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Abstract—Collaborative intrusion detection system (CIDS)
shares the critical detection-control information across the nodes
for improved and coordinated defense. Software-defined network
(SDN) introduces the controllers for the networking control,
including for the networks spanning across multiple autonomous
systems, and therefore provides a prime platform for CIDS
application. Although previous research studies have focused on
CIDS in SDN, the real-time secure exchange of the detection-
relevant information (e.g., the detection signature) remains a
critical challenge. In particular, the CIDS research still lacks
robust trust management of the SDN controllers and the integrity
protection of the collaborative defense information to resist
against the insider attacks transmitting untruthful and malicious
detection signatures to other participating controllers. In this
paper, we propose a blockchain-enabled collaborative intrusion
detection in SDN, taking advantage of the blockchain’s security
properties. Our scheme achieves three important security goals:
to establish the trust of the participating controllers by using the
permissioned blockchain to register the controller and manage
digital certificates, to protect the integrity of the detection signa-
tures against malicious detection signature injection, and to attest
the delivery/update of the detection signature to other controllers.
Our experiments in CloudLab based on a prototype built on
Ethereum, Smart Contract, and IPFS demonstrates that our
approach efficiently shares and distributes detection signatures
in real-time through the trustworthy distributed platform.

Index Terms—Blockchain, Intrusion Detection, Detection Sig-
nature, IDS, SDN, Ethereum, Smart Contract, Snort

I. INTRODUCTION

An intrusion detection system (IDS) is designed to detect

malicious behavior to protect the target system/network. Usu-

ally, a standalone IDS is able to protect one target organization,

however, in order to protect large networks or IT ecosystems

from the high distributed attacks or the attack spreading across

multiple domains, the isolated IDSes will not be able to

establish connections for communication and sharing alerts

and incident information. Such task can be facilitated by

Collaborative IDS (CIDS) [1]. A CIDS can provide a global

view for the large-scale networks/systems in contrast to the

standalone IDS only observing the intrusion events occurring

at one place. The strength of the CIDS is that it enables the

data sharing of the intrusion events happening in multiple

domains through sharing the attack information between the

distributed IDSes.

Software Defined Networking (SDN) has proved itself to be

a backbone in the new era’s network design and is increasingly

becoming an industry standard [2]. A regular SDN controller

is designed to provide typically centralized intelligence for

controlling the network flow traversing on the data plane.

Such centralized controller lacks the capability to protect large

networks. Nowadays, CIDS scheme is also pervasively applied

to the SDN-based networks using collaborative scheme [3],

[4] to share information and update parameters of the flow-

table of the controllers across multiple domains.

Because the cyber threat information (CTI)1 sharing is the

critical process to support the collaborative security intelli-

gence for protecting a distributed networks, a secure approach

is necessary, especially for sharing security data. There are

a number of cloud computing-based centralized security data

outsourcing solutions for establishing collaborative protection

over multiple domains, e.g. the EU H2020 C3ISP project

[5], while that needs a centralized cloud server for CTI

data collection and sharing. That scheme is not feasible for

full decentralized peer-to-peer (P2P) network contexts. A full

decentralized and collaborative P2P network has no centralized

server, and all the peers on the network share their knowledge

and information between each other directly.

To this end, we are motivated to apply blockchain tech-

nology to facilitate the secure data sharing since blockchain

has a number of inherent security properties to support such

application (see Section V-A). In particular, our blockchain-

enabled approach aims to share the new intrusion detection

signature generated by collaborative IDS in order to update

local IDS engine. Every individual SDN controller plays a

centralized intelligence role for its network domain, while

the collaborative SDN controllers themselves constitute a P2P

network for sharing information so that they can learn new

detection signatures with each other.

The contribution of this work can be summarized as follows:

1Cyber threat information (CTI) is the general term used in the context of
network security area for data sharing



• We build a blockchain-enabled collaborative intrusion

detection scheme (called Detection-Signature-Chain or

DS-Chain) for sharing, updating, and attesting detection

signatures across controllers P2P network.

• We design the blockchain-based distributed PKI scheme

(called Certificate-Chain or C-Chain) to establish trust

over the participating nodes.

• We integrate C-Chain and DS-Chain for secure updates

on CIDS in SDN networks.

• We present a smart-contract-based practical byzantine

fault tolerance (PBFT) distributed consensus to support

“n-compromise resistance” against insider attacks.

• We prototype the system design of our approach inte-

grating SDN Ryu controllers, Snort network intrusion

detection, Ethereum as well as its smart contract, and

IPFS for detection signature file store.

