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ABSTRACT

Specifying and analyzing desired properties of software systems
can play an important role in the development of more dependable
systems. Alloy is a mature tool-set that provides a first-order, rela-
tional logic with transitive closure for writing specifications, and a
fully automatic backend based on propositional satisfiability (SAT)
solvers for analyzing them. Alloy’s intuitive notation and support
for modern solvers make it an effective specification and analysis
tool, which has led it to be applied in several domains, including
verification, security, and synthesis.

This paper introduces a new backend for Alloy, which comple-
ments SAT solvers, and provides a new method to assist Alloy users
to more effectively use the tool-set, specifically in scenarios where
multiple solutions to the same formula are desired. We add to the Al-
loy backend support for model counting, i.e., computing the number
of solutions to the given formula. We extend the Alloy grammar to
add a new command for model counting, and extend the Alloy GUI
to customize it. Our implementation, called AlloyMC, supports two
state-of-the-art model counters: the approximate model counter
ApproxMC and the exact model counter ProjMC. AlloyMC runs on
Linux, Mac, and Windows. To use AlloyMC, users just download
and run its integrated JAR file with no need to install dependencies
(e.g., model counters and their dependent libraries). The AlloyMC
source code, the JAR file, and the data set are available publicly.
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1 INTRODUCTION

Propositional model counting is the problem of computing the
number of solutions for a given propositional formula, which is
the number of distinct truth assignments to variables for which the
formula evaluates to true [10]. Effective model counting is a key
that enables a variety of new application areas such as probabilistic
inference, planning, combinatorial design [5, 8, 14, 22, 24, 26, 27],
security [4, 20, 25], and system and software analysis [11, 15, 16]. A
commonly used form of model counting is projected model counting
where the goal is to compute the number of distinct solutions
with respect to only a specific subset of variables; this subset is
called independent or primary variables. Model counting techniques
broadly fall into two categories: approximate counting and exact
counting [17]. Two tools that represent the state-of-the-art in these
categories are ApproxMC [13] for approximate model counting
and ProjMC [21] for exact model counting. Both ApproxMC and
ProjMC support projected model counting.

Alloy is a lightweight toolset for writing and analyzing specifica-
tions of software systems [18]. It is designed to naturally facilitate
writing correct specifications where the user starts with a par-
tial specification and builds it incrementally, aided at each step
by rapid analysis performed by Alloy’s backend. The Alloy ana-
lyzer employs the heavily optimized constraint solver Kodkod [31],
which uses a bound on the universe of discourse, termed scope, to
translate Alloy specifications into propositional satisfiability (SAT)
formulas. The translated SAT formula is then solved by off-the-
shelf SAT solvers, which have seen noteworthy advances over the
last two decades [9]. Alloy’s intuitive language design, its efficient
translation, and powerful backend solving have enabled a wide
range of Alloy applications, including design and modeling (3, 6, 7],
hardware and software security [1, 32], system analysis and verifi-
cation [12, 19, 23], and software testing [28].

Some of these applications require enumerating multiple solu-
tions to the given specification, e.g., when it characterizes properties
of desired object graphs for bounded exhaustive testing [34], or
of desired hardware litmus tests for finding hardware vulnerabili-
ties [33]. The effectiveness of Alloy in such applications depends
critically on the quality and number of solutions created. A key
issue with Alloy’s original backend that is based solely on SAT
solving is that users can’t use it to estimate the number of solutions
without actually enumerating them all using an enumerating SAT
solver. Thus, if the user wants to modify their specification, say by
adding a new constraint, to reduce the number of solutions [32],
they have to wait for full enumeration of the initial specification
and the modified specification to determine if a desired reduction
is achieved. Furthermore, it is definitely not applicable for users to
click the button for every solution enumeration to count even for a
moderate-sized problem which usually has millions of solutions.
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Our key insight is that we can enhance Alloy by adding direct
support for model counting so the user does not have to repeatedly
pay the cost of full enumeration using SAT solvers, and can instead
benefit from the state-of-the-art model counters that use advanced
methods to efficiently compute the approximate or exact number
of solutions. We present AlloyMC, which adds model counting
support to Alloy. The specific model counting problem for Alloy
specifications directly maps to projected model counting where the
goal is to count the number of solutions with respect to the CNF-
level variables that directly correspond to the relations declared in
the Alloy specification.

