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Abstract

Deep Generative Networks (DGNs) with probabilistic modeling of their output
and latent space are currently trained via Variational Autoencoders (VAEs). In the
absence of a known analytical form for the posterior and likelihood expectation,
VAE:s resort to approximations, including (Amortized) Variational Inference (AVI)
and Monte-Carlo sampling. We exploit the Continuous Piecewise Affine property
of modern DGNs to derive their posterior and marginal distributions as well as
the latter’s first two moments. These findings enable us to derive an analytical
Expectation-Maximization (EM) algorithm for gradient-free DGN learning. We
demonstrate empirically that EM training of DGNs produces greater likelihood than
VAE training. Our new framework will guide the design of new VAE AVI that better
approximates the true posterior and open new avenues to apply standard statistical
tools for model comparison, anomaly detection, and missing data imputation.

1 Introduction

Deep Generative Networks (DGNs), which map a low-dimensional latent variable z to a higher-
dimensional generated sample x are the state-of-the-art methods for a range of machine learning
applications, including anomaly detection, data generation, likelihood estimation, and exploratory
analysis across a wide variety of datasets [1-4].

Training of DGNs roughly falls into two camps: (i) By leveraging an adversarial network as in a
Generative Adversarial Network (GAN) [5] to turn the method into an adversarial game; and (ii) by
modeling the latent variable and observed variables as random variables and performing some flavor
of likelihood maximization training. A widely used solution to likelihood based DGN training is
via a Variational Autoencoder (VAE) [6]. The popularity of the VAE is due to its intuitive and
interpretable loss function, which is obtained from likelihood estimation, and its ability to exploit
standard estimation techniques ported from the probabilistic graphical models literature.

Yet, VAEs offer only an approximate solution for likelihood based training of DGNs. In fact, all
current VAEs employ three major approximation steps in the likelihood maximization process. First,
the true (unknown) posterior is approximated by a variational distribution. This estimate is governed
by some free parameters that must be optimized to fit the variational distribution to the true posterior.
VAEs estimate such parameters by means of an alternative network, the encoder, with the datum
as input and the predicted optimal parameters as output. This step is referred to as Amortized
Variational Inference (AVI), as it removes the explicit, per datum, optimization by a single deep
network (DN) pass. Second, as in any latent variable model, the complete likelihood is estimated
by a lower bound (ELBO) obtained from the expectation of the likelihood taken under the posterior
or variational distribution. With a DGN, this expectation is unknown, and thus VAEs estimate the
ELBO by Monte-Carlo (MC) sampling. Third, the maximization of the MC-estimated ELBO, which
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drives the parameters of the encoder to better model the data distribution and the encoder to produce
better variational parameter estimates, is performed by some flavor of gradient descend (GD).

These VAE approximation steps enable rapid training and test-time inference of DGNs. However,
due to the lack of analytical forms for the posterior, ELBO, and explicit (gradient free) parameter
updates, it is not possible to measure the above steps’ quality or effectively improve them. Since
the true posterior and expectation are unknown, current VAE research roughly fall into three camps:
(i) developing new and more complex output and latent distributions [7, 8], such as the truncated
distribution; (ii) improving the various estimation steps by introducing complex MC sampling with
importance re-weighted sampling [9]; (iii) providing different estimates of the posterior with moment
matching techniques [10, 11]. More recently, [12] exploited the special continuous piecewise affine
structure of current ReLU DGNss to develop an approximation of the posterior distribution based
on mode estimation and DGN linearization leading to Laplacian VAEs. Nevertheless, derivation of
analytical DGN distributions was not considered.

In this paper, we advance both the theory and practice of DGNs and VAEs by computing the
exact analytical posterior and marginal distributions of any DGN employing continuous piecewise
affine (CPA) nonlinearities. The knowledge of these distributions enables us to perform exact
inference without resorting to AVI or MC-sampling and to train the DGN in a gradient-free
manner with guaranteed convergence.

The analytical distributions we obtain provide first-of-their-kind insights into (i) how DGNs model
the data distributions a la Mixture of Probabilistic Principal Component Analysis (MPPCA), (ii)
how inference is performed and is akin Generative Latent Optimization models [13], (iii) the roles
of each DGN parameter and how are they updated, and (iv) the impact of DGN architecture and
regularization choice in the form of the DGN distributions and layer weights. The exact likelihood
and marginal computation also enable the use of standard statistical model comparison tools such as
the Akkaike Information Criterion (AIC) [14] and Bayesian Information Criterion (BIC) [15] and
inspire new, more reliable anomaly detection approaches.

