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H I G H L I G H T S

• Multi-sector assessment of climate-sensitive portion of NY’s energy demand.• Multivariate framework more accurately predicts energy demand than univariate model.• Season-to-date heating/cooling degree-days are critical across seasons and sectors.• Dew point is crucial for predicting demand in intermediate and winter months.• Essential for utilities that need to predict electricity-natural gas coupled demand.
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A B S T R A C T

Projected climate change will significantly influence the shape of the end-use energy demand profiles for space
conditioning—leading to a likely increase in cooling needs and a subsequent decrease in heating needs. This shift
will put pressure on existing infrastructure and utility companies to meet a demand that was not accounted for in
the initial design of the systems. Furthermore, the traditional linear models typically used to predict energy
demand focus on isolating either the electricity or natural gas demand, even though the two demands are highly
interconnected. This practice often leads to less accurate predictions for both demand profiles. Here, we propose
a multivariate, multi-sector (i.e., residential, commercial, industrial) framework to model the climate sensitivity
of the coupled electricity and natural gas demand simultaneously, leveraging advanced statistical learning al-
gorithms. Our results indicate that the season-to-date heating and cooling degree-days, as well as the dew point
temperature are the key predictors for both the electricity and natural gas demand. We also found that the
energy sector is most sensitive to climate during the autumn and spring (intermediate) seasons, followed by the
summer and winter seasons. Moreover, the proposed model outperforms a similar univariate model in terms of
predictive accuracy, indicating the importance of accounting for the interdependence within the energy sectors.
By providing accurate predictions of the electricity and natural gas demand, the proposed framework can help
infrastructure planners and operators make informed decisions towards ensuring balanced energy delivery and
minimizing supply inadequacy risks under future climate variability and change.

1. Introduction

Projected climate change—characterized by hot and humid sum-
mers, warmer and milder winters, shifts in precipitation patterns and
more frequent extreme weather events such as droughts and heatwa-
ves—will significantly influence the shape of the end-use energy de-
mand profiles for space conditioning. It is projected that under a 1.8° F
increase in mean temperature, the demand for cooling is expected to

increase by 5–20%, whereas that for heating is likely to decrease by
about 3–15% across the United States [1]. Such shifts in cooling and
heating needs will significantly influence the shape of the demand
curves for electricity end-use (mostly used for space cooling) [2–9] and
natural gas end-use (mostly used for space heating) [10,11] respec-
tively. Moreover, as the climate continues to warm and extreme
weather events intensify, cities will need to work to improve the resi-
lience of their energy infrastructure to cope with the changing
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conditions in addition to the changing demand profiles [12]. Further-
more, several non-climatic factors such as population shifts, socio-
economic changes, and technological advancements, influence the
patterns of electricity and natural gas demands [13], adding additional
complexity to demand forecasting research. Although a number of
studies have focused on establishing the end-use demand curves, ac-
curate demand forecasting still remains a challenging task. This is
mostly due to inability of the traditional models (e.g., generalized linear
models) to capture the nonlinearities and interdependencies within the
energy demand sectors, as well as the exclusion of some significant
weather factors, such as dew point temperature, which was found to
have significant influence on the energy demand patterns in the pre-
vious studies [2–5]. Additionally, owing to the growing utilization of
natural gas-fired power plants, the dependence of the electricity sector
on natural gas fuel is increasing [14]. This growing interdependence
between the two energy sectors combined with the lack of accurate
forecasts has created efficiency and reliability challenges in both the
sectors [14].
Given the complex interdependence between the natural gas and

electricity sectors, we propose a data-driven, integrated multivariate
predictive modeling framework to harness the covariance structure
between the energy sectors while evaluating the climate sensitivity of
the demand nexus. Electricity and natural gas consumption is highly
correlated, making the proposed model a good candidate for the current
study. In order to assess the added benefits in leveraging a multivariate
framework, we also implemented a univariate methodology based on
the same tree-boosting algorithm applied in the multivariate frame-
work. Our proposed framework uses a multi-sector approach, meaning
that the model accounts for the interdependence in energy consumption
across the various sectors—residential, commercial, industrial and
electric power plant (EPP). Sector-level studies are important for
modeling energy demand because the patterns and types of energy
usage vary significantly across the different sectors, which has a sig-
nificant impact on the climate-sensitivity of energy demand [15]. For
example, the residential sector’s energy demand is more sensitive to
climate and has more spatiotemporal heterogeneity compared to the
commercial and industrial sectors because it is more influenced by
consumer behavior [5,8].
Additionally, state-level studies have been found to be effective to

implement policy analysis [5,11]. The reasons being, both state-level
[5] and region-specific [11] studies can (a) account for the geographical
variations in climate change impacts; (b) minimize the effects of un-
observed heterogeneities that may arise from regional/state-level
policy, characteristics of the population and industries, etc; and, (c)
help in analyzing sectoral demand as the data is mostly collected at
state-/region- levels. Thus, we conducted a state-level analysis in this
study. We established our framework using the state of New York as a
case study because:

(i) it is the largest northeastern state and the fourth most populous
state in the nation with the third-largest economy [16];

(ii) it is the fifth-largest natural gas consumer in the U.S. as of 2017
[16];

(iii) in the state, the majority of the natural gas consumption is at-
tributed to electric power generation and space heating during the
colder months [16];

(iv) as of 2017, two-fifths of the state’s net electricity generation came
from natural gas. In fact, more than half of NY’s generating capa-
city is at natural gas-fired power plants while more than one-third
of the capacity is at the units with dual-fuel capability that can use
either natural gas or fuel oil [16].

