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Statistical Models of Overdispersed Spatial Defects
for Predicting the Yield of Integrated Circuits

Tao Yuan', Suk Joo Bae

Abstract—Defects generated in semiconductor manufacturing
processes have serious effects on the yield of integrated circuits
(ICs). Accurate modeling of the defect counts on IC chips is crucial
for predicting the yield. The conventional Poisson yield model tends
to underestimate the true yield by ignoring overdispersed patterns
of defects on the wafer. This article uses various models based on the
generalized Poisson (GP) distribution and/or HZ distributions to
explore the overdispersed defect counts on semiconductor wafers.
Real wafer map data are used to compare the performance of
both nonregression and regression modeling approaches in terms
of the log-likelihood, AIC, and relative bias for yield estimation.
Analytical results indicate that the GP distribution is a competitive
alternative to the negative binomial (NB) distribution for modeling
defect counts on IC chips because the GP distribution can model
overdispersion, underdispersion, or no dispersion. In particular,
HZ models based on the NB and GP distributions show good
potential for predicting the yield of IC chips on wafers.

Index Terms—Clustered defects, generalized Poisson (GP)
distribution, hurdle-at-zero (HZ) models, maximum likelihood
estimation, prediction of IC yield, zero-inflated models.

NOMENCLATURE

Acronyms

AC Adjacency clustering.

AlIC Akaike information criterion.

GP Generalized Poisson.

HZGP Hurdle-at-zero generalized Poisson.
HZNB Hurdle-at-zero negative binomial.
HZP  Hurdle-at-zero Poisson.

IC Integrated circuit.

MLE  Maximum likelihood estimate(or).
MRF  Markov random field.

NB Negative binomial.

ZIGP Zero-inflated generalized Poisson.
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ZINB  Zero-inflated negative binomial.

ZIP Zero-inflated Poisson.

Notation

a NB dispersion parameter.

f(z) Spatial covariates for .

g(z) Spatial covariates for 7.

h(z)  Spatial covariates for w.

L Likelihood function.

£ Log-likelihood function.

n Number of chips on a wafer.

g Number of defect-free chips on a wafer.
np Number of chips with defects on a wafer.
(r,o)  Polar coordinates of a chip’s center.

So Zero count set.

Sp Positive count set.

X Random defect count.

X Observed defect count data on a wafer.
y Vector of covariates.

Y Yield.

Z Location of a chip center on a wafer.
B3,v,n Vectors of regression coefficients.

0 Parameter vector of a model.

i Mean parameter.

s Probability of extra zeros.

P Variance—covariance matrix.

¢ GP dispersion parameter.

w Probability of positive counts.

I. INTRODUCTION

EMICONDUCTOR manufacturing is acomplex multistage
S process that requires monitoring various interrelated critical
parameters. In today’s rapidly changing technological environ-
ment, semiconductor manufacturers strive to secure defect-free
products in a fairly short time period by adopting sophisti-
cated manufacturing technologies. However, design geometries
are also shrinking continuously as manufacturing technologies
evolve, resulting in a reactive approach of eliminating defect
sources that is prohibitively slow. Defects generated in IC man-
ufacturing processes seriously lower the manufacturing yield
and can sometimes lead to reliability issues. The yield has
been widely used as a performance metric in semiconductor
manufacturing. To survive intense competition among leading
semiconductor manufacturers, it has become a challenging task
to increase the yield for new products via quick response to
yield excursions at early stages of IC production. Accurate
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modeling of the defect distributions on IC chips is crucial for
yield prediction and improvement, production cost estimation,
and reliability enhancement [1].

To briefly review existing yield models in semiconductor
manufacturing, the classical yield model adopts a Poisson dis-
tribution, assuming that the defects are uniformly distributed on
a wafer. The random number of defects (i.e., the defect count)
on a chip, X, follows the Poisson distribution with the following
probability mass function (pmf):

—u,,T

€
P(X =) = ——,

r=0,1,2,... (1)

where p1(>0) is the mean parameter. Note that the Poisson vari-
ance is also equal to ;2. However, it has been widely reported that
the defects generated during IC fabrication tend to occur close to
one another on a semiconductor wafer; thus, the observed defect
count data typically exhibit overdispersion with extra zeros.
The Poisson distribution tends to underestimate the probability
of zero. To describe the overdispersed defect counts, various
compound Poisson yield models have been introduced, e.g., the
NB yield model, Murphy’s yield model, and Seed’s yield model,
which are mixtures of Poisson distributions [2]. For example, the
widely used NB distribution is a Poisson—-Gamma mixture that
computes the probability that an IC chip contains = defects as