Access to the exact posterior also enables us to quantify the approximation error of the AVI and
MC sampling of VAEs and guide the development of VAEs by leveraging the analytical posterior to
design more adapted variational distributions. In fact, current VAEs suffer from occasional training
instabilities [16, 17]; we validate the empirical observation that training instabilities emerge from an
inadequate variational estimation of the posterior.

‘We summarize our main contributions as follows:

[C1] We leverage the CPA property of current DGNs to obtain the analytical form of their conditional,
marginal, and posterior distributions, which are mixtures of truncated Gaussians and relate DGN
density modeling to MPPCA and MFA (Sec. 3.1). We develop new algorithms and methods to
compute the DGN latent space partition, per-region affine mappings, and per-region Gaussian
integration (Sec. 3.2).

[C2] We leverage the analytical form of a DGN’s posterior distribution to obtain its first two moments.
We then leverage these moments to obtain the analytical expectation of the complete likelihood with
respect to the DGN posterior (E-step), which enables encoder-free EM training with guaranteed
convergence (Sec. 4.1). We also derive the analytical M-step, which enables for the first time
guaranteed and rapid gradient-free learning of DGNs (Sec. 4.2). The analytical E-step allows us to
interpret how the expected latent representation of an input is formed, while the M-step demonstrates
how information is propagated through the layers akin to the backpropagation encountered in gradient
descent.

[C3] We compare our exact E-step to standard VAE training to demonstrate that the VAE inference
step is to blame for unstable training. We also demonstrate that EM-based DGN training provides
much faster and more stable convergence (Sec. 4.3) and suggest new directions to leverage the
analytical distributions to improve VAE models.

Reproducible code for all experiments and figures are available on Github at https://github. com/
RandallBalestriero/EMDGN.git. The proofs of all results are provided in the Supplementary
Material.
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2 Background

Max-Affine Spline Deep Generative Networks. A deep generative network (DGN) is an operator
g that maps a (typically low-dimensional) latent vector z € R® to an observation z € R” ! by
composing L intermediate layer mappings g%, ¢ = 1,..., L, that combine affine operators such as
the fully connected operator (simply an affine transformation defined by weight matrix W* and bias
vector v%), convolution operator (with circulent W), and, nonlinear operators such as the activation
operator (applying a scalar nonlinearity such as the ubiquitous ReLLU), or the (max-)upsampling
operator. Precise definitions of these operators can be found in [18].

In this paper, we focus on DGNs employing arbitrary affine operators and continuous piecewise
affine (CPA) nonlinearities, such as the ReLU, leaky-ReLU, and absolute value activations, and
spatial/channel max-pooling. In this case, the entire DGN is the composition of Max-Affine Spline
Operators (MASOs) [19] and is overall a CPA operator [20-23]. As such, DGNs inherit a latent
space partition  of R and a per-region affine mapping

g(z) = Ayz + b, Vw € Q, (D

where the per-region slope and bias parameters are a function of the per-layer parameters Wy, by.
For various properties of such CPA DGNs, see [24], and for details on the partition, see [25]. In this
paper we will make explicit the per-region affine mappings; to this end, it is practical to encode the
derivatives of the DGN nonlinearities in the matrices D,. For activation operators, this is a square
diagonal matrix with values € {n,1} (n > 0 for leaky-ReLU, n = 0 for ReLU, and n = —1 for
absolute value). For the max-pooling operator, it is a rectangular matrix filled with {0, 1} values
based on the pooling arg max. We thus obtain

L—1
A, =W'DL'WET L DLW and b, =o'+ ) WEDLT'WETLL Divt. ()
i=1
Throughout the rest of the paper, the upper index will indicate the layer and not a power.

Variational Expectation-Maximization. A Probabilistic Graphical Model (PGM) combines proba-
bility and graph theory into an organized data structure that expresses the relationships between a
collection of random variables: the observed variables collected into = and the latent, or unobserved,
variables collected into z [26]. The parameters 6 that govern the PGM probability distributions are
learned from observations «; ~ x,7 = 1,..., N, requiring estimation of the unobserved z;, Vi. This
inference-optimization is commonly done with the Expectation-Maximization (EM) algorithm [27].