• We conduct experiments to demonstrate that our approach

is effective and efficiency.

II. RELATED WORK

A. Blockchain-enabled Collaborative IDS

Applying blockchain to the context of CIDS has several

positive impacts in the aspects of data sharing, alerts exchange

and trust computation [6]. Alexopoulos et al. [7] introduced a

generic blockchain-based CIDS architecture and some design

considerations with the purposed of using blockchain’s proper-

ties to improve the trust, accountability and consensus between

the participating monitors. However, the authors didn’t solve

those specific problems like how to store and manage the

big size alert data, while just mentioned to store the hashes

of the raw alert data for reducing communication overhead.

Such problem is addressed by our approach. CBSigIDS [8]

was designed as a consortium blockchain-based CIDS aiming

to establish trust of the participating IDS nodes to defender

against inside attacker who can transmit untruthful detection

signature rules to other nodes. CBSigIDS applies challenge-

based trust mechanism to build node’s trustworthiness, while

uses node’s private key to sign the detection signature rules to

be transmitted and needs other majority of nodes to verify the

signed rules by using the sender node’s public key. CBSigIDS

still relies on a centralized certificate authority (CA) to register

participants, which suffers the single point of failure. That is

addressed by our approach by using a distributed PKI. Ajayi et

al. [9] proposed a permissioned blockchain approach to secure

the detection signature extraction, storage and distribution

stages. However, the authors did not explicitly describe their

trust mechanism of registering/authorizing the nodes who can

write on the ledger, which is addressed by our approach. Meng

and Li engaged in a serial of research focusing on improving

the trust management in collaborative intrusion networks using

blockchain, such as using blockchain (nodes) to verify the

received feedback replying the challenge request [10], and also

building a verified chain of malicious feedback to establish a

blockchain-based trust [11]. Both research rely on a trusted

centralized 3rd party CA to issue the unique proof-of-identity

(e.g., a pair of public and private key) to the participating

nodes, while we use blockchain-based distributed PKI.

B. Collaborative IDS in Software-defined Networks

During the past years, several research were conducted

for integrating CIDS into OpenFlow based SDN. CIPA [12]

presented an artificial neural network-based CIDS dispersing

the neurons (the computational power) over the programmable

SDN switches. Hameed and Khan [13] designed a secure

controller-to-controller (C-to-C) protocol enabling SDN con-

trollers of different autonomous systems (AS) to exchange

attack information. Their C-to-C protocol is flexible in deploy-

ment in linear order, P2P, or centralized scheme to collabora-

tively disseminate attack information. SeArch [4] is comprised

of a hierarchical layer of intelligent IDS nodes working in

collaboration to detect anomalies and formulate policy into the

SDN-based IoT gateway devices to stop attacks. All the above

research did not consider the trust of the collaborative nodes,

while our approach addresses this issue by using blockchain.

C. Blockchain-based SDN Control Plane

The research about the deployment of blockchain technol-

ogy in software-defined networks have emerged for tackling

the security issues existing in prior SDN contexts [14], in

particular, the research of blockchain-based distributed SDN

control plane for securing the information update between

controllers is related to our work. A case in point is the pro-

posal [15] that applies a permissioned blockchain to maintain

the a list of updated system activities and time stamps in

each controller. However, the work lacks a consensus protocol

to add new participants although it uses Simplified Practical

Byzantine Fault Tolerance (SPBFT) consensus to broadcast

message/request, and also, it overlooks the insider attacks of

the controllers. In contrast, our approach covers these issues.

D. Information Sharing Using Blockchain with IPFS

In fact, blockchain is deficient to store large size data/file,

while InterPlanetary File System (IPFS) [16] provides a

high throughput content-addressed block storage model with

content addressed hyper links. IPFS often cooperates with

blockchain for providing a distributed data storage. To share

privacy/sensitive information through public blockchain inte-

grated with IPFS, the confidentiality issue has to be taken

into account. Wang et al. [17] proposed a blockchain-based

framework for data sharing, which uses IPFS to store the

encrypted file, and uses Ethereum permisionless blockchain

to store the file location returned by IPFS. The framework

applies attribute-based encryption mechanism which allows

the data owner to specify the data access policy based on the

user’s identity and attributes to achieve fine-grained access

control over data. By contrast to encrypt the file, Steichen et

al. [18] proposed an alternative way that is to use the Ethereum

smart contract to conduct an access control list (ACL) of the

permissions to access the file stored in IPFS, and allow the

IPFS to enforce the ACL. The drawback of this solution is

that it needs to modify the original IPFS code to integrate



the ACL. In our approach, we use permissioned blockchain

that builds the trust of the participants and distribute detection

signature files which have no sensitive/privacy information.