AlloyMC extends the Alloy grammar to support a new com-
mand for invoking backend model counters, and extends the Alloy
GUI to support customizing the invocation. AlloyMC allows users
to (optionally) specify an expected model count, and reports the
model counting results with respect to the expectation, thereby
providing another way to validate Alloy specifications in the spirit
of unit testing. We extended Alloy parsing and translation accord-
ingly to convert Alloy specifications with the count command into
the corresponding projected model counting problems. At present,
AlloyMC supports two state-of-the-art model counters — the ap-
proximate model counter ApproxMC and the exact model counter
ProjMC. The design of AlloyMC allows other model counters to be
added in future. AlloyMC runs on Linux, Mac, and Windows. To
use AlloyMC, users just download and run its integrated JAR file
with no need to install dependencies (e.g., model counters and their
dependent libraries). The AlloyMC source code, the JAR file and the
data set are available publicly (https://github.com/jiayiyang1997/
org.alloytools.alloy/tree/model_count). A screencast of the tool
demonstration is also available at https://youtu.be/ioglrJ8kHI4.

2 ALLOY BACKGROUND

This section gives a quick overview of Alloy using an illustrative
example. An Alloy model declares sets and relations, defines con-
straints on them, and includes commands for invoking the backend
engine. The keyword sig declares a set of atoms, and may optionally
have fields that declare (binary, ternary, or higher arity) relations.
The keyword pred introduces a predicate that defines constraints on
the sets and relations, and can be invoked elsewhere. Constraints
can also defined using facts that must always be satisfied. Alloy’s
run command allows users to invoke a predicate so the Alloy ana-
lyzer returns an instance if the predicate is satisfiable, or reports
that the predicate is unsatisfiable. Users can also use Alloy’s check
command to search for a counterexample that refutes the given
constraint. Each command has a user-defined scope that bounds
the number of atoms in the signatures; the default scope is 3, i.e.,
at most 3 atoms in each set. The Alloy analyzer performs scope-
bounded analysis where the analysis results are valid for the given
scope.

Figure 1 illustrates a small Alloy specification of an acyclic linked
list, and an invocation of the analyzer to search for a list with up to
5 nodes (Lines 1-9). The signature List (Lines 1-2) requires that
there be exactly one list atom (restricted by keyword one). The
signature Node (Lines 3-4) declares a set of node atoms. The header
field (Line 2) is a partial function that maps the list atom to at
most one node atom. The link field (Line 4) is similarly a partial
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one sig List {
header: lone Node }
sig Node {
link: lone Node }
fact { List.header.xlink = Node }
pred Acyclic(l: List) {
all n: 1l.header.xlink | n !in n.*link }
run Acyclic for 5
run Acyclic for 5 expect 1
cmd1: count Acyclic for 5
-- simple count command
. cmd2: count Acyclic for 5 expect 8
-- expected count command
cmd3: count Acyclic for 5 expect >= 8
-- operators can be used: <=, >=, =, >, <,
cmd4: count Acyclic for 5 expect 1x2%4
-- expected count in x*y*z format
cmd5: count Acyclic for 5 expect -1
-- ignore negative expected count
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_
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Figure 1: Acyclic linked list Alloy model

function from nodes to nodes. The fact ensures that each node is
reachable from the list header. The predicate Acyclic (Lines 6-7)
states that for every node n which is reachable from the parameter
list 1’s header following zero or more traversals (defined by x)
along the 1link, n is not reachable from itself following one or more
traversals (defined by *) along the link. The first run command
(Line 8) searches for an Acyclic list 1 with up to 5 nodes. Alloy
allows users to specify an expectation on whether a solution is
expected or not using they expect clause, which helps in validating
the specification (akin to unit testing). The second run command
(Line 9) searches for an Acyclic list with the expectation that such
a list is expected (indicated by “expect 17”); “expect @” indicates
that the predicate invoked is expected to be unsatisfiable; if the
user provides a negative number for the expect clause, the clause
is ignored by the analyzer.

