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Abstract—Fault localization is a popular research topic and
many techniques have been proposed to locate faults in impera-
tive code, e.g. C and Java. In this paper, we focus on the problem
of fault localization for declarative models in Alloy – a first order
relational logic with transitive closure. We introduce AlloyFLhy,
the first fault localization technique for faulty Alloy models which
leverages multiple test formulas. AlloyFLhy brings the traditional
spectrum-based and mutation-based fault localization techniques
to Alloy and combines both techniques to locate faults. To
measure the effectiveness of AlloyFLhy , we define three distance
metrics and use both distance-based and top-k metrics to measure
the effectiveness of AlloyFLhy on 90 real faulty models. The
results show that AlloyFLhy is substantially more effective than
Alloy’s built-in unsat core.
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I. INTRODUCTION

Writing declarative models and specifications has numerous
benefits, ranging from automated reasoning and correction
of design-level properties before systems are built [18, 28],
to automated testing and debugging of their implementations
after they are built [34]. However, writing correct declara-
tive models that represent non-trivial properties is not easy,
especially for practitioners who are not well-versed with the
intricate syntax and semantics of declarative languages. Daniel
Jackson, the inventor of Alloy, has pointed out in his ICSE
keynote [19] that declarative specifications can be "maddening
harder to learn and even harder to debug" and the "unsat core
is not enough". This motivates us to develop fault localization
techniques for declarative models written in Alloy [18] – a
first-order relational logic with transitive closure. We choose
Alloy because of its expressive power and use in numerous
domains, including security [31, 40], networking [48], and
UML analysis [32, 33]. The Alloy Analyzer toolset provides
an automatic analysis engine for Alloy based on off-the-shelf
SAT solvers [10], which it uses to generate instances for the
relations in the models such that the modeled properties either
hold or are refuted, as desired.

Alloy users typically write formulas and commands to check
if the model complies to a set of expected properties. For
example, Pamela Zave uses a set of Alloy predicates and
assertions in her model [70] to check the expected properties of
the Chord [52] distributed hash table protocol. Following prior
work [53], we refer to these Alloy predicates, functions and
assertions that check the expected model properties as Alloy
tests in the rest of this paper. These tests can help capture
modeling errors and regression errors analogous to tests in

imperative languages like Java. Existing debugging techniques
in Alloy, e.g. MiniSat solver with unsat core [51], highlight
suspicious code snippets for a single test that fails.

To improve the Alloy debugging process, we introduce
AlloyFLhy, the first fault localization (FL) technique that
leverages multiple tests for declarative models written in Alloy.
Our key insight is that a test-driven approach inspired by
traditional FL based on passing and failing tests for imperative

code [4, 5, 17, 20, 22, 23, 27, 38, 39, 43, 45, 49, 64, 69, 71] can
also lay the foundation for effective localization of faults in
declarative models. Intuitively, Alloy’s expressions (including
formulas) are analogous to statements in imperative languages.
Alloy Expressions are hierarchical, i.e. expressions may con-
tain other expressions, but they lack control flow.

AlloyFLhy locates faults at the Abstract Syntax Tree (AST)
node granularity and can locate any faulty expression in an
Alloy model. An Alloy test is typically invoked with an Alloy
command (i.e. run or check) with an optional "expect"
constraint, where expect 1 and expect 0 indicate satis-
fiability and unsatisfiability of the formula being invoked,
respectively. A test fails if the invocation of a command
for the test is satisfiable (or unsatisfiable) but the expected
result is unsatisfiable (or satisfiable). Note that any predicate,
function or assertion can be treated as a test. In this paper,
a fault is defined as the existence or non-existence of a set
of expressions that causes some test failures. A good fault
localization technique could highlight the set of expressions
with the minimum number of AST nodes such that fixing those
expressions make all tests pass.

We build our work on top of AUnit [53], a recent test-
ing framework for Alloy. AUnit provides the notion of test
predicates (which are ordinary Alloy predicates) that represent
Alloy instances. MuAlloy [59] is a recent mutation testing
framework for Alloy that can automatically generate mutant
killing AUnit test predicates. Since the availability of manually
written tests for real faulty Alloy models is rather limited, we
use MuAlloy to generate tests to evaluate AlloyFLhy. How-
ever, AlloyFLhy does not require tests generated by MuAlloy.
AlloyFLhy can treat any predicate, function or assertion a
developer provides as tests. Notably, when utilizing MuAlloy’s
automatically generated tests, only a few manual steps, i.e.
labeling the tests’ satisfiability, are required to create a large
number of tests.

