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ABSTRACT

Specifying and analyzing desired properties of software systems

can play an important role in the development of more dependable

systems. Alloy is a mature tool-set that provides a first-order, rela-

tional logic with transitive closure for writing specifications, and a

fully automatic backend based on propositional satisfiability (SAT)

solvers for analyzing them. Alloy’s intuitive notation and support

for modern solvers make it an effective specification and analysis

tool, which has led it to be applied in several domains, including

verification, security, and synthesis.

This paper introduces a new backend for Alloy, which comple-

ments SAT solvers, and provides a new method to assist Alloy users

to more effectively use the tool-set, specifically in scenarios where

multiple solutions to the same formula are desired. We add to the Al-

loy backend support for model counting, i.e., computing the number

of solutions to the given formula. We extend the Alloy grammar to

add a new command for model counting, and extend the Alloy GUI

to customize it. Our implementation, called AlloyMC, supports two

state-of-the-art model counters: the approximate model counter

ApproxMC and the exact model counter ProjMC. AlloyMC runs on

Linux, Mac, and Windows. To use AlloyMC, users just download

and run its integrated JAR file with no need to install dependencies

(e.g., model counters and their dependent libraries). The AlloyMC

source code, the JAR file, and the data set are available publicly.
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1 INTRODUCTION

Propositional model counting is the problem of computing the

number of solutions for a given propositional formula, which is

the number of distinct truth assignments to variables for which the

formula evaluates to true [10]. Effective model counting is a key

that enables a variety of new application areas such as probabilistic

inference, planning, combinatorial design [5, 8, 14, 22, 24, 26, 27],

security [4, 20, 25], and system and software analysis [11, 15, 16]. A

commonly used form of model counting is projected model counting

where the goal is to compute the number of distinct solutions

with respect to only a specific subset of variables; this subset is

called independent or primary variables. Model counting techniques

broadly fall into two categories: approximate counting and exact

counting [17]. Two tools that represent the state-of-the-art in these

categories are ApproxMC [13] for approximate model counting

and ProjMC [21] for exact model counting. Both ApproxMC and

ProjMC support projected model counting.

Alloy is a lightweight toolset for writing and analyzing specifica-

tions of software systems [18]. It is designed to naturally facilitate

writing correct specifications where the user starts with a par-

tial specification and builds it incrementally, aided at each step

by rapid analysis performed by Alloy’s backend. The Alloy ana-

lyzer employs the heavily optimized constraint solver Kodkod [31],

which uses a bound on the universe of discourse, termed scope, to

translate Alloy specifications into propositional satisfiability (SAT)

formulas. The translated SAT formula is then solved by off-the-

shelf SAT solvers, which have seen noteworthy advances over the

last two decades [9]. Alloy’s intuitive language design, its efficient

translation, and powerful backend solving have enabled a wide

range of Alloy applications, including design and modeling [3, 6, 7],

hardware and software security [1, 32], system analysis and verifi-

cation [12, 19, 23], and software testing [28].

Some of these applications require enumerating multiple solu-

tions to the given specification, e.g., when it characterizes properties

of desired object graphs for bounded exhaustive testing [34], or

of desired hardware litmus tests for finding hardware vulnerabili-

ties [33]. The effectiveness of Alloy in such applications depends

critically on the quality and number of solutions created. A key

issue with Alloy’s original backend that is based solely on SAT

solving is that users can’t use it to estimate the number of solutions

without actually enumerating them all using an enumerating SAT

solver. Thus, if the user wants to modify their specification, say by

adding a new constraint, to reduce the number of solutions [32],

they have to wait for full enumeration of the initial specification

and the modified specification to determine if a desired reduction

is achieved. Furthermore, it is definitely not applicable for users to

click the button for every solution enumeration to count even for a

moderate-sized problem which usually has millions of solutions.
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Our key insight is that we can enhance Alloy by adding direct

support for model counting so the user does not have to repeatedly

pay the cost of full enumeration using SAT solvers, and can instead

benefit from the state-of-the-art model counters that use advanced

methods to efficiently compute the approximate or exact number

of solutions. We present AlloyMC, which adds model counting

support to Alloy. The specific model counting problem for Alloy

specifications directly maps to projected model counting where the

goal is to count the number of solutions with respect to the CNF-

level variables that directly correspond to the relations declared in

the Alloy specification.

AlloyMC extends the Alloy grammar to support a new com-

mand for invoking backend model counters, and extends the Alloy

GUI to support customizing the invocation. AlloyMC allows users

to (optionally) specify an expected model count, and reports the

model counting results with respect to the expectation, thereby

providing another way to validate Alloy specifications in the spirit

of unit testing. We extended Alloy parsing and translation accord-

ingly to convert Alloy specifications with the count command into

the corresponding projected model counting problems. At present,

AlloyMC supports two state-of-the-art model counters ś the ap-

proximate model counter ApproxMC and the exact model counter

ProjMC. The design of AlloyMC allows other model counters to be

added in future. AlloyMC runs on Linux, Mac, and Windows. To

use AlloyMC, users just download and run its integrated JAR file

with no need to install dependencies (e.g., model counters and their

dependent libraries). The AlloyMC source code, the JAR file and the

data set are available publicly (https://github.com/jiayiyang1997/

org.alloytools.alloy/tree/model_count). A screencast of the tool

demonstration is also available at https://youtu.be/iogIrJ8kHI4.

