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Abstract—Collaborative intrusion detection system (CIDS)
shares the critical detection-control information across the nodes
for improved and coordinated defense. Software-defined network
(SDN) introduces the controllers for the networking control,
including for the networks spanning across multiple autonomous
systems, and therefore provides a prime platform for CIDS
application. Although previous research studies have focused on
CIDS in SDN, the real-time secure exchange of the detection-
relevant information (e.g., the detection signature) remains a
critical challenge. In particular, the CIDS research still lacks
robust trust management of the SDN controllers and the integrity
protection of the collaborative defense information to resist
against the insider attacks transmitting untruthful and malicious
detection signatures to other participating controllers. In this
paper, we propose a blockchain-enabled collaborative intrusion
detection in SDN, taking advantage of the blockchain’s security
properties. Our scheme achieves three important security goals:
to establish the trust of the participating controllers by using the
permissioned blockchain to register the controller and manage
digital certificates, to protect the integrity of the detection signa-
tures against malicious detection signature injection, and to attest
the delivery/update of the detection signature to other controllers.
Our experiments in CloudLab based on a prototype built on
Ethereum, Smart Contract, and IPFS demonstrates that our
approach efficiently shares and distributes detection signatures
in real-time through the trustworthy distributed platform.

Index Terms—Blockchain, Intrusion Detection, Detection Sig-
nature, IDS, SDN, Ethereum, Smart Contract, Snort

I. INTRODUCTION

An intrusion detection system (IDS) is designed to detect
malicious behavior to protect the target system/network. Usu-
ally, a standalone IDS is able to protect one target organization,
however, in order to protect large networks or IT ecosystems
from the high distributed attacks or the attack spreading across
multiple domains, the isolated IDSes will not be able to
establish connections for communication and sharing alerts
and incident information. Such task can be facilitated by
Collaborative IDS (CIDS) [1]. A CIDS can provide a global
view for the large-scale networks/systems in contrast to the
standalone IDS only observing the intrusion events occurring
at one place. The strength of the CIDS is that it enables the
data sharing of the intrusion events happening in multiple

domains through sharing the attack information between the
distributed IDSes.

Software Defined Networking (SDN) has proved itself to be
a backbone in the new era’s network design and is increasingly
becoming an industry standard [2]. A regular SDN controller
is designed to provide typically centralized intelligence for
controlling the network flow traversing on the data plane.
Such centralized controller lacks the capability to protect large
networks. Nowadays, CIDS scheme is also pervasively applied
to the SDN-based networks using collaborative scheme [3],
[4] to share information and update parameters of the flow-
table of the controllers across multiple domains.

Because the cyber threat information (CTI)! sharing is the
critical process to support the collaborative security intelli-
gence for protecting a distributed networks, a secure approach
is necessary, especially for sharing security data. There are
a number of cloud computing-based centralized security data
outsourcing solutions for establishing collaborative protection
over multiple domains, e.g. the EU H2020 C3ISP project
[5], while that needs a centralized cloud server for CTI
data collection and sharing. That scheme is not feasible for
full decentralized peer-to-peer (P2P) network contexts. A full
decentralized and collaborative P2P network has no centralized
server, and all the peers on the network share their knowledge
and information between each other directly.

To this end, we are motivated to apply blockchain tech-
nology to facilitate the secure data sharing since blockchain
has a number of inherent security properties to support such
application (see Section V-A). In particular, our blockchain-
enabled approach aims to share the new intrusion detection
signature generated by collaborative IDS in order to update
local IDS engine. Every individual SDN controller plays a
centralized intelligence role for its network domain, while
the collaborative SDN controllers themselves constitute a P2P
network for sharing information so that they can learn new
detection signatures with each other.

The contribution of this work can be summarized as follows:

ICyber threat information (CTI) is the general term used in the context of
network security area for data sharing



e« We build a blockchain-enabled collaborative intrusion
detection scheme (called Detection-Signature-Chain or
DS-Chain) for sharing, updating, and attesting detection
signatures across controllers P2P network.

o We design the blockchain-based distributed PKI scheme
(called Certificate-Chain or C-Chain) to establish trust
over the participating nodes.

o We integrate C-Chain and DS-Chain for secure updates
on CIDS in SDN networks.

o« We present a smart-contract-based practical byzantine
fault tolerance (PBFT) distributed consensus to support
“n-compromise resistance” against insider attacks.

o We prototype the system design of our approach inte-
grating SDN Ryu controllers, Snort network intrusion
detection, Ethereum as well as its smart contract, and
IPFS for detection signature file store.

o We conduct experiments to demonstrate that our approach
is effective and efficiency.