One of the backend solvers for the Alloy Analyzer is the
MiniSat solver with unsat core [51, 56, 57]. The solver is



able to highlight the set of Alloy expressions for which no
satisfying Alloy instance exists [1]. In this paper, we develop
a more sophisticated baseline technique, i.e. AlloyFLun, to
simulate how Alloy users can debug a faulty model using the
built-in MiniSat solver and a set of failing tests. AlloyFLun

collects all Alloy AST nodes highlighted by the unsat core for
each unsatisfiable failing test. Nodes highlighted more often
are more likely to be faulty and are ranked at the top.

To explain AlloyFLhy, we first introduce AlloyFLco and
AlloyFLmu. AlloyFLco implements the spectrum-based FL

(SBFL) technique [4, 17, 23, 39] for Alloy. Since Alloy does
not have control-flow or execution traces, all expressions in the
same paragraph are either executed together or not executed at
all, where an Alloy paragraph refers to any signature, predi-
cate, function, fact or assertion. AlloyFLco statically analyzes
Alloy paragraphs that are transitively used in each test. Then,
AlloyFLco computes a suspiciousness score for each Alloy
paragraph based on the number of passing/failing tests that
invoke the paragraph and a suspiciousness formula. Finally,
AlloyFLco ranks the paragraphs based on the suspiciousness
scores in descending order. Paragraphs covered more often by
the failing tests and less often by the passing tests are ranked
at the top.

AlloyFLmu implements the mutation-based FL (MBFL)
technique [38, 43] for Alloy. AlloyFLmu mutates Alloy AST
nodes, e.g. "a&&b" to "a||b", to create non-equivalent mutants
and check if the test results differ compared to the original
model. AlloyFLmu uses a suspiciousness formula to compute
the suspiciousness score for each mutant based on the number
of passing/failing tests that kill the mutant. A test kills a
mutant if its satisfiability changes compared to that of the
original model. The node whose mutation gives the highest
suspiciousness score, e.g. mutations on the node make almost
all failing tests pass while preserving the results of passing
tests, ranks at the top.

Lastly, AlloyFLhy is a hybrid technique that leverages
SBFL and MBFL. For each AST node, AlloyFLhy computes
the weighted sum from the suspiciousness scores of both
AlloyFLco and AlloyFLmu. AlloyFLco is coarse-grained and
cannot be more accurate than reporting an Alloy paragraph.
On the other hand, AlloyFLmu is finer-grained but sometimes
it cannot mutate any node in a paragraph, e.g. an empty para-
graph in the extreme case. AlloyFLhy combines AlloyFLco

and AlloyFLmu to enhance the accuracy.
AlloyFLhy does not rank all AST nodes because Alloy

does not have the notion of control flow and many Alloy
expressions are either executed together or not executed at
all. Note that we consider an Alloy expression to be executed

if that expression is translated to CNF and executed by the
SAT solver. As a consequence, many expressions (AST nodes)
are equally suspicious. Additionally, previous studies of FL
for imperative languages have shown that users are unlikely
to inspect more than a few candidates [26, 44]. Therefore,
to reduce the number of highlighted AST nodes, AlloyFLhy

only returns nodes whose suspiciousness score differs from
their parent nodes.

Many existing metrics, e.g. AWE [7], EXAM [65], Ex-
pense [22], LIL [38] and T-score [30], may not capture the
proximity between the returned AST nodes and the faulty
nodes. For example, AlloyFLhy may return a suspicious node
that is the direct parent of a faulty node but the faulty
node itself does not appear in the ranked list. In this case,
none of the above metrics reflect the closeness between the
returned suspicious node and the faulty node. In this paper, we
follow the spirit of the nearest neighbor (NN) distance metric
in program dependence graphs (PDG) [47] to quantitatively
measure the closeness between the ranked nodes and the faulty
nodes. Specifically, we view the Alloy AST as a PDG and
adapt the NN distance metric to our problem by designing
three distance metrics following NN and use the existing top-
k metrics [68, 72], i.e. the number of faulty nodes in the top
k returned nodes, to evaluate AlloyFLhy.

This paper makes the following contributions:

• We propose, AlloyFLhy, the first AST node level FL tech-
nique for Alloy that leverage multiple tests.

• We follow the spirit of an existing nearest neighbor distance
metric [47] and define three new distance metrics at the AST
level to measure the effectiveness of AlloyFLhy.

• We evaluate AlloyFLhy using 90 real faults derived from
12 existing models. The subject models all contain one or
more faults. Our experimental results show that AlloyFLhy

is substantially more effective than AlloyFLun.
• We made the tool and the real faulty models publicly

available at https://github.com/kaiyuanw/AlloyFLCore.

II. EXAMPLE MODEL

We next present a real-world faulty Alloy model to intro-
duce key concepts for AlloyFLhy. We briefly describe the
basics of Alloy and AUnit as needed.