F(S;‘(—;j—)l) (pj—a)x (;L-T—a)a
forz=0,1,2

, 1,2, ..., where p(>0) and a(>0) are the mean pa-
rameter and dispersion parameter (or the so-called clustering
coefficient), respectively. The variance of the NB distribution is
Var(X) = p + p% /a. Alarger a value implies less dispersion in
the defect count data and less severe clustering of defects. When
a approaches infinity, the NB distribution converges to the Pois-
son distribution, indicating homogeneously distributed defects
with no clustering. Tyagi and Bayoumi [3] took a different ap-
proach toward the clustering effect and introduced a generalized
double-Poisson distribution to model the count of clustered de-
fects. The basic assumptions of this generalized double-Poisson
distribution yield model are that cluster centers are homoge-
neously distributed, and defects within a cluster are randomly
distributed. Therefore, the number of clusters and the number of
defects within a cluster are assumed to be two independent Pois-
son random variables. The authors demonstrated the capabilities
of the generalized double-Poisson distribution as a yield model
in IC redundancy designs. Under no parametric assumption
for the yield model, Tong and Chao [4] employed a general
regression neural network to predict wafer yield for ICs with
clustered defects. Recently, Hochbaum and Liu [5] proposed a
yield prediction model called “AC model,” which is a form of the
MRF minimum energy model. The AC model adopted the MRF
to identify defect patterns that enable the diagnosis of failure
causes in the semiconductor manufacturing process.

When the overdispersion in a count dataset is mainly caused
by excess zeros, zero-inflated distributions (e.g., ZIP, ZINB,
and ZIGP) have been frequently adopted to model the extra
dispersion due to excess zeros. A zero-inflated distribution is
a mixture of the Bernoulli distribution and a count distribution

P(X = zlu,a) =

(e.g., the Poisson or NB distribution). For example, the ZIP
distribution has the following pmf:

P(X=0|mr,pu)= 7+ (1—m)e*

.
cH =12

g iy e

PX =z|mp)= (1—m)

! 7

where 0 < m < 1 is the probability of extra zeros. Including the
spatial locations of the chips on a semiconductor wafer as covari-
ates, Bae et al. [1] proposed Poisson regression, NB regression,
and ZIP regression yield models to reflect spatially nonhomo-
geneous defect patterns. Later, Yuan ef al. [6] extended those
regression modeling approaches under a hierarchical Bayesian
framework. Additionally, they proposed a hierarchical Bayesian
ZINB regression yield model, showing that the Bayesian
ZINB regression yield model provides the most accurate yield
estimation among the four regression yield models.

In this article, we attempt to apply several models based
on the GP distribution and/or hurdle-at-zero (HZ) distributions
to analyze the overdispersed defect counts on semiconductor
wafers. The GP distribution is also a mixture of Poisson dis-
tributions, like the NB distribution. The GP/ZIGP distributions
and various HZ distributions (e.g., the HZP, and HZNB) have
been widely used in various fields to analyze discrete count data
with overdispersion and/or extra zeros. For example, Joe and
Zhu [7] fitted the NB, GP, ZINB, and ZIGP distributions to
overdispersed spinal tumor count data. Their results indicate
that NB fits the dataset better than GP, but ZIGP is the best
among the four distributions. Yip and Yau [8] applied the ZIP,
ZINB, ZIGP, and zero-inflated double-Poisson distributions to
model automobile insurance claim data, which include a lot
of zeros. Srivastava and Chen [9] applied the GP distribution
to deep sequencing of ribonucleic acids and showed that the
GP distribution outperforms the Poisson distribution in terms
of identifying differentially expressed genes. Gupta ef al. [10]
applied the ZIGP distribution to analyze overdispersed fetal
movement data and death count data. Angers and Biswas [11]
used the ZIGP distribution to fit fetal movement data in a
Bayesian framework. Gurmu and Trivedi [12] observed that
the HZNB distribution has potential in modeling the number
of recreational boating trips with overdispersion and excessive
zeros. However, the GP-based models and HZ models have not
been applied to predict the manufacturing yield of IC chips in
semiconductor manufacturing.

Covariate information can be added to the aforementioned
count distributions, resulting in regression models. For example,
aPoisson regression model may be constructed by assuming that
the Poisson mean y in (1) depends on a vector of covariates y as
In . = yT 3, where (3 is a vector of regression coefficients that
includes an intercept term. Similarly, the logit transformation
of the probability of extra zeros in a zero-inflated distribution
or the probability of positive counts in an HZ distribution can
be assumed to be a linear combination of the covariates. There
have been numerous applications of these regression models in
count data analysis. Lewsey and Thomson [13] applied the ZIP
regression and ZINB regression models to count data related to
dental epidemiology. Lambert [14] applied the ZIP regression
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model to defects in a manufacturing process. Hall [15] employed
random-effect ZIP regression and zero-inflated binomial regres-
sion to model horticultural count data. Boucher and Denuit [16]
compared the performance of fixed-effect and random-effect
Poisson regression models using motor insurance claim counts.
The Poisson, NB, ZIP, and ZINB regression models have been
applied to predict the yield in semiconductor manufacturing [1],
[2], [6]. This article also explores the application of regression
models based on the GP distribution and/or HZ distributions for
yield estimation by using the spatial location of each IC chip on
a wafer as a covariate for the corresponding defect count listed
in a wafer map.