II. RELATED WORK

A. Blockchain-enabled Collaborative IDS

Applying blockchain to the context of CIDS has several
positive impacts in the aspects of data sharing, alerts exchange
and trust computation [6]. Alexopoulos et al. [7] introduced a
generic blockchain-based CIDS architecture and some design
considerations with the purposed of using blockchain’s proper-
ties to improve the trust, accountability and consensus between
the participating monitors. However, the authors didn’t solve
those specific problems like how to store and manage the
big size alert data, while just mentioned to store the hashes
of the raw alert data for reducing communication overhead.
Such problem is addressed by our approach. CBSigIDS [8]
was designed as a consortium blockchain-based CIDS aiming
to establish trust of the participating IDS nodes to defender
against inside attacker who can transmit untruthful detection
signature rules to other nodes. CBSigIDS applies challenge-
based trust mechanism to build node’s trustworthiness, while
uses node’s private key to sign the detection signature rules to
be transmitted and needs other majority of nodes to verify the
signed rules by using the sender node’s public key. CBSigIDS
still relies on a centralized certificate authority (CA) to register
participants, which suffers the single point of failure. That is
addressed by our approach by using a distributed PKI. Ajayi et
al. [9] proposed a permissioned blockchain approach to secure
the detection signature extraction, storage and distribution
stages. However, the authors did not explicitly describe their
trust mechanism of registering/authorizing the nodes who can
write on the ledger, which is addressed by our approach. Meng
and Li engaged in a serial of research focusing on improving
the trust management in collaborative intrusion networks using
blockchain, such as using blockchain (nodes) to verify the
received feedback replying the challenge request [10], and also
building a verified chain of malicious feedback to establish a
blockchain-based trust [11]. Both research rely on a trusted
centralized 3rd party CA to issue the unique proof-of-identity

(e.g., a pair of public and private key) to the participating
nodes, while we use blockchain-based distributed PKI.

B. Collaborative IDS in Software-defined Networks

During the past years, several research were conducted
for integrating CIDS into OpenFlow based SDN. CIPA [12]
presented an artificial neural network-based CIDS dispersing
the neurons (the computational power) over the programmable
SDN switches. Hameed and Khan [13] designed a secure
controller-to-controller (C-to-C) protocol enabling SDN con-
trollers of different autonomous systems (AS) to exchange
attack information. Their C-to-C protocol is flexible in deploy-
ment in linear order, P2P, or centralized scheme to collabora-
tively disseminate attack information. SeArch [4] is comprised
of a hierarchical layer of intelligent IDS nodes working in
collaboration to detect anomalies and formulate policy into the
SDN-based IoT gateway devices to stop attacks. All the above
research did not consider the trust of the collaborative nodes,
while our approach addresses this issue by using blockchain.

C. Blockchain-based SDN Control Plane

The research about the deployment of blockchain technol-
ogy in software-defined networks have emerged for tackling
the security issues existing in prior SDN contexts [14], in
particular, the research of blockchain-based distributed SDN
control plane for securing the information update between
controllers is related to our work. A case in point is the pro-
posal [15] that applies a permissioned blockchain to maintain
the a list of updated system activities and time stamps in
each controller. However, the work lacks a consensus protocol
to add new participants although it uses Simplified Practical
Byzantine Fault Tolerance (SPBFT) consensus to broadcast
message/request, and also, it overlooks the insider attacks of
the controllers. In contrast, our approach covers these issues.

