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Abstract

We present the first sublinear memory sketch that
can be queried to find the nearest neighbors in
a dataset. Our online sketching algorithm com-
presses an N element dataset to a sketch of size
O(N"log® N)in O(N®*+1 1og® N) time, where
b < 1. This sketch can correctly report the near-
est neighbors of any query that satisfies a sta-
bility condition parameterized by b. We achieve
sublinear memory performance on stable queries
by combining recent advances in locality sensi-
tive hash (LSH)-based estimators, online kernel
density estimation, and compressed sensing. Our
theoretical results shed new light on the memory-
accuracy tradeoff for nearest neighbor search,
and our sketch, which consists entirely of short
integer arrays, has a variety of attractive features
in practice. We evaluate the memory-recall trade-
off of our method on a friend recommendation
task in the Google Plus social media network.
We obtain orders of magnitude better compres-
sion than the random projection based alternative
while retaining the ability to report the nearest
neighbors of practical queries.

1. Introduction

Approximate near-neighbor search (ANNS) is a funda-
mental problem with widespread applications in databases,
learning, computer vision, and much more (Gionis et al.,
1999). Furthermore, ANNS is the first stage of several data
processing and machine learning pipelines and is a popular
baseline data analysis method. Informally, the problem is
as follows. Given a dataset D = x1, o, ..., T, observed
in a one pass sequence, build a data structure S that can ef-
ficiently identify a small number of data points z; € D that
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have high similarity to any dynamically generated query gq.

In this paper, we focus on low-memory ANNS in settings
where it is prohibitive to store the complete data in any
form. Such restrictions naturally arise in extremely large
databases, computer networks, and internet-of-things sys-
tems (Johnson et al., 2019). We want to compress the
dataset D into a sketch S that is as small as possible while
still retaining the ability to find near-neighbors for any
query. Furthermore, the algorithm should be one pass as
the second pass is prohibitive when we cannot store the full
data in any form. It is common wisdom that the size of S
must scale linearly (> Q(XV)), even if we allow algorithms
that only identify the locations of the nearest neighbors.
In this work, we challenge that wisdom by constructing a
sketch of size O(N? log® N) bits in O(N**1log® N) time.
Our sketch can identify near-neighbors for stable queries
with high probability in O(N+! log® N) time. The value
of b depends on the dataset, but b can be significantly less
than 1 for many applications of practical importance. It
should be noted that our sketch does not return the near
neighbors themselves, since we do not store the vectors
in any form. Instead, we output the identity or the index
of the nearest neighbor, which is sufficient for most appli-
cations and does not fundamentally change the problem.
Our sketch also does not attempt to correctly answer ev-
ery possible near-neighbor query in sublinear memory, as
this would violate information theoretic lower bounds. In-
stead, we provide a graceful tradeoff between the stability
of a near neighbor search query and the memory required
to obtain a correct answer.

1.1. Our Contribution

Our main contribution is a one-pass algorithm that pro-
duces a sketch S that solves the exact v-nearest neighbor
problem in sub-linear memory with high probability. A for-
mal problem statement is available in Section 2.3 and our
theoretical results are formally stated in Section 4. Our al-
gorithm requires O(N"*! log® N) time to construct S and
the same time to return the v nearest neighbors for a query.
Here, b is a query-dependent value that describes the stabil-
ity or difficulty of the query. Our guarantees are general and
work for any query, but the sketch is only sub-linear when
b < 1. In practice, one commits to a given b value and
obtains the guarantees for all queries satisfying our condi-
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tions.

We obtain our sketch by merging compressed sensing tech-
niques with recently-developed sketching algorithms. Sur-
prisingly, we find that the hardness of a near-neighbor
query is directly related to the notion of sparsity, or signal-
to-noise ratio (SNR), in compressed sensing (Donoho,
2006; Tropp & Gilbert, 2007). This connection allows us
to analyze geometric structure in the dataset using the very
well-studied compressed sensing framework. The idea of
exploiting structure to improve theoretical guarantees has
recently gained traction because it can lead to stronger
guarantees. For instance, the first improvements over the
seminal near-neighbor search results of (Indyk & Motwani,
1998) were obtained using data-dependent hashing (An-
doni et al., 2014). These methods use information about
the data distribution to generate an optimal hash for a given
dataset. In this work, we assume that the dataset has a set of
general properties that are common in practice and we con-
struct a data structure that exploits these properties. In gen-
eral, the communication complexity of the near neighbor
problem is O(N). Our method requires sub-linear memory
because our data assumptions limit the set of valid queries.