Figure 1a shows a faulty Alloy model that models the
Java class hierarchy constraints. The model was written by
a graduate student and has two faults. Figure 1b shows two
AUnit tests that fail. The tests are generated by MuAlloy [59].

The signature (sig) declaration "sig Class", introduces
a set of class atoms representing Java classes; "ext:
lone Class" declares a field ext that relates each class
to at most one class, and it represents the Java inheri-
tance relationship. "one sig Object extends Class" in-
troduces a special singleton Object class that represents
the java.lang.Object class. The predicate ObjectNoExt

should state that the Object class does not have a su-
perclass. The predicate Acyclic should state that any
class is not a subclass of itself, transitively. The predicate
AllExtObject should state that every class except the
Object class is a subclass of the Object class. The pred-
icate ClassHierarchy is a conjunction of ObjectNoExt,
Acyclic and AllExtObject. The run command should give
an Alloy instance that represents a valid Java class hierarchy.
The student is asked to complete all predicates ObjectNoExt,
Acyclic and AllExtObject.

There are faults in two predicates: ObjectNoExt and
AllExtObject. The predicate ObjectNoExt incorrectly



sig Class {

ext: lone Class }

one sig Object extends Class {}

pred ObjectNoExt() {

// Object does not extend any class.

// Fix: replace c.^ext with c.~^ext or c.^~ext.

all c: Class | Object !in c.^ext }

pred Acyclic() {

// Each class is not a subclass of itself.

all c: Class | c !in c.^ext }

pred AllExtObject() {

// Each class is a subclass of the Object class.

// Fix: replace c.ext.^ext with c.^ext or

// replace c.ext.^ext with c.ext.*ext.

all c: Class - Object | Object in c.ext.^ext }

pred ClassHierarchy() {

ObjectNoExt

Acyclic

AllExtObject }

run ClassHierarchy for 3

(a) Faulty Java class diagram model

// class Clz {}

// class Object extends Clz {}

pred test1 {

some disj Obj: Object |

some disj Obj, Clz: Class {

Object = Obj

Class = Obj + Clz

ext = Obj->Clz

ObjectNoExt[]

}

}

run test1 for 3 expect 0 // Not allowed

// class Object {}

// class Clz extends Object {}

pred test2 {

some disj Obj: Object |

some disj Obj, Clz: Class {

Object = Obj

Class = Obj + Clz

ext = Clz->Obj

AllExtObject[]

}

}

run test2 for 3 expect 1 // Allowed

// More tests ...

(b) MuAlloy generated tests

Fig. 1: Faulty Java class diagram and generated tests

states that the Object class is not a superclass of each
class, transitively. A simple fix is to replace "c.ˆext" with
"c.~ˆext" or "c.ˆ~ext", which means that the Object

class is not a subclass of each class, transitively. The pred-
icate AllExtObject incorrectly states that every class ex-
cept the Object class directly extends another class that
transitively extends the Object class. A simple fix is to re-
place "c.ext.ˆext" with either "c.ˆext" or "c.ext.*ext",
which means that every class except the Object class transi-
tively extends the Object class. There are more complicated
ways to fix the predicates. In this paper, we assume that the
model should be fixed by patches with a small edit distance,
and we highlight code that needs to be edited accordingly with
underscores in Figure 1a.

Two automatically generated AUnit tests that reveal the
faults are shown in Figure 1b. Predicate test1 encodes a
valuation of each signature type in Figure 1a, and it represents
an invalid Java class hierarchy where java.lang.Object is
a subclass of another class. The Object signature contains a
single atom Obj, and the Class signature contains the Obj

atom and an additional Clz atom. ext relates the Obj atom
to the Clz atom, and it means that the Obj class extends the
Clz class. The invocation of ObjectNoExt should enforce
that the Obj class does not have any superclass. Thus, test1
should be unsatisfiable (expect 0) because test1’s class
hierarchy should not satisfy ObjectNoExt. Predicate test2

encodes another valuation of each signature type in Figure 1a
and it represents a valid Java class hierarchy. The valuation in
test2 is similar to that in test1 except that ext relates the
Clz atom to the Obj atom, and it means that the Clz class
extends the Object class. The invocation of AllExtObject
should enforce that all classes extend the Object class. Thus,
test2 should be satisfiable (expect 1) because test2’s
class hierarchy should satisfy AllExtObject.