D. Information Sharing Using Blockchain with IPFS

In fact, blockchain is deficient to store large size data/file,
while InterPlanetary File System (IPFS) [16] provides a
high throughput content-addressed block storage model with
content addressed hyper links. IPFS often cooperates with
blockchain for providing a distributed data storage. To share
privacy/sensitive information through public blockchain inte-
grated with IPFS, the confidentiality issue has to be taken
into account. Wang et al. [17] proposed a blockchain-based
framework for data sharing, which uses IPFS to store the
encrypted file, and uses Ethereum permisionless blockchain
to store the file location returned by IPFS. The framework
applies attribute-based encryption mechanism which allows
the data owner to specify the data access policy based on the
user’s identity and attributes to achieve fine-grained access
control over data. By contrast to encrypt the file, Steichen et
al. [18] proposed an alternative way that is to use the Ethereum
smart contract to conduct an access control list (ACL) of the
permissions to access the file stored in IPFS, and allow the
IPES to enforce the ACL. The drawback of this solution is
that it needs to modify the original IPFS code to integrate



the ACL. In our approach, we use permissioned blockchain
that builds the trust of the participants and distribute detection
signature files which have no sensitive/privacy information.

III. SYSTEM MODEL
A. Network with Multiple SDN Controllers

In this paper, we aim to decentralize the SDN control
plane through leveraging multiple controllers with collabora-
tive detection communication to gain a coordinated defense.
We define the (virtual) network boundary of the coordinated
defense as one autonomous system (AS) overseeing multiple
controllers which could cross geographical domains, or as
a single-domain with multiple controllers/firewalls enabling
multiple networking inbound points. By this definition, we
assume that there is no outsider attacks threatening the coordi-
nation communication between the controllers, and we focus
on the insider attacks which can compromise the controller
nodes and exploit the communications.

B. Threat Model

Now that we defined our network boundary and coordinated
defense sustained by our approach using blockchain-based
controllers P2P network with collaborative detection, we can
also build the threat model that motivates us to defend against.
The first threat is against the availability of the conventional
centralized intelligence using one SDN controller, which suf-
fers the single point of failure, and that is considered and
addressed by using decentralized and coordinated controllers.
The second threat is against the integrity of the collabora-
tive defense communication between controllers, without any
protection, an (inside) attacker can tamper the transmitted
information. We apply blockchain to provide tamper-resistance
to the transactions (containing the detection information) of
the collaborative defense communication. Because we assume
our collaborative defense communication will not exfiltrate the
defined network boundary, we consider there is no outside
attacker can access such inside defense information. In this
regard, there is no confidentiality problem since the access
to the information should be from the insiders, but we
need to register all the insiders/participants. Therefore, we
use permissioned blockchain to control the participation in
the coordinated defense riding on the blockchain transaction
creation and processing. Further, we consider the compromised
controllers transmitting untruthful or malicious defense infor-
mation launched by inside attackers who use the legitimate
identities or registered as a legal users at the participant
registration stage. To address this issue, we propose the
“n-compromise resistance” using PBFT consensus protocol,
whereby every transaction containing defense information (i.e.
detection signature) must be attested by a quorum of other par-
ticipants to resist against even n participants are compromised
or controlled by the attackers.

IV. SYSTEM DESIGN

We present our approach by describing the system design
in this section and the blockchain scheme in the next section.
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Fig. 1: Full distributed P2P network topology in our approach

A. Architecture

Figure 1 graphically shows a high level full distributed P2P
network topology of the participants in our approach, whereby
each participant node can communicate with every other node
registered in the permissioned blockchain-based P2P network.
Further, every node consists of multiple functional compo-
nents, and they are IDS engine, SDN controller, Blockchain
peer setup, and IPFS peer setup.

The IDS engine is used to detect intrusion using existing
signature-based rules, and generate new detection signature
using anomaly-based approach. The SDN controller is used
to control the underlying data plane through installing flow
entries, which include the security related entries to filter and
process the malicious traffic according to the detection sig-
nature information given by the IDS engine aforementioned.
The blockchain peer setup is used to generate and process the
transactions for propagating the detection signature from one
SDN controller to other controller in order to facilitate the
coordinated defense. Because it is not economically practical
to store large amounts of data (like our detection signature
file) on the blockchain, we apply InterPlanetary File System
(IPFS) [16] to store the file, while use the blockchain to record
and trace the detection signature file ID (SFID), which is the
detection signature file address given by IPFS essentially.

Figure 2 shows the system design which includes the time
sequence of the four steps walking by detection signature
Generate, Import, Fetch and Update (from left to right in
the diagram). We describe these four steps as follows: 1)
in Generate step, the new detection signature is generated
by the IDS engine on a source node, which informs the
controller component; 2) in Import step, the source controller
imports the detection signature file on the IPFS, the IPFS
returns a SFID to the controller and the controller calls the
smart contract to upload a transaction containing the SFID as
payload to the blockchain; 3) in Fetch step, the destination
controller reads the SFID delivered through the blockchain,
and uses the SFID to request to the IPFS in order to get
the corresponding detection signature file; 4) in Update step,
the destination controller downloads the detection signature
file from IPFS, and updates the detection signature on the
destination IDS engine. Note that this diagram does not show
the SFID attestation process that is described in Section I'V-C.