This article only focuses on statistical modeling of the defect
counts on semiconductor wafers to predict the yield of IC chips.
Other modeling approaches using distributed defect patterns,
such as spatial nonhomogeneous Poisson processes [17], are
not discussed here. We mainly consider fixed-effect models and
adopt the maximum likelihood (ML) method to estimate the
parameters of the yield models. The remainder of this paper
is organized as follows. Section II presents the GP, ZIGP, and
HZGP distributions, as well as their regression extensions, to
model defect counts on semiconductor wafers. In Section III,
the parameters of interest of these models are estimated by the
ML method, and the inference on yield estimates is provided
based on the asymptotic variance—covariance of the estimators.
Section IV uses three real wafer map datasets to compare the
different models. Finally, Section V concludes this article.

II. DErFeCT COUNT MODELS

This section illustrates several modeling approaches to an-
alyze defect counts listed on a wafer map to predict the yield
of IC chips in semiconductor manufacturing. The GP, ZIGP,
and HZGP distributions, as well as their spatial regression
extensions, are discussed. Whereas the NB model has a more
general variance specification than the Poisson model, the GP,
ZIGP, and HZGP models differ from the NB model in terms
of the first moment specification. The phenomenon of excess
zeros (inflated) can be caused by clustering. HZ or zero-inflated
specification can account for these excess zeros, although those
models may cause overfitting problems. HZ and zero-inflated
models can be thought of as refined models of truncation and
censoring [12].

Suppose that a semiconductor wafer consists of n mutually ex-
clusive chips, C;, fori = 1,2, ..., n. Additionally, let z; denote
the spatial location of the ith chip center and X; denote the ran-
dom defect count in C;. Furthermore, let X = {z1,T3,...,Tn}
represent the observed defect counts on a wafer.

A. GP Distribution

First, we ignore the spatial information and assume that
the random defect counts X;s are independent and identically
distributed GP random variables. The GP distribution for a
nonnegative integer-valued random variable X has the following

IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 2, JUNE 2020

pmf:
P(X = z|u, )

)T—1 —1)-
et @D e (_w (d; 1)—c) .
rz=0,1,2,..., where £(>0) is the mean parameter and ¢(>0)
is the dispersion parameter. The mean and variance of the GP
distribution are E(X) = p and Var(X) = u¢?, respectively.
The probability of zero is P(X = 0|u, ¢) = e #/¢. Clearly,
the Poisson distribution is a special case of the GP distribution
when the dispersion parameter ¢ = 1. The cases with ¢ > 1 and
0 < ¢ < 1 correspond to the overdispersion and underdisper-
sion relative to the Poisson distribution, respectively. Unlike the
NB distribution, which can only handle overdispersion, the GP
distribution can model overdispersion, underdispersion, or no
dispersion in the count data. Joe and Zhu [7] proved that the GP
distribution is a Poisson mixture, like the NB distribution. The
GP distribution can be used to control the thickness of the tail of
the Poisson distribution by introducing the dispersion parameter.
When the first two moments are fixed, the GP distribution has a
heavier tail, while the NB distribution has a higher probability
mass at zero. However, in many situations, the two distributions
have pmfs with very similar shapes; thus, they may fit equally
well with real count data. The GP distribution is preferable,
especially when the occurrence of events is not likely to be
independent (e.g., clustered defects in semiconductor wafers).

Various other parameterizations of the GP distribution have
been adopted in the literature. For example, Joe and Zhu [7] used
the following pmf:

P(X = 2|0,n) =

6(6 + nx)*>!
%e@(_(g —nz)

for § > 0 and n < 1, where the mean and variance are given
by E(X) = 60/(1 — ) and Var(X) = 6/(1 — )3, respectively.
The two parameters r and § are related to the parameters in model
(2) as p=(¢—1)/p and 0@ = p/¢. Wang and Famoye [18]
adopted the following pmf:

P(X = zlu,0)

_(_r ' Qtox)rt [ p(l+taz)
1+aup x! P 1+aup

forf > 0and —oo < a < oc. The mean and variance under this
parameterization are E(X) = p and Var(X) = p(1 + ap)?,
respectively. Gupter ef al. [10] considered a ZIGP distribution,
where the GP pmf has the form

(l-l—O::L')I_l (96—09)1
’ [

P(X = z|a,0) =

x! €
for 6 >0, 0<a<1, and |af| < 1. Here, the mean and
variance are E(X) = 0/(1 — af) and Var(X) = /(1 — af)>?,
respectively.

In this article, the parameterization given by (2) will be used;
this is the case because the two parameters p and ¢ have clear
and intuitive meanings. In addition to having a simple mean and
variance structure, this parameterization is also more intuitive
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when developing regression models by assuming that the mean
parameter p depends on spatial covariates.
B. ZIGP Distribution

As a useful model for handling count data with excess zeros,
the pmf of the ZIGP distribution is given by

P(X = Olm, p,¢) = m + (1 — m)e /¢

_ T r—1
P(X = zlm i, ) = (1 — m) AT (iz D)7
X exp (—W),I — 1,2,_”
3)

where 0 < 7 <1 is the probability of extra zeros. The ZIGP
distribution is a mixture of a point mass at zero (a Bernoulli
distribution) and a GP distribution. The setup in (3) is introduced
to accommodate excess zeros (i.e., excess ICs with no defects
for yield prediction). It is also possible to allow for a de-
creasing proportion of zero if [—e#/? /(1 — e #/?)] < 7 < 1,
where the extreme case of 7 = —e #/?/((1 — e /%) yields
the truncated-at-zero distribution [12]. The parameter m may be
further parameterized, e.g., a logit function of some covariates,
as suggested by Lambert [14].