The EM algorithm consists of (i) estimating each z; from the Expectation of the complete log-density
taken with respect to the posterior distribution under the current parameters at time ¢; (i) Maximizing
the estimated complete log-likelihood to produce the updated parameters 6;,1. The estimated
complete log-likelihood obtained from the E-step is a tight lower bound to the true complete log-
likelihood; this lower bound is maximized in the M-step. This process has many attractive theoretical
properties, including guaranteed convergence to a local minimum of the likelihood [28].

In the absence of closed form or tractable posterior, an alternative (non-tight) lower bound can be
obtained by using a variational distribution instead. This distribution is governed by parameters ~y that
are optimized to make this distribution as close as possible to the true posterior. This process is results
in a variational E (VE) step [29] or variational inference (VI). The tightness of the lower bound
is measured by the Kullback—Leibler (KL) divergence between the variational and true posterior
distributions. Minimization of this divergence cannot be done directly (due to the absence of tractable
posterior) but rather indirectly by maximizing the so-called evidence lower bound (ELBO) via

log(p(x)) = Eq(z )y [log(p(, 2|0))] + H(q(z|7)) +KL(g(z[7)[[p(z]z, 0)), 3)
ELBO

with ¢ the variational distribution and H the (differential) entropy. Maximization the ELBO with
respect to  produces the v* that adapts ¢(z|v*) to fit as closely as possible to the true posterior.
Finally, maximizing the ELBO with respect to the PGM parameters 6 provides 6,1; this can be
performed on the entire dataset or on mini-batches [30].

Variational AutoEncoders. A Variational AutoEncoder (VAE) uses a minimal probabilistic graph-
ical model (PGM) with just a few nodes but highly nonlinear inter-node relations [31,32]. The
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use of DNs to model the nonlinear relations originated in [33—35] and has been born again with
VAE:s [6]. Many variants have been developed, but the core approach consists of modeling the latent
distribution over z with a Gaussian or uniform distribution and then modeling the data distribution
as = g(z) + € with € some noise distribution and g a DGN. Learning the DGN/PGM parameters
requires inference of the latent variables z. This inference is performed in VAEs by producing an
amortized VI where a second encoder DN f produces v = f(«,,) from (3). Hence, the encoder
is fed with an observation  and outputs its estimate of the optimal variational parameters that
minimizes the KL divergence between the variational distribution and true posterior. During learning,
the encoder adapts to make better estimates f(x,,) of the optimum parameters ~,,. Then, the ELBO
is estimated with some flavor of Monte-Carlo (MC) sampling (since its analytical form is not known),
and the maximization of the # parameters is solved iteratively using some flavor of gradient descent.

3 Posterior and Marginal Distributions of Deep Generative Networks

We now derive analytical forms of the key DGN distributions by exploiting the CPA property. In
Sec. 4 we will use this result to derive the EM learning algorithm for DGNs and study the VAE
inference approximation versus the analytical one.

Our key insight is that a CPA DGN consists of an implicit latent space partition and an associated
per-region affine mapping (recall (1)). In a DGN, propagating a latent datum z through the layers
progressively builds the A, b,,. We now demonstrate that turning this region selection process
explicit, the analytical DGN marginal and posterior distributions can be obtained.

3.1 Conditional, Marginal and Posterior Distributions of Deep Generative Networks

Throughout the sequel we will consider the commonly employed case of a centered Gaussian latent
prior and centered Gaussian noise [36] as

p(x|z) = d(x; 9(2), Bz), p(z) = ¢(2;0,32), 4

with ¢ the multivariate Gaussian density function with given mean and covariance matrix [37]. When
using CPA DGNs, the generator mapping is continuous and piecewise affine with an underlying
latent space partition and per-region mapping as in (1). We can thus obtain the analytical form of the
conditional distribution of « given the latent vector z as follows.

Lemma 1. The DGN conditional distribution is given by p(x|z) =
Y weq Lzewd (x5 Auz + by, By) with per-region parameters from (2).

This type of data modeling is closely related to MPPCA [38] that combines multiple PPCAs [39]
and MFA [40,41] that combines multiple factor analyzers [42]. The associated PGMs represent the
data distribution with R components and leverage an explicit categorical distribution t ~ Cat(7),

leading to the conditional input distributions |(z,t) = Zf‘:l L=t (Wyz 4+ v,) + €, with W, v,
denoting the per-component affine parameters and with 3, diagonal (MPPCA) or fully occupied
(MFA) and z ~ N(p,, X,). Note, however, that neither MPPCA nor MFA impose continuity in the
(t, z) — x mapping as opposed to a DGN. To formalize this, consider an (arbitrary) ordering of the
DGN latent space regions as wi, . . . ,wg with R = Card(£2). We also denote by ®,, the cumulative

density function on w, (integral of the density function on w,.).