Although, in this paper, we present the results specific to the state of
New York (used as a case study in this research), our proposed multi-
variate, multi-sector framework is generalizable, such that similar stu-
dies can be conducted to investigate the climate sensitivity of coupled
electricity-natural gas demand in the other states and geographical
regions, conditioned on the availability and accessibility of the relevant
data and information. Thus, our work contributes to the discipline of
risk-informed decision making, particularly as it applies to the capacity
planning and climate-informed demand projections by the utility
managers.
The structure of this article is as follows: Section 2 presents a brief

overview of the existing literature highlighting the current knowledge
and research gaps. Data collection, data preprocessing and aggregation
are presented in Section 3. Sections 4 and 5 discuss our methodology
and results respectively. Section 6 summarizes our key findings and the
relevant policy implications of this research.

2. Background information in climate impacts on energy demand

The relationship between climate and energy demand has been well
established in previous studies. However, most of the existing body of
literature is dedicated to isolated assessments of climate impacts on
specific types of end-use energy demand (i.e., electricity or natural gas)
or aggregated energy demand. It is likely that these studies have missed
valuable information by not considering the complex, interdependent
nature of electricity and natural gas demands. On the electricity side,
for example, Sailor [17] modeled the climate change impact on the
residential and commercial sectors’ electricity consumption by lever-
aging a linear regression model using a degree-day approach, while not
accounting for socioeconomic and other non-climatic factors. Similarly,
Sullivan et al. [18] assessed the impact of climate change on long term
electric loads across 300 transmission zones and 16 seasonal and
diurnal time periods in the U.S., leveraging simple linear regression.
However, these models were based on simple linear regression, which is
often an inaccurate representation of real systems. To improve this
aspect of electricity demand forecasting, Mirasgedis et al. [19] im-
plemented a multiple linear regression model to evaluate the climate
sensitivity of electricity demand within the Greek interconnected power
system, while accounting for the influence of non-climatic socio-
economic factors such as population, monthly-regional gross domestic
product (GDP), etc. Likewise, Lam [20] investigated the relationship
between the residential electricity demand, the climate, and the eco-
nomic factors for Hong Kong using a multiple linear regression model.
The authors concluded that household income, household size, elec-
tricity price and cooling degree-days were the key factors influencing
both the seasonal and annual residential electricity demand [20]. These
studies were able to improve upon previous work by implementing
more advanced linear regression models. However, recent work has
shown that the relationship between climate and electricity demand is
non-linear, thus necessitating the move from linear regression to more
complex methodologies. Nahid-Al-Masood and Ahsan [21], for ex-
ample, proposed to identify the climate sensitive portion of the elec-
trical load based on Empirical Mode Decomposition (EMD). The authors
identified temperature and humidity to be the key climate factors in-
fluencing the climate sensitive portion of the electricity demand [21].
Mukherjee and Nateghi [4,5] evaluated the climate sensitivity of re-
sidential and commercial electricity demands and concluded that the
complex non-linear climate-electricity demand relationship is best
captured by advanced learning models such as Random Forests or
Bayesian Additive Regression Trees. Leveraging these advanced
learning models, Mukherjee et al. [2] investigated the climate
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sensitivity of the electricity demand for the top eight energy-intensive
states in the U.S., and found that the climate sensitivity of electricity
demand is asymmetric; with high-intensity end-use demand being more
sensitive to climate variability compared to moderate-intensity end-use
demand. The authors identified dew point temperature as the key cli-
mate predictor for both the high- and moderate-intensity demand [2].
In contrast to the electricity sector, only a limited number of studies

have focused on assessing the impact of climate change on the natural
gas end-use demand. Amato et al. [11] estimated the temperature-
sensitivity of both electricity and natural gas demand for the Com-
monwealth of Massachusetts using a two-step modeling and estimation
procedure. The study controlled for the influence of non-climatic so-
cioeconomic factors, but failed to consider the potential key climate
features such as humidity, precipitation and wind speed or the impact
of sector interdependence. Ruth and Lin [22] evaluated the climate
change impacts on natural gas, electricity and heating oil end-use de-
mand in the residential and commercial sectors. The authors modeled
the energy demand as a function of degree-days (heating and cooling),
energy prices, daylight hours, and trend variables, leveraging the fixed
effects regression model. Similarly, Warren and LeDuc [15] im-
plemented a linear regression model to relate the natural gas demand in
the residential and commercial sectors to gas prices and heating degree-
days in a nine-region model for the U.S. The authors recommended that
a complete climate sensitivity assessment of natural gas demand ne-
cessitates joint consideration of all the users to ensure a more holistic
assessment [15]. Finally, Sailor and Muñoz [10] analyzed the climate
sensitivity of natural gas end-use demand along with that of the elec-
tricity demand for the top eight energy-intensive states, viz., California,
Louisiana, Texas, Florida, Washington, Illinois, Ohio and New York
leveraging a linear regression model.
Several other studies have focused on analyzing the climate impacts

on aggregate energy demand. Aggregate energy demand refers to the
total energy demand including both electricity and natural gas.
Mukherjee and Nateghi [6] evaluated the climate sensitivity of the
sectoral energy demand for the state of Indiana using Bayesian Additive
Regression Trees (BART). The authors found that the maximum sus-
tained wind speed, dew point temperature and snowfall were the most
important predictors of the residential and commercial energy demand.
In another study, Nateghi and Mukherjee [3] developed a generalized
predictive model to project the climate-sensitive portion of the ag-
gregate sectoral energy demand until the year 2100, under both the
business-as-usual emissions scenario (RCP8.5) and a scenario based on
reduced emissions consistent with a 2°C increase in global mean tem-
perature (RCP4.5). Additionally, Raymond et al. [7] estimated the
changes in the climate-induced portion of the aggregate energy demand
for the state of Indiana under both the aforementioned climate change
scenarios, with a focus on potential policy implementations.
The literature review above helps identify the important gaps in the