3 ALLOYMC

3.1 Overview

Figure 2 illustrates the overall architecture of AlloyMC. AlloyMC
adds support for model counting to Alloy by extending the original
Alloy language with a new command named count (Section 3.2).
We extended the Alloy lexer and parser accordingly to convert the
Alloy specification with the count command into an intermediate
AST. We also modified the Kodkod engine to convert the intermedi-
ate representation into an appropriate SAT formula (a CNF instance
in the standard DIMACS format) that is augmented with the infor-
mation on primary variables, to create a standard input for model
counters that support projected model counting (Section3.3). Once
the backend counter finishes, the GUI reports detailed results, in-
cluding the SAT formula generation time, counting time, the model
count, and whether the count is as expected (if the expect clause
is used). In addition, the original output of the individual model
counter is also provided as a link to a text file.
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Figure 2: AlloyMC architecture

cmdDecl ::= [name ":"] ("run"|"check"|"count")
(name|block) scope

scope ::= "for" number [expect]

scope ::= "for" number "but" typescope,+ [expect]

scope ::= "for" typescope,+ [expect]

scope ::= [expect]

expect ::= "expect" [op] num

typescope ::= ["exactly"] number [name|"int"|"seq"]

Op i M= | oM<= | QM| st et | ovpst

nan

num ::= number | number "x" number number

Figure 3: Extended Alloy grammar for AlloyMC
3.2 Alloy Language Extension for Counting

We support model counting for Alloy by introducing to the
Alloy language' the count command, which we design following
the spirit of Alloy’s run command. Figure 3 shows the production
rules of the Alloy grammar that are modified by AlloyMC. The key
modifications are: 1) count is a new keyword (production cmdDecl);
2) relational operator can be used in the expect clause (for the count
command), so the user can specify the expected model count, e.g.,
is “<= 8”; and 3) expressions of the form a X b€, as used by model
counters, are supported to make it easier for the user to provide
an expected model count (or bound) when the count is a large
number, which is often the case for complex problems that arise
in practice. Thus, the count command allows the user to specify
expected lower/upper bound for the count (using >=, <=, < or >),
expected exact count (using =), or expected impossible count (using
1=). Following the default behavior of Alloy’s run command, we
ignore the expect clause when the given expected count is negative.

To illustrate, recall the example in Figure 1. It lists 5 count com-
mands for the acyclic linked list specification (Lines 10-14). The
command cmd1 counts the number of acyclic lists with up to 5 nodes.
Commands cmd2, cmd3, cmd4, and cmd5 illustrate some of the different
ways of writing count command. Since the expected value for cmd5
is negative, this command is equivalent to cmd1.

3.3 Projected Model Counters in AlloyMC

As stated before, the model counting problems that arise from
Alloy specifications are projected model counting problems. The
reason is that the translation of Alloy to CNF introduces auxiliary
variables that exist in the CNF formula but are present purely to
enable the conjunctive normal form of the formula. For the example
specification shown in Figure 1, there are 36 primary variables in the
translated SAT formula that directly encodes the Alloy specification
with respect to the scope of 5 (1 variable for List, 5 for Node, 5 for
header, and 25 for 1ink). In contrast, once converted to CNF, there

!The original grammar for Alloy (version 4) is briefly summarized here:
http://alloytools.org/download/alloy4-grammar.txt
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¢ 287 4 AlloyAnaiyze built 2020-06-19722:40:41.542Z

one sig List {

Warning: JNI-based SAT solver does not work on this platform.
header: lone Node

This is okay, since you can still use SAT4] as the solver.
For more information, please visit http:/ /alloy.mit.edu/alloy4/

sig Node {

link: lone Node Warning: ProjMC Model Counter does not work on this platform.