We support our theoretical findings with real experiments
on large social-network datasets. Our theoretical tech-
niques are sufficiently general to accommodate a variety
of compressed sensing methods and KDE approximation
algorithms. However, in practice we apply our theory us-
ing the Count-Min Sketch (CMS) as the compressed sens-
ing method and the recently-proposed RACE sketch for
KDE (Coleman & Shrivastava, 2020). Our RACE-CMS
sketch inherits a variety of desirable practical properties
from the RACE and CMS sketches that are used in its con-
struction. When implemented this way, our near neighbor
sketch consists entirely of a set of integer arrays. Further-
more, RACE sketches are linear, parallel and mergeable,
allowing us to realize many practical gains using RACE-
CMS. For instance, despite a query time complexity that is
theoretically worse than linear search, RACE-CMS can be
implemented in such a way that it is fast and practical to
construct and query, processing thousands of vectors each
second. As a result, we believe that our method will enable
a variety of practical applications that need to perform near
neighbor search in the distributed streaming setting with
limited memory.

2. Applications

Here, we describe several applications for low-memory
near neighbor sketches.

Graph Compression for Recommendation: In recom-
mendation systems, we represent relationships, such as
friendship or co-purchases, as graphs. Given N users, we

represent each user as an /N dimensional sparse vector,
where non-zero entries correspond to edges or connections.
To perform recommendations, we often wish to find pairs
of users that are mutually connected to a similar set of other
users. The process of identifying these users is a similarity
search problem over the N dimensional sparse vector rep-
resentation of the graph (Hsu et al., 2006). Online graphs
can be very large, with billions of nodes and trillions of
edges (Ching et al., 2015). Since graphs at this scale are
prohibitively expensive to store and transmit, methods ca-
pable of compressing the network into a small and informa-
tive sketch could be invaluable for large-scale recommen-
dations.

Robust Caching: The process of caching previously-
seen data is a central component of many latency-critical
applications including search engines, computer networks,
web browsers and databases. While there are many well-
established methods, such as Bloom filters, to detect ex-
act matches, caching systems cannot currently report the
distance between a query element and the contents of the
cache. Our sketches can be used to implement caching
mechanisms that are robust to minor perturbations in the
query. Such a capability naturally provides better anomaly
detection, robust estimation and retrieval. Since similar
data structures can fit into the cache of modern proces-
sors (Luo & Shrivastava, 2018), our sketches could be an
effective practical tool for online caching algorithms.

Distributed Data Streaming: In application domains
such as the internet-of-things (IoT) and computer networks,
we often with to build classifiers and other machine learn-
ing systems in the streaming setting (Ma et al., 2009). In
practice, sketching is a critical component of distributed
data collection pipelines. For instance, Apple uses a wide
variety of sketches to enable mobile users to transmit valu-
able information that can be used to train machine learning
models while minimizing the data transmission cost (Apple
Differential Privacy Team, 2017). Similar challenges occur
with distributed databases and IoT settings, where data gen-
erators can be scattered across a network of connected de-
vices. Such applications require sketching methods to min-
imize the data communication cost while preserving utility
for downstream learning applications. Since our sketches
consist of integer arrays, they can easily be serialized and
sent over a network.

2.1. Related Work

The problem of finding near-neighbors in sub-linear time
is a very well-studied problem with several solutions (In-
dyk & Motwani, 1998). However, the memory requirement
for near-neighbor search has only recently started receiv-
ing attention (Indyk & Wagner, 2018; 2017). Although
hueristic methods for sample compression are employed in
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Table 1. Summary of related work. Results are shown for a d-dimensional dataset of IV points. Existing methods (Johnson & Linden-
strauss, 1984; Indyk & Wagner, 2018; Agarwal et al., 2005) can estimate distances to all points in the dataset with a 1 &= e multiplicative
error (full e dependence not shown). Our method estimates the similarity with all points having a e additive error, where b depends on

the properties of the dataset.