current body of knowledge. First, to the best of our knowledge, none of
the studies focused on understanding the climate sensitivity of the en-
ergy demand considering the coupled nature of the energy market.
Moreover, the spatiotemporal variations in energy demand across the
U.S. over various seasons necessitates studying the climate impacts on
the heating and cooling energy demand separately across the different
seasons in a particular region [22]. Analyzing the climate sensitivity of
aggregate energy demand is likely to lose much of the important in-
formation related to season-, sector- or region-induced variations in the
energy demand. Studies based on aggregate demand often result in
forecasting negligible changes in annual energy demand, mostly be-
cause the changes in cooling and heating demand offset one another
[22]. Second, the models used to evaluate the climate sensitivity of
natural gas often assume a linear relationship between climate and the

end-use demand. However, in the light of the fact that previous studies
established the relationship between electricity demand and climate to
be highly non-linear [4,5], it is likely that generalized linear models do
not adequately capture the complex and potentially non-linear re-
lationships between the climate and natural gas consumption. Third,
most of the studies modeled natural gas demand as a function of degree-
days or surface air temperatures. We hypothesize that these are in-
adequate measures for capturing the trends in heating and cooling as
they do not account for relative humidity. Under climate change sce-
narios, such models will potentially underestimate the climate sensi-
tivity of the demand, as both temperature and humidity are projected to
increase [23].
In this study, we propose to address the above-mentioned gaps by

developing a data-driven multivariate predictive model to account for
the complex interdependence between the electricity and natural gas
demand across the various sectors (residential, commercial, industrial
and electric power plants). Using the state of New York as a test case,
we analyze the climate sensitivity of the coupled energy demand nexus
separately for three different seasons—summer, winter, and inter-
mediate (i.e., autumn and spring)—to consider and compare the sea-
sonal variabilities in the demand. In addition to the multivariate model,
we also develop a univariate model to evaluate the importance of
considering the coupled nature of the energy market while predicting
energy demand.

3. Data collection, preprocessing and aggregation

In this section, we present a brief description of the input and re-
sponse variables obtained from various sources, data preprocessing and
trend-adjustment, and, finally the seasonal separation and variable
screening processes.

3.1. Input data types and description

Different types of variables—monthly electricity demand, monthly
natural gas demand, monthly climate and daily weather data, and so-
cioeconomic information—were obtained from multiple sources (de-
scribed below).

(i) Electricity demand: Monthly electricity consumption (sales) data
for the state of New York was obtained from the U.S. Energy
Information Administration (EIA) Form EIA-861 M (formerly EIA-
826) [24]. The EIA collects data at an aggregated level for each
energy sector, i.e., residential, commercial, industrial, etc. Thus,
this dataset does not include information on the user profiles (e.g.,
number of homes, square footage, etc.), etc.; rather it presents a
holistic view of the total electricity use across the state of New
York. Data was obtained for the three sectors—residential, com-
mercial, and industrial—during the period of January 2001-De-
cember 2017.

(ii) Natural gas demand: Monthly natural gas consumption by end-
use types was extracted from the U.S. Energy Information
Administration (EIA) [25]. Similar to the electricity demand, the
natural gas demand was available aggregated at the state-level,
and therefore there was no data on user profile details. We ex-
tracted the data for the four different sectors—residential, com-
mercial, industrial and electric power plants (EPP)—during the
period of January 2001-December 2017.

(iii) Climate and weather data: Monthly climate data for the state of
New York was obtained from National Oceanic and Atmospheric
Administration (NOAA), starting from January 2001-December
2017. Variables include monthly and season-to-date heating and
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cooling degree days, snow depth, number of days above 90° F (32°
C) or below 0° F (-18° C), etc. [26]. Daily weather data was re-
quested from NOAA’s National Centers for Environmental In-
formation (NCEI) for the period 01-January-2001 through 31-De-
cember-2017. The weather data, recorded at multiple weather
stations (95 different stations spread across the state of NY), in-
cluded information on the following weather variables: dew point
temperature, daily average and maximum air temperatures, daily
mean and maximum wind speeds, maximum wind gust and visi-
bility [26].

(iv) Socioeconomic data: Economic data for the state of New York
was extracted from the U.S. Department of Labor, Bureau of Labor
Statistics’ database [27]. We considered unemployment rate and
gross state product (GSP) in our analysis as these were found to be
the important socioeconomic features that need to be controlled
for to evaluate the climate-sensitivity of energy demands [2,5].

3.2. Response variable trend-adjustment

Following the data collection step, the response variables (elec-
tricity and natural gas consumption in the residential, commercial, in-
dustrial, and electricity power plant sectors) were detrended. Trend
adjustment was performed, following the method presented by Sailor
and Muñoz [10], to limit the impact of non-climatic phenomena in-
cluding technological advancements and cultural shifts that also affect
the demand structure. Since the goal of this study was to evaluate the
climate sensitivity of the interdependent electricity and natural gas
demand, this trend adjustment process was especially important. More
information on the trend adjustment process, including equations, can
be found in the Supplementary Materials.