III. SYSTEM MODEL

A. Network with Multiple SDN Controllers

In this paper, we aim to decentralize the SDN control

plane through leveraging multiple controllers with collabora-

tive detection communication to gain a coordinated defense.

We define the (virtual) network boundary of the coordinated

defense as one autonomous system (AS) overseeing multiple

controllers which could cross geographical domains, or as

a single-domain with multiple controllers/firewalls enabling

multiple networking inbound points. By this definition, we

assume that there is no outsider attacks threatening the coordi-

nation communication between the controllers, and we focus

on the insider attacks which can compromise the controller

nodes and exploit the communications.

B. Threat Model

Now that we defined our network boundary and coordinated

defense sustained by our approach using blockchain-based

controllers P2P network with collaborative detection, we can

also build the threat model that motivates us to defend against.

The first threat is against the availability of the conventional

centralized intelligence using one SDN controller, which suf-

fers the single point of failure, and that is considered and

addressed by using decentralized and coordinated controllers.

The second threat is against the integrity of the collabora-

tive defense communication between controllers, without any

protection, an (inside) attacker can tamper the transmitted

information. We apply blockchain to provide tamper-resistance

to the transactions (containing the detection information) of

the collaborative defense communication. Because we assume

our collaborative defense communication will not exfiltrate the

defined network boundary, we consider there is no outside

attacker can access such inside defense information. In this

regard, there is no confidentiality problem since the access

to the information should be from the insiders, but we

need to register all the insiders/participants. Therefore, we

use permissioned blockchain to control the participation in

the coordinated defense riding on the blockchain transaction

creation and processing. Further, we consider the compromised

controllers transmitting untruthful or malicious defense infor-

mation launched by inside attackers who use the legitimate

identities or registered as a legal users at the participant

registration stage. To address this issue, we propose the

“n-compromise resistance” using PBFT consensus protocol,

whereby every transaction containing defense information (i.e.

detection signature) must be attested by a quorum of other par-

ticipants to resist against even n participants are compromised

or controlled by the attackers.

IV. SYSTEM DESIGN

We present our approach by describing the system design

in this section and the blockchain scheme in the next section.

Components of node

IPFS peer setup

SDN controller

IDS engine

Blockchain peer setup

Node

Fig. 1: Full distributed P2P network topology in our approach

A. Architecture

Figure 1 graphically shows a high level full distributed P2P

network topology of the participants in our approach, whereby

each participant node can communicate with every other node

registered in the permissioned blockchain-based P2P network.

Further, every node consists of multiple functional compo-

nents, and they are IDS engine, SDN controller, Blockchain
peer setup, and IPFS peer setup.

The IDS engine is used to detect intrusion using existing

signature-based rules, and generate new detection signature

using anomaly-based approach. The SDN controller is used

to control the underlying data plane through installing flow

entries, which include the security related entries to filter and

process the malicious traffic according to the detection sig-

nature information given by the IDS engine aforementioned.

The blockchain peer setup is used to generate and process the

transactions for propagating the detection signature from one

SDN controller to other controller in order to facilitate the

coordinated defense. Because it is not economically practical

to store large amounts of data (like our detection signature

file) on the blockchain, we apply InterPlanetary File System

(IPFS) [16] to store the file, while use the blockchain to record

and trace the detection signature file ID (SFID), which is the

detection signature file address given by IPFS essentially.

Figure 2 shows the system design which includes the time

sequence of the four steps walking by detection signature

Generate, Import, Fetch and Update (from left to right in

the diagram). We describe these four steps as follows: 1)

in Generate step, the new detection signature is generated

by the IDS engine on a source node, which informs the

controller component; 2) in Import step, the source controller

imports the detection signature file on the IPFS, the IPFS

returns a SFID to the controller and the controller calls the

smart contract to upload a transaction containing the SFID as

payload to the blockchain; 3) in Fetch step, the destination

controller reads the SFID delivered through the blockchain,

and uses the SFID to request to the IPFS in order to get

the corresponding detection signature file; 4) in Update step,

the destination controller downloads the detection signature

file from IPFS, and updates the detection signature on the

destination IDS engine. Note that this diagram does not show

the SFID attestation process that is described in Section IV-C.

