
Thresholding Graph Bandits with GrAPL

Daniel LeJeune Gautam Dasarathy Richard G. Baraniuk
Rice University Arizona State University Rice University

Abstract

In this paper, we introduce a new online de-
cision making paradigm that we call Thresh-
olding Graph Bandits. The main goal is
to efficiently identify a subset of arms in
a multi-armed bandit problem whose means
are above a specified threshold. While tra-
ditionally in such problems, the arms are as-
sumed to be independent, in our paradigm
we further suppose that we have access to the
similarity between the arms in the form of a
graph, allowing us to gain information about
the arm means with fewer samples. Such
a feature is particularly relevant in modern
decision making problems, where rapid deci-
sions need to be made in spite of the large
number of options available. We present
GrAPL, a novel algorithm for the threshold-
ing graph bandit problem. We demonstrate
theoretically that this algorithm is effective
in taking advantage of the graph structure
when the structure is reflective of the dis-
tribution of the rewards. We confirm these
theoretical findings via experiments on both
synthetic and real data.

1 INTRODUCTION

Systems that recommend products, services, or other
attention-targets have become indispensable in the ef-
fective curation of information. Such personalization
and recommendation techniques have become ubiqui-
tous not only in product/content recommendation and
ad placements but also in a wide range of applica-
tions like drug testing, spatial sampling, environmen-
tal monitoring, and rate adaptation in communication
networks; see, e.g., Villar et al. (2015); Combes et al.

Proceedings of the 23rdInternational Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2020, Palermo,
Italy. PMLR: Volume 108. Copyright 2020 by the au-
thor(s).

(2014); Srinivas et al. (2010). These are often mod-
eled as sequential decision making or bandit problems,
where an algorithm needs to choose among a set of
decisions (or arms) sequentially to maximize a desired
performance criterion.

Recently, an important variant of the bandit problem
was proposed by Locatelli et al. (2016) and Gotovos
et al. (2013), where the goal is to rapidly identify
all arms that are above (and below) a fixed thresh-
old. This thresholding bandit framework, which may
be thought of as a version of the combinatorial pure ex-
ploration problem (Chen et al., 2014), is useful in vari-
ous applications like environmental monitoring, where
one might want to identify the hypoxic (low-oxygen-
content) regions in a lake; like crowd-sourcing, where
one might want to keep all workers whose productivity
trumps the cost to hire them; or like political polling,
where one wants to identify which political candidate
individual voting districts prefer. Such a procedure
may even be considered in human-in-the-loop machine
learning pipelines, where the algorithm might want to
select a set of options that meet a certain cut-off for
closer examination by a human expert.

In many important applications, however, one is faced
with an enormous number of arms that need to sorted
through almost instantaneously. This makes prior ap-
proaches untenable both from a computational and
from a statistical viewpoint. However, when there is
information sharing between these arms, one might
hope that this situation can be improved.

In this paper, we consider the thresholding bandit
problem in the setting where a graph describing the
similarities between the arms is available (see Sec-
tion 2). We show that if one leverages this graph infor-
mation, and more importantly the homophily (that is,
that strong connection implies similar behavior), then
one can achieve significant gains over prior approaches.
We develop a novel algorithm, GrAPL (see Section 3),
that explicitly takes advantage of the graph structure
and the homophily. We then characterize, using rigor-
ous theoretical estimates of the error of GrAPL, how
this algorithm indeed leverages this side information
to improve upon prior algorithms in similar settings.

ar
X

iv
:1

90
5.

09
19

0v
3

 [c
s.L

G
]

24
 M

ar
 2

02
0

Thresholding Graph Bandits with GrAPL

Finally, in Section 4, we confirm these theoretical find-
ings via experiments on real and synthetic data.

2 THRESHOLDING GRAPH
BANDITS

2.1 Thresholding Bandits

Let N denote the number of bandit arms, which are
observable via independent samples of the correspond-
ing R-sub-Gaussian distributions νi, i ∈ [N]. That is,
each distribution νi satisfies the following condition for
all t ∈ R:

EX∼νi [exp{t(X − µi)}] ≤ exp{R2t2/2}, (1)

where µi = EX∼νi [X]. The goal of a learning algo-
rithm in the thresholding bandit problem is to recover
the superlevel set Sτ = {i : µi ≥ τ} from these noisy
observations. The learning algorithm is allowed to run
for T iterations, and at each iteration t ∈ [T] it can
select one arm πt ∈ [N] from which to receive an ob-
servation. At the end of the T iterations, the algo-
rithm returns its estimate Ŝ of the superlevel set Sτ .
This variant of the multi-armed bandit problem was
introduced by Locatelli et al. (2016), who provided
the Anytime Parameter-free Thresholding (APT) al-
gorithm for solving the problem with matching upper
and lower bounds. Mukherjee et al. (2017) and Zhong
et al. (2017) have since provided algorithmic exten-
sions to APT that incorporate variance estimates and
provide guarantees in asynchronous settings. Recently,
Tao et al. (2019) introduced the Logarithmic-Sample
Algorithm and proved it to be instance-wise asymp-
totically optimal for minimizing aggregate regret.

The thresholding bandit problem can be thought of as
a version of the combinatorial pure exploration (CPE)
bandit problem described by Chen et al. (2014). As
such, the appropriate performance loss measures the
quality of the returned superlevel set estimate Ŝ at
time T rather than a traditional notion of regret. We
adopt a natural loss function for this setting (as done
by Locatelli et al. (2016)):

LT = 1
{∣∣∣(Sτ+ε ∩ Ŝc) ∪ (Scτ−ε ∩ Ŝ)

∣∣∣ > 0
}
, (2)

which for any ε > 0 is the indicator that at least one i
such that |µi − τ | > ε has been classified as being on
the wrong side of the threshold.

Next, we need a notion of complexity that captures
the statistical difficulty of performing the thresholding.
Towards this end, we set ∆i , ∆τ,ε

i = |µi−τ |+ε, where
ε is the same quantity as in the definition of LT , and

define the complexity of the thresholding problem as

H , Hτ,ε =
N∑
i=1

∆−2
i . (3)

This definition of complexity also plays a key role in
the analysis of Locatelli et al. (2016). Intuitively, if
there are values µi that are near the threshold, then
the superlevel set will be “hard” to identify, and the
problem complexity H will be correspondingly high.
Conversely, if the values µi are far from the threshold,
then the superlevel set will be “easy” to identify, and
the problem complexity is correspondingly small.