B. Chain Types

This subsection describes the blockchain types used in our
approach. According to the proposed system design, we have
two blockchains in terms of the types of payload (7") to
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Fig. 2: Our system design for the blockchain-enabled CIDS in SDN with four steps:

Generate, Import, Fetch, and Update

be transmitted over the blockchains respectively in order to
realize the purpose of the collaborative intrusion detection
across SDN networks.

We define C-Chain as the Certificate Chain for transmit-
ting the certificate payload, and DS-Chain as the Detection
Signature Chain for propagating the detection signature (ID)
payload (see Figure 3). Both chains have the controllers as
the peer nodes, while the C-Chain is used to control the
participation of the controller, e.g. authorize or revoke the
controller’s certificate, and the DS-Chain is for broadcasting
the detection signatures and the detection signature file attes-
tation. Also, both blockchains are permissioned, since they
limit the participation in the blockchain to only the certified
nodes whose certifications are provided by C-Chain. So, the
DS-Chain is more frequently-used than the C-Chain. Also, We
use two separate blockchains rather than a single blockchain
since they are for two different applications, in addition, they
involve different distributed consensus protocols (which are
described in greater details in Section V-B).

The payload type defined as 1" is used for distinct func-
tionalities of our blockchain scheme, where C-Chain is for
T = 1 and DS-Chain is for " = 2 and T = 3. Note that
T =1 indicates that the payload is for the digital certificate
(see Section V-D), T' = 2 is for the SFID for updating the
collaborative intrusion detection signature (see Section V-E),
and T = 3 corresponds to the payload type for the attestation
of the SFID update (see Section V-F).

C. Detection Signature File Attestation

The DS-Chain automatically distributes the SFID for the
controllers network detection signature update. Blockchain
provides eventual consensus and is designed to be toler-
ant against temporary node failures; blockchain continues
to operate when some nodes are experiencing failures to
execute the protocol (in our case, when less than 1/3 of the
controller nodes are experiencing such failure), while those
nodes experiencing temporary failure, e.g., unavailable due to
networking disconnection, can re-connect and re-synchronize
at any time in the future’. Because blockchain allows such

2Such blockchain design to tolerate temporary node failures but eventually
agree on the blockchain state is generally applicable across the blockchain
applications. For example, in permissionless Bitcoin, a node can re-connect
with the blockchain network any time and download and synchronize the
blockchain state at that time of re-connection, or there can be temporary soft
forks causing distinct blocks which are both valid but eventually gets resolved
by choosing one via the longest-chain rule.
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Fig. 3: Our system architecture involv-
ing controllers, IPFS, and blockchains

Certificate

temporary de-synchronization although designed to eventually
get synchronized, it by itself is insufficient to guarantee that
the SFID has been delivered or is being used by the controllers
at the time.

To allow attestation of the detection signature update, we
build such additional functionality on the DS-Chain. The DS-
Chain includes explicit attestation of the events of the delivery
of the SFID to a controller and the controller’s accessing the
IPFS to retrieve the corresponding detection signature file. The
attestation information is uploaded on the DS-Chain so that
other controllers become aware that the controller (the subject
of the attestation) updated its security rules in terms of the
detection signature. Section V-E provides more details about
the DS-Chain.

The attestation is critical since, when there is networking
between the controller domains, the controllers have assur-
ances that they are at the same security level. For example,
if the explicit attestation is lacking on one side, a controller
updated with the latest detection signatures is aware that a
node managed by the controller lagging in detection signature
updates can be vulnerable against the latest intrusion threat
and can disallow certain networking or executions because it
is less trustworthy.