3.3. Input variables preprocessing

Daily weather variables obtained from 95 various weather stations
were spatiotemporally aggregated to render monthly average values for
the state of NY over the years of the analysis. The monthly climate
variables obtained from NOAA were also spatially aggregated to pro-
duce the mean values for the state of NY for the period of the analysis.
The preprocessed climate and weather data were then merged with the
socioeconomic data to generate the predictor variable dataset.

3.4. Seasonal separation

As discussed before, we implemented our analysis separately for the
three different seasons—summer, winter, and intermediate—to account
for the seasonal variability in the electricity and natural gas consump-
tion. All the data (response and predictor variables) was divided into
seasons based on the standard seasonal changes for the state of NY.
Specifically, spring is from March-May, summer is from June-August,
autumn is from September-November, and winter is from December-
February [28]. For modeling purposes, the spring and autumn months
were combined to form a single ‘intermediate period’. This seasonal
separation was performed to account for differences in the usage pat-
terns of electricity and natural gas—electricity use increases in the
summer owing to increased space cooling, while natural gas use in-
creases in the winter due to higher demand of space heating. Going
forward, the trend-adjusted, seasonally-separated datasets were used
throughout the modeling and analysis process.

3.5. Input variable screening

A total of 57 input features related to weather, climate, and socio-
economic variables were gathered to be utilized within our framework.

While the predictive performance of our proposed modeling framework
(described in Section 4) is not directly impacted by multicollinearity,
the presence of high-dimensional, correlated predictors could lead to a
‘masking effect’ of certain variables or model overfitting [29–32]. In
other words, the model will still perform well in terms of predictive
accuracy in the face of multicollinearity, but there may be indirect ef-
fects, such as the masking or suppression of uncorrelated predictor
variables in favor of the correlated ones. For example, if there are five
temperature related predictors that are highly correlated and one re-
lative humidity predictor that is not, the effect of relative humidity on
the response variable may not be considered important within the al-
gorithm due to the overshadowing caused by the other correlated
temperature variables. However, if only one or two temperature vari-
ables are included in the model, there might be a stronger signal from
the relative humidity variable, which was previously unseen. With this
in mind, we decided to remove the highly correlated variables ( > 0.8)
to limit the potential for overfitting or the masking of important, non-
correlated variables. The correlation plots of all the initial variables
included in the study are located in the Supplementary Material (Figs.
S1–S3). After the initial variable screening, the variables considered
during the summer season were: dew point temperature, number of
days with a temperature above 90 °F (32 °C), number of cooling degree-
days, unemployment rate, and state GDP. For winter, the final variables
included were: number of heating degree days (HDD) in the season,
number of days below 0 °F (−18 °C), dew point temperature, snow
depth, unemployment rate, and state GDP. Finally, the intermediate
seasons' variables included number of days with a temperature above
90 °F (32 °C), the number of heating degree days (HDD) in the season,
number of days below 0 °F (−18 °C), dew point temperature, snow
depth, unemployment rate, and state GDP.

4. Methodology

The methodology used in this study is based on a state-of-the-art
multivariate tree boosting algorithm [33], which has recently begun to
grow in popularity within the area of infrastructure analysis [34–36]. In
these studies, the algorithm was used to evaluate resilience of electric
distribution networks to hurricanes for the first time. The results in-
dicated that using a multi-outcome algorithm to measure resilience led
to analyzing different areas of vulnerability throughout the network as
well as different proactive measures being selected as optimal [35].
Additionally, the algorithm has been used to study the water-electricity
nexus, where it is established that it is highly beneficial to use a multi-
outcome model in terms of the predictive accuracy of the models [34].
Finally, the model was recently used to assess the resilience of infra-
structure systems to tsunamis in Japan. In this study, using the multi-
variate algorithm resulted in identifying different metrics of resilience
being important as well as the models led to an increase in the overall
predictive accuracy [36]. Overall, the multivariate algorithm has had
its success when used in the studies of interconnected systems. How-
ever, it has not yet been used to model the interdependent electricity
and natural gas demand, and climate nexus. This novel application will
allow utility managers and policy makers to gain a deeper under-
standing of the relationship between electricity use, natural gas use,
and climate across a variety of consumer sectors. In the following sec-
tions, we will first describe the modeling framework before delving into
details of the algorithm.

4.1. Modeling framework

There were three main steps to the modeling framework: (1) data
collection, aggregation, and preprocessing; (2) model training and
testing; and (3) statistical inferencing. These steps are depicted in
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Fig. 1. The first step—data collection, preprocessing and ag-
gregation—was described in Section 3.2. In the second step—model
training and testing—the algorithm was applied within a cross-valida-
tion loop (discussed in Section 4.1.1). Finally, the third step—statistical
inferencing (discussed further in Section 4.1.2)—was performed using
the results from the final model run. This included three main aspects:
(1) a comparison between the multivariate, univariate, and null model
runs; (2) an evaluation of the variable importance; and (3) an analysis
of the partial dependency between the response variable and the key
predictors. Additional details on these steps can be found below.

