number of
letters in a word η, written as |η|, is called its length. The empty
word, ∅, is taken to have length zero. The collection of all words
having length k is denoted by Xk. Define X∗

=
⋃

k≥0 X
k, which is a

monoid under the concatenation (Cauchy) product. Any mapping
c : X∗

→ Rℓ is called a formal power series. Often c is written as
the formal sum c =

∑
η∈X∗⟨c, η⟩η, where the coefficient ⟨c, η⟩ ∈

Rℓ is the image of η ∈ X∗ under c. The support of c , supp(c),
is the set of all words having nonzero coefficients. The set of
all noncommutative formal power series over the alphabet X

https://doi.org/10.1016/j.sysconle.2020.104827
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s denoted by Rℓ⟨⟨X⟩⟩. The subset of series with finite support,
i.e., polynomials, is represented by Rℓ⟨X⟩. For any c, d ∈ R⟨⟨X⟩⟩,
he scalar product is ⟨c, d⟩ :=

∑
η∈X∗⟨c, η⟩⟨d, η⟩, provided the

um is finite. The set Rℓ⟨⟨X⟩⟩ is an associative R-algebra under
he concatenation product and an associative and commutative
-algebra under the shuffle product, that is, the bilinear product
niquely specified by the shuffle product of two words

xiη) ⊔⊔ (xjξ ) = xi(η ⊔⊔ (xjξ )) + xj((xiη) ⊔⊔ ξ ),

here xi, xj ∈ X , η, ξ ∈ X∗ and with η ⊔⊔ ∅ = ∅ ⊔⊔ η =

[3]. For any letter xi ∈ X , let x−1
i denote the R-linear left-

hift operator defined by x−1
i (η) = η′ when η = xiη′ and zero

therwise. It acts as a derivation on the shuffle product. The Lie
racket [x−1

i , x−1
j ] = x−1

i x−1
j − x−1

j x−1
i also acts as a derivation

n the shuffle product. Finally, the left-shift operator is defined
nductively for higher order shifts via (xiη)−1

= η−1x−1
i , where

∈ X∗. For p ∈ R⟨X⟩, let p−1
:=
∑

η∈X∗⟨p, η⟩η−1.
Given any c ∈ Rℓ⟨⟨X⟩⟩ one can associate a causal m-input, ℓ-

utput operator, Fc , in the following manner. Let p ≥ 1 and t0 < t1
e given. For a Lebesgue measurable function u : [t0, t1] → Rm,
efine ∥u∥p = max{∥ui∥p : 1 ≤ i ≤ m}, where ∥ui∥p is the
sual Lp-norm for a measurable real-valued function, ui, defined
n [t0, t1]. Let Lmp [t0, t1] denote the set of all measurable functions
efined on [t0, t1] having a finite ∥·∥p norm and Bm

p (R)[t0, t1] :=

u ∈ Lmp [t0, t1] : ∥u∥p ≤ R}. Assume C[t0, t1] is the subset
f continuous functions in Lm1 [t0, t1]. Define inductively for each
ord η = xiη̄ ∈ X∗ the map Eη : Lm1 [t0, t1] → C[t0, t1] by setting

∅[u] = 1 and letting

xiη̄[u](t, t0) =

∫ t

t0

ui(τ )Eη̄[u](τ , t0) dτ ,

here xi ∈ X , η̄ ∈ X∗, and u0 = 1. The Chen–Fliess series
orresponding to c ∈ Rℓ⟨⟨X⟩⟩ is

(t) = Fc[u](t) =

∑
η∈X∗

⟨c, η⟩ Eη[u](t, t0) (1)

3]. If there exist real numbers Kc,Mc > 0 such that

⟨c, η⟩| ≤ KcM |η|
c |η|!, ∀η ∈ X∗,

hen Fc constitutes a well defined mapping from Bm
p (R)[t0, t0 + T ]

nto Bℓq(S)[t0, t0 + T ] for sufficiently small R, T > 0 and some
> 0, where the numbers p, q ∈ [1,∞] are conjugate exponents,

.e., 1/p + 1/q = 1 [13]. (Here, |z| := maxi |zi| when z ∈ Rℓ.) The
et of all such locally convergent series is denoted by RℓLC ⟨⟨X⟩⟩, and
c is referred to as a Fliess operator.
Given Fliess operators Fc and Fd, where c, d ∈ RℓLC ⟨⟨X⟩⟩, the

arallel and product connections satisfy Fc + Fd = Fc+d and
cFd = Fc ⊔⊔ d, respectively [3]. When Fliess operators Fc and
d with c ∈ RℓLC ⟨⟨X⟩⟩ and d ∈ Rm

LC ⟨⟨X⟩⟩ are interconnected in
cascade fashion, the composite system Fc ◦ Fd has the Fliess
perator representation Fc◦d, where the composition product of c
nd d is given by

◦ d =

∑
η∈X∗

⟨c, η⟩ψd(η)(1)

14]. Here 1 denotes the monomial 1∅, and ψd is the continuous
in the ultrametric sense) algebra homomorphism from R⟨⟨X⟩⟩ to
he vector space endomorphisms on R⟨⟨X⟩⟩, End(R⟨⟨X⟩⟩),
niquely specified by ψd(xiη) = ψd(xi) ◦ ψd(η) with ψd(xi)(e) =

0(di ⊔⊔ e), i = 0, 1, . . . ,m for any e ∈ R⟨⟨X⟩⟩, and where
i is the ith component series of d (d0 := 1). By definition,
d(∅) is the identity map on R⟨⟨X⟩⟩. It is sometimes useful to
ssociate a unique alphabet with each operator. For example, let