Method Sketch Size (bits) | Sketch Time Comments

No compression dN log N N/A -

Random projections (Johnson & Lindenstrauss, 1984) | N log” N Nlog N Widely used in practice
Compressed clustering tree (Indyk & Wagner, 2018) Nlog N Nd logo(l) N | Multiple passes
Coresets (Agarwal et al., 2005) de=(@=1) N + ¢ @D | Multiple Passes

This work Ntlog® N Nb+11og® N | b < 1 for stable queries

practice, the best theoretical result in this direction requires
O(N log N) memory and therefore does not break the lin-
ear memory bound (Indyk & Wagner, 2018). Table 1 con-
tains a summary of existing work in the area. To the best of
our knowledge, the algorithm described in this paper is the
first to perform near-neighbor search using asymptotically
sub-linear memory.

Coresets or Clustering Based Approaches: A reason-
able compression approach is to construct a coreset or rep-
resent the dataset as a set of clusters. For instance, the
widely-used FAISS system compresses vectors using prod-
uct quantization (Jegou et al., 2010). There are also sam-
pling procedures to construct a subset P of D and guaran-
tee the existence of a point p € P such that d(p,z) < €
for € > 0. The cluster-based approach from (Har-Peled
& Kumar, 2014) uses similar ideas to reduce the space
for v-nearest-neighbor by a constant factor of % How-
ever, our procedure is superior in the following two regards.
First, coresets and sample-based compression methods re-
quire parallel access to the entire dataset at once to deter-
mine which points to retain in the sketch. As an example,
the sketch in (Har-Peled & Kumar, 2014) requires an of-
fline clustering step. Therefore, it is impossible to stream
queries to the sketch efficiently using existing methods.
Second, cluster approximations of the data cannot solve
the exact v-nearest neighbor problem because the sketch-
ing process removes points from the dataset. Despite the
guarantees that can be obtained using e coverings of the
dataset, there may be any number of near-neighbors within
e of the query that have been discarded during sketching.

Perhaps most importantly, our method requires weaker as-
sumptions about the dataset. Cluster-based methods as-
sume that the dataset has a clustered structure that can
be approximated by a small collection of centroids. To
achieve high compression ratios, coreset methods require
similar assumptions. However, our method is valid even
when there is no efficient cluster representation. Our weak
assumptions are particularly applicable to recent problems
in recommendation systems, graph compression and neural

embedding models. In this context, we are given a dataset
where each embedding or object representation is close to
a relatively small number of other elements. Furthermore,
we expect most of our queries to be issued in regions that
contain only a few elements from the dataset. Although
there may be no large-scale hierchical clustering structure,
our method can exploit the weaker structure in the dataset
to provide good compression without the need for complex
clustering and sample compression algorithms.

Finally, we note that our approach is much simpler to un-
derstand and analyze than existing methods. While cluster-
ing methods can achieve good performance, they usually
require complex distance-approximation methods at query
time. Sketch construction consists of computationally-
intensive clustering steps or coreset sampling routines that
have many moving parts. In contrast, our data structure is
a simple array of integer counters with a fixed size. There-
fore, we expect that our method will be attractive to practi-
tioners and system designers.

2.2. Background

Our algorithm uses recent advances in locality-sensitive
hashing (LSH)-based sketching with standard compressed
sensing techniques. Before covering our method in detail
and presenting theoretical results, we briefly review some
useful results in sketching and compressed sensing.

2.3. Problem Statement

In this paper, we solve the exact v-nearest neighbor prob-
lem. The v-nearest neighbor problem is to identify all
of the v closest points to a query with high probability.
The difficulty of the v-nearest neighbor problem is data-
dependent. To capture the difficulty of a query, we use
the notion of near-neighbor stability from the seminal pa-
per (Beyer et al., 1999).