4.1.1. Predictive modeling
We leverage predictive modeling (aka supervised learning) to

characterize the climate sensitivity of the coupled electricity-natural
gas demand nexus. Supervised learning is a mapping of inputs to out-
puts, i.e., X Yf : . The goal is to estimate the prediction function
such that the lost function (L) of interest—some measure of the distance
(l) between the true values and the predicted values—is minimized, i.e.:
L f l f x y( ) ~ [ ( ( ), )]x y P, [37].
Among the wide library of supervised predictive algorithms, tree-

based methods are one of the most popular non-parametric learning
techniques [37], particularly in modeling energy demand [2–7]. Tree-
based models are competitive—in terms of predictive accuracy—with
many of the state-of-the art statistical machine learning algorithms
[38–40], and lend themselves more easily to interpretation and in-
ferencing compared to other “black box” algorithms, such as deep
learning and support vector machines [37,41]. In this paper, we used an
advanced predictive learner—based on tree-ensembles—that takes ad-
vantage of the covariance structure of multiple response variables to
accurately estimate the complex and non-linear dependencies between
the target variables and the independent variables. Specifically, the
predictive model of the coupled electricity and natural gas demands
was developed based on a multivariate extension of the gradient

boosted regression trees (described under the Algorithm Specification
section). We also developed a univariate model for the individual re-
sponse variables, using gradient tree boosting, to evaluate the effec-
tiveness of the multivariate methodology in capturing the dependencies
in the coupled electricity-natural gas demand. For testing the out-of-
sample predictive performance of the trained models, we implemented
the leave-one-out cross-validation (LOOCV). Cross-validation, in gen-
eral, balances the bias and variance in the model, resulting in more
robust predictions [37]. LOOCV is a style of cross-validation that is
often done with smaller datasets, such as the one considered in this
study.

Algorithm Specification: Gradient boosted regression trees is an
ensemble-of-trees method that takes advantage of the boosting meta-
algorithm to improve model predictive accuracy [42]. The boosting
meta-algorithm works by sequentially fitting decision-tree classifiers–-
where in each iteration more weight is given to the better classifiers
than the misclassified points in order to reduce the overall loss function
and enhance the predictive accuracy. Boosting is represented mathe-
matically in the equation below.

F T=
=

x x( ) ( )
m

M

m m
1 (1)

Here F x( ) is the final ensemble model, M is the total number of
iterations to be completed, m is the weight of each prediction (step
size) that controls how quickly the model fits to the observed data, and
Tm is the tree models fitted to the input variable x at iteration m.
Multivariate tree boosting extends gradient boosted regression trees

to a multivariate (i.e., multi-response) case. Thus, the multivariate al-
gorithm allows for simultaneous prediction of multiple response vari-
ables [33]. Specifically, the algorithm iteratively fits trees by mini-
mizing the squared loss for each target variable and maximizing the
covariance discrepancy in the multidimensional response variable at

Fig. 1. Schematic depicting the proposed multi-variate, multi-sector modeling framework.
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each gradient step. Thus, at each iteration, a prediction is made for each
response variable such that the loss function is minimized and the
covariance discrepancy between the current and previous prediction is
maximized. This allows each subsequent estimation to be incrementally
more accurate than the previous step, while ensuring the independent
variables that account for the largest fraction of the covariance in the
nexus of the response variables are selected. The steps of the algorithm
are summarized below:

Algorithm 1. Multivariate Ensemble Tree Boosting Algorithm [33]

1: for …min M1, , steps (regression trees) do
2: for r in … R1, , quantitative response variables (e.g., electricity and natural

gas demands) do
3: train treem r( ) to residuals, and estimate the covariance discrepancy Dm r,
4: end for
5: Select the response y r( ) corresponding to the regression tree that yielded the

maximum Dm r,
6: Update residuals by subtracting the predictions of the tree fitted to y r( ),

multiplied by step-size.
7: end for

4.1.2. Statistical inferencing
Statistical inferencing consisted of three main steps. The first step

involved models’ performance comparison. In the literature, much of
the energy demand predictions are performed using univariate ap-
proaches that do not account for the interdependent nature of the two
demand structures. As discussed before, we evaluated the differences in
performances between the multivariate model presented above and a
univariate model. The latter uses a similar algorithm, namely gradient
tree boosting [43], which is the basis for the multivariate tree boosting
algorithm used here [33]. Additionally, we compared the model results
to the null model. In the second step, we analyzed the relative im-
portance of the independent variables on the electricity and natural gas
demands across the residential, commercial, industrial and EPP sectors.
Finally, in the third step, we analyzed the partial dependence of the
predictors on the response variables within the multivariate model. This
allowed us to discern which predictor variables were most important
for accurately predicting the energy demands as well as the nature of
those relationships. The results from this analysis are detailed in the
following section.

5. Results and discussion

In this section we will discuss the results from the model predictions
as well as the statistical inferencing techniques (steps) outlined above.

5.1. Model comparison

To compare the multivariate, univariate, and null models, we as-
sessed the models’ performance using a variety of measures, including
the normalized root-mean-square error (NRMSE), shown in Eq. 2. The
NRMSE is especially beneficial when comparing multiple models’ out-
puts having different units, as it puts all the measures of error on the
same scale.

=NRMSE
x x

x x
n

max min

( )2

(2)