2 ALLOY BACKGROUND

This section gives a quick overview of Alloy using an illustrative

example. An Alloy model declares sets and relations, defines con-

straints on them, and includes commands for invoking the backend

engine. The keyword sig declares a set of atoms, andmay optionally

have fields that declare (binary, ternary, or higher arity) relations.

The keyword pred introduces a predicate that defines constraints on

the sets and relations, and can be invoked elsewhere. Constraints

can also defined using facts that must always be satisfied. Alloy’s

run command allows users to invoke a predicate so the Alloy ana-

lyzer returns an instance if the predicate is satisfiable, or reports

that the predicate is unsatisfiable. Users can also use Alloy’s check

command to search for a counterexample that refutes the given

constraint. Each command has a user-defined scope that bounds

the number of atoms in the signatures; the default scope is 3, i.e.,

at most 3 atoms in each set. The Alloy analyzer performs scope-

bounded analysis where the analysis results are valid for the given

scope.

Figure 1 illustrates a small Alloy specification of an acyclic linked

list, and an invocation of the analyzer to search for a list with up to

5 nodes (Lines 1ś9). The signature List (Lines 1ś2) requires that

there be exactly one list atom (restricted by keyword one). The

signature Node (Lines 3-4) declares a set of node atoms. The header

field (Line 2) is a partial function that maps the list atom to at

most one node atom. The link field (Line 4) is similarly a partial

1. one sig List {

2. header: lone Node }

3. sig Node {

4. link: lone Node }

5. fact { List.header.*link = Node }

6. pred Acyclic(l: List) {

7. all n: l.header.*link | n !in n.^link }

8. run Acyclic for 5

9. run Acyclic for 5 expect 1

10. cmd1: count Acyclic for 5

-- simple count command

11. cmd2: count Acyclic for 5 expect 8

-- expected count command

12. cmd3: count Acyclic for 5 expect >= 8

-- operators can be used: <=, >=, =, >, <, !=

13. cmd4: count Acyclic for 5 expect 1*2^4

-- expected count in x*y^z format

14. cmd5: count Acyclic for 5 expect -1

-- ignore negative expected count

Figure 1: Acyclic linked list Alloy model

function from nodes to nodes. The fact ensures that each node is

reachable from the list header. The predicate Acyclic (Lines 6ś7)

states that for every node n which is reachable from the parameter

list l’s header following zero or more traversals (defined by *)

along the link, n is not reachable from itself following one or more

traversals (defined by ˆ) along the link. The first run command

(Line 8) searches for an Acyclic list l with up to 5 nodes. Alloy

allows users to specify an expectation on whether a solution is

expected or not using they expect clause, which helps in validating

the specification (akin to unit testing). The second run command

(Line 9) searches for an Acyclic list with the expectation that such

a list is expected (indicated by łexpect 1ž); łexpect 0ž indicates

that the predicate invoked is expected to be unsatisfiable; if the

user provides a negative number for the expect clause, the clause

is ignored by the analyzer.

3 ALLOYMC

3.1 Overview

Figure 2 illustrates the overall architecture of AlloyMC. AlloyMC

adds support for model counting to Alloy by extending the original

Alloy language with a new command named count (Section 3.2).

We extended the Alloy lexer and parser accordingly to convert the

Alloy specification with the count command into an intermediate

AST. We also modified the Kodkod engine to convert the intermedi-

ate representation into an appropriate SAT formula (a CNF instance

in the standard DIMACS format) that is augmented with the infor-

mation on primary variables, to create a standard input for model

counters that support projected model counting (Section3.3). Once

the backend counter finishes, the GUI reports detailed results, in-

cluding the SAT formula generation time, counting time, the model

count, and whether the count is as expected (if the expect clause

is used). In addition, the original output of the individual model

counter is also provided as a link to a text file.
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Table 1: AlloyMC evaluation results on 10 Alloy models (time in seconds)