B. Chain Types

This subsection describes the blockchain types used in our

approach. According to the proposed system design, we have

two blockchains in terms of the types of payload (T ) to
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Fig. 3: Our system architecture involv-

ing controllers, IPFS, and blockchains

be transmitted over the blockchains respectively in order to

realize the purpose of the collaborative intrusion detection

across SDN networks.

We define C-Chain as the Certificate Chain for transmit-

ting the certificate payload, and DS-Chain as the Detection
Signature Chain for propagating the detection signature (ID)

payload (see Figure 3). Both chains have the controllers as

the peer nodes, while the C-Chain is used to control the

participation of the controller, e.g. authorize or revoke the

controller’s certificate, and the DS-Chain is for broadcasting

the detection signatures and the detection signature file attes-

tation. Also, both blockchains are permissioned, since they

limit the participation in the blockchain to only the certified

nodes whose certifications are provided by C-Chain. So, the

DS-Chain is more frequently-used than the C-Chain. Also, We

use two separate blockchains rather than a single blockchain

since they are for two different applications, in addition, they

involve different distributed consensus protocols (which are

described in greater details in Section V-B).

The payload type defined as T is used for distinct func-

tionalities of our blockchain scheme, where C-Chain is for

T = 1 and DS-Chain is for T = 2 and T = 3. Note that

T = 1 indicates that the payload is for the digital certificate

(see Section V-D), T = 2 is for the SFID for updating the

collaborative intrusion detection signature (see Section V-E),

and T = 3 corresponds to the payload type for the attestation

of the SFID update (see Section V-F).

C. Detection Signature File Attestation

The DS-Chain automatically distributes the SFID for the

controllers network detection signature update. Blockchain

provides eventual consensus and is designed to be toler-

ant against temporary node failures; blockchain continues

to operate when some nodes are experiencing failures to

execute the protocol (in our case, when less than 1/3 of the

controller nodes are experiencing such failure), while those

nodes experiencing temporary failure, e.g., unavailable due to

networking disconnection, can re-connect and re-synchronize

at any time in the future2. Because blockchain allows such

2Such blockchain design to tolerate temporary node failures but eventually
agree on the blockchain state is generally applicable across the blockchain
applications. For example, in permissionless Bitcoin, a node can re-connect
with the blockchain network any time and download and synchronize the
blockchain state at that time of re-connection, or there can be temporary soft
forks causing distinct blocks which are both valid but eventually gets resolved
by choosing one via the longest-chain rule.

temporary de-synchronization although designed to eventually

get synchronized, it by itself is insufficient to guarantee that

the SFID has been delivered or is being used by the controllers

at the time.

To allow attestation of the detection signature update, we

build such additional functionality on the DS-Chain. The DS-

Chain includes explicit attestation of the events of the delivery

of the SFID to a controller and the controller’s accessing the

IPFS to retrieve the corresponding detection signature file. The

attestation information is uploaded on the DS-Chain so that

other controllers become aware that the controller (the subject

of the attestation) updated its security rules in terms of the

detection signature. Section V-E provides more details about

the DS-Chain.

The attestation is critical since, when there is networking

between the controller domains, the controllers have assur-

ances that they are at the same security level. For example,

if the explicit attestation is lacking on one side, a controller

updated with the latest detection signatures is aware that a

node managed by the controller lagging in detection signature

updates can be vulnerable against the latest intrusion threat

and can disallow certain networking or executions because it

is less trustworthy.

V. BLOCKCHAIN SCHEME

A. Blockchain Properties motivating our approach

As stated, our approach leverages the properties of

blockchain, this subsection points out those properties enabling

our approach as follows.

• Decentralization: Multiple entities (in our case, the SDN

controllers) are involved in the generation of the transac-

tions associating with the detection signature. Only a quo-

rum of controllers achieve consensus, will the transaction

become viable. Therefore, our scheme is resistant against

the insider compromises up to n controllers, which is

termed “n-compromise resistance”.

• Immutability: All the effective transactions put into the

distributed ledger will remain immutable, which can pro-

vide a strong capability to monitor and track the process

of detection signature generation by the corresponding

controllers.

• Modularity: The blockchain provides an additional layer

of implementation and therefore can be modular to the

rest of the SDN controllers operations. Such modularity



Algorithm 1 Smart-contract-based PBFT

Require: (3n+ 1) C participate in
Ensure: (2n+ 1) C agree
Ci submits a transaction
count = 1
i′ = 1
while i′ < (3n+ 1) && count < (2n+ 1) do

if i′ �= i then
Ci′ submits a transaction for vouching

end if
if Ci′ agree then
count = count+ 1

end if
i′ = i′ + 1

end while
if count >= (2n+ 1) then

Transaction is vouched in terms of PBFT
Block is generated

else
Transaction is not vouched

end if

TABLE I: Comparison of different blockchain schemes
Blockchain Payload type, T Consensus protocol
C-Chain T = 1 Smart-contract-based PBFT

DS-Chain T = 2 Smart-contract-based PBFT

DS-Chain T = 3 PoA-based broadcasting

is critical for our design goal of flexibility enabling the

involvement of heterogeneous SDN controllers.