C. HZGP Distribution

Another type of count distribution for count data with excess
zeros is the so-called HZ distributions [19], e.g., the HZP,
HZNB, and HZGP distributions. The basic idea underlying HZ
formulations is that a binomial probability model governs the
binary outcome of whether a count variate has a zero or a positive
realization. If the realization is positive, the hurdle is crossed,
and the conditional distribution of the positives is governed
by a truncated-at-zero count data model. The HZ distributions
assume that the zeros and positive counts are from two separate
data-generating processes, e.g., Bernoulli distribution and a
truncated-at-zero count distribution, respectively. For example,
the pmf of the HZGP distribution is

PX=0lw)=1—-w

w —1)z)*=1!
P(X = zlw, p,¢) = (1_8_”/¢) ‘u(‘u—’_(i! D) ¢
xexp(—@),:c:l,l...

where 0 < w < 1 is the probability of positive counts. Note that
the probability of zero is independent of both x and ¢. The
zero-inflated and HZ distributions are mathematically equivalent
when w = (1 — 7)(1 — e #/%). However, the two distributions
are based on different assumptions for data-generating pro-
cesses. The zero-inflated distribution assumes that the zeros
and nonzeros are from the same data-generating process, which
is described as a mixture of a point mass at zero and a GP
distribution. Alternatively, the zeros and nonzeros in the HZ
distribution are from two different data-generating processes.

D. Spatial Regression Models Based on the GP Distribution

This section presents the GP regression, ZIGP regression, and
HZGP regression models, considering the spatial covariates. The
HZP regression is not covered here because the HZP distribution
is a special case of HZGP. The GP regression model assumes
that a random defect count at the ith chip, X;, follows the GP
distribution with a location dependent mean parameter, yi;, i.€.,

. . _ 1 . I';—l
P(Xg- — $i|9) — »u'ﬂ(»u'l + (QB I )“C) (‘b—zg
Ij.
. — 1,
xexp(—m) yr; =0,1,...
@
for7 =1,2,...,n. The mean number of defects at the ith chip

with a center location z;, F[X;] = p;, is assumed to have the
form

C(ps) = f(zi)T:@

where f(z;) denotes the (¢ x 1) vector of spatial covariates eval-
uated at the ith chip location z;, and 3 is the (g x 1) unknown
vector of regression coefficients including an intercept term.
The number of parameters (g) should be less than the number
of chips (n) to be estimable. The spatial covariates may be
Cartesian coordinates of the circuit centers or polar coordinates
measured by using the center of the wafer as the origin. The
dominant effects of defect clustering are expressed via spatial
variables f(z;). {(-) represents a link function to variables that
are functions of the chip location. Here, the functional form
of ¢(-) is chosen as ¢(u;) = In(u;) = f(z;)T 3. The parameter
vector of the GP regression model to be estimated is @ = (3, ¢).
The ZIGP regression model is given by

P(X; =000) = m + (1 —m;)e He/?

et (6 Dyt
P(X; = 240) = (1 — mp)Lals T (isr D)™ e
XBXP(_M),IFLZM

for 8 = (3,,¢). We employ the log and logit link func-
tions for u and , respectively: In(u;) = f(z;)T3 and logit
(m;) = g(z;)Ty, for i=1,2,...,n. Similarly, the HZGP
regression model is given by

P(X; =0]6)=1— w,

Wi i(pi 4 (¢ — Dzi)™ !
P(X; =1:|0)= (1 _e—ﬂ§/¢) - ( ! i)

) — 1)
xexp(—m),:ﬁ:l,l....

=

¢

We choose the same functional forms of In(u;) = f(z;)T 3
and logit(w;) = h(z;)Tn. The parameter set is 8 = (3,7, ¢).

Following the approach proposed by Bae ef al. [1], we choose
z; = (ri, i), i.., the polar coordinates of the :th chip cen-
ter relative to the wafer center and f(z;) = g(z;) = h(z;) =
(1,74, cos s, sin @y, T; cos @;, T3 sin ;)T . This is done because
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the distributed defects tend to present radial and angular
variation on the wafers [1]. Herein, we set ¢ = 6.

III. INFERENCE AND YIELD ESTIMATION

This section outlines the ML method used to estimate the
parameters of the models presented in Section II and the yield
of IC chips on a wafer. When estimating the yield, we simply
assume that every defect causes a yield loss; thus, the yield
is equal to the probability of zero estimated by a model. We
partition the observed defect counts into two sets: the zero count
set Sop = {i|z; = 0} and the positive count set S, = {i|z; > 0}
fori=1,2,...,n. Let ng represent the number of zeros in a
dataset, that is, the cardinality of set Sp is defined as ng = |Sp| =
> ie1Z{z,—0}, Where Iy is an indicator function. In addition,
we denote the number of nonzeros in a dataset by n, =n —
ng. Numerical methods (e.g., the fsolve function in MATLAB
or GNU Octave) are needed to solve the systems of nonlinear
equations required by the ML method. Alternatively, the ZIGP
package in R provides a convenient function that can be used to
find the MLEs of the GP/ZIGP distributions and the GP/ZIGP
regression models.