V. BLOCKCHAIN SCHEME
A. Blockchain Properties motivating our approach

As stated, our approach leverages the properties of
blockchain, this subsection points out those properties enabling
our approach as follows.

o Decentralization: Multiple entities (in our case, the SDN
controllers) are involved in the generation of the transac-
tions associating with the detection signature. Only a quo-
rum of controllers achieve consensus, will the transaction
become viable. Therefore, our scheme is resistant against
the insider compromises up to n controllers, which is
termed “n-compromise resistance”.

o Immutability: All the effective transactions put into the
distributed ledger will remain immutable, which can pro-
vide a strong capability to monitor and track the process
of detection signature generation by the corresponding
controllers.

o Modularity: The blockchain provides an additional layer
of implementation and therefore can be modular to the
rest of the SDN controllers operations. Such modularity



Algorithm 1 Smart-contract-based PBFT

Require: (3n + 1) C participate in
Ensure: (2n + 1) C agree
C; submits a transaction
count =1
=1
while i/ < (3n+ 1) && count < (2n+ 1) do
if ©/ # i then
C'; submits a transaction for vouching
end if
if C;/ agree then
count = count + 1
end if
=4 +1
end while
if count >= (2n 4 1) then
Transaction is vouched in terms of PBFT
Block is generated
else
Transaction is not vouched
end if

TABLE I: Comparison of different blockchain schemes

Blockchain Payload type, T Consensus protocol
C-Chain T=1 Smart-contract-based PBFT
DS-Chain T=2 Smart-contract-based PBFT
DS-Chain T=3 PoA-based broadcasting

is critical for our design goal of flexibility enabling the
involvement of heterogeneous SDN controllers.

B. Distributed Consensus Protocols

In our approach, we use two distributed consensus protocols
for different purposes. First, we apply Proof-of-Authority
(PoA) distributed consensus protocol. This consensus is used
where it only needs the broadcasting of the transactions using
PoA which is largely driven by identities and registration and
is thus applicable in permissioned environments. The authority
for PoA can be a controller in our approach. Second, we use
PBFT in our approach to resist against byzantine failure of
upto n controllers, which is defined as n-compromise resis-
tance. Because we utilize PBFT, we need 3n + 1 participants
in total while reach 2n + 1 as the quorum of participants in
order to achieve the n-compromise resistance.

We define C as the participating controller node in the
blockchain P2P network, and use smart contract to facilitate
the PBFT consensus. The smart-contract-based PBFT consen-
sus protocol is described by Algorithm 1. That is to say, every
transaction issued by one participant (i.e. the controller in
our case) using the smart contract, another 2n at least (plus
the participant sending the transaction itself, the total number
becomes 2n + 1) participants must achieve an agreement by
voting for it to make that transaction viable.

Table I summaries these two distributed consensus proto-
cols used for distinct purposes by our C-Chain (see Section
V-D) and DS-Chain (see Section V-E) respectively. Note that
comparing such PoA-based broadcasting with smart-contract-
based PBFT, any transaction transmitted by the PBFT smart
contract is a voting-based PoA broadcast essentially. In other
words, PoA-based broadcasting needs 3n unicasts to propagate
one transaction effectively, while smart-contract-based PBFT

TABLE II: Definition of Variables

Variable | Definition
9 The index of the controller
j The index of time
The index of block
The index of the detection signature file
The number of generated private-public key pairs
The i-th controller
The identity of i-th controller
The e-th block
The z-th detection signature file
The type of payload where T' € {1, 2, 3}
The payload of type T
The public key of i-th controller at time j
ki, j The private key of i-th controller at time j
n The n of n-compromise resistance
H The hash function
E The encryption function
D
G

;:Fﬂz?jEJ?Q“Hmb

The decryption function
The digital certificate generation function

Compare

Fig. 4: Standard digital signature (¢ is the sender controller)

needs (2n+ 1) - 3n unicasts to make the transaction effective.
Regarding the variables of the type of the payload, refer to
Section V-C.

C. Block Construction

Given a payload (also called transactions or records, de-
pending on the blockchain applications), this section describes
the construction of the block containing the payload. Table
IT described the variables used in the context. The block
contains the followings: the hash of the previous block (in
plaintext), the payload Pr (in plaintext), the type of payload
T (in plaintext), and the digital signature?® (processed using the
aforementioned data included in the block). In other words, the
e-th block B, = {H(B._1)||Pr||T||E(ki, H(Pr))}, where
T € {1,2,3}. We adopt the standard digital signature scheme
(see Figure 4). The hash output of the previous payload
H(Pr) is the input of the digital signature algorithm using the
sender controller’s k;, so the digital signature is E(k;, H(Pr)).
The concatenation of E(k;, H(Pr)) and Pr will be used for
verification using the sender controller’s K;. So, the recipient
controller takes the concatenation message and produces a
hash code. The recipient controller also decrypts the digital
signature using the sender’s K;. If the calculated hash code
matches the decrypted digital signature, the digital signature
is accepted as valid. Because only the sender controller knows
the k;, only the sender controller could have produced a valid
digital signature.