B. Distributed Consensus Protocols

In our approach, we use two distributed consensus protocols

for different purposes. First, we apply Proof-of-Authority

(PoA) distributed consensus protocol. This consensus is used

where it only needs the broadcasting of the transactions using

PoA which is largely driven by identities and registration and

is thus applicable in permissioned environments. The authority

for PoA can be a controller in our approach. Second, we use

PBFT in our approach to resist against byzantine failure of

upto n controllers, which is defined as n-compromise resis-

tance. Because we utilize PBFT, we need 3n+ 1 participants

in total while reach 2n + 1 as the quorum of participants in

order to achieve the n-compromise resistance.

We define C as the participating controller node in the

blockchain P2P network, and use smart contract to facilitate

the PBFT consensus. The smart-contract-based PBFT consen-

sus protocol is described by Algorithm 1. That is to say, every

transaction issued by one participant (i.e. the controller in

our case) using the smart contract, another 2n at least (plus

the participant sending the transaction itself, the total number

becomes 2n + 1) participants must achieve an agreement by

voting for it to make that transaction viable.

Table I summaries these two distributed consensus proto-

cols used for distinct purposes by our C-Chain (see Section

V-D) and DS-Chain (see Section V-E) respectively. Note that

comparing such PoA-based broadcasting with smart-contract-

based PBFT, any transaction transmitted by the PBFT smart

contract is a voting-based PoA broadcast essentially. In other

words, PoA-based broadcasting needs 3n unicasts to propagate

one transaction effectively, while smart-contract-based PBFT

TABLE II: Definition of Variables
Variable Definition

i The index of the controller

j The index of time

e The index of block

x The index of the detection signature file

t The number of generated private-public key pairs

Ci The i-th controller

Ii The identity of i-th controller

Be The e-th block

Fx The x-th detection signature file

T The type of payload where T ∈ {1, 2, 3}
PT The payload of type T
Ki,j The public key of i-th controller at time j
ki,j The private key of i-th controller at time j
n The n of n-compromise resistance

H The hash function

E The encryption function

D The decryption function

G The digital certificate generation function

H E

PTPT ||

ki

E(ki , H(PT))

H

D

Ki Compare

Fig. 4: Standard digital signature (i is the sender controller)

needs (2n+1) · 3n unicasts to make the transaction effective.

Regarding the variables of the type of the payload, refer to

Section V-C.

C. Block Construction

Given a payload (also called transactions or records, de-

pending on the blockchain applications), this section describes

the construction of the block containing the payload. Table

II described the variables used in the context. The block

contains the followings: the hash of the previous block (in

plaintext), the payload PT (in plaintext), the type of payload

T (in plaintext), and the digital signature3 (processed using the

aforementioned data included in the block). In other words, the

e-th block Be = {H(Be−1)||PT ||T ||E(ki, H(PT ))}, where

T ∈ {1, 2, 3}. We adopt the standard digital signature scheme

(see Figure 4). The hash output of the previous payload

H(PT ) is the input of the digital signature algorithm using the

sender controller’s ki, so the digital signature is E(ki, H(PT )).
The concatenation of E(ki, H(PT )) and PT will be used for

verification using the sender controller’s Ki. So, the recipient

controller takes the concatenation message and produces a

hash code. The recipient controller also decrypts the digital

signature using the sender’s Ki. If the calculated hash code

matches the decrypted digital signature, the digital signature

is accepted as valid. Because only the sender controller knows

the ki, only the sender controller could have produced a valid

digital signature.

The block is therefore specific to the controller generating

the block and has strong source integrity, e.g., other controllers

can verify the digital signature to check that the block got

generated by the source controller. This block construction

is applicable for both of our blockchains described in the

3The digital signature is the cryptographic mechanism based on public-key
ciphers for integrity and authentication protection and not the signature used
for IDS. For clarity, we refer to the IDS signature as detection signature.



following sections. Note that since in our case we use one

block to contain only one transaction, so the term “block”

and ”transaction” are exchangeable in the context, which is

essentially the payload.