The NRMSE analysis results for each of the response variables are
presented in the form of a bar plot in Fig. 2. In this plot, the response
variables are presented along the x-axis while the three different sea-
sons are depicted in separate panels, as labeled on the right-hand y-axis.
From this plot, we can observe that the null model (i.e., the black bars)
generally performs worse than either of the predictive modeling algo-
rithms, which is expected as the null model represents the prediction
based solely on the mean value of the observed response variable.
However, in some cases, namely the industrial electricity sector, the
null model performs better than both the multivariate and univariate
models. This indicates a lack of climate sensitivity in the industrial
electricity demand, as the mean value is a better predictor than the
range of climate variables included in this study. This result is in line
with the findings from previous studies, which have demonstrated that
the industrial sector is the least climate sensitive followed by com-
mercial sector, while the residential sector is most sensitive to climate
[4,5]. This is likely due to the nature of end-uses [4]. Further ex-
ploration is needed to determine the optimal variables for predicting
the industrial electricity demand.
In addition to comparing the null models to the predictive modeling

algorithms, Fig. 2 demonstrates the improved performance of the
multivariate model over the univariate model in the various energy
sectors considered in our research. The multivariate model (i.e., the
dark gray bars) has a lower NRMSE than the univariate model (i.e., the
light gray bars), especially in the summer period. Since the main dif-
ference between the multivariate and univariate models is the con-
sideration of response variable interdependence, the results indicate
that the interdependence plays a key role in accurately predicting the
electricity and natural gas demands across the various sectors during
the summer months. A notable exception is the industrial electricity
demand, in which the univariate model performs significantly better
than the multivariate model in the summer period. This suggests that
there is little interdependence between industrial electricity and the
other sectors. In the winter and intermediate months, there is more
similarity between the univariate and multivariate model performance,
however, the multivariate model shows marginal improvement in the

Fig. 2. Normalized root mean square error (NRMSE) for the multivariate,
univariate, and null models. NRMSE is the RMSE normalized by the data range
at the time of calculation, such that each response variable is on the same scale.
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various sectors. That being said, even marginal improvement can lead
to significant impacts, when one considers the size of the energy sector.
For example, the predictions for residential natural gas use in the in-
termediate months is slightly better in the multivariate model than the
univariate model (i.e., a NRMSE of 0.053 compared to 0.062; see
Table 1), which is approximately a 15% difference in predictive accu-
racy (i.e., out-of-sample NRMSE). In terms of the residential natural gas
use in the state of New York, this could mean an underestimation of
4574 million cubic feet (MMcf; 129 million m3) in natural gas demand
in an average month (i.e., 15% of the mean residential natural gas
consumption in the intermediate months, i.e., 15% of 30,496 MMcf
which equals to 4574 MMcf), and up to 11,384 MMcf (322 million m3)
in a peak month. If one considers the other natural gas sectors, there
would be no difference in the commercial sector, a surplus of
1515 MMcf (42 million m3) in the electric power plant sector, and a
shortage of 523 MMcf (14 million m3) in the industrial sector, under
average conditions. In other words, if the natural gas plant managers
relied on the univariate model for their projections during the inter-
mediate seasons, they could experience a shortage of 2536 MMcf
(71 million m3) in average conditions. In peak months, this shortage
could be up to 8261 MMcf (233 million m3).
Interestingly, the EPP natural gas use in the winter and intermediate

months is better modeled by the univariate model. This suggests that
during the colder months, electric power plant (EPP) natural gas use
has lower interdependence with the rest of the energy sectors than
during the warmer months. That being said, overall, the multivariate
model shows improvement over both the null model and the univariate
model. Additional measures of out-of-sample (i.e., test data) model

performance are shown in Table 1. Here, the benefits of the multi-
variate model are further demonstrated. In particular, Table 1 presents
the NRMSE values that are plotted in Fig. 2, as well as the percent of
improvement over the null model. The improvement data shows the
relative increase (or decrease) in predictive accuracy that each model
has shown compared to the null, or mean-only, model. In general, both
models show improvement over the null model, but that the multi-
variate model has slightly better improvement. See Supplemental Table
S1 for the in-sample (i.e., training data) model performance.
Additionally, Table 1 shows the out-of-sample R2 values. The R2

values, which indicate how much variance in the original response data
is explained by the model (i.e., goodness-of-fit), are generally closer to
one in the multivariate model compared to the univariate model. This
indicates that the multivariate model is able to fit the original data
better than the univariate model. In Table 1, for example, one can see
the ability of the multivariate model to accurately predict the energy
consumption across the sectors in the intermediate months. In fact, with
the exception of industrial electricity, which has been shown to be less
sensitive to climate variables [4,5], all of the sectors are fairly well-
predicted by the multivariate model (e.g., all the R2 values for the test
set are greater than 0.70, with the exception of industrial electricity
use). This trend continues during the summer months. Here, the mul-
tivariate model accurately predicts the demand data in each sector,
except the industrial electricity sector, although the R2 values are
slightly lower than those for the intermediate months, especially in
natural gas use (see Table 1). These R2 values represent the fit between
the multivariate model predictions and the observed values in the test
set, meaning higher values corresponding to a better fit of the model.

Table 1
The out-of-sample (i.e., testing data) model performance of each sector in the multivariate and univariate models in each seasonal period. The improvement over null
refers to the percent improvement in error compared to the null (i.e., mean-only) model. Note that a negative number indicates a decrease in model accuracy when
compared to the null model. See Supplemental Table S1 for the in-sample (i.e., training data) model performance.