Definition 1 Exact v-nearest neighbor
Given a set D of points in a d-dimensional space and a
parameter v, construct a data structure which, given any
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query point q, reports a set of v points in D with the fol-
lowing property: Each of the v nearest neighbors to q is in
the set with probability 1 — 0.

Definition 2 Unstable near-neighbor search

A nearest neighbor query is unstable for a given ¢ if the
distance from the query point to most data points is < (1 +
€) times the distance from the query point to its nearest
neighbor.

2.4. Compressed Sensing and the Count Min Sketch

Compressed sensing is the area in signal processing that
deals with the recovery of compressible signals from a sub-
linear number of measurements. The task is to recover an
N-length vector x from a vector y of M linear combina-
tions, or measurements, of the N components of x. The
problem is tractable when x is v-sparse and has only v
nonzero elements. For a more detailed description of the
compressed sensing problem, see (Baraniuk, 2007). The
fundamental result in compressed sensing is that we can
exactly recover x from y using only M = O(vlog N/v)
measurements.

In the streaming literature, the v nonzero elements are of-
ten called heavy hitters. The Count-Min Sketch (CMS) is
a classical data summary to identify heavy hitters in a data
stream. The CMS is a d x w array of counts that are in-
dexed and incremented in a randomized fashion. Given
a vector s, for every element s; in s, we apply d univer-
sal hash functions hq(-),...hq(-) to 4 to obtain a set of d
indices. Then, we increment the CMS cells at these in-
dices. When all elements of s are non-negative, we have a
point-wise bound on the estimated s; values returned by the
CMS (Cormode & Muthukrishnan, 2005). For the sake of
simplicity, we only consider the CMS when presenting our
results. Finding heavy hitters is equivalent to compressed
sensing (Indyk, 2013), and there are an enormous number
of valid measurement matrices in the literature (Candes &
Plan, 2011). Other compressed sensing methods can im-
prove our bounds, but we defer this discussion the supple-
mentary materials.

Theorem 1 Given a CMS sketch of the non-negative vec-
tors € Rﬂ\_[ with d = O (log (%)) rows and w = O (%)
columns, we can recover a vector s°™S such that we have
the following point-wise recovery guarantee with probabil-

ity 1 — & for each recovered element s$™5:

i .

5; < sMS < s; +els|y (1)

2.5. Locality-Sensitive Hashing

LSH (Indyk & Motwani, 1998) is a popular technique for
efficient approximate nearest-neighbor search. An LSH
family is a family of functions with the following property:

Under the hash mapping, similar points have a high proba-
bility of having the same hash value. We say that a collision
occurs whenever the hash values for two points are equal,
i.e. h(p) = h(q). The probability Pry[h(p) = h(q)] is
known as the collision probability of p and ¢. In this pa-
per we will use the notation p(p, ¢) to denote the collision
probability of p and g. For our arguments, we will assume
a slightly stronger notion of LSH than the one given by (In-
dyk & Motwani, 1998). We will suppose that the colli-
sion probability is a monotonic function of the similarity
between p and q. That is

p(p,q) o f(sim(p, q)) (2)

where sim(p, g) is a similarity function and f(-) is mono-
tone increasing. LSH is a very well-studied topic with a
number of well-known LSH families in the literature (Gio-
nis et al., 1999). Most LSH families satisfy this assump-
tion.

2.6. Repeated Array-of-Counts Estimator (RACE)

Recent work has shown that LSH can be used for effi-
cient unbiased statistical estimation (Spring & Shrivastava,
2017; Charikar & Siminelakis, 2017; Luo & Shrivastava,
2018). The RACE algorithm (Coleman & Shrivastava,
2020) replaces the universal hash function in the CMS with
an LSH function. The result is a sketch that approximates
the kernel density estimate (KDE) of a query. Here, we
re-state the main theorem from (Luo & Shrivastava, 2018)
using simpler notation.