2.2 Thresholding Graph Bandits

As discussed in the introduction, the main contribu-
tion of this paper is to present a new framework for
such thresholding bandit problems where one has ac-
cess to additional information about the similarities of
arms. In particular, we will model this additional in-
formation as a weighted graph that describes the arm
similarities. Let G = (V , E ,W) denote a similarity
graph defined on the N arms such that each arm is a
vertex in V and W ∈ RN×N describes the weights of
the edges E between these vertices. Let L = D−W
denote the graph Laplacian, where D = diag(W1) is
a diagonal matrix containing the weighted degrees of
each vertex. The graph Laplacian in this context is
functionally quite similar to the precision matrix of a
Gaussian graphical model defined on the same graph,
where edges on the graph indicate conditional depen-
dencies between two arms given all other arms, and the
weight indicates the strength of the partial correlation.

The main idea behind leveraging this similarity graph
is that, if the learning algorithm is aware of the similar-
ity structure among arms through the graph G, and if
the rewards µ = (µi)

N
i=1 vary smoothly among similar

arms, then the learning algorithm can leverage the in-
formation sharing to avoid oversampling similar arms.

We capture the effectiveness of the graph in helping
with the information sharing using two related notions
of complexity. The first is ‖µ‖Lλ =

√
µ>Lλµ, the Lλ

norm of µ, where Lλ = L + λI for some λ > 0. It is
not hard to check that this value is smaller for those
µ’s that are smooth on the graph G (see, e.g., Ando
and Zhang (2007)). The second notion of complexity,
the effective dimension, characterizes the helpfulness
of the graph itself.

Definition 2.1 (Valko et al., 2014, Def. 1). For any
γ > 0, T ∈ {1, 2, . . . , N}, the effective dimension dT
of the regularized Laplacian Lλ is the largest d such
that

(d− 1)γλd ≤
T

log(1 + T/γλ)
, (4)

Daniel LeJeune, Gautam Dasarathy, Richard G. Baraniuk

where λd is the d-th eigenvalue of Lλ when λ1 ≤ . . . ≤
λN .

In Definition 2.1, T is the time horizon of the algo-
rithm; if T > N , then one may use N instead of T on
the right side of (4). γ > 0 is a free parameter that
can be tuned in the algorithm design (see Section 3).

It can be checked readily that the effective dimension
is no larger than N for any graph. In fact, as observed
by Valko et al. (2014), for many graphs of interest the
effective dimension turns out to be significantly smaller
than N . As we will see in Section 3, this quantity
plays a key role in capturing the effectiveness of our
algorithm in leveraging the arm-similarity graph.1

2.3 A Non-adaptive Approach

Before introducing our algorithm for thresholding
graph bandits, we first introduce a useful baseline.

Our algorithm for thresholding graph bandits has
two primary components. The first of these is using
the graph structure to regularize the estimate of the
arm means using Laplacian regularization techniques,
which have received considerable attention in recent
decades (see Belkin et al., 2005; Zhu et al., 2003; Ando
and Zhang, 2007). The second is an adaptive sam-
pling strategy in the style of the Anytime Parameter-
free Thresholding (APT) algorithm of Locatelli et al.
(2016). In this section, we describe an algorithm which
has only the first component—i.e., an algorithm which
uses graph-regularized estimates of the arm means but
selects which arm to sample next non-adaptively; see
Algorithm 1.

Algorithm 1 Thresholding via non-adaptive graph-
regularized estimation

1: Input: τ, ε,L, γ, T
2: V0 ← L + λI
3: µ̂0 ← τ1
4: n0 ← 0
5: for t in 1, . . . , T do
6: Determine πt non-adaptively
7: Observe xt ∼ νπt
8: Vt ← Vt−1 + γ−1eπte

>
πt

9: xt ← xt−1 + γ−1xteπt
10: µ̂t ← V−1

t xt
11: end for
12: Output: Ŝ =

{
i : µ̂Ti ≥ τ

}
At each iteration, Algorithm 1 first selects an arm
to sample in a non-adaptive manner. This could be

1We also note here that the same authors proposed
an improved definition of effective dimension that is even
smaller and remains applicable in our setting (see Section
1.3.1 of Valko (2016)).

simply the selection of an arm at random or cycling
through a permutation of the arms, for example.

Next, the algorithm solves the following Laplacian-
regularized least-squares optimization problem for
some γ > 0:

µ̂t = arg min
µ

t∑
s=1

(xs − µπs)2 + γ‖µ‖2Lλ . (5)

This optimization problem is known to promote solu-
tions that are smooth across the graph (see Ando and
Zhang, 2007). In fact, let ei denote the i-th standard
basis vector and recall that πt denotes the index of the
arm pulled at time t. If we define the quantities

Vt = Lλ +
1

γ

t∑
s=1

eπse
>
πs , (6)

xt =
1

γ

t∑
s=1

xseπs , (7)

then the above optimization problem admits a solution
of the form

µ̂t = V−1
t xt. (8)

We note that this solution also corresponds to a poste-
riori estimation of µ under a Gaussian prior with pre-
cision matrix Lλ when the distributions νi are Gaus-
sian with variance R2. The following proposition char-
acterizes the performance of Algorithm 1.

Proposition 2.2. If Algorithm 1 is run using a sam-
pling strategy where every N iterations all arms are

sampled, and ‖µ‖Lλ ≤
√

T

γH̃
, then for T = kN for

any positive integer k,

E [LT] ≤ exp

{
− γ2

2R2

(√
T

γH̃
− ‖µ‖Lλ

)2

+ dT log

(
1 +

T

γλ

)}
, (9)

where H̃ , N/min {|µi − τ |2 : |µi − τ | ≥ ε}.

Thus with a non-adaptive algorithm, the complexity
depends only on the most difficult arm (the arm with
µi closest to the threshold). As we will see next, with
our adaptive approach, the complexity and therefore
the algorithmic performance can be significantly im-
proved when there are arms further away from the
threshold.

3 GrAPL

In this section, we present our algorithm for threshold-
ing graph bandits. Our algorithm is inspired in part

Thresholding Graph Bandits with GrAPL

by the Anytime Parameter-free Thresholding (APT)
algorithm of Locatelli et al. (2016), and also by the
work of Valko et al. (2014), who applied Laplacian reg-
ularization to the bandit estimator through the eigen-
vectors of Lλ. Unlike Valko et al. (2014), however, we
use the Laplacian directly, and we include the tunable
regularization parameter γ. We dub our algorithm the
Graph-based Anytime Parameter-Light thresholding
algorithm (GrAPL); see Algorithm 2.