In practice, test1 is satisfiable and test2 is unsatisfi-
able due to the two faults in predicates ObjectNoExt and
AllExtObject, resulting in test failures. We do not show
all 25 tests due to space limits. Note that we use MuAlloy
to generate semantically non-equivalent mutants of the model
given a bound of the universe and then automatically convert
the instances that differentiate each mutant from the original
model into test predicate, e.g. test1. Then, we automatically
label the expected satisfiability of test predicates using the
correct model in our experiment. In practice, the correct
model is unknown, so developers need to manually verify the
satisfiability of the tests and label them accordingly.

We use a generated test suite that contains some failing tests,
including test1 and test2, to locate faults in the class dia-
gram model using both AlloyFLun and AlloyFLhy. AlloyFLun

serves as the baseline technique that simulates how Alloy users
would debug a faulty model using the unsat core. We use the
Ochiai [2] formula for AlloyFLhy and compute a weighted
sum from 60% AlloyFLco score and 40% AlloyFLmu score.
Section V shows that this setting gives the best effectiveness.
AlloyFLun reports the entire body of AllExtObject as the
most suspicious AST node (highlighted in red) and is unable
to locate the fault in ObjectNoExt. AlloyFLun only works
if the failing tests are unsatisfiable which is not the case for
any test reasoning over ObjectNoExt. The most suspicious
nodes reported by AlloyFLhy are highlighted in green (mul-
tiple nodes share the same highest suspiciousness score), and
the second most suspicious node is highlighted in yellow.
We can see that AlloyFLhy accurately highlights the faults
in both ObjectNoExt and AllExtObject. In comparison,
AlloyFLun is not able to highlight the fault in ObjectNoExt

and cannot accurately highlight the fault in AllExtObject.



Name Formula

Tarantula [22]
failed(e)

totalfailed

failed(e)
totalfailed

+ passed(e)
totalpassed

Ochiai [2]
failed(e)√

totalfailed×(failed(e)+passed(e))

Op2 [39] failed(e)− passed(e)
totalpassed+1

Barinel [3] 1− passed(e)
passed(e)+failed(e)

DStar [64] failed(e)∗

passed(e)+(totalfailed−failed(e))

totalfailed: total number of tests that failed
totalpassed: total number of tests that passed
failed(e): number of failed tests that cover or kill e

passed(e): number of passed tests that cover or kill e

Fig. 2: Suspiciousness Formulas

III. TECHNIQUE

We first describe the formulas that compute the suspicious-
ness scores (Section III-A). We then discuss more details about
AlloyFLun, AlloyFLco, AlloyFLmu and finally AlloyFLhy

(Section III-B).

A. Suspiciousness Formulas

Figure 2 shows the formulas to compute suspicious-
ness scores, including Tarantula [22], Ochiai [2], Op2 [39],
Barinel [3] and DStar [64]. These formulas are popular in
SBFL for imperative languages. For AlloyFLco, the code
elements (e) are AST nodes. For AlloyFLmu, mutations of
killed mutants are treated as covered code elements while
mutations of live mutants are treated as uncovered code
elements. totalfailed and totalpassed are the number of tests
which failed and passed for the original model. failed(e) and
passed(e) are the number of failing and passing tests that
cover the AST node or kill the mutant e. For AlloyFLco, if no
passing test covers an AST node, then both Tarantula and Op2
assign a suspiciousness score of 1 to the corresponding node.
The Ochiai formula assigns a suspiciousness score of 1 to a
node if the node is covered by all failing tests but no passing
test. Typically, if a node is covered by more failing tests but
fewer passing tests, then it is assigned a higher suspiciousness
score. For AlloyFLmu, if no passing test fails after mutation,
Tarantula and Op2 assign a suspiciousness score of 1 to the
corresponding mutated node. The Ochiai formula assigns a
suspiciousness score of 1 to the mutated node if no passing test
fails and all failing tests pass after the mutation. If a mutated
node makes more failing tests pass but fewer passing tests fail,
then it is assigned a higher suspiciousness score.

B. AlloyFLun, AlloyFLco, AlloyFLmu and AlloyFLhy

AlloyFLun. We modify the standard Alloy toolset to return
the AST nodes in the unsat core when the MiniSat solver
is used [56, 57]. We configure the solver such that it is
guaranteed to return a local minimum core, and all Alloy
expressions are fully expanded (pushing negations in, remov-
ing existential quantifiers using skolemization and expanding

(a) No hit (b) 1st hit (c) 2nd hit

Fig. 3: Illustration of AlloyFLun

universal quantifiers given the bounds on the signatures) to
make the returned core as fine-grained as possible. AlloyFLun

constructs a hit-map for the entire AST, and every node in
the AST has a count initially set to 0. For each unsatisfiable
failing test, AlloyFLun increases the count of the node and its
descendants that appears in the unsat core by 1.