A. GP Distribution

Given the observed defect counts x on a wafer, the model
parameters p and ¢ of the GP distribution can be estimated by
the ML method, which finds the parameter values that maximize
the likelihood function

= [[P(X = ziln. ¢)

i=1

. — 1)) %! .
1] plpt(@—De)™? o (_
i=1

fL'i!

L, b5 %)

p+ (ﬁf;)— 1)Is)_

It is practically more convenient to maximize the log-likelihood
function £(p, ¢; x) = In L(p, ¢; x). MLEs of 1« and ¢, which are
denoted by /i and (f.:, respectively, are solutions of the following
two equations:

l(p, x) _ n z; — 1
O p ; pt(@-Dm
Ol(p, ;%) zi(z; — 1) 2y LT

B2 éww—m; $
_’_n»u' + ((!b _ 1) Z?=]. Lq =0.
2
Once MLEs of the GP parameters are obtained, MLEs of any
functions of the model parameters can be computed. For exam-
ple, the MLE of the probability of zero, which is equivalent to
the IC chip yield, is

Y =P(X =0) = P(X = 0|, $) = e /%

We can construct confidence intervals for the model param-
eters and yield based on the standard errors derived from the
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(observed) Fisher information matrix. A large-sample approx-
imation of estimated standard errors of the MLEs of p and ¢
is given by the inverse of the (observed) Fisher information
matrix [20]

5 [Va(@) Coviad)
ﬁsqﬁ = Torl
Var(¢)
[ 5% 5 -1
_ | g g |n g
B 8%
L " loé

where the second partial derivatives of the log-likelihood
function are given by

>t T; —1
CE Z (1 + (6 — 1))
0% _n _ —~  zi(zi—1)

oudp ¢ ; (1 + (6 —1Dzi)?
8_28 __2np— >ie1 Ti) Zl— T
D2 &3 #2

L (‘El 1)
Z (1 + (¢ — Dzi)?

These second partial derivatives are evaluated at = /i and
¢ = ¢. The standard errors of /i £ and ¢ are estimated by se.(i) =

1,;‘Var(,u) and §€.(¢) = \;Var(d)), respectively. One can then

compute an approximate (1 — a)100% confidence interval for
a model parameter (e.g., for p, i & z4 /5 - S.€.(j2)). Because p
is positive, we instead construct an approximate (1 — a)100%
confidence interval for i based on the log transformation as [20]

[/ exp(zay2 - SE(A) /1), i X exp(zayz - SE(A)/iD)] .
The standard error of the yield estimate Y can be estimated by
the delta method as

Se(V) =/ Var(¥) = VYT, vy

where VY = (B,u B3 ; |5.4)" - Thus, for the GP distribution
Y = e #/% we have
ay e/ 8Y ‘ue—.u/ti:
S and T =
Op @ 09 @

An approximate (1 —«)100% confidence interval can be
constructed for Y based on the logit transformation [20]

» »

e e
Y+(1-Y)xw Y +(1-Y)/w

where w = exp(zq 2 - $€.(Y) /Y (1 - Y)).
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B. ZIGP Distribution
The likelihood function of the ZIGP distribution is given by

L(m,p, ¢;x) = [»,.T +(1- ?r)e_”/ﬁb] ng

o E7)
< TI {(l_ﬂ)ﬂ(ﬂﬂéxdl) ) 5

icSy
()

MLEs of the three parameters are obtained by setting the first
partial derivatives of the log-likelihood function with respect to
the three model parameters. As a result, MLEs of , u, and ¢
are solutions of the following three equations:

74 (1—7m)e H? = il

n(l—m)e " n n T; — 1
(I—m) 42§ i _

nu(l — m)e B/ i(zi—1)
D Y PR

npp + (¢ — 1) Y ies, Ti
+ 3
According to (4), the yield estimated by the ZIGP distribution
is

=0. )

V=dt+(1l—i)eh/d=010
n

Therefore, the estimated probability of zero (i.e., the yield) of
the ZIGP distribution is always equal to the observed fraction
of zeros in the dataset. This is true for any other zero-inflated
distributions, including the ZIP and ZINB distributions.