Algorithm 2 GrAPL

1: Input: τ, ε,L, γ, α, λ, T
2: V0 ← L + λI
3: µ̂0 ← τ1

4: ∆̂0 ← ε1
5: n0 ← 0
6: for t in 1, . . . , T do

7: zti ← ∆̂t−1
i

√
nt−1
i + α ∀i

8: πt ← arg mini z
t
i

9: Observe xt ∼ νπt
10: Vt ← Vt−1 + γ−1eπte

>
πt

11: xt ← xt−1 + γ−1xteπt
12: µ̂t ← V−1

t xt
13: ∆̂t

i ← |µ̂ti − τ |+ ε ∀i
14: nt ← nt−1 + eπt
15: end for
16: Output: Ŝ =

{
i : µ̂Ti ≥ τ

}
At each iteration, GrAPL performs the same estima-
tion routine as Algorithm 1. Where it differs is in the
strategy for choosing the next arm to sample. To select
the arm at iteration t + 1, we estimate our distances
from the threshold via

∆̂t
i = |µ̂ti − τ |+ ε. (10)

We then use these to compute confidence proxies

zt+1
i = ∆̂t

i

√
nti + α, (11)

where nti is the number of times arm i has been se-
lected up to time t, and α > 0 is some small quantity
that keeps zti from being equal to zero before arm i is
sampled. Finally, the algorithm selects the next arm as

πt = arg min
i

zti , (12)

and the next sample is drawn as xt ∼ νπt . The al-
gorithm then repeats the process in the subsequent
iterations until stopped at time T .

While GrAPL has three parameters—namely, α, λ,
and γ—and is therefore not truly parameter-free like
APT, the only parameter that needs to be tuned to the
specific problem instance is γ. A value such as 10−3

for λ is sufficient to stabilize the linear system solving
in (8) for many problems. If we wish for the algorithm
to sample all arms at least once before sampling an
arm twice, we can let α be some very small value,
such as 10−8; otherwise, we can let α be a larger value
such as 1. The parameter γ is the only parameter that
we might wish to choose appropriately based on the
graph and the properties of µ—see Section 3.3 for a
deeper discussion. However, we note that our main
result in Theorem 3.1 below is valid for any values of
α, λ, and γ.

In terms of implementation, we note that while (8) in-
volves solving a linear system which can be expensive
in general, if the graph is sparse, then there exist tech-
niques to solve this system efficiently (in time nearly
linear in the number of edges in the graph). Even if
the graph is not sparse, it can be “sparsified” so that
the system can be approximately solved efficiently. We
refer the reader to Vishnoi (2013) for more details. We
believe this approach (solving the system with Vt di-
rectly) significantly reduces the complexity of imple-
menting a graph-based bandit algorithm compared to
the approach of Valko et al. (2014), which requires a
computation of the eigenspace of Lλ. While comput-
ing a restricted eigenspace can also be done efficiently
using similar techniques, GrAPL can be implemented
in only a few lines of code using a standard solver
such as the conjugate gradient method, readily avail-
able in common scientific computing packages in most
programming languages. We have found such an im-
plementation2 fast enough for our purposes when the
solver is initialized with the solution from the previ-
ous iteration. Though we do not include very large
graphs in our experiments in this paper, we have suc-
cessfully applied GrAPL to sparse graphs with over
100,000 vertices with no major difficulty.

3.1 Error Upper Bounds

We present a bound on the error that quantifies the
extent to which GrAPL is able to leverage both the
graph structure itself and the smoothness of µ on the
graph.

Theorem 3.1. If Algorithm 2 is run on a graph
G(V , E ,W) with Laplacian L and effective dimension

dT , and ‖µ‖Lλ ≤ 1
3M+1

√
T
γH , then

E [LT] ≤ exp

{
− γ2

2R2

(
1

3M + 1

√
T

γH
− ‖µ‖Lλ

)2

+ dT log

(
1 +

T

γλ

)}
, (13)

2See https://github.com/dlej/grapl.

https://github.com/dlej/grapl

Daniel LeJeune, Gautam Dasarathy, Richard G. Baraniuk

where M , max
{√

α/γλ,
√

1 + α
}
.

Remark 3.2. While one must exercise caution when
comparing upper bounds, we note that the primary
difference between the performance bounds of Algo-
rithm 1 and GrAPL is in the complexity quantities.
The relationship between these two is given by

H̃ ≥
N∑
i=1

(max {|µi − τ |, ε})−2 ≥ H. (14)

That is, in the worst case, where all values µi are close
to the threshold τ , we expect both Algorithm 1 and
GrAPL to perform similarly, but when there are only
a few values µi near τ , we expect GrAPL to have a
significant advantage.

Remark 3.3. We can decompose T as T = T0 + T1,
where

T0 = γH(3M + 1)2‖µ‖2Lλ (15)

is the iteration at which the condition for Theorem 3.1
is met, and T1 is the number of iterations after T0.
Then for T1 ≥ 8T0, the right-hand side of (13) can be
upper bounded by

exp

{
− γT1

4(3M + 1)2R2H
+ dT log

(
1 +

T

γλ

)}
. (16)

While this quantity is controllable by the parameter
γ, this control is limited by the the dependence of T0

on γ. However, with smaller values of ‖µ‖Lλ—that
is, a smoother graph signal—we may realize the faster
convergence rates associated with larger values of γ.

Remark 3.4. If we consider the two summands in the
exponent of (16), one of the form −Θ(T) and the other
of the form Θ(dT log T), then we can define the crit-
ical iteration Tcrit as the iteration at which point the
first of these terms begins to dominate and the bound
begins to rapidly decay with T . Specifically, Tcrit is
the iteration at which these two terms are equal in
magnitude. If we allow the notation Θ̃(·) to absorb

logarithmic factors, we have that Tcrit = Θ̃(dT). This
is already a significant improvement over the standard
thresholding bandit problem, where every arm must
be drawn at least once, so Tcrit = Θ̃(N).

Remark 3.5. The quantity ‖µ‖Lλ can be considered
with respect to any reference offset used to estimate
µ̂. For example, if we replaced (8) and (7) with

µ̂t = V−1
t xt + τ1 (17)

xt =
1

γ

t∑
s=1

(xs − τ)eπs , (18)

then the ‖µ‖Lλ quantities in the above bound would
be replaced by ‖µ− τ1‖Lλ .