Theorem 2 ACE Estimator (Luo & Shrivastava, 2018)
Given a dataset D, an LSH function I(-) — [1,R] and a
parameter K, construct an LSH function h(-) — [1, RX]
by concatenating K independent [(-) hashes. Let A € RE"
be an array of O(R¥ log N) bits where the i component
is

Ali] = Z Lin(a)=1}

zED

Then for any query q,

E[AMQ)]] = > p,9)*

z€D

We will heavily leverage the observation that A[h(q)] is
an unbiased estimator of the summation of collision prob-
abilities. This sum is a kernel density estimate over the
dataset (Coleman & Shrivastava, 2020), where the kernel
is defined by the LSH function.
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Algorithm 1 One-Pass Online Sketching Algorithm
Require: D
Ensure: d x w RACE arrays indexed as A; ; ,
Initialize: & x d x w x R independent LSH family
(denoted by L(-)) and d independent 2-universal hash
functions h;(-), ¢ € [1 — d], each taking values in range
[1—w].
while not at end of data D do
read current x;;
foroin1tor do
for iin 1toddo
Ai i (3,0 L4+
end for
end for
end while

Algorithm 2 Querying Algorithm
Require: Sketch from Algorithm 1, query ¢
Ensure: Identities of Top-v neighbors of ¢
We already have: k& x d x w x R independent LSH
family (denoted by L(+)) and d independent 2-universal
hash functions h;(-), ¢ € [1 — d], each taking values in
range [1 — w] from Algorithm 1.
foriin1toddo
for jin 1 to w do
CMS ;) = MoM(4, ;,0[L(q)])
end for
end for
for jin 1ton do
s; = p(q, 7;)% = min, CMS(; 1, (5))
end for
Report top-v indices of s as the neighbors.

3. Intuition

We propose Algorithm 1 as an online near-neighbor sketch-
ing method and Algorithm 2 to query the sketch. The intu-
ition behind our algorithm is as follows. Consider the naive
method to perform near-neighbor search. We begin by find-
ing the pairwise distances between the query and each point
in the dataset. Given a query ¢, this procedure results in a
vector of N distances, where the i™ position in the vector
contains the distance d(x;, ¢). If j is the index of the small-
est element in the vector, then x; is the nearest neighbor to
the query. Now suppose that we are given a vector s of N
kernel evaluations rather than explicit distances. Here, the
i™ component of s is s; = k(x;, q), where k(-, -) is a radial
kernel. Radial kernels are nearly 1 when d(z;, q) is small
and decrease to 0 as d(z;, q) increases. Since k(x;,q) is a
monotone decreasing function with respect to d(z;, q), the
vector of kernel values is also sufficient to perform near
neighbor search. If s; is the largest component of s, then

x; is the nearest neighbor to the query. The main idea of
our algorithm is to apply compressed sensing techniques to
S.

The main result from compressed sensing is that a sparse
vector s can be recovered from a sub-linear memory sketch
of its components. If we assume that s is v-sparse (contains
only v elements that are large), then we can recover s from
O(vlog N/v) random linear combinations of the entries of
s. The key insight is that each measurement is a weighted
kernel density estimate (KDE) over the dataset. Using a
small collection of KDE sums, we can identify the near
neighbors of the query. If we choose the coefficients to be
{1, 0}, then each measurement is an unweighted KDE over
a partition of the dataset. While it requires N memory to
compute the exact KDE, recent results (Coleman & Shri-
vastava, 2020) show that the KDE may be approximated
by an online sketch in space that is constant with respect
to N. While larger sketches improve the quality of the ap-
proximation, the memory does not grow when elements are
added to the dataset. Thus, each of the O(vlog N/v) mea-
surements can be approximated using constant memory in
the streaming setting.

4. Theory

Due to space constraints, we omit proofs and corner cases.
For a thorough presentation that includes proofs, see the
supplementary material.

4.1. Estimation of Compressed Sensing Measurements

To bound the error of the approximation for our com-
pressed sensing measurements, we bound the variance of
the RACE estimator using standard inequalities.

Theorem 3 Given a dataset D, K independent LSH func-
tions (+) and any choice of constants r; € R, RACE can
estimate a linear combination of s;(q) = p(z;,q)* with
the following variance bound.

E[A[L(g)]] = Z rip(xi, q) 3)
x; €D
var(A[l(q)]) < [8(q)I3 )

where L(-) is formed by concatenating the K copies of [(-)

and $,(q) = /si(q).