= {x , x , . . . , x } and X̃ = {x̃ , x̃ , . . . , x̃ }. If c ∈ Rℓ̃ ⟨⟨X̃⟩⟩
0 1 m 0 1 m̃ LC

2

and d ∈ Rm̃
LC ⟨⟨X⟩⟩, then the cascade connection Fc ◦ Fd has the

generating series in Rℓ̃⟨⟨X⟩⟩

c ◦ d =

∑
η̃∈X̃∗

⟨c, η̃⟩ψd(η̃)(1), (2)

where now ψd(x̃i) : R⟨⟨X⟩⟩ → R⟨⟨X⟩⟩, e ↦→ x0(di ⊔⊔ e), i =

0, 1, . . . , m̃. In this case, the letters in X are identified with the
inputs of Fd, and the letters of X̃ are identified with the inputs of
Fc . There is a natural isomorphism between x0 and x̃0 since both
symbols correspond to the unity input (ũ0 = u0 = 1).

Example 2.1. Suppose X = {x0, x1} and X̃ = {x̃0, x̃1}. Let c = x̃1x̃1
and d = x1. The generating series for the series interconnected
system, c ◦ d = x̃1x̃1 ◦ x1, can be computed directly from (2) as

c ◦ d = ⟨c, x̃1x̃1⟩ψd(x̃1x̃1)(1) = ψd(x̃1) ◦ ψd(x̃1)(1)
= x0(x1 ⊔⊔ (x0(x1 ⊔⊔ 1))) = x0x1x0x1 + 2x0x0x1x1.

It will be shown later (Examples 3.1 and 4.2) that this same
result can be produced using formal realizations and formal
representations. □

3. Formal realizations

For any finite T > 0, u ∈ Lm1 [0, T ] and fixed t ∈ [0, T ], one can
associate the formal power series in R⟨⟨X⟩⟩

P[u](t) =

∑
η∈X∗

η Eη[u](t, 0),

which is usually called a Chen series. If, for example, ui(t) = αi ∈

R, i = 1, 2, . . . ,m on [0, T ] (α0 := 1) then P[u](0) = 1 and
d
dt

P[u](t) =

∑
η∈X∗

η
d
dt

Eη[u](t, 0)

=

∑
η∈X∗

m∑
i=0

ηui(t)Ex−1
i (η)[u](t, 0)

=

∑
η∈X∗

m∑
i=0

αixiη Eη[u](t, 0)

=

(
m∑
i=0

αixi

)
P[u](t).

t follows directly that

dn

dtn
P[u](0) =

(
m∑
i=0

αixi

)n

, n ≥ 0,

and, therefore

P[u](t) =

∞∑
n=0

(
m∑
i=0

αixi

)n
tn

n!
= exp

(
t

m∑
i=0

αi xi

)
.

n general, P[u] is the solution to the formal differential equation

d
dt

P[u] =

(
m∑
i=0

xiui

)
P[u], P[u](0) = 1, (3)

so that P[u] is always the exponential of some Lie element over
X . That is, if L(X) is the free Lie algebra generated by X , then
any d ∈ R⟨⟨X⟩⟩ is a Lie series if it can be written in the form
d =

∑
n≥1 pn, where each polynomial pn ∈ L(X) has support

residing in Xn. The set of all Lie series will be denoted by L̂(X).
An exponential Lie series is any series e = exp(d) :=

∑
n≥0 d

n/n!,
where d is a Lie series [15, Chapter 3]. In general, (3) has a
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olution of the form P[u](t) = exp(U(t)) with U(t) ∈ L̂(X), t ≥ 0
[15, Corollary 3.5]. As a consequence of the Baker–Campbell–
Hausdorff formula, which states that log(exp(xi) exp(xj)) is a Lie
series, the set of all exponential Lie series forms a group, G(X), un-
der the Cauchy product with unit 1 [16, Lemma 3] and
15, Corollary 3.3].

Following the approach of Kawski and Sussmann in [9,17],
(X) can be viewed as a formal Lie group with L̂(X) as its cor-

responding Lie algebra.1 A commutative algebra of real-valued
functions on G(X) is defined using the shuffle algebra on the R-
vector space RLC ⟨⟨X⟩⟩. Specifically, for any fixed c ∈ RLC ⟨⟨X⟩⟩

define fc : G(X) → R in terms of the scalar product as

z ↦→ fc(z) = ⟨c, z⟩ =

∑
η∈X∗

⟨c, η⟩⟨z, η⟩. (4)

Ree’s criterion states that p ∈ L(X) if and only if ⟨η ⊔⊔ ν, p⟩ = 0
for all nonempty words η, ν ∈ X∗ [Theorem 2.2][20]. This implies
that z is an exponential Lie series if and only if ⟨c ⊔⊔ d, z⟩ =

⟨c, z⟩⟨d, z⟩ for all c, d ∈ R⟨⟨X⟩⟩ [15, Theorem 3.2]. Therefore,

fc(z)fd(z) = ⟨c, z⟩⟨d, z⟩ = ⟨c ⊔⊔ d, z⟩ = fc ⊔⊔ d(z).