This is okay, since you can still use ApproxMC as the counter.

pred Acyclic(: List) {
all n: Lheader.link | n tin n.Alink Executing "Count Acyclic for 5"
} Counter=approxmc Bitwidth=4 MaxSeq=>5 SkolemDepth=1 Symmetry=20
858 vars. 36 primary vars. 2282 clauses. 83ms.

fact { List.header.*link = Node } Model Count (w.r.t. Symmetry=20) = 9 x 2A0 = 9. Full model counting result. 0.01 s.

count Acydlic for 5

count Acyclic for 5 expect -1

count Acydlic for 5 expect 1°2A4
count Acydlic for 5 expect 1+2A1000

count Acyclic for 5 expect >= 8

Figure 4: Alloy GUI

are 664 variables. The conversion to CNF creates a formula that
is equi-satisfiable but not (necessarily) equivalent, and hence the
model count of the formula before conversion can be different from
the model count after conversion. However, the projected model
count of the CNF formula with respect to the (primary) variables
in the original SAT formula is the same as the model count of the
original formula.

AlloyMC employs two state-of-the-art robust projected model
counters, namely ApproxMC [13] and ProjMC [21] for approximate
and exact model counting, respectively. Note that we design Al-
loyMC to be extensible so other projected model counters can be
added in the future. ApproxMC, initially proposed in 2013, employs
universal hash functions to efficiently partition the solution space
into roughly equal small cells. The model count of each randomly
chosen cell, which is used for approximating the overall count, is ob-
tained by selective solution enumeration using CryptoMinisat [30].
ApproxMC is now in its third generation, called ApproxMC3 [29]
(the version we use for AlloyMC) with its source code publicly avail-
able?. ProjMC, one of the most recently published model counters,
uses a recursive algorithm and employs a difsjunctive decomposi-
tion method with search for disjoint components. Only the binary
code of ProjMC under Linux OS is now available®.

4 IMPLEMENTATION AND USAGE

The AlloyMC tool is currently available under Linux (Ubuntu), Mac,
and Windows 64-bit operating systems. In this section, we describe
key parts of the implementation, the overall workflow, and how to
use AlloyMC as a convenient wayeof specifying and solving model
counting problems in Alloy.

At the front-end level, AlloyMC builds on the original Alloy
GUI and makes a few modifications to support model counting
(Figure 4). Alloy GUI has three parts: menu bar (with a shortcut
toolbar), coding area, and log panel. The menu bar allows choosing
key settings of the tool. In the coding area, users write their Alloy
specifications. The log panel shows the analysis results.

We modified the menu bar so users can select the model counter
to use, and also adjust the symmetry breaking setting [31] to be
used in model counting. Originally in Alloy, when run or check
commands are executed, Alloy adds symmetry breaking predicates
to the formula with the goal of assisting the backend SAT solver
to more efficiently solve the satisfiability problem [2]. While the
addition of symmetry breaking predicates in Alloy generally makes
backend SAT solvers more efficient, an issue with these predicates

2 ApproxMC3 source code is available at https://github.com/meelgroup/ApproxMC
3ProjMC binary code is available at http://www.cril.univ-artois.fr/kc/projme.html
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Table 1: AlloyMC evaluation results on 10 Alloy models (time in seconds)
subject #primary vars | #vars | #clauses | CNF time [s] — ProjMC - ApproxMC
time [s] count time [s] count
addressBook1g/delUndoesAdd 36 1,567 2,214 0.26 1.34 5,429 0.79 5,632
farmer/solvePuzzle 80 1,137 3,011 0.41 0.08 2 0.01 2
farmer/NoQuantumObjects 80 1,177 3,079 0.81 1.39 512 0.41 544
hoteIS/NOBadEntry 407 8,640 21,479 0.15 TO - 18.4 18,176
life/Square 95 4,666 13,803 0.27 5.04 962 8.48 976
life/Show 324 27,572 93,759 0.29 TO - TO -
life/interesting 90 3,664 11,372 0.49 TO - 30.39 12544
messaging/SomeState 76 609 731 0.5 0.27 88,505,010 1.63 88,080,384
messaging/OutOfOrder 496 4,513 7,007 0.35 TO - TO -
p300-hotel/Nolntruder 135 3,798 6,638 0.9 34.66 4,662 3.77 4,608
queens/NQueensProblem 8,192 141,969 | 378,236 7.62 28.35 92 24.72 92
bst/RepOk 425 10,210 27,547 0.24 31.41 1,430 23.73 1,408
dllist/RepOk 141 4,341 12,016 0.06 19.58 5,080 2.75 4,736
rbt/RepOk 297 10,945 26,406 1.74 0 0 0.12 0

is that they modify the model count since they remove some sym-
metric solutions. Moreover, Alloy’s symmetry breaking is heuristic,
and there is no direct way to compute the precise impact that the
additional predicates have on the model count. Thus, in the con-
text of model counting, it is necessary to allow the user to choose
whether or not they want symmetry breaking predicates. AlloyMC
adds an option to support symmetry breaking setting (off, default,
or twice the default) in the Options menu in the menu bar.