Sector Multivariate Model Univariate Model

R2 NRMSE Improvement over null R2 NRMSE Improvement over null

Intermediate months
Commercial electricity 0.92 0.057 68% 0.88 0.062 66%
Commercial natural gas 0.86 0.084 64% 0.83 0.084 64%
Electric power plant 0.75 0.096 52% 0.76 0.091 54%
Industrial electricity 0.40 0.088 4% 0.37 0.085 7%
Industrial natural gas 0.84 0.081 57% 0.79 0.088 54%
Residential electricity 0.84 0.071 60% 0.79 0.069 61%
Residential natural gas 0.87 0.053 75% 0.86 0.062 71%

Summer months
Commercial electricity 0.86 0.095 66% 0.82 0.092 64%
Commercial natural gas 0.68 0.084 57% 0.38 0.117 28%
Electric power plant 0.78 0.066 63% 0.70 0.082 53%
Industrial electricity 0.37 0.091 −56% 0.08 0.063 −6%
Industrial natural gas 0.64 0.102 42% 0.46 0.126 25%
Residential electricity 0.89 0.067 74% 0.87 0.079 70%
Residential natural gas 0.69 0.108 56% 0.47 0.133 42%

Winter months
Commercial electricity 0.47 0.144 4% 0.27 0.143 2%
Commercial natural gas 0.62 0.127 32% 0.46 0.137 14%
Electric power plant 0.78 0.125 61% 0.78 0.116 59%
Industrial electricity 0.40 0.141 −14% 0.20 0.134 −3%
Industrial natural gas 0.55 0.131 12% 0.31 0.136 14%
Residential electricity 0.61 0.138 23% 0.43 0.140 22%
Residential natural gas 0.70 0.121 49% 0.61 0.116 50%
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Interestingly, although much less amount of natural gas is used during
the summer, at least in the residential and commercial sectors, the
multivariate model still accurately predicts the climate-sensitive por-
tion of the demand (e.g., R2 values greater than 0.60). Finally, in the
winter months, the models still fit the data relatively well, but not to the
level of accuracy seen in the intermediate and summer months. This
suggests that the energy demand during the winter months is less cli-
mate sensitive as compared to the summer and intermediate seasons.
Visual representations of the model fit can be found in the
Supplementary Material (Figs. S4–S6).

5.2. Statistical inferencing: Analyzing climate sensitivity

One of the benefits of tree-based predictive modeling techniques is
the ability to interpret the model and make inferences based on the

results. One such way to make inferences is to look at the relative in-
fluence of the predictors on the response variables. The relative influ-
ence can be thought of as the importance of a given predictor to the
predictive accuracy of the model. In other words, more influential (or
important) predictors are responsible for a larger share of the overall
improvement in predictive accuracy. Figs. 3, 5, and 7 depict the relative
influence of each predictor variable on each response variable, sepa-
rated by season. These plots are clustered using hierarchical clustering,
such that the predictors that affect the response variables similarly are
grouped together. The darker squares represent higher relative influ-
ence over the predictive accuracy of a given response variable (the
numbers being the actual relative influence score, shown as a fraction
out of 100 for each sector). The relative influence plots demonstrate the

Fig. 3. Relative influence of the various predictors on the response variables for
the intermediate months.

Fig. 4. A selection of the partial dependence plots for the intermediate months:
(a) Influence of season-to-date heating degree days (HDD) on electricity de-
mand in the commercial sector; and (b) influence of dew point temperature on
natural gas demand in the residential sector.

Fig. 5. Relative influence of the various predictors on the response variables for
the summer months.

Fig. 6. A selection of the partial dependence plots for the summer months: (a)
Influence of season-to-date cooling degree days (CDD) on electricity demand in
the residential sector; (b) Influence of number of days above 90 °F on natural
gas demand in the industrial sector.

R. Obringer, et al. Applied Energy 262 (2020) 114419

8



importance of each predictor, but to determine the nature of the re-
lationship (e.g., if the value of the predictor increases, what effect does
that have on the response), one needs to assess the partial dependence.
Figs. 4, 6, and 8 show a selection of the partial dependence plots for

each season. The predictors plotted are the two most important pre-
dictors over all the sectors (i.e., the highest total relative influence
score, summed across the sectors), while the response variables were
selected based on the highest relative influence score for the chosen
predictor variables. For example, in Fig. 6, dew point temperature has
the highest total relative influence score (i.e.,

+ + + + + + =42 23 12 19 67 47 38 248) and in particular, residential
natural gas is influenced the most by dew point temperature (i.e., a
relative influence score of 67). Therefore, we chose to show the partial
dependence plot of dew point temperature and residential natural gas

use. Additional partial dependence plots for the climate variables and
sectors not included in this text can be found in Supplementary Figs.
S7–S13. In the partial dependence plots, all but the one predictor is held
constant, such that the relationship between the response variable and
the given predictor can be assessed. It is worth noting that the GDP is
highly influential across all the sectors and all the periods, likely sig-
naling the effect of the energy sector on the economy as a whole. That
being said, since the purpose of this study was to evaluate the climate
sensitivity, GDP was not considered in the partial dependence plot se-
lection.

5.2.1. Intermediate months
During the intermediate months, which included both spring

(March–May) and autumn (September–November), dew point tem-
perature and season-to-date heating degree-days are found to be highly
influential across all the sectors (see Fig. 3). The importance of dew
point temperature echoes with the results of previous studies, which
suggested that dew point temperature is a better predictor than heating
or cooling degree-days in all the seasons [2,4,5]. Dew point tempera-
ture, which is the temperature at which the air becomes saturated with
water, is often used in demand studies because it accounts for the
moisture in the air, which has the potential to make the temperature
appear different to people. This means that as the dew point increases,
for example, and people feel hotter, they will generally increase their air
conditioning use, thus leading to higher electricity consumption, even if
the actual temperature is lower.
It is noteworthy that the season-to-date heating degree-days was

found to be important, especially for the electricity demand. It is likely
that as the season progresses and the number of heating degree-days
increases or remains the same (i.e., cooling degree-days are increasing),
people are opting to maintain heating or cooling levels out of habit,
rather than adjusting daily. In this sense, the season-to-date heating
degree-days captures a longer trend in the demand structure than the
monthly heating degree-days, hence the importance when predicting
seasonal energy use. This is further demonstrated by the partial de-
pendence plots in Fig. 4, which shows as season-to-date heating degree-
days increase (i.e., an increasing number of cold days), the electricity
use decreases—likely due to less space-cooling and more space-heating
(via natural gas). Similarly, as the dew point temperature increases,
there is a drop in natural gas use, which is primarily used for space-
heating during the winter months.