Convergence follows from the fact that the shuffle product is
known to preserve local convergence [21].2 Often fc(z) will be
abbreviated as c(z), which is more natural in the present context.
Analogous to standard Lie group theory, the formal tangent space
at the unit 1, T1G(X), is identified with L̂(X). Thus, for any fixed
p ∈ L̂(X), there is a corresponding tangent vector at 1 written
as the linear functional Vp(1) : RLC ⟨⟨X⟩⟩ → R, c ↦→ Vp(1)(c) :=

⟨c, p1⟩ and satisfying the Leibniz rule3

Vp(1)(c ⊔⊔ d) = ⟨c ⊔⊔ d, p1⟩
= ⟨p−1(c ⊔⊔ d), 1⟩
= ⟨p−1(c) ⊔⊔ d, 1⟩ + ⟨c ⊔⊔ p−1(d), 1⟩
= ⟨p−1(c), 1⟩⟨d, 1⟩ + ⟨c, 1⟩⟨p−1(d), 1⟩
= ⟨c, p1⟩⟨d, 1⟩ + ⟨c, 1⟩⟨d, p1⟩
= Vp(1)(c) d(1) + c(1)Vp(1)(d).

In turn, the tangent space at z ∈ G(X), denoted as TzG(X), is
defined via right translation to be the vector space of linear
functionals Vp(z) : RLC ⟨⟨X⟩⟩ → R, c ↦→ Vp(z)(c) := ⟨c, pz⟩,
p ∈ L̂(X) satisfying

Vp(z)(c ⊔⊔ d) = ⟨c ⊔⊔ d, pz⟩
= ⟨c, pz⟩⟨d, z⟩ + ⟨c, z⟩⟨d, pz⟩

= Vp(z)(c) d(z) + c(z)Vp(z)(d). (5)

From a Hopf algebraic viewpoint [22], elements z ∈ G(X) are
group-like, that is, for c, d ∈ RLC ⟨⟨X⟩⟩ one has ⟨c ⊔⊔ d, z⟩ =

⟨c ⊗ d,∆ ⊔⊔ z⟩ = ⟨c ⊗ d, z ⊗ z⟩ = ⟨c, z⟩⟨d, z⟩. Here ∆ ⊔⊔ is the
unshuffle coproduct dualizing the shuffle product. On the other
hand, elements p ∈ L̂(X) are primitive, i.e., ∆ ⊔⊔ p = p ⊗ 1 +

1⊗ p such that ⟨c ⊔⊔ d, p⟩ = ⟨c, p⟩⟨d, 1⟩ + ⟨c, 1⟩⟨d, p⟩. Moreover,
∆ ⊔⊔ pz = ∆ ⊔⊔ p∆ ⊔⊔ z yields ⟨c ⊔⊔ d, pz⟩ = ⟨c, pz⟩⟨d, z⟩ +

⟨c, z⟩⟨d, pz⟩. However, in this work a Hopf algebraic approach has
been suppressed in favor of a purely Lie theoretic presentation.

For any p ∈ L̂(X), the mapping

Vp : G(X) → TzG(X), z ↦→ Vp(z) := pz

1 Certain aspects of this framework can also be found in [18,19].
2 The authors of [9,17] defined their algebra on R⟨X⟩, which entirely avoids

he convergence issue. But here RLC ⟨⟨X⟩⟩ is more suitable for the applications
o follow.
3 Recall the definition of the scalar product in the previous section.
3

s a formal right-invariant vector field on G(X). Here X will denote
he set of all such right-invariant vector fields. In addition, the
ormal Lie derivative is defined to be the mapping

p : RLC ⟨⟨X⟩⟩ → RLC ⟨⟨X⟩⟩, c ↦→ Lpc := p−1c

so that

Lpc(z) = ⟨Lpc, z⟩ = ⟨p−1c, z⟩ = ⟨c, pz⟩ = Vp(z)(c),

and, in particular,

Lp(c ⊔⊔ d)(z) = ⟨Lp(c ⊔⊔ d), z⟩
= ⟨c ⊔⊔ d, pz⟩
= (Lpc(z)) d(z) + c(z)Lpd(z),

hich is just an alternative form of (5).
Finally, note that (1) can be written componentwise as yk(t) =

ck, z(t)⟩, k = 1, 2, . . . , ℓ, where ck ∈ RLC ⟨⟨X⟩⟩ denotes the kth
component of c ∈ RℓLC ⟨⟨X⟩⟩ and z(t) = P[u](t). This leads to the
following definition.

Definition 3.1. For any c ∈ RℓLC ⟨⟨X⟩⟩, the formal realization of
the Fliess operator y = Fc[u] is

ż =

m∑
i=0

xizui, z(0) = 1

yk = ⟨ck, z⟩, k = 1, 2, . . . , ℓ.

Observe that

Lxick(1) = x−1
i ck(1) = ⟨x−1

i ck, 1⟩ = ⟨ck, xi⟩

LxjLxick(1) = x−1
j x−1

i ck(1) = ⟨x−1
j x−1

i ck, 1⟩ = ⟨ck, xixj⟩,

so that the coefficients of ck can always be written in terms of
formal Lie derivatives as

⟨ck, η⟩ = ⟨ck, xi1 · · · xik⟩

= Lxik · · · Lxi1 ck(1) =: Lηck(1). (6)

The notion of a formal realization in Definition 3.1 is now
extended by taking a finite number of direct products of G(X),
i.e., Gn(X) := G(X) × G(X) × · · · × G(X), where G(X) appears n
times. For any ĉ = c1 ⊗ · · · ⊗ cn ∈ R⊗n

LC ⟨⟨X⟩⟩ define

fĉ : Gn(X) → R
z ↦→ (c1 ⊗ · · · ⊗ cn)(z1, . . . , zn) = ⟨c1, z1⟩ · · · ⟨cn, zn⟩.