Let y € RM be the M compressed sensing measurements
of the KDE vector s(q). A direct corollary of Theorem 3 is
that by setting the coefficients correctly, we can obtain un-
biased estimators of each measurement with bounded vari-
ance. Using the median-of-means (MoM) technique, we
can obtain an arbitrarily close estimate of each compressed
sensing measurement. To ensure that all M/ measurements
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obey this bound with probability 1 — §, we also apply the
probability union bound. Note that the multiplicative M
factor comes from the fact that we are using ACE to esti-
mate M different measurements.

Theorem 4 Given any € > 0 and O(Mi‘g(éq;@ log (%))

independent ACE repetitions, for any query q, we have
the following bound for each of the M measurements with
probability 1 — 0

yi(q) — € < 9i(q) <wilq) +¢ 5)

Therefore, by repeating ACE estimators (RACE), we can
obtain low-variance estimates of the compressed sensing
measurements of s(¢). The exact number of measurements
M depends on both ® and the dataset, but M < O(N).

4.2. Query-Dependent Sparsity Conditions

For our compressed sensing measurements to be useful,
s(¢) needs to be sparse with a bound on |s(g)|1(Donoho,
2006). We also require a bound on |S(g)|; to avoid a mem-
ory blow-up in Theorem 4. If we simply assume a bound
on [8(q)|1, it is straightforward to show that the sketch re-
quires sub-linear memory. See the supplementary materials
for details. To characterize the type of queries that are ap-
propriate for our algorithm, we connect sparsity with the
idea of near-neighbor stability (Beyer et al., 1999), a well-
established notion of query difficulty.

Given any vector s(g) with elements between 0 and 1, we
can tune K to make s(q) sparse and obtain the required
bounds. However, increasing K also increases the mem-
ory because we require increasingly more precise estimates
to differentiate between s, and s,;. Therefore, we want
K to be just large enough. The largest value of K is re-
quired when all points in the dataset other than the v near-
est neighbors are equidistant to the query (|s|;= O(N)).
To choose K appropriately, we begin by defining two data-
dependent values A and B to characterize this situation.

Suppose that z,, and ;1 are the v and (v + 1) nearest
P(Iv+17Q)
P(Zv,q)

and B = 3" | 5. A measures the stability (Defini-
= Sy+41

tion 2) of the query and is a measure of the gap between the

near-neighbors and the rest of the dataset. If A = 1, then

x, and z,4; are very difficult to separate and the query is

unstable. B measures the sparsity of s. If B is O(NN), then

every element of s is nonzero (Figure 1). We are now ready

to present our results for K in terms of B and A.

neighbors, respectively. Let A be defined as A =

Theorem 5 Given a query q and query-dependent param-

eters B and A, if K = [Q:Sggf—‘ then p(r,,q)% >
A

Z?;H_l p(z;,q)" and we have the bounds |s(q)|;< v+ 1
and |8(¢)h1<v+1

In practice, this assumption is unrealistically pessimistic
because s(q) is often sufficiently sparse without any inter-
vention using K. However, Theorem 5 always allows us to
choose K so that |s(q)|; is bounded by a constant.

4.3. Reduce Near-Neighbor to Compressed Recovery

We can apply Theorem 4 to estimate each of the M CMS
measurements, which we call C/\MS We want to recover
an estimate § of s from our approximate compressed sens-
ing measurements CMS. Since the error ¢ E 1n our approx-
imation simply adds to the CMS recovery error ec from
Theorem 1, we can recover the values of s(¢q) by choosing
appropriate values for ¢ and €.

Theorem 6 We require

(Bt () o )

ACE estimates to recover $(q) with probability 1 — § such
that

< $ilq) < silg) + = 6)

si(q) — B

N

If s is sparse, then this result can be used to identify the top
v elements of s by setting € = s, — s,41 = pi — p&, ;.
These elements correspond to the largest kernel evaluations
and therefore the nearest neighbors. For the equidistant
case, we substitute the value of K from Theorem 5 into
the expression in Theorem 6 to obtain our final results. Our
main theorem is a simplified result that relates the size of
the RACE sketch with the query-dependent parameters A
and p,. The full derivation, including the dependence on 6,
is available in the supplementary materials.