Similar to the GP distribution, the variance—covariance matrix
for the MLEs 6 = (7, [, qb) is estimated via the (observed)
Fisher information matrix

[ Var(#) Cov(#, ) Cov(#,d)
X = Var(it) Cov(ji, )
Var($)
_ 8% 8% &%
am2 F Ardp ) amdd F
_ _ 9% 8%
[T ndd | g
_ 8%
i %l
where
8¢ _ no(1—po) np
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Note that Y = 7 + (1 — w)e */ is the probability of zero (i.e.,
the yield) of the ZIGP distribution, while py = e M/? is the

probability of zero of the GP distribution. In addition, VY =

ay T
(F5lo Frlo B o)™ with

oy oY  (1—m)py

_ Y (1 —m)upo
R I i el T B

9 ¢
C. HZGP Distribution
The likelihood function of the HZGP distribution is given by

L,y di%) = (1 - )™ (1_“—,¢) ,,
—D)z)=1 — 1)x;
B § R S (_%)
icS, v

and MLEs of the three model parameters are solutions of the
following three equations:

l-w=2
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Again, the yield estimated by the HZGP distribution, or any
other HZ distributions, is equal to the observed fraction of zeros
in the dataset, which is ¥ = 1 — & = ng/n according to (5).
The variance—covariance matrix for the MLEs 8 = (&, i, §) is
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estimated by
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Note that & is independent of /i and ¢. Herein, the second partial
derivatives of the log-likelihood function are given by
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Because the estimated yield is only dependent on w, VY is
simply equal to (—1,0,0)7.

D. Spatial Regression Models Based on the GP Distribution

The likelihood function of the GP regression model is given
by

=1 P(X = i, 8)

£(6; %)
i=1
o+ (¢ — D)™t i+ (¢ —1)z;
:Hﬁ(ﬁ (ﬁfi.‘ )z:) é lexp(_ﬁ (9?; ) )
i=1 Lo
for i =1,2,...,n, where 8 = (3, ¢). Herein, In(y;) = yI 3

for y; = £(z;) = (1,7, cos ;, sin ¢; 73 cOS @;, T; SIn g.')i)T and
B = (B1,B2,...,B)T, which includes the intercept term 3;.
MLEs of the model parameters S3i,f2,...,0 and ¢ are
solutions of the following equations:

J:,(J:, —-1)
Z pi + (¢ — 1)z

i=1

(-E% 1)%%3
Zy" Zn +(6—Dai

+Zm+(¢—1)£z _22%13’* -0

n M P
-y BYE —g,=1,...,6
i=1 (‘?5

IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 2, JUNE 2020

where y;; is the jth element of the covariate vector y;, for
7 =1,2,...,q. The yield estimated by the GP regression model
is
1o 1 o« 3
— 0l = — —fif¢d
Y = ;ZP(XS—OW) - nZe
i=1 i=1
where fi; = exp(yT ,6) for i=1,2,...,n. The variance-
covariance matrix for 6 = (,6 d)) is estlmated via the (observed)
Fisher information matrix. Detailed derivations of the second
partial derivatives for the GP, ZIGP, and HZGP regression
models are not given in this article for conciseness.
The likelihood function of the ZIGP regression model is given

by

L(6;x) = [] (m + (1 = m)e /%)
iESy
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where In(;) = yT B and logit(m;) = y7 - for the set of param-
eters 8 = (3, v, ¢). MLEs of the model parameters are obtained

by solving the following equations:
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The yield estimated by the ZIGP regression model is given by

R R 1< o
—_ o —— o _ A y—hifd
~ ;:1 P(X; =0|6) ~ ;Zl(m + (1 —m)e )

where fi; = exp(yTB) and #; =e¥i¥/(e¥i ¥ +1)2 for
t=1,2,...,n. The variance—covariance matrix for
0= ('f.f, B, &) is estimated via the (observed) Fisher information
matrix.
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The likelihood function of the HZGP regression model is

H(l —w;)
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where In(p;) =yTf3, and logit(w;) = yTn for the set of
paramters 8 = (3,7n, ). MLEs of the model parameters are
solutions of the following equations:
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forj =1,2,...,6.The yield estimated by the HZGP regression
model is given by

F = L3 PG =008) == (1 - &)
i=1 i=1

where &; = €Y /(Y11 +1)2 fori=1,2,...

The variance—covariance matrix for 6 = (n ,fi (f.:) 3 DIFR
estimated by
a%¢ 0 0 -1
5535 o) e -
[~o8els) e [~Bi55
Bi9Pk |§ | 6x6 Bi9¢ 6] 6x1
32
Ta97 |,

forj,k=1,2,...,6.For the HZGP regression model, 32’-‘ —=
5245=0. This is due to the assumption of separated ’ data-
generating processes for zero and positive counts.

The ZIGP and HZGP regression models are no longer math-
ematically equivalent due to their different ways of covariates
introduction. The estimation of parameters 7, as well as the
probability of zero for the HZGP regression model, is separated
from the estimation of other parameters (3 and ¢). Thus, the
probability of zero estimated by the HZGP regression model is
the observed fraction of zero. As a result, the HZGP regression
model may provide more accurate yield estimation than the
ZIGP regression model.

This section outlined the ML method to estimate the un-
known model parameters. There are other parameter estima-
tion methods that can be applied to the proposed models in
this article. For example, the expectation-maximization (EM)
algorithm may be applied to fit the zero-inflated models [14].
The EM algorithm defines an unobserved indicator variable §;
for each count observation x; in order to indicate whether x; is an
inflated zero. Hall [15] also mentioned the Newton—Raphson and
Newton—Raphson with Fisher scoring algorithms as alternatives
for maximizing the log-likelihood functions of ZIP and binomial
regression models.