A commutative algebra on the R-vector space of all such real-
valued functions on Gn(X) is given by defining

fĉ(z)fd̂(z) = [⟨c1, z1⟩ · · · ⟨cn, zn⟩][⟨d1, z1⟩ · · · ⟨dn, zn⟩]
= ⟨c1 ⊔⊔ d1, z1⟩ · · · ⟨cn ⊔⊔ dn, zn⟩

=: (ĉ ⊔⊔ d̂)(z1, z2, . . . , zn)
= fĉ ⊔⊔ d̂(z).

As earlier, fĉ(z) will often be abbreviated as ĉ(z). The Lie al-
gebra of Gn(X), denoted by L̂n(X), is similarly defined as the
n-fold direct sum of the Lie algebra L̂(X) for G(X) with itself.
The formal tangent space at the unit 1n := (1, . . . , 1), T1nGn(X),
is identified with L̂n(X) via the one-parameter subgroup H(t) :=

(exp(tp1), exp(tp2), . . . , exp(tpn)), p = (p1, p2, . . . , pn) ∈ L̂n(X) so
that Ḣ(0) = p. For any fixed p ∈ L̂n(X), there is a corresponding
tangent vector at 1n represented by the linear functional

Vp(1n) : R⊗n
LC ⟨⟨X⟩⟩ → R, ĉ ↦→

d
(ĉ ◦ H(t))|t=0.
dt
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p(1n)(ĉ) =
d
dt

(
⟨c1, exp(tp1)⟩ · · · ⟨ci, exp(tpi)⟩ · · ·

⟨cn, exp(tpn)⟩
)
|t=0

=

n∑
i=1

⟨c1, 1⟩ · · · ⟨ci, pi1⟩ · · · ⟨cn, 1⟩

atisfies the Leibniz rule:

p(1n)(ĉ ⊔⊔ d̂)

=

n∑
i=1

⟨c1 ⊔⊔ d1, 1⟩ · · · ⟨ci ⊔⊔ di, pi1⟩ · · · ⟨cn ⊔⊔ dn, 1⟩

=

n∑
i=1

⟨c1 ⊔⊔ d1, 1⟩ · · · ⟨p−1
i (ci ⊔⊔ di), 1⟩ · · · ⟨cn ⊔⊔ dn, 1⟩

=

n∑
i=1

⟨c1 ⊔⊔ d1, 1⟩ · · · ⟨p−1
i (ci) ⊔⊔ di, 1⟩ · · · ⟨cn ⊔⊔ dn, 1⟩+

n∑
i=1

⟨c1 ⊔⊔ d1, 1⟩ · · · ⟨ci ⊔⊔ p−1
i (di), 1⟩ · · · ⟨cn ⊔⊔ dn, 1⟩

= Vp(1n)(ĉ)d̂(1n) + ĉ(1n)Vp(1n)(d̂).

The tangent space at z ∈ Gn(X), denoted as TzGn(X), is defined via
right translation to be the vector space of linear functionals

Vp(z) : R⊗n
LC ⟨⟨X⟩⟩ → R

ĉ ↦→

n∑
i=1

⟨c1, z1⟩ · · · ⟨ci, pizi⟩ · · · ⟨cn, zn⟩

so as to satisfy

Vp(z)(ĉ ⊔⊔ d̂) = Vp(z)(ĉ) d̂(z) + ĉ(z)Vp(z)(d̂).

For any p ∈ L̂n(X), the mapping

Vp : Gn(X) → TzGn(X), z ↦→ (p1z1, . . . , pnzn)

is a formal right-invariant vector field on Gn(X). Here X n will
denote the set of all such right-invariant vector fields. In this
context, the formal Lie derivative is defined to be the mapping

Lp : R⊗n
LC ⟨⟨X⟩⟩ → R⊗n

LC ⟨⟨X⟩⟩

c1 ⊗ · · · ⊗ cn ↦→

n∑
i=1

c1 ⊗ · · · ⊗ p−1
i (ci) ⊗ · · · ⊗ cn

so that

Lpĉ(z) =

(
n∑

i=1

c1 ⊗ · · · ⊗ p−1
i (ci) ⊗ · · · ⊗ cn

)
(z1, . . . , zn)

=

n∑
i=1

⟨c1, z1⟩ · · · ⟨ci, pizi⟩ · · · ⟨cn, zn⟩

= Vp(z)(ĉ), (7)

nd directly

p(ĉ ⊔⊔ d̂)(z) = (Lpĉ(z)) d̂(z) + ĉ(z)Lpd̂(z).

In this generalized setting, a set of n systems with state z =

z1, z2, . . . , zn) evolves on the group Gn(X) according to the formal
tate equations

˙j =

m∑
i=0

xizjuij, zj(0) = 1,

here uij ∈ Lp[0, T ] and u0j = 1 for i = 1, 2, . . . ,m, j =

, 2, . . . , n. Define ℓ outputs y = ĉ (z), where ĉ ∈ R⊗n
⟨⟨X⟩⟩,
k k k LC

4

= 1, 2, . . . , ℓ. Therefore, the corresponding input–output map
↦→ y takes an m×n matrix of inputs to ℓ outputs. Consider now

he situation where a network is formed by allowing each system
nput to be interconnected to some function of other systems’
utputs and a new external input vij to yield a new input–output
ap v ↦→ y, for example, uij = d̂ij(z) + vij, where d̂ij ∈ R⊗n

LC ⟨⟨X⟩⟩.
n this case, the state equations for the interconnected system
ecome

˙j = x0zj +
m∑
i=1

xid̂ij(z)zj + xizjvij, zj(0) = 1.

ote, in particular, the appearance of state dependent vector
ields pjzj with pj(t) =