Theorem 7 It is possible to construct a sketch that solves
the exact v-nearest neighbor problem with probability 1 —§
using O (N® log® (N)) bits, where

b 6|log p,|+2logr

B log %

Here, r is the range of the LSH function, and p,, is the colli-
sion probability of the v" nearest neighbor with the query.

5. Experiments

In this section, we rigorously evaluate our RACE-CMS
sketch on friend recommendation tasks on social network
graphs, similar to the ones described in (Sharma et al.,
2017). Our goal is to compare and contrast the practical
compression-accuracy tradeoff of RACE with streaming
baselines. We use the Google Plus social network dataset,
obtained from (Leskovec & Mcauley, 2012), and the Twit-
ter and Slashdot graphs from (Leskovec & Krevl, 2014) to
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Figure 1. Geometric interpretation of B and A. A characterizes the gap between the v nearest neighbors, while B characterizes whether
s is sparse. The worst-case situation occurs when all points are equidistant to the query (center). However, if s is already sparse, then far

fewer points in the dataset are near the query (right).

Table 2. Dataset Statistics

Dataset | Nodes | Nonzeros ]I;/(Iﬁ;r; Sirl\r/lli?::i ty
Google+ | 108k 13.6M 127 0.002
Twitter 81.4k 1.8M 22 2.2e-4
Slashdot | 82.2k 1.1M 13 1.4e-5

evaluate our algorithm. Google Plus is a directed graph
of 107,614 Google Plus users, where each element in the
dataset is an adjacency list of connections to other users.
The uncompressed dataset size is 121 MB when stored in
a sparse format as the smallest possible unsigned integral
type. The other datasets are structured the same way, with
similar sizes. Additional statistics are displayed in Table
2. These characteristics are typical for large scale graphs,
where the data is high dimensional and sparse. Note that
the low mean similarity between elements indirectly im-
plies that s(q) is sparse.

5.1. Implementation

We use the RACE-CMS sketch that was presented in Sec-
tion 4. However, we slightly deviate from the algorithm
described in Algorithm 1 in our implementation by rehash-
ing the K LSH hash values to a range r using a universal
hash function. Our algorithm is characterized by the hyper-
parameters K, d,w, R and r and by the hash functions I(-)
and h(-). Here, I(-) is MinHash, an LSH function for the
Jaccard distance. We use MurmurHash for A(-), the uni-
versal hash function in the CMS. For all experiments, we
vary K, d,w and R to trade off memory for performance.
We present the operating points on the Pareto frontier for
all algorithms. Typical values of d are between 2 and 5, w
between 100 and 1000, and R between 2 and 8. We varied
the range r between 100 and 1000 and used K € {1,2}.

We implemented RACE-CMS in C++ with the following
considerations. First, we do not store the RACE counters

as full 32-bit integers. The count values tend to be small
because the CMS only assigns each data point to d cells
out of dw total cells, and each each cell further divides the
counts into the RACE arrays. In our evaluation, we used
16-bit short integers, although more aggressive memory
optimizations are likely possible. For example, we found
that all counts were less than 32 in our Google Plus exper-
iments, suggesting that 8-bit integer arrays are sufficient.
The second optimization comes from our observation that
many count values are zero. By storing the RACE sketches
as sparse arrays or maps, we do not have to store the zero
counts. We present results for the situation where we store
dense arrays of counts (Array-RACE) and where we store
RACE as a sparse array (Map-RACE). An implementation
diagram is shown in Figure 2.

5.2. Baselines

We compare our method with dimensionality reduction and
random sampling followed by exact near-neighbor search.
We reduce the size of the dataset until a given compression
ratio is achieved and then find the nearest neighbors with
the Euclidean distance. We compare against all methods
that can operate in the strict one-pass streaming environ-
ment (Fiat, 1998), which is required in many high-speed
applications. We considered a comparison with product
quantization using FAISS (Johnson et al., 2019) but we
encountered issues due to the dimensionality (> 100k) of
our graph data, which agrees with previous evaluations of
FAISS on high-dimensional data (Wang et al., 2018). Sam-
ples are represented using 32-bit integer node IDs and are
stored in sparse format, since the graph vectors tend to
have many zeros. Projections are stored as dense arrays
of single-precision (32-bit) floating point numbers.