D. C-Chain for Distributed PKI (T = 1)

A blockchain can be used for permissioned if there is

an off-line registration. The permissioned blockchain controls

the participation in the blockchain transaction generation and

processing. In our approach, the blockchain for the SDN con-

trollers P2P network is permissioned, and only the registered

controllers are allowed to transmit payload. In contrast to

the permissionless blockchain-based cryptocurrency, such as

Bitcoin, our permissioned blockchain-based approach reduces

the networking overhead for practicality.

To this end, the C-Chain is used to facilitate the blockchain-

based distributed PKI to replace the centralized CA and

provides trust to the participating controllers that need to be

established. For the blockchain, the payload is the certificate

since T=1. In this regard, we define that for any controller Ci,

i ∈ {1, 2, ....., 3n+ 1}, 3n+ 1 indicates the total number of

controllers. For any time j, j ∈ {1, 2, ....., t}, t represents the

entire number of the created public-private key pairs. Based

on that, we define Ki,j as the public key of Ci at time j,

while ki,j is the private key of Ci at time j, and Ii is the

identity of Ci. So, P1={Ii||Ki,j}. We define G as the function

for generating digital certificate, so the digital certificate is

G(Ki,j , Ii, ki,j) = {Ii||Ki,j ||E(ki, H(Ii||Ki,j))}. Because

the payload structure (i.e., P1={Ii||Ki,j}) and the type of

payload (i.e., T=1) for the C-Chain are fixed, so the block

can be constructed by the means described in Section V-C.

Note that the C-Chain uses the smart-contract-based PBFT

consensus, which means one certificate transaction must get

voted by more than 2/3 of the whole participating controllers,

otherwise, the certificate will not be viable. Also, an effective

certificate can be revoked, and the revocation needs to be

compliance with the PBFT consensus.

E. DS-Chain for SFID Delivery and Update (T = 2)

This DS-Chain realizes two purposes: the SFID delivery

requiring PBFT consensus and the SFID attestation requiring

PoA-based broadcasting where the PoA-validators are the

sender controllers themselves. This section focuses on describ-

ing the SFID delivery and update, and Section V-F will depict

the SFID attestation in greater detail.

As mentioned, for this chain, the payload is the SFID since

T=2, and the SFID is returned by IPFS when the controller

imports a detection signature file into IPFS. Therefore, the

payload (i.e., P2=SFID) and the type of payload (i.e., T=2)

of the DS-Chain for SFID delivery are fixed, the block can be

constructed by the means described in Section V-C as well.

Also, the SFID delivery performed by the DS-Chain applies

smart-contract-based PBFT consensus. In other words, every

SFID transaction riding on one PoA-based broadcasting needs

at least another 2/3 votes of the entire participating controllers

and each vote requires one PoA-based broadcasting.

In addition, one detection signature file can contain one

detection signature or multiple ones (e.g., with a certain

number, or with a fixed update frequency4). If using one

file to include only one detection signature, the controller

can instantly broadcast the defense information to inform

other controllers, which is appropriate to defend against the

urgent and large-scale attacks to have a immediate detection

signature update over the participating controllers in order to

protect the SDN networks. However, this method increases

the networking overhead since every SFID transaction needs

the PBFT-based voting. So, an alternative way is to allow

one file to contain multiple detection signatures and upload

them together into the IPFS, and then only one transaction

containing the given SFID (which represents the file including

multiple detection signatures) needs to be transmitted by the

DS-Chain using PBFT consensus. The latter method is more

networking efficient than the former one, while the latter can

not transmit an immediate detection signature until it collects

enough ones. For example, assuming one detection signature

file can contain X detection signatures, and the blockchain

P2P network includes 3 controllers. If we use the method of

one file containing X detection signatures, the system will have

3 transaction broadcasts following PBFT consensus, while if

we use the method of one file containing only one detection

signature, then the system will have 3·X transaction broadcasts

in terms of PBFT consensus.

F. DS-Chain for SFID Attestation (T = 3)

As aforementioned, DS-Chain is also in charge of trans-

mitting SFID attestation. This type of payload is transmitted

using PoA-based broadcasting where the PoA-validator is the

controller itself who sends the payload.

Upon receiving the SFID-delivery block in Section V-E, the

controller retrieves and updates the corresponding detection

signature file. Given a new SFID x, the controller retrieves

the detection signature file Fx, computes the hash of the file

H(Fx) for the block payload, i.e., P3 = H(Fx). The payload

as well as the type of payload (i.e., T=3) are used to construct

the block, including the digital signature, as described in

Section V-C. Therefore, the block is specific to the controller

(with the source integrity provided by the digital signature)

and to the detection signature file Fx.