∑m
i=1 xid̂ij(z(t)) ∈ L̂(X). The solution to

żj = pjzj, zj(0) = 1 has the form zj(t) = exp(Uj(t)), where
j(t) ∈ L̂(X). The corresponding tangent vector at z(t) is

p(t)(z(t)) : R⊗n
LC ⟨⟨X⟩⟩ → R

ĉ ↦→
d
dt

(ĉ ◦ z(t))

=

n∑
j=1

⟨c1, z1(t)⟩ · · · ⟨cj, pj(t)zj(t)⟩ · · · ⟨cn, zn(t)⟩

= Lp(t)ĉ(z(t)). (8)

Substituting pj(t) =
∑m

i=1 xid̂ij(z(t)) on the right-hand side above,
where d̂ij(z(t)) = ⟨d(1)ij , z1(t)⟩ · · · ⟨d(n)ij , zn(t)⟩, gives

Lp(t)ĉ(z(t)) =

n∑
j=1

⟨c1, z1(t)⟩ · · · ⟨cj, pj(t)zj(t)⟩ · · · ⟨cn, zn(t)⟩

=

n∑
j=1

⟨c1, z1(t)⟩ · · ·

m∑
i=1

d̂ij(z(t))⟨cj, xizj(t)⟩ · · · ⟨cn, zn(t)⟩

=

m∑
i=1

n∑
j=1

⟨c1 ⊔⊔ d(1)ij , z1(t)⟩ · · · ⟨x−1
i (cj ⊔⊔ d(j)ij ), zj(t)⟩

· · · ⟨cn ⊔⊔ d(n)ij , zn(t)⟩

=: ĉ ′(z(t)). (9)

In this way, a second Lie derivative can now be computed di-
rectly using (8), thus circumventing the difficult task of explicitly
composing time-varying vector fields. Henceforth, all such state
dependent Lie series will be written as p(z). No other type of
state dependent series will appear in this paper. In this context,
a generalization of Definition 3.1 is presented.

Definition 3.2. Let Vi ∈ X n, i = 0, 1, . . . ,m with

Vi : Gn(X) → TzGn(X)
z = (z1, . . . , zn) ↦→ Vi(z) = (Vi1(z)z1, . . . , Vin(z)zn),

where Vij(z(t)) ∈ L̂(X). The jth component of the corresponding
state equation on Gn(X) is

żj =

m∑
i=0

Vij(z)zjuij, zj(0) = zj0. (10)

Given ĉk ∈ R⊗n
LC ⟨⟨X⟩⟩, k = 1, 2, . . . , ℓ, the kth output equation is

defined to be

yk = ĉk(z). (11)

Collectively, (V , z0, ĉ) is a formal realization on Gn(X) of the
formal input–output map u ↦→ y.

For convenience the integer n will be referred to here as the
dimension of the realization, though this is a misnomer as the
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nderlying group G(X) is not finite dimensional, therefore neither
s the state z. The following example illustrates how the concept
aturally arises when Chen–Fliess series are composed.

xample 3.1. Reconsider the systems y2 = Fc[u2] and y1 =

d[u1] in Example 2.1 using the same alphabet X = {x0, x1} for
both series. Each has a formal realization of the form given in
Definition 3.1. Setting u2 = y1 so that y2 = Fc ◦ Fd[u1] yields a
ormal realization of dimension two:

ż1 = x0z1 + x1z1u1, z1(0) = 1
ż2 = (x0 + x1⟨d, z1⟩)z2, z2(0) = 1

2 = ⟨1, z1⟩⟨c, z2⟩.

Note that ⟨1, z1⟩ = 1 and u11 := u1.) Therefore,

0(z) =

[
x0z1

(x0 + x1⟨d, z1⟩)z2

]
, V1(z) =

[
x1z1
0

]
,

and ĉ = 1 ⊗ c. Observe that the composition Fc ◦ Fd = Fc◦d
introduces in the second component of the tangent vector V0(z)
a z1 dependence. The aim is to express c ◦ d directly in terms
of (V , 12, ĉ). This leads to the notion of a formal representation of
a series as presented in the next section. It can be viewed as a
generalization of (6). □

4. Formal representations

The following definition is a formal analog of a differential
representation as appears, for example, in [10,11].

Definition 4.1. A formal representation of a series d ∈ R⟨⟨X⟩⟩ is
any triple (µ, z0, ĉ), where

µ : X∗
→ X n, xi ↦→ Vi

defines a monoid homomorphism, z0 ∈ Gn(X), and ĉ ∈ R⊗n
LC ⟨⟨X⟩⟩,

so that for any word η = xikxik−1 · · · xi1 ∈ X∗

⟨d, η⟩ = Lµ(η)ĉ(z0) := Lµ(xi1 )Lµ(xi2 ) · · · Lµ(xik )ĉ(z0). (12)

By definition, ⟨d,∅⟩ = L∅ĉ(z0) := ĉ(z0). The integer n ≥ 1 will be
called the dimension of the representation.

Example 4.1. For the trivial case where n = 1, µ(xi) = xi, z0 = 1,
and d = ĉ = c it is immediate that (12) reduces to (6) with
ℓ = 1. □

The following lemma provides a sufficient condition under
which formal representations are always well defined.

Lemma 4.1. Given (µ, z0, ĉ), if for each xi ∈ X [µ(xi)]j(z) := Vij(z)zj
with Vij(z) being some Lie polynomial in L(X), then there exists a
well defined d ∈ R⟨⟨X⟩⟩ satisfying (12).