The block is therefore specific to the controller generating
the block and has strong source integrity, e.g., other controllers
can verify the digital signature to check that the block got
generated by the source controller. This block construction
is applicable for both of our blockchains described in the

3The digital signature is the cryptographic mechanism based on public-key
ciphers for integrity and authentication protection and not the signature used
for IDS. For clarity, we refer to the IDS signature as detection signature.



following sections. Note that since in our case we use one
block to contain only one transaction, so the term “block”
and “transaction” are exchangeable in the context, which is
essentially the payload.

D. C-Chain for Distributed PKI (T = 1)

A blockchain can be used for permissioned if there is
an off-line registration. The permissioned blockchain controls
the participation in the blockchain transaction generation and
processing. In our approach, the blockchain for the SDN con-
trollers P2P network is permissioned, and only the registered
controllers are allowed to transmit payload. In contrast to
the permissionless blockchain-based cryptocurrency, such as
Bitcoin, our permissioned blockchain-based approach reduces
the networking overhead for practicality.

To this end, the C-Chain is used to facilitate the blockchain-
based distributed PKI to replace the centralized CA and
provides trust to the participating controllers that need to be
established. For the blockchain, the payload is the certificate
since T'=1. In this regard, we define that for any controller C;,
1 €{1,2, ..., 3n+ 1}, 3n + 1 indicates the total number of
controllers. For any time j, j € {1, 2, ....., t}, t represents the
entire number of the created public-private key pairs. Based
on that, we define K ; as the public key of C; at time j,
while k; ; is the private key of C; at time j, and I; is the
identity of C;. So, Pi={I;||K; ;}. We define G as the function
for generating digital certificate, so the digital certificate is
G(Ki’j, IZ', ki,j) = {IZHKZ,JHE(ku H(IZHKZJD} Because
the payload structure (i.e., Py={[;||K;;}) and the type of
payload (i.e., T'=1) for the C-Chain are fixed, so the block
can be constructed by the means described in Section V-C.
Note that the C-Chain uses the smart-contract-based PBFT
consensus, which means one certificate transaction must get
voted by more than 2/3 of the whole participating controllers,
otherwise, the certificate will not be viable. Also, an effective
certificate can be revoked, and the revocation needs to be
compliance with the PBFT consensus.

E. DS-Chain for SFID Delivery and Update (T = 2)

This DS-Chain realizes two purposes: the SFID delivery
requiring PBFT consensus and the SFID attestation requiring
PoA-based broadcasting where the PoA-validators are the
sender controllers themselves. This section focuses on describ-
ing the SFID delivery and update, and Section V-F will depict
the SFID attestation in greater detail.

As mentioned, for this chain, the payload is the SFID since
T'=2, and the SFID is returned by IPFS when the controller
imports a detection signature file into IPFS. Therefore, the
payload (i.e., P,=SFID) and the type of payload (i.e., T=2)
of the DS-Chain for SFID delivery are fixed, the block can be
constructed by the means described in Section V-C as well.
Also, the SFID delivery performed by the DS-Chain applies
smart-contract-based PBFT consensus. In other words, every
SFID transaction riding on one PoA-based broadcasting needs
at least another 2/3 votes of the entire participating controllers
and each vote requires one PoA-based broadcasting.

In addition, one detection signature file can contain one
detection signature or multiple ones (e.g., with a certain
number, or with a fixed update frequency*). If using one
file to include only one detection signature, the controller
can instantly broadcast the defense information to inform
other controllers, which is appropriate to defend against the
urgent and large-scale attacks to have a immediate detection
signature update over the participating controllers in order to
protect the SDN networks. However, this method increases
the networking overhead since every SFID transaction needs
the PBFT-based voting. So, an alternative way is to allow
one file to contain multiple detection signatures and upload
them together into the IPFS, and then only one transaction
containing the given SFID (which represents the file including
multiple detection signatures) needs to be transmitted by the
DS-Chain using PBFT consensus. The latter method is more
networking efficient than the former one, while the latter can
not transmit an immediate detection signature until it collects
enough ones. For example, assuming one detection signature
file can contain X detection signatures, and the blockchain
P2P network includes 3 controllers. If we use the method of
one file containing X detection signatures, the system will have
3 transaction broadcasts following PBFT consensus, while if
we use the method of one file containing only one detection
signature, then the system will have 3- X transaction broadcasts
in terms of PBFT consensus.