IV. DATA EXAMPLE

This section presents the analytical results collected when the
different count models were applied to the data of three real
wafer maps. Fig. 1 shows the defect count data on the three
wafers. The data were analyzed by Yuan ef al. [6] using the
Poisson regression, NB regression, ZIP regression, and ZINB
regression models for yield prediction in a hierarchical Bayesian
framework. Each wafer consists of n = 473 IC chips (or dies).
Table I summarizes the descriptive statistics of defect counts
from the three wafer maps. There are an excessive number of
zeros on each wafer, which result from defect clustering [21].
We modeled the three wafer map data by 18 models, including
the nonregression Poisson, NB, GP, ZIP, ZINB, ZIGP, HZP,
HZNB, and HZGP distributions, along with their corresponding
regression models. The fsolve function in GUN Octave was
employed to find MLEs of the applied models. Additionally,
Table II lists the R packages that can be used to fit some of the
models.

Table III lists the MLEs and 95% confidence intervals of the
model parameters (shown in parentheses) of the nine nonre-
gression distributions. The dispersion parameter ¢ of the GP
distribution is greater than 1 for all three wafers, indicating the
phenomenon of overdispersion in all three datasets. The ¢ value
of the ZIGP and HZGP distributions is less than the ¢ value of the
corresponding GP distribution; after modeling the excess zeros,
the remainder of the data become less dispersive. For the same
reason, the a values of the ZINB and HZNB distributions are
higher than the a value of the NB distribution for each dataset.
The MLEs for the regression models are not presented in this
article for conciseness. Variable selections can be conducted
to build best regression models that include only significant
covariate terms. However, for comparison purpose, we always
used the full regression models that include all of the covariate
terms.

Table IV presents the comparison between the estimated yield
values (Y) and observed yield values (ng/n) for the three
wafers, along with their 95% confidence intervals. Table V
compares the performance of various applied models using three
criteria: the maximum log-likelihood (£), AIC, and relative bias
for yield estimation. The AIC value of a model is calculated
according to [22] as AIC =2k — 2{3 where / is the maximum
value of the log-likelihood function and £ is the number of
model parameters that measures the complexity of a model. The
log-likelihood assesses the fit of a model, and the AIC includes
a penalty to discourage overfitting. Among a set of candidate
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Fig. 1. (a)~(c) Examples of defect counts on three real wafers [6].
TABLEI TABLEII
DESCRIPTIVE STATISTICS OF THE EXAMPLE DATASETS R PACKAGES USED FOR FITTING THE MODELS
i Packa Functi Model
Wafer Relative Frequency Mean | Variance 'ackage unction : els : :
0 1 2 >3 Stats glm Poisson, Poisson regression

(a) 0.8436 00825 00402 00338 | 0.290 0.668 MASS glm.nb NB, NB regression

(b) 0.8985 00803 00148 00063 | 0.129 0.180 sl zeroinfl ZIP, ZINB, ZIP regression, ZINB regression
(c) 0.7928 0.1290 0.0444 0.0338 | 0.326 0.551 P hurdle HZP, HZNB, HZP regression, HZNB regression

ZIGP estzigp | GP, ZIGP, GP regression, ZIGP regression

models, the model with the smallest AIC value is preferred.
In addition, we assume that every defect is a fault; thus, the
probability of zero is actually the yield of a wafer. We then
define the relative bias for yield estimation of a model as

estimated yield — observed yield
estimated yield

x 100%.

In Table V, there is no remarkable trend indicating that any one
model outperforms the others (among all 18 models) in terms
of the three performance criteria. However, we have observed
some general trends, which will be discussed in the following.

A. Nonregression Distributions

We first compare the results from the nine nonregression

distributions, which lead to the following observations.

1) The Poisson distribution does not fit the wafer data well.
For every wafer, the Poisson distribution always has the
lowest log-likelihood value, the highest AIC value, and
the largest absolute value of the relative bias for yield
estimation. In particular, the Poisson distribution signif-
icantly underestimates the true yield. The NB and GP
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distributions greatly improve the yield estimation results
compared to the Poisson distribution. For all three wafers,
the NB distribution produces slightly better results than
the GP distribution. Joe and Zhu [7] pointed out that the
NB distribution has a larger probability of zero than the
GP distribution when the first two moments are fixed.
Therefore, it may provide a better fit to datasets with excess
ZEroS.

2) An HZ distribution and its corresponding zero-inflated
distribution produce identical results because they are
mathematically equivalent, as discussed in Section II-B.
All six of the zero-inflated and HZ distributions cor-
rectly estimate the observed yield values, which has been
discussed in Section III.

3) The ZINB, ZIGP, HZNB, and HZGP distributions give
the best (and almost identical) results for every wafer
according to the maximum log-likelihood and relative bias
for yield estimation. However, they may not always be the
preferred models according to the AIC values. The NB
distribution and the ZIP distribution have the lowest AIC
values for wafers (b) and (c), respectively.