5.2.2. Summer months
In the summer months (i.e., June–August), the season-to-date

cooling degree-days is the most important variable for residential
electricity and natural gas end-use, as well as commercial electricity
demand, while the number of days above 90 °F (32 °C) is important for
the remaining sectors (see Fig. 5). As the number of cooling degree-days
increases, indicating that it is getting hotter and people are increasing
their use of air conditioning, the electricity use is increasing (see Fig. 6).
It is interesting to note that the number of days above 90 °F (32 °C) is
the most influential variable on industrial natural gas use (see Fig. 5),
and that, as the number of days increases, the amount of natural gas
used also increases, up to a point, and then remains constant (see
Fig. 6). Since industrial natural gas is used in a variety of manufacturing
processes in addition to space-heating, these results could be capturing
a trend of increasing productivity during the warmer months.

5.2.3. Winter months
Finally, in the winter months (December–February), dew point

temperature and the season-to-date heating degree-days were found to
be the most important climate predictors (see Fig. 4). Since the most
intensive energy end-use in the winter months is space-heating, it is
logical that colder temperatures (and more heating degree-days) lead to
increased energy use, regardless of the source (i.e., natural gas or
electricity). According to Fig. 8, residential electricity use increases as

Fig. 7. Relative influence of the various predictors on the response variables for
the winter months.

Fig. 8. A selection of the partial dependence plots for the winter months: (a)
Influence of season-to-date dew point temperature on natural gas demand in the
commercial sector; and (b) influence of season-to-date heating degree days
(HDD) on electricity demand in the residential sector.
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the number of heating degree-days increases, before dropping, as the
HDD count continues rise. This likely points to increased space-hea-
ting—whether due to an electric furnace or electric space heaters.
Likewise, as the dew point increases, the commercial natural gas use
drops, signifying a rise in temperature and reduction in space-heating.
Overall, the relative influence plots show us which variables are

important and the partial dependence plots show us how the relation-
ship works—both allow us to make inferences about the interconnected
energy demand structure. These results have implications on policy and
decision-making at the utility scale, which may not include inter-
dependent modeling of electricity and natural gas demand. For ex-
ample, predicting the demand tends to be the most difficult during the
intermediate months, due to the fluctuations in temperature, which
lead to rapid switches from electricity to natural gas use, and vice versa.
Our results show that dew point temperature is an important predictor
for both electricity and natural gas demand, so if utilities work together,
they could potentially improve their projections based on the dew point
alone. Although, to get a more accurate prediction, it is recommended
that utility managers take all the climate variables into account, which
play various roles in predicting consumption within the different en-
ergy sectors.

6. Conclusion and policy implications

The purpose of this study was to evaluate the climate sensitivity of
the coupled electricity-natural gas demand nexus. Using the multi-
variate tree boosting algorithm, we were able to demonstrate the im-
portance of considering the interdependencies between electricity and
natural gas use in the state of New York, particularly during the warmer
summer months. When compared to a similar univariate algorithm, the
multivariate model performed better in terms of normalized root-mean-
square error, indicating the value of considering multiple sectors at
once, even if one is only interested in residential electricity, for ex-
ample. Additionally, we identified the important variables for each
season; we found that dew point temperature was fairly important
across all seasons and sectors, especially in predicting the climate-in-
duced demand during the intermediate and winter months and within
the natural gas sectors. This aligns with the previous studies on climate
sensitivity of energy demand, which established the importance of dew
point temperature as a critical climate factor influencing end-use elec-
tricity demand [2,4,5]. Our results also indicate the importance of
season-to-date heating and cooling degree-days. Previous studies have
focused on monthly degree-days, but it is likely that considering the
total number of degree-days that have occurred in a season could lead
to better predictive accuracy of the energy demand-climate models.
This is likely due to the fact that season-to-date measures take into
account the trends within a season that may lead to consumer decisions
on setting thermostats. Additionally, this framework focused on sea-
sonal models, as the trends in electricity and natural gas demand are
intricately linked to the seasonal changes in the surrounding environ-
ment. For example, natural gas demand usually picks up in the late
autumn and continues through the early spring, when people are
switching to space-heating. In this sense, a model that doesn’t separate
by seasons could be missing major trends within the demand profiles.
The modeling framework and results presented here can be used by

utility managers and decision-makers to improve their ability to predict
electricity and natural gas use. The framework would be especially
helpful in the intermediate months, when the daily fluctuations make it
difficult to obtain accurate predictions. For example, in the inter-
mediate months, dew point temperature and season-to-date heating
degree-days were found to be important climate predictors. Utility
managers that are interested in predicting the demand during the in-
termediate season, can use these two variables to obtain a close ap-
proximation of the demand structure. Moreover, the utility managers in
this situation would also see improvement in their predictions if they
consider the interdependencies between electricity and natural gas

demand. Improving the predictive capabilities of electricity and natural
gas demand, especially as the demand structure relates to the climatic
conditions, will become increasingly important as the climate becomes
more variable and populations continue to rise in future. Although this
study focused on the state of New York, the modeling framework is
generic enough that can be applied in any number of regions or states
around the world. Moreover, there is potential for extending the fra-
mework to include other utilities, such as water.
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