Proof. If (µ, z0, ĉ) is a formal representation of d then necessarily
for any η = xi1 · · · xik ∈ X∗

⟨d, xik · · · xi1⟩ = Lµ(xi1 )Lµ(xi2 ) · · · Lµ(xik )ĉ(z0),

where each Vij(z) is assumed to be a Lie polynomial. Therefore,
each Lie derivative can be written as a polynomial in functions of
the form ⟨e, pizi⟩ with pi ∈ L(X), i = 1, 2, . . . , n, and e ∈ RLC ⟨⟨X⟩⟩,
implying that d is well defined, in fact, locally finite [23]. ■

Example 4.2. Continuing Examples 2.1 and 3.1, the claim is that
c ◦ d has a formal representation (µ, 12, ĉ), where µ is defined in
terms of the vector fields V and V in Example 3.1 and ĉ = 1⊗c .
0 1

5

Note that both vector fields satisfy the condition in Lemma 4.1.
As an example, it is verified that

⟨x20x
2
1, c ◦ d⟩ = Lµ(x20x21)ĉ(1) = LV1LV1LV0LV0 ĉ(1) = 2.

First apply (8) (suppressing all t dependence)

LV0 ĉ(z) = ⟨c, V02(z)z2⟩

= ⟨x21, (x0 + x1⟨x1, z1⟩)z2⟩.

Regarding the z1 dependence of V02(z), use (9) to get

LV0 ĉ(z) = ⟨x1, z1⟩⟨x1, z2⟩ = (x1 ⊗ x1)(z1, z2) = ĉ ′(z).

Applying (8) and (9) a second time gives:

LV0LV0 ĉ(z) = LV0 ĉ
′(z)

= ⟨x1, V01(z)z1⟩⟨x1, z2⟩ + ⟨x1, z1⟩⟨x1, V02(z)z2⟩
= ⟨x1, x0z1⟩⟨x1, z2⟩ + ⟨x1, z1⟩⟨x1, (x0 + x1⟨x1, z1⟩)z2⟩

= ⟨x1, z1⟩2⟨1, z2⟩
= ⟨x1 ⊔⊔ x1, z1⟩⟨1, z2⟩
= (x1 ⊔⊔ x1 ⊗ 1)(z1, z2)
= (2x21 ⊗ 1)(z1, z2) = ĉ ′′(z).

Continuing in this fashion,

LV1LV0LV0 ĉ(z) = LV1 ĉ
′′(z) = ⟨2x1, z1⟩⟨1, z2⟩

= (2x1 ⊗ 1)(z1, z2) = ĉ ′′′(z)

and

LV1LV1LV0LV0 ĉ(z) = LV1 ĉ
′′′(z) = ⟨21, z1⟩⟨1, z2⟩.

Therefore, ⟨x20x
2
1, c ◦ d⟩ = LV1LV1LV0LV0 ĉ(1) = 2 as anticipated. □

The proposition in the previous example is established in the
general case by the following theorem.

Theorem 4.1. If d ∈ R⟨⟨X⟩⟩ has a well defined formal repre-
sentation (µ, z0, ĉk), then the input–output map u ↦→ yk of the
corresponding formal realization (10)–(11) has a Chen–Fliess series
representation with generating series d.

Proof. Without loss of generality, assume there is a single output
so that the subscripts on ĉk and yk can be dropped. Likewise,
assume n = 1 so the index on the state can be omitted. Since
ż(t) is a tangent vector at z(t) ∈ G(X) for any t ≥ 0, it follows
directly from (7) that

ż(t)(ĉ) =

m∑
i=0

Vi(z(t))(ĉ)ui(t)

=

m∑
i=0

LVi ĉ(z(t))ui(t).

Integrating both sides on [0, t] and applying (9) gives

ĉ(z(t)) = ĉ(z0) +

m∑
i=0

∫ t

0
LVi ĉ(z(τ ))ui(τ ) dτ

= ĉ(z0) +

m∑
i=0

∫ t

0
ĉ ′

i (z(τ ))ui(τ ) dτ , (13)

where LVi ĉ(z(τ )) = ĉ ′

i (z(τ )) = ⟨ĉ ′

i , z(τ )⟩. Substituting ĉ ′

i for ĉ
above yields

ĉ ′

i (z(t)) = ĉ ′

i (z0) +

m∑∫ t

ĉ ′′

i (z(τ ))ui(τ ) dτ . (14)

i=0 0
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oting that y(t) = ĉ(z(t)) and substituting (14) into (13) gives

(t) = ĉ(z0) +

m∑
i=0

LVi ĉ(z0)
∫ t

0
ui(τ ) dτ+

m∑
i1,i2=0

∫ t

0

∫ τ1

0
LVi1 ĉi2 (z(τ2))ui2 (τ2) dτ2 ui1 (τ1) dτ1.

ontinuing in this way yields

(t) =

∑
η∈X∗

Lµ(η)ĉ(z0)Eη[u](t)

=

∑
η∈X∗

⟨d, η⟩Eη[u](t),

hich proves the theorem. ■

5. Networks of Chen–Fliess series

In this section specific types of networks of Chen–Fliess se-
ries are considered for which both Lemma 4.1 and Theorem 4.1
apply. To avoid a barrage of indices, the component systems are
assumed to be single-input, single-output. There is, however, no
technical reason for avoiding the multivariable case. A variety of
different configurations are possible. The following is perhaps the
simplest.

Definition 5.1. A set of m single-input, single-output Chen–Fliess
series mapping ui ↦→ yi with generating series ci ∈ RLC ⟨⟨Xi⟩⟩,
where Xi = {x0, xi}, and weighting matrix M ∈ Rm×m is said to be
additively interconnected if ui = vi+

∑m
j=1 Mijyj, i = 1, 2, . . . ,m.