3.2 Optimality

3.2.1 Oracle Sampling Strategy

Consider an oracle algorithm that uses the same esti-
mation strategy as Algorithm 1 and GrAPL but has
access to the values of |µi − τ | and need only identify
the sign of µi − τ . Instead of a non-adaptive sam-
pling strategy, let this algorithm sample according to
its knowledge of |µi − τ |. For such an algorithm, if we
relax the notion of sampling to allow the algorithm to
make non-integer sample allocations according to an
allocation rule β (obeying βi ≥ 0 and

∑
i βi = 1) such

that nti = βit, we obtain the following result.

Proposition 3.6. For the oracle algorithm with sam-

pling allocation β, if ‖µ‖Lλ ≤
√

T
γH∗

, then

inf
β

E [LT] ≤ exp

{
− γ2

2R2

(√
T

γH∗
− ‖µ‖Lλ

)2

+ dT log

(
1 +

T

γλ

)}
, (19)

where H∗ ,
∑
j:|µj−τ |≥ε |µj − τ |

−2.

We note the similarity between H and H∗. Using the
fact that |µi − τ | + ε ≤ 2|µi − τ | for |µi − τ | ≥ ε, we
can relate the two by

4H ≥ H∗ ≥ H − ε−2Nsmall, (20)

where Nsmall = |{i : |µi − τ | < ε}|. So, except in cases
where there are many values µi that are near the
threshold, the performance upper bound of GrAPL
matches that of the oracle algorithm. However, in
cases where there are many values µi that are within
ε of the threshold, the oracle algorithm can have sig-
nificantly lower complexity.

3.2.2 Lower Bound for Disconnected Cliques

Consider the following family of graphs of size N con-
sisting of D disconnected K-cliques and associated
graph signals µ such that for each arm i belonging to
clique j, µi = µj . For this family of graphs and signals,
the thresholding graph bandit problem reduces to the
thresholding bandit problem on D independent arms
with complexity H ′ ,

∑D
j=1(|µj − τ | + ε)−2 = H/K.

This gives us the following lower bound from Locatelli
et al. (2016):

E [LT] ≥ exp

{
−3KT

R2H
− 4 log(12(log(T) + 1)N)

}
.

(21)

For the lower bound, then, Tcrit = Θ̃(R2H/K).

Thresholding Graph Bandits with GrAPL

For this family of graphs, the graph Laplacian consists
of a matrix with D blocks of the form KIK−JK , where
JK is the K × K matrix of all ones. Therefore, the
eigenvalues of Lλ are λ with multiplicity D and K+λ
with multiplicity N−D. Thus, the effective dimension
is the larger of

min

{
D,

⌊
1 +

T

γλ log(1 + T/γλ)

⌋}
and

min

{
N,

⌊
1 +

T

γ(K + λ) log(1 + T/γλ)

⌋}
.

For any desired time horizon (e.g., T ≤ 10, 000), for
sufficiently small λ, this will result in dT ≤ D. We also
note that for this class of signals, ‖µ‖2Lλ = λ‖µ‖22, so
for sufficiently small λ, the bound in Theorem 3.1 holds
for all T .

Considering the form of our upper bound in (16), we

have for this problem class that Tcrit = Θ̃(DR2H/γ) =

Θ̃(NR2H/γK). So, considering a fixed N and γ, we
can say that GrAPL has optimal Tcrit (up to logarith-
mic factors) with respect to R, H, and K (equivalently,
D) for this family of graphs and signals. With γ = N ,
this rate would also be optimal with respect to N if it
were not for the condition in (15).

3.2.3 Linear Bandits

As pointed out by Valko et al. (2014), if µ lies in the
span of D eigenvectors of L, then the graph bandit
problem reduces to the problem of thresholding linear
bandits (Auer, 2003). Results from the best arm iden-
tification problem in linear bandits (Soare et al., 2014;
Tao et al., 2018), another example of pure exploration
bandits, suggest that the optimal sample complexity
is linear in the underlying dimension D. In the above
example with graphs consisting of D cliques, signal µ
lies in the span of the D eigenvectors corresponding to
the smallest eigenvalues of L, and so our result that
Tcrit = Θ̃(D) in this setting is consistent with results
from linear bandits.

3.3 Choice of Regularization Parameter

GrAPL has a free parameter γ which can be tuned to
optimize Tcrit, which we discuss in this section. Tcrit

will be on the order of the larger of T0 and T1, so
to optimize Tcrit, we must fix T0 and T1 to be of the
same order. Here, we simply set T1 = 8T0. Then our
optimal choice of γ is that which satisfies (15) and

γT1

4(3M + 1)2R2H
= dT0+T1

log

(
1 +

T0 + T1

γλ

)
.

After some algebra, we obtain

γ∗ =
2R

‖µ‖Lλ

√√√√d′ log

(
1 +

9H(3M + 1)2‖µ‖2Lλ
λ

)
,

(22)

where d′, the effective dimension at time T0 + T1 for
this choice of γ, is the largest d such that

(d− 1)λd ≤
9H(3M + 1)2‖µ‖2Lλ

log

(
1 +

9H(3M+1)2‖µ‖2Lλ
λ

) .
As we would expect, the smoother the graph signal is
(smaller ‖µ‖Lλ) and the larger the amount of noise,
the larger γ (the more smoothing) we will require. All

together, this gives us Tcrit = Θ̃(
√
d′R‖µ‖LλH). In

the worst case, when the graph structure is unhelpful
(i.e., when d′ = N) and the signal is not smooth on the
graph (i.e., ‖µ‖Lλ = Θ(

√
N)), this gives Tcrit a linear

dependence on N , as we would expect. On the other
hand, in the setting of D cliques, where for sufficiently
small λ we can consider ‖µ‖Lλ = Θ(

√
D), we again

obtain Tcrit = Θ̃(D).

4 EXPERIMENTS

In experiments on both artificial and real data we
demonstrate the advantage of GrAPL over the APT
algorithm of Locatelli et al. (2016), which does not
utilize the graph information, and over Algorithm 1,
which uses non-adaptive random arm sampling. We
demonstrate that exploiting the graph structure can
significantly reduce the number of samples necessary
to obtain a good estimate of the superlevel set, and
that the adaptive arm selection rule of GrAPL further
reduces the number of samples necessary over non-
adaptive sampling with the same graph-regularized es-
timator.