Proposition 1. A DGN with distributions given by (4) corresponds to a continuous MPPCA (or
MFA) model with implicit categorical variable given by p(t =) = @, (0,3,), W, = A, ,v, =
by, , R = Card(2) and X = o (or full 3,).

Note that this result generalizes the results of [12,43], which showed that shallow DGNs and deep
linear DGNs fall back to a PPCA model. This can be easily seen from the formula in Lemma 1 by
setting the DGN g to be linear as in g(z) = Wz 4 b + €; in that case, the partition is only made of a
single region (the entire DGN input space), and the (single) affine parameters are A, = W, b, = b.

We now calculate the marginal p(x) and posterior p(z|x) distributions. The former will be of use
to compute the likelihood, while the latter will enable us to derive the analytical E-step in the next
section.

Theorem 1. The marginal and posterior distributions of a CPA DGN are given by

p(a) =Y ¢(x; by, Ba + AuSAD) 0, (po(2), B0), 5)
we



p(zl@) =p(@) " Y Tocwd(®@; by, To + AT AD)6(2; po (@), Bo), (6)
weN

with po,(x) =S, (ATS; (@ — b)), and £, = (S;'+ ATS;'A) . ()

We demonstrate how to compute the integral of a multivariate Gaussian on a polytopal domain
(P, (pw (), X)) in the next section. Note that for both the marginal and the posterior distribution,
when considering a specific region w € (), those distributions are parametrized by a region-specific
mean p,, () and covariance X, that we can interpret. For that purpose, consider 3, = 1,%, =1
to obtain p,(z) = (I + AL A, ) AL (x — b,). That is, the bias of the per-region affine mapping
is removed from the input which is then mapped back to the latent space via AZ and whitened by
the “regularized” inverse of the correlation matrix of A,,. Note that AL backpropagates the signal
from the output to the latent space in the same way that gradients are backpropagated during gradient
learning in a DN. We further highlight that the specific form of the posterior is a mixture of truncated
Gaussians [44], a truncated Gaussian being a Gaussian distribution for which the domain RS has
been constrained to a (convex) sub-domain, w in our case.

Proposition 2. The DGN posterior distribution is a mixture of Card(Q) truncated Gaussians, each
truncated on a different polytope w € ) with mean p,(x) and covariance ¥, from (7).

The above proposition is crucial to designing better VAEs. In fact, recalling Sec. 2, VAEs approximate
the DGN posterior with a user defined variational distribution. In most of practical cases, this is taken
to be a unimodal (Gaussian) distribution. However, as per the analytical posterior that we obtain,
unimodal variational distribution cannot capture the multimodality of the true posterior, leading to a
poor variational EM step. Based on our result, practitioners should thus favor as much as possible
multimodal variational distributions, for instance by employing a mixture of Gaussians for ¢(z|y)
(recall (3) as in [45]. We now propose a specific study in the zero-noise limit.

Zero-Noise Limit and Generative Latent Optimization (GLO) Models. In the zero-noise limit
(X4 = ol and 0 — 0), the posterior takes a very special form that we can analyze. Denote by
2*(x) £ argmin, ||z — g(2)||3 + 27 2. 2, the (regularized) latent vector that produces the closest
output from an observation . That is, the vector in the DGN input space that provides the best
approximation of « while being regularized based on 3.

Lemma 2. In the zero-noise limit, the DGN posterior distribution converges to a Dirac distribution
positioned in the z-space at z*(x) as lim,_,o p(z|x) = §(z — 2*(x)).

Interestingly, the GLO model [13] performs DGN training by first inferring a latent vector akin to
z*(z) but without the /o regularization 27X, z. Instead, GLO and its extensions employ clipping of
z which corresponds to a Uniform distribution of z (instead of the Gaussian distribution).

Proposition 3. The GLO-inferred DGN latent variable associated to an observation x corresponds to
the maximum a posteriori estimate of the zero-noise limit posterior distribution and with uninformative
prior (large X) or with uniform prior z ~ U([a, b]) when using [a, b] clipping).