F. DS-Chain for SFID Attestation (T = 3)

As aforementioned, DS-Chain is also in charge of trans-
mitting SFID attestation. This type of payload is transmitted
using PoA-based broadcasting where the PoA-validator is the
controller itself who sends the payload.

Upon receiving the SFID-delivery block in Section V-E, the
controller retrieves and updates the corresponding detection
signature file. Given a new SFID z, the controller retrieves
the detection signature file F,, computes the hash of the file
H(F,) for the block payload, i.e., P3 = H(F},). The payload
as well as the type of payload (i.e., 7'=3) are used to construct
the block, including the digital signature, as described in
Section V-C. Therefore, the block is specific to the controller
(with the source integrity provided by the digital signature)
and to the detection signature file F.

In contrast to the type of payload for SFID delivery de-
scribed in Section V-E requiring multiple distinct transactions
signed by multiple controllers (more than 2/3 of the con-
trollers), the type of payload for attestation requires one block
using PoA as the controller being the subject of the attestation
and creating the attestation block being the validator.

VI. IMPLEMENTATION AND EXPERIMENT

In this section, we describe the implementation detail of our
prototype in terms of the design, and present the experimental
results built on the prototype.

4PulledPork for Snort and Suricata rule management updates the rulesets
of detection signatures twice a week



TABLE III: VM specification in CloudLab

Virtualization Xen

Operating system Ubuntu 16.04.1 LTS (64-bit)

CPU Intel(R) Xeon(R) CPU E5-4620 0 @ 2.20GHz
Processor number 1

Memory 4 GB

Network Adapter Ethernet Physical

TABLE IV: Measurement of deploying payloads in blockchain

Type of | Gas used ETH cost Block size | Block verification
payload (bytes) time (ms)

T=1 27594 0.00055188 | 1027 998.530

T=2 25185 0.0005037 1013 998.419

T =3 38620 0.0007724 924 998.308

A. Implementation

We use Ethereum (Geth version 1.9.16-stable) as well
as smart contract (Solidity version 0.5.16) to facilitate the
blockchain-enabled approach. We use Truffle (version 5.1.34)
to deploy the smart contract on the Ethereum blockchain.
Also, we select Ryu (version 4.34 with OpenFlow 1.3) as the
SDN controller which has built-in Snort library. So, the Ryu
framework integrated with the Snort library can facilitate our
IDS engine and SDN controller components, and the Snort
library supports developing detection program that can inform
detection alert to the controller [19].

We employ CloudLab as the underlying platform to build
the blockchain P2P network to prototype our approach. The
virtual machine’s specification is described in Table III. We
initially create a three-nodes-based P2P network, and each
node is hosted by a VM where we install the above mentioned
softwares to prototype our design. We implement the three-
nodes prototype testbed on Emulab cluster for carrying out
basic measurement. Specifically, built on the testbed, the
average round trip times (RRT) between every two nodes are
0.942 ms (node A to node B), 0.968 ms (node A to node C),
and 1.012 ms (node B to node C).

B. Experimental Results

1) Computation Overhead: This subsection presents the
computational overhead based on our implementation. Table
IV shows the measurement of pushing the different types of
payload into corresponding blockchain using smart contract.
We observe the cost of blockchain resource in terms of
different payloads. The certificate payload takes the most
blockchain resource of the three types when the Ethereum
blockchain processes the payload, since the certificate payload
is much greater and more complex than the other two types,
e.g. using X.509 as the certificate format in our approach. In
our case, the gas price is 20 Gweli, so gas-(20-Gwei) = ETH,
where 109 - Gwei = 1ETH. Also, because we configure the
Ethereum to use PoA consensus to broadcast the payloads,
where our smart-contract-based PBFT consensus builds on and
every broadcast is a PoA-based broadcast. So, for broadcasting
each payload regardless of the scale of the blockchain P2P
network, the block verification time is always around 998 ms.