In the following theorem, let ei ∈ Rm
LC ⟨⟨X⟩⟩ denote the series

with the ith component series being the monomial 1, and the
remaining components are the series having all coefficients equal
to zero. In addition, given cj ∈ RLC ⟨⟨X⟩⟩, define ĉj = 1 ⊗ · · · ⊗

1 ⊗ cj ⊗ 1 · · · ⊗ 1 ∈ R⊗m
LC ⟨⟨X⟩⟩, where cj appears in the jth

osition.

heorem 5.1. The input–output map v ↦→ y of any additive inter-
onnection of m single-input, single-output Chen–Fliess series with
enerating series ci ∈ RLC ⟨⟨Xi⟩⟩ has a well defined generating series
∈ Rm

⟨⟨X⟩⟩, where dj has the formal representation (µ, 1m, ĉj) with
defined in terms of the vector fields

0(z) =

⎡⎢⎢⎣
x0z1
x0z2
...

x0zm

⎤⎥⎥⎦+ diag(x1z1, . . . , xmzm)M

⎡⎢⎢⎣
⟨c1, z1⟩
⟨c2, z2⟩
...

⟨cm, zm⟩

⎤⎥⎥⎦ ,
nd Vi(z) = xiziei for i = 1, 2, . . . ,m.

roof. It is straightforward to show that the set of interconnected
hen–Fliess series constitutes an m input, m output system with
ormal realization given by the vector fields as shown. Therefore,
he claim follows directly from Lemma 4.1 and Theorem 4.1
ith µ(xi) = Vi, i = 0, 1, . . . ,m, z0 = 1m, and ĉj ∈ R⊗m

LC ⟨⟨X⟩⟩. ■

xample 5.1. A single system additively interconnected with
tself as shown in Fig. 1 would correspond to propositional output
eedback, i.e., u = v + My (dropping all subscripts). Thus, the
orresponding representation is given by

0(z) = (x0 + x1M⟨c, z⟩)z, V1(z) = x1z,

0 = 11 = 1, and ĉ = c . For a unity feedback system, i.e., M =

, applying (12) gives the following generating series for the
losed-loop system:
⟨d, 1⟩ = c(1) = ⟨c, 1⟩

6

Fig. 1. Single system additively interconnected.

⟨d, x1⟩ = LV1c(1) = ⟨c, x1⟩
⟨d, x0⟩ = LV0c(1) = ⟨c, x0⟩ + ⟨c, x1⟩⟨c, 1⟩
⟨d, x21⟩ = LV1LV1c(1) = ⟨c, x21⟩

⟨d, x0x1⟩ = LV1LV0c(1) = ⟨c, x0x1⟩ + ⟨c, x1⟩⟨c, x1⟩+

⟨c, x21⟩⟨c, 1⟩
⟨d, x1x0⟩ = LV0LV1c(1) = ⟨c, x1x0⟩ + ⟨c, x21⟩⟨c, 1⟩

⟨d, x20⟩ = LV0LV0c(1) = ⟨c, x20⟩ + ⟨c, x1⟩⟨c, x0⟩+
⟨c, x1x0⟩⟨c, 1⟩ + ⟨c, x0x1⟩⟨c, 1⟩+
⟨c, x1⟩⟨c, x1⟩⟨c, 1⟩ + ⟨c, x21⟩⟨c, 1⟩⟨c, 1⟩

...

These expressions are consistent with those in [7], where d =

S(−c), and S is the antipode of the output feedback Hopf
algebra. □

Example 5.2. Consider two additively interconnected systems as
shown in Fig. 2, where Mij = 0 when i = j. Setting Mij = 1 for
i ̸= j gives a representation of dj specified by

V0(z) =

[
(x0 + x1⟨c2, z2⟩)z1
(x0 + x2⟨c1, z1⟩)z2

]
, Vi(z) = xiziei, i = 1, 2,

z0 = 12, and ĉj. For example, the generating series d1 for the
mapping v ↦→ y1 is:

⟨d1, 1⟩ = ĉ1(12) = ⟨c1, 1⟩
⟨d1, x1⟩ = LV1 ĉ1(12) = ⟨c1, x1⟩
⟨d1, x2⟩ = LV2 ĉ1(12) = 0
⟨d1, x0⟩ = LV0 ĉ1(12) = ⟨c1, x0⟩ + ⟨c1, x1⟩⟨c2, 1⟩
⟨d1, x21⟩ = LV1LV1 ĉ1(12) = ⟨c1, x21⟩

⟨d1, x1x2⟩ = LV2LV1 ĉ1(12) = 0
⟨d1, x2x1⟩ = LV1LV2 ĉ1(12) = 0

⟨d1, x22⟩ = LV2LV2 ĉ1(12) = 0

⟨d1, x1x0⟩ = LV0LV1 ĉ1(12) = ⟨c1, x1x0⟩ + ⟨c1, x21⟩⟨c2, 1⟩
⟨d1, x0x1⟩ = LV1LV0 ĉ1(12) = ⟨c1, x0x1⟩ + ⟨c1, x21⟩⟨c2, 1⟩

...

and similarly for d2 corresponding to the map v ↦→ y2. Unlike the
first example, for networks with more than one system, there is
at present no known alternative algebraic method against which
to compare all of these results. Coefficient ⟨d1, η⟩, where η ∈ X∗

j
and j = 1, 2 can be determined using the feedback product as
described in [7], but mixed coefficients like ⟨d1, x1x2⟩ cannot. □

Example 5.3. Consider three additively interconnected systems
as shown in Fig. 3, where againMij = 0 when i = j, and the output
branches have been suppressed. For the case where Mij = 1 when
i ̸= j, a representation of dj is given by

V0(z) =

[(x0 + x1⟨c2, z2⟩ + x1⟨c3, z3⟩)z1
(x0 + x2⟨c1, z1⟩ + x2⟨c3, z3⟩)z2
(x0 + x3⟨c1, z1⟩ + x3⟨c2, z2⟩)z3

]

Vi(z) = xiziei, i = 1, 2, 3,
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Fig. 2. Two systems additively interconnected.