4.1 Stochastic Block Model

In our first experiment, we let N = 1000 and
sample an unweighted, undirected graph from a
stochastic block model with two communities of
size N/2, with within-community edge probability
log(N/2)/(N/2) and between-community edge prob-
ability log(N/2)/(N/2)3/2. We let

µi =

{
1 i ≤ N/2
−1 otherwise,

and we make the distribution of each arm Gaussian
with σ = 2. For GrAPL, we let λ = 10−3 and α = 1.
With τ = 0 and ε = 0.01, we run the algorithms for

Daniel LeJeune, Gautam Dasarathy, Richard G. Baraniuk

0 1000 2000 3000 4000 5000

t

10−3

10−2

10−1

E
γ = 100

γ = 101

γ = 102

APT

Figure 1: Misclassification error E vs. iteration t on
the stochastic block model problem for GrAPL (solid),
APT (dashed), and Algorithm 1 (dotted). Lines indi-
cate the median error, and shaded areas around the
lines indicate the interquartile range. Solid and dot-
ted lines of the same color use the same value of γ for
GrAPL and Algorithm 1, respectively.

T = 5000 iterations and compute the misclassification
error E at each iteration t, defined as

E =

∣∣∣(Sτ+ε ∩ Ŝc) ∪ (Scτ−ε ∩ Ŝ)
∣∣∣∣∣Sτ+ε ∪ Scτ−ε

∣∣ . (23)

Figure 1 shows the median misclassification error for
each algorithm and choice of γ over 100 trials along
with the interquartile range. We note that APT is ini-
tialized with an additional 2N = 2000 samples before
its first iteration, so for APT the actual number of
samples collected is higher than the iteration counter.
Both GrAPL and Algorithm 1 (for sufficiently large
γ) are able to exploit the graph structure and con-
verge to the correct superlevel set much more quickly
than APT. However, consistently across values of γ,
GrAPL converges in turn much more quickly than
its non-adaptive counterpart. In particular, GrAPL
makes significant gains in early iterations and appears
to be more robust to the choice of γ. We also com-
puted γ∗ according to (22) for this problem and found
the average γ∗ to be 28.72 with a standard deviation
of 1.15 over 100 trials, which agrees with the good
performance of GrAPL with γ = 10 and γ = 100.

4.2 Small-World Graph

In our next experiment, we again let N = 1000 and
sample small-world graphs according to the model of
Newman and Watts (1999) with new-edge probability
0.01 and ring initialized with 4 neighbors. To generate

our smooth signal, we first generate an i.i.d. Gaussian
vector y ∈ RN and compute

µ0 = (L + I/N2)−1y,

which we then normalize to have zero median and
standard deviation 0.2. The multiplication by (L +
I/N2)−1 serves essentially to project y onto the
eigenspace of L corresponding to its smallest eigenval-
ues, which vary smoothly along the graph. Following
this, we obtain µ by adding 0.5 to the signal and clip-
ping the values to be between 0 and 1. The distribu-
tion of each arm is Bernoulli with probability µi. With
τ = 0.5 and ε = 0.01, the problem is quite difficult.

Figure 2 shows the misclassification error for this prob-
lem when the algorithms are run over 100 trials for
T = 5000 iterations. As before, we show the me-
dian error and interquartile range. For GrAPL, we
let λ = 10−3 and α = 10−8, and we estimate µ̂ with
respect to the offset τ as described in Remark 3.5. On
this much more difficult problem, we have selected a
wider range of values for γ. Here we again see that
although with the best choice of γ the advantage of
GrAPL is only slight over Algorithm 1, GrAPL is much
more robust to the choice of γ, and for poorly chosen γ
the non-adaptive algorithm provides almost no advan-
tage over APT. We found the average γ∗ to be 227.9
with a standard deviation of 50.9 over 100 trials for
this problem, which agrees with our finding the best
performance at γ = 100. Lastly, we note that an arti-
fact of the choice of very small α is that there is a spike
in error around t = N which corresponds to GrAPL
prioritizing sampling each arm at least once over the
adaptive strategy.

4.3 Political Blogs

In our experiment on real-world data, we use the polit-
ical blogs graph from Adamic and Glance (2005). The
vertices in the graph correspond to political blogs com-
menting on US politics around the time of the 2004
U.S. presidential campaign, and edges denote links
from one blog to another. The signal µ associated
with this graph is

µi =

{
1 blog i is conservative-leaning

0 blog i is liberal-leaning.

We make the edges undirected and set the edge weight
equal to the total number of links from one blog to
the other, and then take the largest connected com-
ponent, which contained 1222 blogs. The problem we
simulate then is that we would like to identify which
of these blogs are conservative and liberal without ac-
tually having to visit and read each blog (expensive
sampling), and we have access to this additional graph

Thresholding Graph Bandits with GrAPL

0 1000 2000 3000 4000 5000

t

0.0

0.1

0.2

0.3

0.4

0.5

0.6
E

γ = 100

γ = 102

γ = 104

APT

Figure 2: Misclassification error E vs iteration t on the
small-world graph problem for GrAPL (solid), APT
(dashed), and Algorithm 1 (dotted). Lines indicate
the median error, and shaded areas around the lines
indicate the interquartile range. Solid and dotted lines
of the same color use the same value of γ for GrAPL
and Algorithm 1, respectively.

information (and cheap computation compared to the
time it would take to visit a blog). We make the distri-
bution of each arm non-random and let the algorithms
take at most N samples. Since APT requires 2N sam-
ples for initialization, we do not compare against APT.

Figure 3 shows the misclassification error for τ = 0.5
and ε = 0.01, with median error and interquantile
range over 100 trials for Algorithm 1. We run GrAPL
with λ = 10−3 and α = 10−8, using offset τ , and
vary γ, but we do not run repeated trials since the
observations are non-random. The results are similar
to before, in that using the graph structure provides
much better results than not using the graph, and in
that we see GrAPL consistently outperforming Algo-
rithm 1. For instance, with γ = 10−5, GrAPL is able
to reach 1% error at t ≈ 400, while its random counter-
part over the majority of trials does not do the same
until t > 1000. We would expect the optimal γ to
be the smallest γ possible based on (22), since there
is no noise in the problem. However, for γ = 10−7,
floating point rounding begins to become an issue—
effectively, there is a small nonzero amount of noise
due to rounding—and the performance of GrAPL is
worse than with the larger values of γ.