In addition, Table V shows the CPU and memory usages as
well as the time of executing different tasks using blockchain.
We find that running the Ethereum blockchain costs CPU
1.18% and deploying smart contract costs CPU 3.06%, while

TABLE V: CPU, MEM and execution time when carrying out
different tasks using blockchain

Task CPU (%) MEM (MB) Exec. Time (ms)
Run Geth 1.18 303.35 -
Deploy smart contract 3.06 652.46 1015
Push certificate (7" = 1) 4.99 63.72 126.2
Push SFID (T" = 2) 4.54 60.94 121.1
Push SFID attestation (1" = 3) 53 53.31 180
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they take RAM memory 303.35 MB and 652.46 MB respec-
tively. Note that the cost of running Geth is persistent as
long as the Ethereum blockchain is running, while the cost
of deploying smart contract only lasts around 1.015 second as
the Table shows.

Now that the blockhcain is running and the smart contract
has been deployed on the blockchain, we test the tasks for
pushing different types of payloads on the blockchain by
calling the smart contract. We can see that the task for 7' =3
to push the attestation takes the most CPU usage (5.3%) and
execution time (180 ms), since it keeps track of the number of
controllers which have sent back their attestation values after
downloading the detection signature files using a local count
variable, and increases the count of these controllers which
have sent back their attestation values. Because the attestation
payload size is the smallest of the three types, the task costs
the least memory usage. Also, the tasks for 7'=1and 7' = 2
are very similar, just to construct the corresponding payload
and submit it. However, the certificate payload is larger than
the SFID payload, that is why the task for 7" = 1 takes more
computational overhead than the task for 7" = 2. Note that
we do not show the underlying PBFT consensus cost for both
payloads over here.

2) Networking Overhead: This subsection presents the net-
working overhead measurement results based on our proto-
type. We first test the average time for transmitting every
specific type of payload (see Figure 5, which shows the
average time values with 95% confidence interval). We find
that transmitting one certificate payload (7" = 1) takes network
latency 646 ms on average, one SFID payload (7" = 2) takes
582 ms on average, and one attestation (7' = 3) takes 418 ms
on average.

Further, because both certificate payload (I' = 1) and
SFID payload (T' = 2) use PBFT consensus for ensuring
every payload viable, from a node-level perspective, they both
need (2n + 1) - 3n transmissions/unicasts to get the votes
for endorsing the payload according to our n-compromise
resistance, where 3n is the rest number of controllers exclud-
ing the sender controller and 2n + 1 indicates a quorum of
controllers to achieve majority decision. By contrast, for the
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attestation payload (7' = 3), from a node-level perspective, it
only needs every receiver node to tell the sender node that it
already downloads and uses the new detection signature, thus it
includes 3n transmissions/unicasts; while from a network-level
perspective, it needs 3n - 3n transmissions/unicasts since every
other controller (3n in total) needs to tell other 3n controllers
that it already updates the detection signature. Figure 6 shows
the increasing number of unicasts for making one certifcate
and SFID payload viable, and finishing one SFID attestation
in terms of the increasing n (of n-compromise resistance).
Therefore, using the average network latency per payload
transmission shown by Figure 5 to multiply the number
of transmissions shown by Figure 6, we can get the total
networking overhead (latency) in terms of the different types
of payload (see Figure 7). We can see that the node-level
networking overhead for the attestation is orders of magnitude
less than the certificate and SFID, while the network-level net-
working overhead for the attestation is relatively comparable
to the other two payloads’ node-level networking overheads.

VII. CONCLUSION

Integrating collaborative intrusion detection with the soft-
ware defined networks is a promising research direction, since
SDN has become the standard network management which
separates the flow control intelligence from the data plane
while the CIDS strength can improve the security of the
individually centralized SDN networks by forming a coor-
dinated defense across multiple domains. In this paper, we
propose a blockchain-enabled collaborative intrusion detection
in SDN networks, which provides the trust management of
the controllers and the integrity of the detection signature
sharing over the controllers to gain a coordinated defense
and defend against insider attacks supported by n-compromise
resistance. We develop our prototype using Ethereum, smart
contract, Ryu SDN framework and IPFS in CloudLab, and
the experiments show that our approach is effective and
efficient for sharing detection signatures in real-time through
the trustworthy distributed platform.
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