In contrast to the type of payload for SFID delivery de-

scribed in Section V-E requiring multiple distinct transactions

signed by multiple controllers (more than 2/3 of the con-

trollers), the type of payload for attestation requires one block

using PoA as the controller being the subject of the attestation

and creating the attestation block being the validator.

VI. IMPLEMENTATION AND EXPERIMENT

In this section, we describe the implementation detail of our

prototype in terms of the design, and present the experimental

results built on the prototype.

4PulledPork for Snort and Suricata rule management updates the rulesets
of detection signatures twice a week



TABLE III: VM specification in CloudLab
Virtualization Xen

Operating system Ubuntu 16.04.1 LTS (64-bit)

CPU Intel(R) Xeon(R) CPU E5-4620 0 @ 2.20GHz

Processor number 1

Memory 4 GB

Network Adapter Ethernet Physical

TABLE IV: Measurement of deploying payloads in blockchain

Type of
payload

Gas used ETH cost Block size
(bytes)

Block verification
time (ms)

T = 1 27594 0.00055188 1027 998.530

T = 2 25185 0.0005037 1013 998.419

T = 3 38620 0.0007724 924 998.308

A. Implementation

We use Ethereum (Geth version 1.9.16-stable) as well

as smart contract (Solidity version 0.5.16) to facilitate the

blockchain-enabled approach. We use Truffle (version 5.1.34)

to deploy the smart contract on the Ethereum blockchain.

Also, we select Ryu (version 4.34 with OpenFlow 1.3) as the

SDN controller which has built-in Snort library. So, the Ryu

framework integrated with the Snort library can facilitate our

IDS engine and SDN controller components, and the Snort

library supports developing detection program that can inform

detection alert to the controller [19].

We employ CloudLab as the underlying platform to build

the blockchain P2P network to prototype our approach. The

virtual machine’s specification is described in Table III. We

initially create a three-nodes-based P2P network, and each

node is hosted by a VM where we install the above mentioned

softwares to prototype our design. We implement the three-

nodes prototype testbed on Emulab cluster for carrying out

basic measurement. Specifically, built on the testbed, the

average round trip times (RRT) between every two nodes are

0.942 ms (node A to node B), 0.968 ms (node A to node C),

and 1.012 ms (node B to node C).

B. Experimental Results

1) Computation Overhead: This subsection presents the

computational overhead based on our implementation. Table

IV shows the measurement of pushing the different types of

payload into corresponding blockchain using smart contract.

We observe the cost of blockchain resource in terms of

different payloads. The certificate payload takes the most

blockchain resource of the three types when the Ethereum

blockchain processes the payload, since the certificate payload

is much greater and more complex than the other two types,

e.g. using X.509 as the certificate format in our approach. In

our case, the gas price is 20 Gwei, so gas·(20·Gwei) = ETH ,

where 109 ·Gwei = 1ETH . Also, because we configure the

Ethereum to use PoA consensus to broadcast the payloads,

where our smart-contract-based PBFT consensus builds on and

every broadcast is a PoA-based broadcast. So, for broadcasting

each payload regardless of the scale of the blockchain P2P

network, the block verification time is always around 998 ms.

In addition, Table V shows the CPU and memory usages as

well as the time of executing different tasks using blockchain.

We find that running the Ethereum blockchain costs CPU

1.18% and deploying smart contract costs CPU 3.06%, while

TABLE V: CPU, MEM and execution time when carrying out

different tasks using blockchain

Task CPU (%) MEM (MB) Exec. Time (ms)
Run Geth 1.18 303.35 –

Deploy smart contract 3.06 652.46 1015

Push certificate (T = 1) 4.99 63.72 126.2

Push SFID (T = 2) 4.54 60.94 121.1

Push SFID attestation (T = 3) 5.3 53.31 180

646
582
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Fig. 5: Networking overhead for transmitting payloads (T )

they take RAM memory 303.35 MB and 652.46 MB respec-

tively. Note that the cost of running Geth is persistent as

long as the Ethereum blockchain is running, while the cost

of deploying smart contract only lasts around 1.015 second as

the Table shows.