Figure 3 shows how the hit-map is built. Initially, each node
has a count of 0 (Figure 3(a)). In Figure 3(b), a node denoted
by the square is returned by the unsat core and AlloyFLun

increases the counts of all affected descendants. This process
applies for all the subsequently returned nodes. For example,
suppose the square node in Figure 3(c) is returned next, the
count of each descendant is increased to 1, and the count
of each previously hit node is increased to 2. Note that a
child node always has a count greater than or equal to its
parent’s count. AlloyFLun collects every node whose count
is strictly greater than its parent’s count, e.g. the gray nodes
in Figure 3(c). The collected nodes are ranked in descending
order of the corresponding count. In case of a tie, AlloyFLun

prioritizes the node with a smaller number of descendants.
Note that AlloyFLun only works for unsatisfiable tests and
cannot be used if the model is strictly underconstrained, in
which case no unsatisfiable failing test exists.
AlloyFLco. Since Alloy does not have control-flow and exe-
cution traces, for a given test, every code element in the same
paragraph will be either executed together or not executed at
all. This means nodes declared in the same paragraph share
the same suspiciousness score. To implement AlloyFLco, we
built a static analyzer which analyzes the entire AST and binds
a variable usage a predicate/function call to its signature or
predicate/function declaration, respectively. The static analyzer
is able to find all Alloy paragraphs transitively used by a test,
but it ignores dependencies that are never used. For example,
if a test uses an expression "all s: S, t: T | some s

&& p[s]" where variable "t" is not used, then the test only
depends on signature "S" and predicate "p[...]". By default,
all facts are implicitly used, and all paragraphs transitively
invoked in the facts are covered by each test. AlloyFLco

computes a suspiciousness score for each Alloy paragraph
based on the number of passing/failing tests that cover it and a
formula shown in Figure 2. Finally, all paragraphs are ranked
in descending order of suspiciousness score. In case of a tie,
AlloyFLco prioritizes the paragraph with a smaller number of
AST nodes.
AlloyFLmu. AlloyFLmu implements a wide variety of muta-
tion operators as shown in Figure 4. MOR mutates signature



Mutation
Description

Operator

MOR Multiplicity Operator Replacement
QOR Quantifier Operator Replacement
UOR Unary Operator Replacement
BOR Binary Operator Replacement
LOR List Operator Replacement
UOI Unary Operator Insertion
UOD Unary Operator Deletion
LOD Logical Operand Deletion
PBD Paragraph Body Deletion
BOE Binary Operand Exchange
IEOE Imply-Else Operand Exchange

Fig. 4: Mutation Operators.

multiplicity, e.g. "one sig" to "lone sig". QOR mutates
quantifiers, e.g. some to all. UOR, BOR and LOR define
operator replacement for unary, binary and list operators,
respectively. For example, UOR mutates a.ˆb to a.∗b; BOR

mutates a<=>b to a=>b; and LOR mutates a||b to a&&b. UOI

inserts an unary operator before expressions, e.g. a.b to a.∼b.
UOD deletes an unary operator, e.g. a.ˆ∼b to a.ˆb. LOD

deletes an operand of a logical operator, e.g. a&&b to b. PBD

deletes the body of a paragraph. BOE exchanges operands
for a binary operator, e.g. a-b to b-a. IEOE exchanges the
operands of imply-else operation, e.g. "a => b else c"
to "a => c else b".

Algorithm 1 shows the details of AlloyFLmu. The algorithm
takes as input a faulty Alloy model M, a test suite T, a set of
mutation operators Ops and a suspiciousness formula F. The
output of the algorithm is a ranked list of suspicious AST
nodes (L) sorted in the descending order of suspiciousness.
Initially, L is set to an empty list. S keeps the set of nodes
covered by failing tests and is initialized as an empty set.
AlloyFLmu runs T against M and stores the results in R. n2s

keeps the mapping from a node to its suspiciousness score and
is initialized to an empty map.

For each test result r in R, AlloyFLmu collects nodes
and their descendants covered by all failing tests. Then,
AlloyFLmu iterates over each node n in M. If n is not
covered by any failing test, i.e. n 6∈ S, then AlloyFLmu

skips it. For each n covered by a failing test, AlloyFLmu

tries to apply every mutation operator in Ops to the node,
one at a time. If the mutation operator is not applicable,
it is skipped. Otherwise, AlloyFLmu mutates M to M’. If
M’ leads to a compilation error or is equivalent to M, then
AlloyFLmu skips M’. Otherwise, AlloyFLmu runs T against
the mutant M’ and collects the result as R’. Function calcSusp

computes the suspiciousness score of the mutant based on the
formula F (Figure 2), and test results R and R’. n2s keeps
the maximum suspiciousness score for each node n. After
AlloyFLmu exhausts all mutation operators that are applicable
to n, n is added to L if its suspiciousness score n2s[n] is
greater than 0. Finally, after all AST nodes are exhausted,
L is sorted in descending order of suspiciousness scores. Note
that we check the equivalence between the mutated model and

Algorithm 1: Mutation-Based Fault Localization
Input: Faulty Alloy model M, test suite T, mutation

operators Ops, suspiciousness formula F.
Output: Ranked list of suspicious AST nodes L.