Fig. 3. Three systems additively interconnected.

0 = 13, and ĉj. For example, the generating series d1 for the
apping v ↦→ y1 is:

⟨d1, 1⟩ = ĉ1(13) = ⟨c1, 1⟩
⟨d1, x1⟩ = LV1 ĉ1(13) = ⟨c1, x1⟩
⟨d1, x2⟩ = LV2 ĉ1(13) = 0
⟨d1, x3⟩ = LV3 ĉ1(13) = 0
⟨d1, x0⟩ = LV0 ĉ1(13) = ⟨c1, x0⟩ + ⟨c1, x1⟩⟨c2, 1⟩+

⟨c1, x1⟩⟨c3, 1⟩
⟨d1, x21⟩ = LV1LV1 ĉ1(13) = ⟨c1, x21⟩

⟨d1, x1x2⟩ = LV2LV1 ĉ1(13) = 0
⟨d1, x1x3⟩ = LV3LV1 ĉ1(13) = 0

⟨d1, x1x0⟩ = LV0LV1 ĉ1(13) = ⟨c1, x1x0⟩ + ⟨c1, x21⟩⟨c2, 1⟩+
⟨c1, x21⟩⟨c3, 1⟩

⟨d1, x0x1⟩ = LV1LV0 ĉ1(13) = ⟨c1, x0x1⟩ + ⟨c1, x21⟩⟨c2, 1⟩+
⟨c1, x21⟩⟨c3, 1⟩

...

and similarly for di corresponding to the map v ↦→ yi, i = 2, 3. □

Free from the bonds of linearity, other types of interconnec-
tions are also possible as considered next.

Definition 5.2. A set of m single-input, single-output Chen–Fliess
series mapping ui ↦→ yi with generating series ci ∈ RLC ⟨⟨Xi⟩⟩,
where Xi = {x0, xi}, and weighting matrix M ∈ Rm×m is said
to be multiplicatively interconnected if ui = vi

∏m
j=1 Mijyj, i =

1, 2, . . . ,m.

Theorem 5.2. Every input–output map v ↦→ y of any multiplicative
interconnection of m single-input, single-output Chen–Fliess series
with generating series ci ∈ RLC ⟨⟨Xi⟩⟩ has a well defined generat-
ing series d ∈ Rm

⟨⟨X⟩⟩, where dj has the formal representation
(µ, 1m, ĉj) with µ defined in terms of the vector fields

V0(z) =

⎡⎢⎢⎣
x0z1
x0z2
...

x0zm

⎤⎥⎥⎦ , Vi(z) = xi
m∏
j=1

Mij⟨cj, zj⟩ziei.

Proof. The proof is perfectly analogous to that of Theorem 5.1. ■
7

Example 5.4. Reconsider the single system network in
Example 5.1 except now multiplicatively interconnected, that is,
u = vMy (again dropping all subscripts). The corresponding
representation is given by

V0(z) = x0z, V1(z) = x1M⟨c, z⟩z,

z0 = 1, and ĉ = c. Setting M = 1 and applying (12) gives the
following generating series for the closed-loop system:

⟨d, 1⟩ = c(1) = ⟨c, 1⟩

⟨d, x1⟩ = LV1c(1) = ⟨c, x1⟩⟨c, 1⟩

⟨d, x0⟩ = LV0c(1) = ⟨c, x0⟩

⟨d, x21⟩ = LV1LV1c(1) = ⟨c, x21⟩⟨c, 1⟩⟨c, 1⟩+

⟨c, x1⟩⟨c, x1⟩⟨c, 1⟩

⟨d, x0x1⟩ = LV1LV0c(1) = ⟨c, x0x1⟩⟨c, 1⟩

⟨d, x1x0⟩ = LV0LV1c(1) = ⟨c, x1x0⟩⟨c, 1⟩ + ⟨c, x1⟩⟨c, x0⟩

⟨d, x31⟩ = LV1LV1LV1c(1) = ⟨c, x31⟩⟨c, 1⟩⟨c, 1⟩⟨c, 1⟩+

4⟨c, x21⟩⟨c, x1⟩⟨c, 1⟩⟨c, 1⟩+

⟨c, x1⟩⟨c, x1⟩⟨c, x1⟩⟨c, 1⟩

⟨d, x20⟩ = LV0LV0c(1) = ⟨c, x20⟩

...

Consider the particular case where c =
∑

k≥0 k! x
k
1. Applying the

formulas above gives the closed-loop generating series

d = 1 + x1 + 3x21 + 15x31 + · · · ,

which is consistent with what was computed in [8, Example 4.10]
using the antipode of the output affine feedback Hopf algebra. □

6. Conclusions and future work

Using the concept of a formal realization and a formal rep-
resentation, it was shown that any additive or multiplicative
interconnection of a set of convergent single-input, single-output
Chen–Fliess series always has a Chen–Fliess series representation
whose generating series can be computed explicitly in terms of
iterated formal Lie derivatives. This of course does not exhaust
the list of possible network topologies for which this method
is suitable. For example, there can be mixtures of additive and
multiplicative nodes in a given network. There is also no technical
barrier to applying the methodology in the full multivariable set-
ting. Finally, the issue of convergence of the network’s generating
series needs to be addressed in every case.
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