Now that the blockhcain is running and the smart contract

has been deployed on the blockchain, we test the tasks for

pushing different types of payloads on the blockchain by

calling the smart contract. We can see that the task for T = 3
to push the attestation takes the most CPU usage (5.3%) and

execution time (180 ms), since it keeps track of the number of

controllers which have sent back their attestation values after

downloading the detection signature files using a local count

variable, and increases the count of these controllers which

have sent back their attestation values. Because the attestation

payload size is the smallest of the three types, the task costs

the least memory usage. Also, the tasks for T = 1 and T = 2
are very similar, just to construct the corresponding payload

and submit it. However, the certificate payload is larger than

the SFID payload, that is why the task for T = 1 takes more

computational overhead than the task for T = 2. Note that

we do not show the underlying PBFT consensus cost for both

payloads over here.

2) Networking Overhead: This subsection presents the net-

working overhead measurement results based on our proto-

type. We first test the average time for transmitting every

specific type of payload (see Figure 5, which shows the

average time values with 95% confidence interval). We find

that transmitting one certificate payload (T = 1) takes network

latency 646 ms on average, one SFID payload (T = 2) takes

582 ms on average, and one attestation (T = 3) takes 418 ms

on average.

Further, because both certificate payload (T = 1) and

SFID payload (T = 2) use PBFT consensus for ensuring

every payload viable, from a node-level perspective, they both

need (2n + 1) · 3n transmissions/unicasts to get the votes

for endorsing the payload according to our n-compromise

resistance, where 3n is the rest number of controllers exclud-

ing the sender controller and 2n + 1 indicates a quorum of

controllers to achieve majority decision. By contrast, for the
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Fig. 7: Networking overhead in terms of latency

attestation payload (T = 3), from a node-level perspective, it

only needs every receiver node to tell the sender node that it

already downloads and uses the new detection signature, thus it

includes 3n transmissions/unicasts; while from a network-level

perspective, it needs 3n ·3n transmissions/unicasts since every

other controller (3n in total) needs to tell other 3n controllers

that it already updates the detection signature. Figure 6 shows

the increasing number of unicasts for making one certifcate

and SFID payload viable, and finishing one SFID attestation

in terms of the increasing n (of n-compromise resistance).

Therefore, using the average network latency per payload

transmission shown by Figure 5 to multiply the number

of transmissions shown by Figure 6, we can get the total

networking overhead (latency) in terms of the different types

of payload (see Figure 7). We can see that the node-level

networking overhead for the attestation is orders of magnitude

less than the certificate and SFID, while the network-level net-

working overhead for the attestation is relatively comparable

to the other two payloads’ node-level networking overheads.

VII. CONCLUSION

Integrating collaborative intrusion detection with the soft-

ware defined networks is a promising research direction, since

SDN has become the standard network management which

separates the flow control intelligence from the data plane

while the CIDS strength can improve the security of the

individually centralized SDN networks by forming a coor-

dinated defense across multiple domains. In this paper, we

propose a blockchain-enabled collaborative intrusion detection

in SDN networks, which provides the trust management of

the controllers and the integrity of the detection signature

sharing over the controllers to gain a coordinated defense

and defend against insider attacks supported by n-compromise

resistance. We develop our prototype using Ethereum, smart

contract, Ryu SDN framework and IPFS in CloudLab, and

the experiments show that our approach is effective and

efficient for sharing detection signatures in real-time through

the trustworthy distributed platform.
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“Taxonomy and survey of collaborative intrusion detection,” ACM
Comput. Surv., vol. 47, no. 4, May 2015.

[2] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
2015.

[3] S. Hameed and H. A. Khan, “Sdn based collaborative scheme for
mitigation of ddos attacks,” Future Internet, vol. 10, p. 23, 2018.

[4] T. G. Nguyen, T. V. Phan, B. T. Nguyen, C. So-In, Z. A. Baig,
and S. Sanguanpong, “Search: A collaborative and intelligent nids
architecture for sdn-based cloud iot networks,” IEEE access, vol. 7, pp.
107 678–107 694, 2019.

[5] D. W. Chadwick, W. Fan, G. Costantino, R. de Lemos, F. D. Cerbo,
I. Herwono, M. Manea, P. Mori, A. Sajjad, and X.-S. Wang, “A cloud-
edge based data security architecture for sharing and analysing cyber
threat information,” Future Generation Computer Systems, vol. 102, pp.
710 – 722, 2020.

[6] W. Meng, E. W. Tischhauser, Q. Wang, Y. Wang, and J. Han, “When
intrusion detection meets blockchain technology: A review,” IEEE
Access, vol. 6, pp. 10 179–10 188, 2018.

[7] N. Alexopoulos, E. Vasilomanolakis, N. R. Ivánkó, and M. Mühlhäuser,
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