L ← [], S ← ∅, R = runTests(M, T)
n2s ← <ASTNode, Double>{} // Default value is 0.0
foreach r ∈ R do

if r.isPassed() then continue

foreach n ∈ staticAnalyze(r) do
S = S ∪ n.getDescendants()

foreach n ∈ M.getNodes() do

if n 6∈ S then continue

foreach op ∈ Ops do

if !isApplicable(op, n) then continue

M’ = applyOp(op, n, M)
if isValid(M’) && !isEquivalent(M, M’) then

R’ = runTests(M’, T)
score = calcSusp(F, R, R’)
n2s[n] = max(n2s[n], score)

if n2s[n] > 0.0 then
L.add(n)

L.sortByScore(n2s, reverse=True)
return L

the original model by constructing an Alloy assertion that
checks if the mutated paragraph is equivalent to the original
paragraph given a bound of the declared signatures [54].
AlloyFLhy . AlloyFLhy is a hybrid technique that lever-
ages both AlloyFLco and AlloyFLmu. Given an AST node,
AlloyFLco computes a score Sco and AlloyFLmu computes
a score Smu. AlloyFLhy computes the weighted sum as
(1−λ)Sco+λSmu, where 0 ≤ λ ≤ 1. If no mutation applies to
a node, AlloyFLhy uses Sco. The intuition is that AlloyFLmu

sometimes performs badly for omission errors in which case
AlloyFLco performs relatively well. Thus, AlloyFLhy benefits
from both AlloyFLco and AlloyFLmu.

IV. DISTANCE METRICS

To quantitatively measure how close the ranked nodes are
to the real faulty nodes, we follow the spirit of the nearest
neighbor distance metric (NN) based on program dependence
graphs (PDG) [47]. Since Alloy does not have control depen-
dencies, we view the Alloy AST as a PDG and adapt the NN

distance metric to reason over the AST.
The original nearest neighbor distance metric quantifies the

percentage of nodes not needing inspection by the programmer
using the formula 1− |S(R)|

|G| , where R = {n1, n2, ..., nk} are
the top k returned suspicious nodes, and S(R) is a sphere
of all nodes in the graph G such that the maximum distance
of any node in S to its closest suspicious node is smaller or
equal to the minimum distance of any suspicious node in R to
its closest faulty node. Conceptually, the user does a breadth-
first search starting with the suspicious nodes, and increasing
the distance until a defect is found. The formula computes
the percentage of nodes that need not be examined. However,



(a) NNUD k = 2 (b) NND (c) NNDW

Fig. 5: Distance Metrics Examples

previous studies show that: (1) the percentage of nodes needing
inspection is a better estimate than the percentage of nodes
not needing inspection [30, 65]; and (2) fault localization
techniques should focus on improving absolute rank rather
than percentage rank [44]. Thus, we adapt the NN metric to
use the absolute number of nodes needing inspection (|S(R)|).
Techniques which give smaller distance metric values are more
accurate. We next describe three distance metrics.
Nearest Neighbor Up-Down (NNUD). NNUD sets R to the
k most suspicious nodes returned. It allows traversing upward
(parent) and downward (children) from the suspicious nodes
in the AST until a faulty node is found. In other words,
NNUD assumes that the programmer may look at the parent
or children when inspecting the top k suspicious nodes until a
faulty node is found. Figure 5(a) shows the number of nodes
one needs to explore from the top two suspicious nodes. The
number in the circle represents the position of the node in the
ranked list, e.g. 1 means it ranks at the top. "F" shows the
faulty node and squares are irrelevant nodes. Circles colored
in gray estimate the nodes users need to inspect under NNUD
metric with k = 2. Since the minimum distance between any
of the two suspicious nodes and the faulty node is 1, all nodes
that are reachable from the suspicious nodes within a distance
of 1 are included. Thus, the metric reports 6, i.e. the number
of the gray nodes.
Nearest Neighbor Down (NND). NND does not allow travers-
ing upward from the suspicious node and it processes suspi-
cious nodes one at a time. This metric assumes that the user
only inspects the children and will never reinspect already
visited nodes. Figure 5(b) shows how the metric works. From
the top most suspicious node, we can only traverse downward.
Since no faulty node is found, we mark all inspected nodes
in gray. Then, NND does a breadth-first search for the second
top suspicious node. In this case, a faulty node is found and all
descendants within the same distance, i.e. 6 1, are included
(3 circles colored in white), excluding already visited nodes
colored in gray. Finally, NND reports 6, i.e. the number of
the inspected nodes in circles. However, it is possible that the
faulty nodes never appear as the descendants of any suspicious
node. To avoid this scenario, we append the root node of the
entire AST to the end of the ranked suspicious node list.
Nearest Neighbor Down Worst (NNDW). NNDW is similar to
NND (only allows traversing downward) except that it assumes
the user is unlucky and would inspect all non-faulty nodes
before finding the fault. Figure 5(c) shows how the metric
works. Inspecting the top suspicious node is similar to NND,