4) Note that the approximate 95% confidence intervals for the
dispersion parameter a in the ZINB/HZNB distributions
are very wide, especially for wafers (b) and (c). After
accounting for extra zeros in the dataset, the remainder
of the dataset may not exhibit overdispersion. This is
evidenced by the fact that the ¢ values of the ZIGP/HZGP
distributions are almost equal to one.

5) The GP distribution might be a better distribution than the
NB distribution to build zero-inflated and/or HZ models
because the GP distribution can handle all of the cases
(i.e., no dispersion, overdispersion, and underdispersion),
while the NB distribution can model overdispersion only.

Overall, the ZINB, ZIGP, HZNB, and HZGP distributions

provide the best fit to the data by modeling extra zeros in the
wafers, providing more accurate yield estimates for the count
data. The improvements of the ZIGP/HZGP distributions over
the GP distribution are more substantial than the improvements
of the ZINB/HZNB distributions over the NB distribution. This
result is consistent with the findings of Joe and Zhu [7], who
compared the NB, GP, ZINB, and ZIGP distributions. They ob-
served that the fits to their example data by the four distributions
were ranked in the order of “ZIGP > ZINB > NB > GP,” and
they concluded that the ZIGP distribution may be more sensitive
for detecting extra zeros than the ZINB distribution.

B. Regression Models

Next, we examine the results from the nine regression models,

which lead to observation of the following general trends.

1) Regression models always provide better fits to defect
counts on the wafers than the corresponding nonregression
distributions according to the maximum log-likelihood
values; this is the case because more parameters are in-
cluded in the regression models. However, the regression
models do not always produce lower AIC values.
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2) The ZIGP regression model is preferred among all of
the nonregression and regression models in terms of both
the AIC and log-likelihood criteria for all three example
wafers.

3) Zero-inflated regression models and their corresponding
HZ regression models do not produce identical results. It
is noted that the HZ regression models provide perfect
yield estimates that are equal to the observed yields.

4) The HZNB and HZGP regression models tend to pro-
duce very similar results. There is no definite conclusion
regarding which one is better in terms of the AIC and
log-likelihood criteria. The HZGP regression model is
better for wafers (b) and (c), while the HZNB regression
model is preferred for wafer (a).

The HZNB and HZGP regression models are likely to be very
promising for yield prediction based on defect counts on wafers.
Due to its ability to model overdispersion or underdispersion,
as well as no dispersion, the GP distribution is advantageous
compared to the NB distribution to build zero-inflated or HZ
regression models. It is possible that after accounting for the
extra zeros in a dataset, the remainder of the data becomes
homogeneous or even underdispersed. In such a situation, GP-
based zero-inflated/HZ models may fit the data better than the
corresponding NB-based models. For example, when the HZNB
regression model is applied to fit the data of wafer (b), the
dispersion parameter is estimated to be a = 5255, indicating
no overdispersion for the positive counts. As a result, the HZNB
and HZP regression models produce identical estimation results
for wafer (b). However, when the HZGP regression is applied to
wafer (b), the estimated dispersion parameter is 45 =0.885 < 1,
implying an underdispersion for the positive counts; thus, the
HZGP regression model fits the data of wafer (b) better than the
HZNB/HZP regression models.

This section compared the yield models using three real
wafer map datasets. There have been the studies from a various
perspective on defect patterns and yield estimation in semicon-
ductor manufacturing using simulation studies (e.g., [6], [21]).
There may exist a major limitation to generate the real defect
patterns occurring in semiconductor manufacturing. Defects
in semiconductor manufacturing are generated in the highly
complex processes and caused by various causes. The existing
studies simulated defect patterns in the wafer based on some
simplified assumptions. For example, defects in a curvilinear or
ring shaped pattern were simulated by assuming that the defects
are uniformly distributed along and about the curve or circle [21].
Therefore, the simulated defect patterns may not fully resemble
the real observed defect patterns. For this reason, this article only
illustrated the performance of the various yield models using real
wafer map data.

V. CONCLUSION

This article compared a variety of models (including re-
gression models) for modeling defect counts to predict IC chip
yields in semiconductor manufacturing. Our results indicated
that the GP distribution was a competitive alternative to the
NB distribution to build models that could predict defect counts
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on IC chips, while the HZ approach was promising for yield
modeling. Particularly, HZ models based on the NB and GP
distributions provided perfect yield prediction for our example
datasets. If simpler models were preferred, the ZINB, ZIGP,
HZNB, and HZGP distributions were recommended to predict
the yield of IC chips on the wafers. GP-based models and
their NB-based counterparts usually produce comparable (or
identical) results. There is no definite preference between the
two models in terms of the yield prediction.

This article assumed that every defect is a fault that causes a
reduction in the yield. However, in practice, not all defects are
fatal to the function of IC chips. When a defect is located in a
defect-sensitive area (i.e., “critical area™), it becomes a fault. The
fault probability derived from the critical area and defect-size
distribution can be incorporated into the yield computation of
IC chips on the wafers. This article only covered fixed-effect
models and used the ML method to estimate model parameters.
Random-effect models or Bayesian approaches can be further
explored in the future. In addition, based on the yield models
presented in this article, the yield—reliability relation could be
further investigated to predict the extrinsic device reliability.
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