3.2 Gaussian Integration on the Deep Generative Network Latent Partition

We now turn to the computation of the DGN marginal (5) and posterior (6) distributions, for which
we need to integrate over all of the regions w € €2 in the latent space partition.

Obtaining the DGN Partition. Each region w € (2 is a polytope that can be explicitly described
via a system of inequalities involving the up-to-layer £ mappings

£—1
AP AW DIWS L DLW and b7 2 0f 4+ WIDSTITWLL DLt (8)

=1

producing the pre-activation feature maps h‘(z) € R ‘ by hf(z) = AL7‘z + bL7! and with
Al=¢ e RP*%S and b17¢ € RP". Note that we have, in particular, that AL = A, and b = b,
from (2). When using standard activation functions such as (leaky-)ReLU or absolute value, the sign
of the pre-activation defines the activation state; denote this by g = sign(h’(z)) and collect all of
the per-layer signs into g. Without degenerate weights, the sign patterns produced by g(z), Vz are
tied to the regions w € §2; we will thus use interchangeably q(z) with z € w and q(w).
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Figure 1: Recursive partition discovery for a DGN with S = 2 and L = 2, starting with an initial region
obtained from a sampled latent vector z (init). By walking on the faces of this region, neighboring regions
sharing a common face are discovered (Step 1). Recursively repeating this process until no new region is
discovered (Steps 2—4) provides the DGN latent space partition at left .

Figure 2: Triangulation 7'(w) as per (9)
of a polytopal region w (left plot) obtained
from the Delaunay Triangulation of the re-
gion vertices leading to 3 simplices (three

right plots).
Lemma 3. The operator z — [q'(2), ...,q*~1(2)] is piecewise constant with a bijection between
its image and §2.
Corollary 1. The polyhedral region w is given by
L—1
w= ﬂ {zeRY: A7z < —¢*(w) @ b7},
(=1

with ® the Hadamard product.

The above result tells us that the pre-activation signs indicate which side of each hyperplane the
region w is located, which provides a direct way to compute the H-representation of w from g(z)
with z € w. To obtain the entire partition 2, we propose a recursive scheme that starts from an initial
region (or sample z) and walks on its faces to discover the neighboring regions. This process is
repeated on the newly discovered regions until no new region is discovered. We detail this exploration
procedure in Appendix A of the Supplemental Materials and illustrate it in Fig. 1.

Gaussian Integration on w. The Gaussian integral on a region w (and its moments) cannot in
general be obtained by direct integration unless w is a rectangular region [46,47] or is polytopal with
at most S faces [48]. In general, the DGN regions w € ) will have at least S + 1 faces, as they are
closed polytopes in R®. To leverage the known integral forms, we propose to first decompose a DGN
region w into simplices (S + 1-face polytopes in our case [49]) and then further decompose each
simplex into open polytopes with at most S faces, which enables the use of [48]. In our case, we
perform the simplex decomposition with the Delaunay triangulation [50] denoted as 7'(w) with

T(w) 2 {A1, ., Acuarrwy b with USTTED A — wand Ay N A; = 0,¥i £, (9)
where each A, is a simplex defined by the half-spaces A; = ﬂfill H; ;. This process is illustrated
in Fig. 2. The decomposition of each simplex into open polytopes with less than S + 1 faces is
performed by employing the standard inclusion-exclusion principle [51], leading to the following
result.

Lemma 4. The integral of any integrable function g on a polytopal region w € §) can be decomposed
into integration over open polytopes of at most S faces via

/g(z)dz: Z Z s/g(z)dz.
w AET(w) (s,V)eH(A) YV

with H(A;) & { (-5, njesHy ), J C{1,...,8 + 1}, |J| < S}

From the above result, we can apply the known form of the Gaussian integral on a polytopal region
with fewer than S faces and obtain the form of the integral and moments as provided in Appendix B,
where detailed pseudo code is also provided.



Figure 3: Left: Noiseless generated samples
g(z) in red and noisy samples g(z) + € in blue,
with 3, = 0.11, ¥, = I. Middle: marginal
distribution p(x) from (5). Right: the posterior
distribution p(z|x) from (6) (blue), its expecta-
tion (green) and the position of the region limits
(black), with sample point « depicted in black in
the left figure.