with the difference occurring when inspecting the second
top suspicious node. In this case, we traverse downward and
include all non-faulty nodes that have not been visited before
(white circles without the faulty node). If a faulty node can
be reached from the current suspicious node, then we stop
traversing and include all such faulty nodes. In this case,
two faulty nodes appear as the children of the second top
suspicious node, so we include both faulty nodes. Finally,
NNDW returns 10, i.e. all circle nodes. Similar to NND, we
append the root node of the entire AST to the end of the
suspicious node list.

V. EVALUATION

We evaluate AlloyFLhy on 90 real faults collected from Al-
loy release 4.1, Amalgam [41] and graduate student solutions.
These faulty models contain various types of faults, including
overconstraints, underconstraints and a mixture of both. All
experiments are performed on Linux 5.2.17 with 2.2GHz Intel
Xeon CPU and 32 GB memory.

In this section, we address the following research questions:
RQ1. How does the suspiciousness formula affect AlloyFLhy?
RQ2. How does the AlloyFLmu weight λ affect AlloyFLhy?
RQ3. What is the effectiveness of AlloyFLun and AlloyFLhy?
RQ4. How does the test size affect AlloyFLhy?
RQ5. What is the time overhead of AlloyFLhy?

A. Experiment Setting

Model ast mut
test

scp
tot sat uns

addr 124 62 30 19 11 3
array 68 51 38 15 23 3

bst 175 167 110 50 60 4
bempl 57 35 25 11 14 3

cd 52 46 25 9 16 3
ctree 76 83 22 9 13 3

dll 92 81 49 23 26 3
farmer 180 106 56 33 23 4

fsm 85 63 15 3 12 3
grade 77 44 41 23 18 3
other 40 32 21 9 12 3

scl 201 143 87 40 47 3
Sum 1.2k 913 519 244 275

Fig. 6: Correct Models Information.

Figure 6 gives
an overview for the
12 correct models
used to generate
mutant faults in
the evaluation.
Address book
(addr) and farmer
cross-river puzzle
(farmer) are from
Alloy’s example
set. Bad employee
(bempl), grade book
(grade), and other
groups (other) are
Alloy translations
of access-control
specifications used
to benchmark Amalgam [41]. Colored tree (ctree) is from
MuAlloy [59]. Array model (array), balanced binary search
tree (bst), class diagram (cd), doubly-linked list (dll), finite
state machine (fsm), and singly-linked list with sorting and
counting functions (scl) are homework questions we collected
from graduate students.

For each subject, Figure 6 shows the number of AST nodes
(ast), the number of nonequivalent first-order mutants [21]
(mut), the number of tests automatically generated (tot), the
number of tests that are expected to be satisfiable (sat) and un-
satisfiable (uns), and the scope used to run tests or equivalence



Formula nnud-1 nnud-5 nnud-10 nnd nndw top-1 top-5 top-10
C

o

Tarantula 29.0 39.9 45.6 15.8 22.2 4 10 13
Ochiai 29.2 39.9 45.6 17.0 24.1 4 6 12

Op2 35.9 42.0 45.6 26.0 34.4 2 4 12
Barinel 29.0 39.9 45.6 15.8 22.2 4 10 13

DStar 30.0 40.8 45.6 18.8 26.2 3 6 12

M
u

Tarantula 13.6 13.0 15.7 8.7 13.1 28 61 76
Ochiai 11.7 12.1 14.2 8.7 13.1 29 68 81

Op2 13.7 12.3 14.8 10.1 15.2 22 67 80
Barinel 13.6 13.0 15.7 8.7 13.1 28 61 76

DStar 11.9 11.7 14.3 9.0 13.8 23 67 80

H
y

Tarantula 9.9 11.1 14.3 5.9 8.0 25 64 85
Ochiai 9.2 10.4 14.1 6.0 8.2 32 65 77

Op2 24.6 20.0 18.0 18.6 22.7 16 44 67
Barinel 9.7 10.6 14.3 5.8 7.9 27 66 85

DStar 12.3 10.4 14.3 7.4 10.0 25 64 77

Fig. 7: Suspiciousness Formula Impact on AlloyFLco,
AlloyFLmu and AlloyFLhy.