Random Projections: We use sparse random projec-
tions (Achlioptas, 2003) and the Johnson-Lindenstrauss
lemma to reduce the dimensionality of the dataset. This
is the best known streaming method that is also practical.
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Figure 2. Implementation of sketching (Algorithm 1) and querying (Algorithm 2) using RACE data structures. During sketching, we
compute d X w X R X k hash values for each = € D and update the RACEs selected using h(-). During querying, we compute the hash

values of the query ¢ and estimate the CMS measurements.

Random Sampling: With random sampling, we reduce the
original dataset to the desired size by selecting a random
subset of elements of the dataset. Given a query, we per-
form exact nearest neighbor search on the random samples.

5.3. Experimental Setup

We computed the ground truth Jaccard similarities and
nearest neighbors for each vector in the dataset. We are pri-
marily interested in queries for which high similarity neigh-
bors exist in the dataset due to the constraints of the friend
recommendation problem. This is also consistent with the
near-neighbor problem statements in Section 2.3, which as-
sume the existence of a near-neighbor. We return the 20
nearest neighbors and report the recall of points with simi-
larity greater than 0.8 and 0.9 to the query. To confirm that
the sketch is not simply memorizing our queries, we re-
move the query from the dataset before creating the sketch.

For random projections, we performed a sweep of the num-
ber of random projections from 5 to 500. Random sampling
was performed by decimating the dataset (without replace-
ment) so that the sampled dataset had the desired size.

5.4. Results

Figure 3 shows the mean recall of ground-truth neighbors
for the RACE-CMS sketch. Array-RACE and Map-RACE
are both implementations of our method, but with a differ-
ent underlying data structure used to represent the RACE
sketch. We obtained good recall (> 0.85) on the set of
queries with high-quality neighbors (sim(x, g) > 0.9) even
for an extreme 20x compression ratio on Google Plus and
5x compression ratios on the other datasets. Since many
entries in the array are zero, we find that Map-RACE out-
performs Array-RACE by a sizeable margin.

It is evident that RACE performs best for high similarity
search. This is due to increased sparsity of s(g) (any two
random users are unlikely to share a friend and hence have
similarity zero) and higher p(x,,q). In the recommender
system setting, we usually wish to recommend nodes with
very high similarity. If we require the algorithm to recover
neighbors on the Google Plus graph with similarity mea-
sure greater than 0.9 with an expected recall of 80% or
higher, our algorithm requires only 5% of the space of the
original dataset (6 MB) while random projections require
60 MB (50%) and random sampling requires nearly the en-
tire dataset. For neighbors with lower similarity (0.8), our
method requires roughly one quarter of the memory needed
by random projections.

6. Conclusion

We have presented RACE-CMS, the first sub-linear mem-
ory algorithm for near-neighbor search. Our analysis con-
nects the stability of a near-neighbor search problem with
the memory required to provide an accurate solution. Ad-
ditionally, our core idea of using LSH to estimate com-
pressed sensing measurements creates a sketch that can en-
code structural information and can process data not seen
during the sketching process.

We supported our theoretical findings with experimental re-
sults. In practical test settings, RACE-CMS outperformed
existing methods for low-memory near-neighbor search by
a factor of 10. We expect that RACE-CMS will enable
large-scale similarity search for a variety of applications
and will find utility in situations where memory and com-
munication are limiting factors.
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Figure 3. Average recall vs compressed dataset size. The dataset size is expressed as the inverse compression ratio, or the ratio of the
compressed size to the uncompressed size. Recall is reported as the average recall of neighbors with Jaccard similarity sim(zx, ¢) > 0.8
(left) and 0.9 (right) over the set of queries. Higher is better. We report the recall of nodes with similarity greater than or equal to 0.8
and 0.9 for the top 20 search results of the query. Results are averaged over > 500 queries.
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