Computational Complexity: Exact evaluation of the analytical DGN distributions is effected by
(i) computing the partition, (ii) triangulating each partition region, and (iii) integrating on a region
using Lemma 4. The first two steps have complexity growing with the latent space dimension
and the number of regions. Even though their asymptotic complexity is linear with respect to the
number of regions, one must recall that this latter quantity grows exponentially in the width and depth
of a DN [19,52,53]. The third step of integrating as per Lemma 4 is computationally expensive,
particularly with respect to the latent space dimension .S. This is the current main practical limitation
of performing the analytical computation of the DGN posterior (and thus the E-step). A more
elaborated discussion plus several solutions are provided in the next section; see also Appendix I for
the asymptotic computational complexity details.

Visualization of the Marginal and Posterior Distributions. To illustrate our theoretical devel-
opment so far, we now visualize the posterior and marginal distributions of a randomly initialized
DGN in a low-dimensional space D = 2 and with latent dimension S = 1. (See Appendix J for the
architectural details of the DGN.) We depict the various distributions as well as the generated samples
in Fig. 3. We also plot the posterior distribution based on one observation obtained via g(zo) given a
sampled z( from the z distribution and one noisy observation g(z) + €g given a noise realization €.

4 Expectation-Maximization Learning of Deep Generative Networks

We now derive an analytical Expectation-Maximization (EM) training algorithm for CPA DGNs
based on the results of the previous sections. We then compare DGN training via EM and AVI and
leverage the exact complete likelihood to perform model selection and study the VAE approximation
error.

4.1 Expectation Step

The E-step infers the latent (unobserved) variables associated to the generation of each observation
x by taking the expectation of the log of the complete likelihood with respect to the posterior
distribution (6). We denote the per-region moments of the DGN posterior (from Appendix B)
by E.jz[lzco] £ €(), Byjzlzlzcn] £ el(x) and B, 5[2271.c.] £ E2(x); we also have
e'(z) £ E,[2] = 3, el (z) and likewise for the second moment. We obtain the following E-step

(the detailed derivations are in Appendix G.1):

Eejo [log (p(al2)p(2))] = — 5 lo ((2m)5+2| det ()| det(22)]) — 5 Tr(S;" ()

L re-1 Tys—1 1 0
_2<:c Yo —2x' X ;Awew(w)—i—bwew(w)

+ Z {Tr(AfE;lAwEi(w)) +(e%b,, + 2Awei,(m))TE;1bw] ) .

Note that the (per-region) moments involved in the E-step, such as el (z), are taken with respect
to the current parameters (6 = {34, X, (W* v*)L_|}). That s, if gradient based optimization is
leveraged to maximize the ELBO, then no gradient should be propagated through them. We can
see from the above formula that the contributions of each region’s affine parameters are weighted
based on the posterior for each datum 2. That is, for each input x, the posterior combines all of the
per-region affine parameters as opposed to current forms of learning that leverage only the parameters
involved in the specific region activated by the DGN input z.



Figure 4: DGN training under EM (black) and VAE
Number of VAE updates training with various learning rates for VAE (blue:
4 37750 75499 0.005, red: 0.001, green: 0.0001). In all cases, VAE
converges to the maximum of its ELBO. The gap be-
tween the VAE and EM curves is due to the inabil-
2 ity of the VAE’s AVI to correctly estimate the true
posterior, pushing the VAE’s ELBO far from the true
0 20 40 6°EM_S§(:)S 100 120 140 log-likelihood (recall (3)) and thus preventing it from

precisely approximating the true data distribution.

Figure 5: KL-divergence between a VAE variational distri-
| | bution and the true DGN posterior when trained on a noisy
- | | circle dataset in 2D for 3 different learning rates. During
el | | learning, the DGN adapts such that g(z) + € models the
- | | data distribution based on the VAE’s estimated ELBO. As
141 | | learning progresses, the true DGN posterior becomes harder
134 ] | to approximate by the VAE'’s variational distribution in the
121 l | AVI process. As such, even in this toy dataset, the commonly
employed Gaussian variational distribution is not rich enough
to capture the multimodality of p(z|x) from (6).