5 CONCLUDING REMARKS

In this paper we have introduced a new paradigm of
online sequential decision making that we call Thresh-
olding Graph Bandits, where the main objective is

0 200 400 600 800 1000 1200

t

10−3

10−2

10−1

100

E

γ = 10−7

γ = 10−5

γ = 10−3

γ = 10−1

no graph

Figure 3: Misclassification error E vs iteration t on
the political blogs problem for GrAPL (solid), Algo-
rithm 1 (dotted), and using no graph (dashed). For
Algorithm 1, lines indicate median error, and shaded
areas around the lines indicate the interquartile range.
Solid and dotted lines of the same color use the same
value of γ.

the identification of the superlevel set of arms whose
means are above a given threshold in a multi-armed
bandit setting. Importantly, in our framework, we
have supposed that we have access to a graph that
encodes the similarity between the arms. We have
developed GrAPL, a novel algorithm for this thresh-
olding graph bandits problem, along with theoretical
results that show the relationship between the mis-
classification rate of GrAPL, the number of arm pulls,
the graph structure, and the smoothness of the reward
function with respect to the given graph. We have also
demonstrated that GrAPL is optimal in terms of the
number of arm pulls, the statistical hardness, and the
dimensionality of the problem. Finally, we have con-
firmed our theoretical results via experiments on syn-
thetic and real data, highlighting the significant gains
to be had in leveraging the graph information with an
adaptive algorithm.

Acknowledgements

This work was supported by NSF grants CCF-
1911094, IIS-1838177, and IIS-1730574; ONR grants
N00014-18-12571 and N00014-17-1-2551; AFOSR
grant FA9550-18-1-0478; DARPA grant G001534-
7500; and a Vannevar Bush Faculty Fellowship, ONR
grant N00014-18-1-2047.

References

Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Im-
proved algorithms for linear stochastic bandits. In

Daniel LeJeune, Gautam Dasarathy, Richard G. Baraniuk

Advances in Neural Information Processing Systems
24, pages 2312–2320, 2011.

L. A. Adamic and N. Glance. The political blogosphere
and the 2004 US election: divided they blog. In
Proceedings of the 3rd International Workshop on
Link Discovery, pages 36–43. ACM, 2005.

R. K. Ando and T. Zhang. Learning on graph with
laplacian regularization. In Advances in Neural
Information Processing Systems 19, pages 25–32,
2007.

P. Auer. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning
Research, 3:397–422, 2003.

M. Belkin, P. Niyogi, and V. Sindhwani. On mani-
fold regularization. In Proceedings of the Tenth In-
ternational Workshop on Artificial Intelligence and
Statistics, pages 17–24, 2005.

S. Chen, T. Lin, I. King, M. R. Lyu, and W. Chen.
Combinatorial pure exploration of multi-armed ban-
dits. In Advances in Neural Information Processing
Systems 27, pages 379–387, 2014.

R. Combes, A. Proutiere, D. Yun, J. Ok, and Y. Yi.
Optimal rate sampling in 802.11 systems. In Pro-
ceedings of IEEE INFOCOM 2014 – IEEE Con-
ference on Computer Communications, pages 2760–
2767, 2014.

A. Gotovos, N. Casati, G. Hitz, and A. Krause. Active
learning for level set estimation. In Proceedings of
the 23rd International Joint Conference on Artificial
Intelligence, pages 1344–1350, 2013.

A. Locatelli, M. Gutzeit, and A. Carpentier. An opti-
mal algorithm for the thresholding bandit problem.
In Proceedings of The 33rd International Conference
on Machine Learning, pages 1690–1698, 2016.

S. Mukherjee, N. K. Purushothama, N. Sudarsanam,
and B. Ravindran. Thresholding bandits with aug-
mented UCB. In Proceedings of the 26th Interna-
tional Joint Conference on Artificial Intelligence,
pages 2515–2521, 2017.

M. E. Newman and D. J. Watts. Renormalization
group analysis of the small-world network model.
Physics Letters A, 263(4-6):341–346, 1999.

M. Soare, A. Lazaric, and R. Munos. Best-arm iden-
tification in linear bandits. In Advances in Neural
Information Processing Systems 27, pages 828–836.
2014.

N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger.
Gaussian process optimization in the bandit setting:
No regret and experimental design. In Proceedings
of the 27th International Conference on Machine
Learning, pages 1015–1022, 2010.

C. Tao, S. Blanco, and Y. Zhou. Best arm identifi-
cation in linear bandits with linear dimension de-
pendency. In Proceedings of the 35th International
Conference on Machine Learning, pages 4877–4886,
2018.

C. Tao, S. Blanco, J. Peng, and Y. Zhou. Thresholding
bandit with optimal aggregate regret. In Advances
in Neural Information Processing Systems 32, pages
11664–11673. 2019.

M. Valko. Bandits on graphs and structures. habili-
tation thesis, École normale supérieure de Cachan,
2016.

M. Valko, R. Munos, B. Kveton, and T. Kocák. Spec-
tral bandits for smooth graph functions. In Proceed-
ings of the 31st International Conference on Ma-
chine Learning, pages 46–54, 2014.

S. S. Villar, J. Bowden, and J. Wason. Multi-armed
bandit models for the optimal design of clinical tri-
als: benefits and challenges. Statistical science: a re-
view journal of the Institute of Mathematical Statis-
tics, 30(2):199–215, 2015.

N. K. Vishnoi. Lx=b. Laplacian solvers and their algo-
rithmic applications. Foundations and Trends® in
Theoretical Computer Science, 8(1–2):1–141, 2013.

J. Zhong, Y. Huang, and J. Liu. Asynchronous
parallel empirical variance guided algorithms for
the thresholding bandit problem. arXiv preprint
arXiv:1704.04567, 2017.

X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-
supervised learning using gaussian fields and har-
monic functions. In Proceedings of the 20th Interna-
tional Conference on Machine Learning, pages 912–
919, 2003.

Thresholding Graph Bandits with GrAPL

A USEFUL LEMMAS

We introduce the additional notation of

ξt =
t∑

s=1

eπs(xs − µπs), (24)

σti =

√
(V−1

t)ii, (25)

Nt = diag(nt), (26)

to be used in the proofs of our results. The following lemmas are proved in Section E.