subject #primary vars #vars #clauses CNF time [s]
ProjMC ApproxMC

time [s] count time [s] count

addressBook1g/delUndoesAdd 36 1,567 2,214 0.26 1.34 5,429 0.79 5,632

farmer/solvePuzzle 80 1,137 3,011 0.41 0.08 2 0.01 2

farmer/NoQuantumObjects 80 1,177 3,079 0.81 1.39 512 0.41 544

hotel3/NoBadEntry 407 8,640 21,479 0.15 TO - 18.4 18,176

life/Square 95 4,666 13,803 0.27 5.04 962 8.48 976

life/Show 324 27,572 93,759 0.29 TO - TO -

life/interesting 90 3,664 11,372 0.49 TO - 30.39 12544

messaging/SomeState 76 609 731 0.5 0.27 88,505,010 1.63 88,080,384

messaging/OutOfOrder 496 4,513 7,007 0.35 TO - TO -

p300-hotel/NoIntruder 135 3,798 6,638 0.9 34.66 4,662 3.77 4,608

queens/NQueensProblem 8,192 141,969 378,236 7.62 28.35 92 24.72 92

bst/RepOk 425 10,210 27,547 0.24 31.41 1,430 23.73 1,408

dllist/RepOk 141 4,341 12,016 0.06 19.58 5,080 2.75 4,736

rbt/RepOk 297 10,945 26,406 1.74 0 0 0.12 0

is that they modify the model count since they remove some sym-

metric solutions. Moreover, Alloy’s symmetry breaking is heuristic,

and there is no direct way to compute the precise impact that the

additional predicates have on the model count. Thus, in the con-

text of model counting, it is necessary to allow the user to choose

whether or not they want symmetry breaking predicates. AlloyMC

adds an option to support symmetry breaking setting (off, default,

or twice the default) in the 𝑂𝑝𝑡𝑖𝑜𝑛𝑠 menu in the menu bar.

AlloyMC enhances the coding area to support the extended gram-

mar. Moreover, AlloyMC summarizes the result of model counting

in the log panel. The running information is shown once the counter

starts, and the count results are shown once the counter finishes.

Moreover, warning messages are shown if the counter is not sup-

ported under the current environment. In addition, a link to a text

file that contains verbatim output of the used model counter is

added, so the user can view the detailed output if desired. AlloyMC

allows the user to stop the counter at any time during the execution,

using the existing "Stop" button in the shortcut toolbar.

Our implementation also made AlloyMC easy to install so the

user does not have to separately install its various dependencies

(e.g., the counters and the dependent libraries). We adjusted Bnd 4

files to distribute platform-related executable files and dynamic

libraries in the final JAR file. Bnd is a widely used build tool with

the goal of generating JAR files for complicated Java projects; it is

also utilized by the original Alloy analyzer. The dynamic libraries

are what model counters need to run with. Once the user exe-

cutes the tool, the platform-related executable files and dynamic

libraries are copied from the JAR file to the tool’s temporary di-

rectory. The environment variable (łLD_LIBRARY_PATHž for Linux;

and łDYLD_FALLBACK_LIBRARY_PATHž for Mac) for dynamic library

search is set for the counters automatically. To run AlloyMC, users

only need to download and run the JAR file.

5 EXPERIMENTS

For evaluation subjects, we take 10 Alloy specifications as our sub-

jects including 6 specifications randomly taken from Alloy standard

distribution (addressBook1g, farmer, hotel3, life, messaging, and

p300-hotel), and 4 specifications randomly taken from a previous

model counting study [35] (queens, bst, dllist, and rbt). We change

4Bnd/BndTools source code and usage are available at https://github.com/bndtools/bnd

each run and check command in original Alloy specification into a

count command, keeping the original scope. We made łrbtž spec-

ification an exception by changing its scope to explicitly make

łRepOkžpredicate unsatisfiable, to see how AlloyMC performs for

an unsatisfiable formula. Table 1 shows subjects with specification

names and corresponding predicate names in the command.

In the experiments, we take each Alloy specification and man-

ually run it in AlloyMC GUI. We set up time-out as 60 seconds to

approximate users’ tolerable waiting time. In Table 1, we report

translated CNF formula info consisting of primary variable number

(#primary vars), total variable number (#vars), total clause number

(#clause), and CNF generation time; we also report model counter

(ApproxMC and ProjMC) outputs including the running time and

model count. łTOž indicates the subject timed out, and ł-ž indicates

unknown count. All the experiments were performed on a machine

with 4-core, 2.7 GHz Intel Core i7 CPU with 16 GB memory.

Overall, AlloyMC correctly parsed the input Alloy specification

with the extended grammar. The CNF formula is generated quickly

and solved correctly by both counters. AlloyMC also performs cor-

rectly under the unsatisfiable case (łrbtž specification) by returning

0 model count. We also observe that users can get the results for

most commands within our time-out limit, even for a case when

the model count is large (łSomeSatež predicate in łmessagingž spec-

ification); note that it would be infeasible to get such a large model

count using the solution enumeration in the original Alloy tool.

6 CONCLUSION

This paper introduced the AlloyMC tool that, to our knowledge,

adds the first model counting backend to Alloy. AlloyMC supports

two state-of-the-art model counters: ApproxMC for approximate

model counting, and ProjMC for exact model counting. We believe

AlloyMC promises more effective applications of Alloy in domains

where multiple solutions are required, e.g., for bounded-exhaustive

testing. The knowledge of model counts can also guide the users to

refine their specifications, e.g., by adding constraints to reduce the

number of solutions and create a high quality test suite that can

both be enumerated as well as executed feasibly.
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