KL(q(x)|lp(z|x))

training steps

4.2 Maximization Step

Given the E-step, the ELBO can be maximized via some flavor of gradient based optimization.
However, thanks to the analytical E-step and the Gaussian form of the involve distributions, there
exists analytical form of this maximization process (M-step) leading to the analytical M-step for
DGNSs. The formulas for all of the DGN parameters are provided in Appendix G. We provide here

the analytical form for the bias v*", for which we introduce r! (x) as the expected reconstruction
error of the DGN as

ri(x) & |z — Z AL DIyt | el (x) — Ayel (x) (expected residual without v),
it

1
,Ué* _ <ZZD£A£—>Z+12;1A€‘,-1—>LD£> Z Z Df)Aﬁ_)Z+12;17'f)<m)

z we

z v residual back-propagated to layer £

Some interesting observations can be made based on the analytical form of these updates. First, the
bias update is based on the residual of the reconstruction error with a DGN whose bias has been
removed; this residual is then backpropagated to the ¢'" layer. The backpropagation is performed
via the (transposed) backpropagation matrix as when performing gradient-based learning. Second,
the updates of any parameter depend on each region parameter’s contribution based on the posterior
moments and integrals, similarly to any mixture model. Third, all of the updates are whitened based
on the backpropagation (or forward propagation) correlation matrix A’>L Vw, V. We study the
impact of using a probabilistic prior on the layer weights such as Gaussian, Laplacian, or Uniform,
which are related to the /o, /1 regularization and weight clipping techniques in Appendix H.

4.3 Empirical Validation and VAE Comparison

We now numerically validate the above EM-steps on a simple problem involving data points on a
circle of radius 1 in 2D augmented with a Gaussian noise of standard deviation 0.05. We depict the
EM-training of a 2-layer DGN with width of 8 against VAE training. In all cases the DGNs have the
same architecture with same weight initialization; the dataset is also identical between models with
the same noise realizations. Thanks to the analytical form of the marginals, we can compute the true
ELBO (without variational estimation of the true posterior) for the VAE during its training to monitor
its ability to fit the data distribution. We depict the evolution of the negative log-likelihood during
training (EM-step for the EM training setting and VAE updates for VAEs) in Fig. 4.

We observe that EM training converges faster and to a lower negative log-likelihood. In addition,
we see how all of the trained VAESs seem to converge to the same bound, which likely corresponds
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Figure 6: EM training of a DGN with latent dimension 1. We show only the generated continuous piecewise
affine manifold g(z) without the additional white noise . We see how EM training of the DGN is able to fit
the dataset, while VAE (with different learning rates (LR)) suffers from hyperparameter sensitivity and slow
convergence. Training details and additional figures for this experiment are provided in Appendix J.
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to the maximum of its ELBO, where the gap is induced by the use of a variational approximation
of the true posterior. We confirm this by looking at the KL divergence between the true posterior
and the AVI estimates of the VAE models during training in Fig. 5. We also experiment with
another unidimensional manifold which is a localized subpart of a cosine function in 2D and a more
complicated manfiold that is MNIST constrained to the digit 4. We present the manifolds and the EM
versus VAE learned manifolds in Fig. 6 and Fig. 7. We observe the ability of EM to fit the manifold
while VAEs suffer from slow convergence and poor posterior approximation. Additional figures and
experiments with various architectures are provided in Appendix J.

We thus observed that EM learning produces a much smaller negative log-likelihood and that
providing better posterior estimates (improved AVI) is key to improve VAE performances. In
particular, multimodal variational distributions should be considered for VAEs regardless of the data
at hand. In fact, recall from (6) and Prop. 2 that the posterior is a mixture of truncated Gaussians with
covariances based on AT A,,.

5 Conclusions

We have derived the analytical form of the posterior, marginal, and conditional distributions for
DGNss constructed using continuous piecewise affine nonlinearities with Gaussian output and latent
distributions. This has enabled us to derive the EM-learning algorithm for DGNs that not only
converges faster than state-of-the-art VAE training but also to a higher likelihood. Our proposed
methodology also applies to more general distributions, requiring them only to be conjugate priors in
order to obtain an analytical solution. Our analytical forms can be leveraged to improve the variational
distribution of VAEs, understand the form of analytical weight updates, study how a DGN infers the
latent variable z from «, and leverage standard statistical tools to perform model selection, anomaly
detection and beyond.

Broader Impacts

We have derived the analytical form of the posterior, marginal and conditional distributions of DGNs
based on CPA architectures. Our approach provides an approximation-free alternative to VAEs to
train DGNSs. In addition to improving DGN algorithms, our analytical forms will enable researchers
to probe more deeply into the inner workings of DGNs and VAE, making them more interpretable
and thus trustworthy. Our calculations will also enable accurate anomaly detection and model
selection, which should find wide application in sensitive applications where accurately computing
the probability of a data point is crucial.
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