Lemma A.1. With probability at least 1− δ, for any i ∈ [N] and t ≥ 1,

|µ̂ti − µi| ≤ σti

(
R

γ

√
log

(
|Vt|
δ2|Lλ|

)
+ ‖µ‖Lλ

)
. (27)

Lemma A.2. For all i ∈ [N] and t ≥ 0,

σti ≤

√
(σ0
i)2

1 + (σ0
i)2nti/γ

. (28)

Lemma A.3. Let dT be the effective dimension. Then

log
|VT |
|Lλ|

≤ 2dT log

(
1 +

T

γλ

)
. (29)

B PROOF OF PROPOSITION 2.2

For Algorithm 1 to succeed, it must be that µ̂i ≥ τ for each i such that µi ≥ τ + ε and µ̂i < τ for each i such
that µi < τ − ε (we can make this inequality strict or non-strict without changing probabilistic statements since
µ̂ is a continuous random variable). For a given i, this is satisfied if |µ̂i − µi| ≤ |µi − τ |. We show this for the
case that µi ≥ τ + ε. If µ̂i ≥ µi in this case, then the necessary condition is satisfied. If µ̂i < µi, then

µi − τ = |µi − τ | ≥ |µ̂i − µi| = µi − µ̂i (30)

=⇒ τ ≤ µ̂i. (31)

The case where µi ≤ τ − ε is analogous. Thus, a sufficient condition for the success of Algorithm 1 is that
|µ̂i − µi| ≤ |µi − τ | for all i such that |µi − τ | ≥ ε. If we use Lemmas A.1, A.2, and A.3, we know that with
probability at least 1− δ,

|µ̂ti − µi| ≤ σti

(
R

γ

√
log

(
|Vt|
δ2|Lλ|

)
+ ‖µ‖Lλ

)
(32)

≤

√
(σ0
i)2

1 + (σ0
i)2nti/γ

(
R

γ

√
2dT log

(
1 +

T

γλ

)
− 2 log δ + ‖µ‖Lλ

)
(33)

≤
√

γ

nti

(
R

γ

√
2dT log

(
1 +

T

γλ

)
− 2 log δ + ‖µ‖Lλ

)
. (34)

Thus Algorithm 1 succeeds with probability at least 1 − δ if, for all i such that |µi − τ | ≥ ε,√
γ

nti

(
R

γ

√
2dT log

(
1 +

T

γλ

)
− 2 log δ + ‖µ‖Lλ

)
≤ |µi − τ |. (35)

Daniel LeJeune, Gautam Dasarathy, Richard G. Baraniuk

Because Algorithm 1 has an equal sampling allocation for each arm, for T = kN we have that nti = k = T/N .
Then since for each i the left-hand side of (35) is the same, we can write the complete sufficient condition as

√
γN

T

(
R

γ

√
2dT log

(
1 +

T

γλ

)
− 2 log δ + ‖µ‖Lλ

)
≤ min {|µi − τ | : |µi − τ | ≥ ε} . (36)

The smallest δ for which this inequality holds is

δ = exp

{
− γ2

2R2

(√
T

γH̃
− ‖µ‖Lλ

)2

+ dT log

(
1 +

T

γλ

)}
, (37)

provided ‖µ‖Lλ ≤
√

T

γH̃
, where H̃ , N/min {|µi − τ |2 : |µi − τ | ≥ ε}.

C PROOF OF THEOREM 3.1

The proof follows the same general strategy as that of Theorem 2 of Locatelli et al. (2016).

C.1 A Favorable Event

Let

δ = exp

{
− γ2

2R2

(
1

3M + 1

√
T

γH
− ‖µ‖Lλ

)2

+ dT log

(
1 +

T

γλ

)}
, (38)

and consider for the rest of the proof an event of probability at least 1 − δ that gives us the result of Lemma
A.1. On this event then, for all i ∈ [N],

|µ̂ti − µi| ≤ σti

(
R

γ

√
log

(
|Vt|
δ2|Lλ|

)
+ ‖µ‖Lλ

)

≤ σti
(
R

γ

√
2dT log(1 + T/γλ)− 2 log δ + ‖µ‖Lλ

)
≤ σti

3M + 1

√
T

γH
, (39)

where the second inequality comes from Lemma A.3 and the third inequality comes from plugging in δ using the

fact that ‖µ‖Lλ ≤ 1
3M+1

√
T
γH .

C.2 A Helpful Arm

At time T , there must exist an arm k such that nTk ≥ T
H∆2

k
. If this were not true, then

T =

N∑
i=1

nTi <
N∑
i=1

T

H∆2
i

= T, (40)

which is a contradiction. Let t ≤ T be the last time this arm was pulled, and consider this time for the rest of
the proof. Note that ntk = nTk ≥ T

H∆2
k

.

Thresholding Graph Bandits with GrAPL

C.3 Bounding the Other Arms using the Helpful Arm

When nti ≥ 1, using Lemma A.2,

σti

√
nti + α ≤

√
(σ0
i)2(nti + α)

1 + (σ0
i)2nti/γ

≤

√
γ(nti + α)

nti

≤
√
γ(1 + α). (41)

So, including the case of nti = 0,

σti

√
nti + α ≤ max

{
σ0
i

√
α,
√
γ(1 + α)

}
≤ √γM, (42)

where the last inequality comes from the fact that σ0
i ≤ 1/

√
λ.

We know that

|µ̂ti − µi| ≥
∣∣|µ̂ti − τ | − |µi − τ |∣∣ = |∆̂t

i −∆i|, (43)

so we can find a lower bound:

ztk = ∆̂t
k

√
ntk + α

≥

(
∆k −

σtk
3M + 1

√
T

γH

)√
ntk

≥
√
T

H

3M

3M + 1
, (44)

where the last inequality comes from our bound on ntk and from (41) with α = 0. For the upper bound,

zti = ∆̂t
i

√
nti + α

≤

(
∆i +

σti
3M + 1

√
T

γH

)√
nti + α

≤ ∆i

√
nti + α+

M

3M + 1

√
T

H
. (45)

Since we pulled arm k on round t, ztk ≤ zti , so√
T

H

3M

3M + 1
≤ ∆i

√
nti + α+

M

3M + 1

√
T

H
, (46)

=⇒ 1

3M + 1

√
T

H
≤

∆i

√
nti + α

2M
. (47)

C.4 Wrapping Up

Finally, we have that

|µ̂Ti − µi| ≤
σTi

3M + 1

√
T

γH
≤

∆iσ
t
i

√
nti + α

2
√
γM

≤ ∆i

2
, (48)

where the second inequality comes from the fact that σti is decreasing in t and from (47). Now for i such that
µi ≥ τ + ε, we have

µ̂Ti ≥ µi −
∆i

2
= µi −

µi − τ + ε

2
=
τ + µi − ε

2
≥ τ. (49)