AlloyMC enhances the coding area to support the extended gram-
mar. Moreover, AlloyMC summarizes the result of model counting
in the log panel. The running information is shown once the counter
starts, and the count results are shown once the counter finishes.
Moreover, warning messages are shown if the counter is not sup-
ported under the current environment. In addition, a link to a text
file that contains verbatim output of the used model counter is
added, so the user can view the detailed output if desired. AlloyMC
allows the user to stop the counter at any time during the execution,
using the existing "Stop" button in the shortcut toolbar.

Our implementation also made AlloyMC easy to install so the
user does not have to separately install its various dependencies
(e.g., the counters and the dependent libraries). We adjusted Bnd *
files to distribute platform-related executable files and dynamic
libraries in the final JAR file. Bnd is a widely used build tool with
the goal of generating JAR files for complicated Java projects; it is
also utilized by the original Alloy analyzer. The dynamic libraries
are what model counters need to run with. Once the user exe-
cutes the tool, the platform-related executable files and dynamic
libraries are copied from the JAR file to the tool’s temporary di-
rectory. The environment variable (“LD_LIBRARY_PATH” for Linux;
and “DYLD_FALLBACK_LIBRARY_PATH” for Mac) for dynamic library
search is set for the counters automatically. To run AlloyMC, users
only need to download and run the JAR file.

5 EXPERIMENTS

For evaluation subjects, we take 10 Alloy specifications as our sub-
jects including 6 specifications randomly taken from Alloy standard
distribution (addressBook1g, farmer, hotel3, life, messaging, and
p300-hotel), and 4 specifications randomly taken from a previous
model counting study [35] (queens, bst, dllist, and rbt). We change

4Bnd/BndTools source code and usage are available at https://github.com/bndtools/bnd

1544

each run and check command in original Alloy specification into a
count command, keeping the original scope. We made “rbt” spec-
ification an exception by changing its scope to explicitly make
“RepOk”predicate unsatisfiable, to see how AlloyMC performs for
an unsatisfiable formula. Table 1 shows subjects with specification
names and corresponding predicate names in the command.

In the experiments, we take each Alloy specification and man-
ually run it in AlloyMC GUIL We set up time-out as 60 seconds to
approximate users’ tolerable waiting time. In Table 1, we report
translated CNF formula info consisting of primary variable number
(#primary vars), total variable number (#vars), total clause number
(#clause), and CNF generation time; we also report model counter
(ApproxMC and ProjMC) outputs including the running time and
model count. “TO” indicates the subject timed out, and “-” indicates
unknown count. All the experiments were performed on a machine
with 4-core, 2.7 GHz Intel Core i7 CPU with 16 GB memory.

Overall, AlloyMC correctly parsed the input Alloy specification
with the extended grammar. The CNF formula is generated quickly
and solved correctly by both counters. AlloyMC also performs cor-
rectly under the unsatisfiable case (“rbt” specification) by returning
0 model count. We also observe that users can get the results for
most commands within our time-out limit, even for a case when
the model count is large (“SomeSate” predicate in “messaging” spec-
ification); note that it would be infeasible to get such a large model
count using the solution enumeration in the original Alloy tool.

6 CONCLUSION

This paper introduced the AlloyMC tool that, to our knowledge,
adds the first model counting backend to Alloy. AlloyMC supports
two state-of-the-art model counters: ApproxMC for approximate
model counting, and ProjMC for exact model counting. We believe
AlloyMC promises more effective applications of Alloy in domains
where multiple solutions are required, e.g., for bounded-exhaustive
testing. The knowledge of model counts can also guide the users to
refine their specifications, e.g., by adding constraints to reduce the
number of solutions and create a high quality test suite that can
both be enumerated as well as executed feasibly.
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