Daniel LeJeune, Gautam Dasarathy, Richard G. Baraniuk

For i such that µi ≤ τ − ε, we have

µ̂Ti ≤ µi +
∆i

2
= µi +

τ − µi + ε

2
=
τ + µi + ε

2
≤ τ. (50)

D PROOF OF PROPOSITION 3.6

The proof of this proposition is the same as the proof of proposition 2.2 until the choice of the sampling allocation
nti = βit. Continuing from (35), we must choose β such that, for all i such that |µi − τ | ≥ ε,√

γ

T

(
R

γ

√
2dT log

(
1 +

T

γλ

)
− 2 log δ + ‖µ‖Lλ

)
≤
√
βi|µi − τ |. (51)

To optimize this inequality such that it holds for the smallest possible δ, we must make the right-hand side as
large as possible. That is, we must choose β that maximizes

min
i:|µi−τ |≥ε

√
βi|µi − τ |. (52)

To maximize this minimum, we must choose β that makes all of the terms the same. With the constraint that∑
i βi = 1, this means that we must choose

βi =

{(
H∗|µi − τ |2

)−1
if |µi − τ | ≥ ε

0 otherwise,
(53)

where

H∗ =
∑

j:|µj−τ |≥ε

|µj − τ |−2. (54)

With this choice of β, the smallest δ for which the inequality holds is

δ = exp

{
− γ2

2R2

(√
T

γH∗
− ‖µ‖Lλ

)2

+ dT log

(
1 +

T

γλ

)}
, (55)

provided ‖µ‖Lλ ≤
√

T
γH∗

.

E PROOF OF LEMMAS

E.1 Proof of Lemma A.1

To prove Lemma A.1, we first need the following lemma, which is a direct consequence of Theorem 1 of Abbasi-
Yadkori et al. (2011):

Lemma E.1. For any δ > 0, with probability at least 1− δ, for all t ≥ 0,

‖ξt‖2V −1
t
≤ R2 log

(
|Vt|
δ2|Lλ|

)
. (56)

Using Lemma E.1, the proof of Lemma A.1 follows that of Lemma 3 of Valko et al. (2014). Let Nt = diag(nt),
and note that xt = (Ntµ + ξt)/γ. Then

|µ̂ti − µi| =
∣∣〈ei,V−1

t (Ntµ + ξt)/γ − µ〉
∣∣

=
∣∣〈ei,V−1

t ξt/γ −V−1
t (Vt −Nt/γ)µ〉

∣∣
≤
∣∣∣〈ei, ξt/γ〉V−1

t

∣∣∣+
∣∣∣〈ei,Lλµ〉V−1

t

∣∣∣
≤ σti

(
‖ξt/γ‖V−1

t
+ ‖Lλµ‖V−1

t

)
, (57)

Thresholding Graph Bandits with GrAPL

where the last inequality comes from Cauchy-Schwarz and the fact that σti = ‖ei‖V−1
t

. The first term is bounded

by Lemma E.1, and the second term is bounded as follows:

‖Lλµ‖2V−1
t

= µ>LλV
−1
t Lλµ

= µ>
(

Lλ −N
1/2
t

(
γI + N

1/2
t LλN

1/2
t

)−1

N
1/2
t

)
µ

≤ µ>Lλµ = ‖µ‖2Lλ , (58)

where the second equality comes from the Woodbury matrix identity, and the first inequality is from the subtra-
hend being positive semidefinite.

E.2 Proof of Lemma A.2

From the Sherman–Morrison formula, for t ≥ 1,

(σti)
2 = e>i

(
Vt−1 + eπte

>
πt/γ

)−1
ei

= e>i

(
V−1
t−1 −

V−1
t−1eπte

>
πtV

−1
t−1

γ + eπtV
−1
t−1eπt

)
ei

= (σt−1
i)2 −

(
e>i V−1

t−1eπt
)2

γ + (σt−1
πt)2

, (59)

so σti is decreasing in t. When πt = i, the update depends only on the previous value σt−1
i . Consider the setting

where πt = i ∀ t ≥ 1. Then (σti)
2 = γ(σ0

i)2/(γ + t(σ0
i)2), which can be shown by induction. It clearly holds for

t = 0. For t ≥ 1,

(σti)
2 = (σt−1

i)2

(
1− (σt−1

i)2

γ + (σt−1
i)2

)
=

γ(σt−1
i)2

γ + (σt−1
i)2

=
γ2(σ0

i)2

(γ + (t− 1)(σ0
i)2)

(
γ +

γ(σ0
i)2

γ+(t−1)(σ0
i)2

)
=

γ(σ0
i)2

γ + t(σ0
i)2

. (60)

In the setting where we do not have πt = i for all t ≥ 1, since σti is decreasing even when πt 6= i, we can upper
bound σti with what its value would be if at each time t such that πt 6= i we do not update σti . This would mean
that by time t, σti has been updated nti times, yielding the stated bound.

E.3 Proof of Lemma A.3

This lemma is derived from Lemma 6 of Valko et al. (2014). If QΛQ> is the eigendecomposition of Lλ, then let
VT and Λ in the notation of Valko et al. (2014) be equal to γQ>VTQ and γΛ, respectively, in our notation.
The result follows by the invariance of determinants under unitary transformations.

	1 INTRODUCTION
	2 THRESHOLDING GRAPH BANDITS
	2.1 Thresholding Bandits
	2.2 Thresholding Graph Bandits
	2.3 A Non-adaptive Approach

	3 GrAPL
	3.1 Error Upper Bounds
	3.2 Optimality
	3.2.1 Oracle Sampling Strategy
	3.2.2 Lower Bound for Disconnected Cliques
	3.2.3 Linear Bandits

	3.3 Choice of Regularization Parameter

	4 EXPERIMENTS
	4.1 Stochastic Block Model
	4.2 Small-World Graph
	4.3 Political Blogs

	5 CONCLUDING REMARKS
	A USEFUL LEMMAS
	B PROOF OF PROPOSITION 2.2
	C PROOF OF THEOREM 3.1
	C.1 A Favorable Event
	C.2 A Helpful Arm
	C.3 Bounding the Other Arms using the Helpful Arm
	C.4 Wrapping Up

	D PROOF OF PROPOSITION 3.6
	E PROOF OF LEMMAS
	E.1 Proof of Lemma A.1
	E.2 Proof of Lemma A.2
	E.3 Proof of Lemma A.3