checks (scp). Prior work shows that tests generated by MuAl-
loy are effective in detecting real faults [54, 59]. Therefore,
to produce the test suite, we use MuAlloy to generate non-
equivalent mutants. For each non-equivalent mutant, MuAlloy
creates an Alloy instance that differentiates the original model
and the mutant, and then converts that instance into a test
predicate. The expected satisfiability (whether expect 0 or
expect 1) of these test predicates is automatically verified
by the correct model. In practice, the test satisfiability should
be verified by developers.

We manually inspect all of the faults and try to fix them
without changing the model structure. For example, if the
model has a fault in the quantifier body, then we try to
fix it without replacing the entire quantifier expression. The
expressions modified due to the fix are labeled as faulty. We
collect 5 real faults from [41], 1 real fault from Alloy release
4.1 and 84 real faults from graduate students.

To evaluate AlloyFLhy, we use distance metrics (NNUD-
k, NND, NNDW) and traditional top-k metrics. The distance
metrics measure the number of nodes to inspect before finding
at least one fault. The top-k metrics measure the number of
faults found by inspecting the top-k nodes. We pick k up to 10
because [26] showed that 98% of practitioners consider a fault
localization technique to be useful only if the fault appears in
the top-10 suspicious elements. Techniques that give smaller
distance metrics and larger top-k metrics are more accurate.
Intuitively, the NNUD-1, NND, NNDW and the top-1 metrics
are more important than the NNUD-5, NNUD-10, top-5 and
top-10 metrics. Because users are likely to debug one fault at
a time instead of looking at all faults at once.

B. RQ1: Suspiciousness Formula Impact

Figure 7 shows the average distance metrics and the
sum of top-k metrics for different suspiciousness formulas
for AlloyFLco, AlloyFLmu and AlloyFLhy (with AlloyFLmu

weight λ = 0.4). The best formulas are highlighted in bold and
blue for each technique and metric. For AlloyFLco, Tarantula
and Barinel give the best result while Op2 gives the worst
result . Ochiai and DStar are similar and slightly worse
than Tarantula and Barinel. For AlloyFLmu, Ochiai gives the
best result for all metrics except NNUD-5. Other formulas

λ nnud-1 nnud-5 nnud-10 nnd nndw top-1 top-5 top-10
0.0 29.2 39.9 45.6 16.7 23.8 4 6 12
0.1 9.4 10.4 14.1 6.1 8.5 31 65 78
0.2 9.4 10.4 14.1 6.1 8.5 30 65 78
0.3 9.3 10.4 14.1 6.1 8.3 32 63 76
0.4 9.2 10.4 14.1 6.0 8.2 32 65 77
0.5 9.2 10.8 14.3 6.1 8.3 31 65 77
0.6 9.2 10.8 14.4 6.1 8.3 31 65 78
0.7 9.2 10.8 14.4 6.2 8.3 30 66 78
0.8 9.2 10.9 14.4 6.2 8.3 30 66 78
0.9 9.2 11.0 14.4 6.2 8.3 30 65 78
1.0 11.7 11.8 14.2 8.7 13.1 29 68 82

Fig. 8: AlloyFLmu Weight Impact for AlloyFLhy.

give slightly worse results. For AlloyFLhy, Ochiai gives the
best result for all metrics except NND, NNDW, top-5 and
top-10 metrics, where these metrics are only slightly worse
compared to the best formulas. Op2 gives the worst result and
DStar gives the second worst result. Tarantula and Barinel are
comparable and slightly worse than Ochiai. Overall, the choice
of formulas (except Op2) does not impact the accuracy of
AlloyFLco much, and the Ochiai formula is the best choice for
both AlloyFLmu and AlloyFLhy. We use the Ochiai formula
in the rest of the evaluation.

C. RQ2: AlloyFLmu Weight Impact

Figure 8 shows the average distance metrics and the sum of
top-k metrics for different AlloyFLmu weight λ in AlloyFLhy.
The best weights are highlighted in bold and blue for each
metric. When λ = 0.0, AlloyFLhy is equivalent to AlloyFLco.
When λ = 1.0, AlloyFLhy is equivalent to AlloyFLmu. The
results show that AlloyFLhy achieves the best performance
when λ = 0.4.

D. RQ3: AlloyFLhy Effectiveness

Figure 9 shows the distance and top-k metrics results for
AlloyFLun, AlloyFLco, AlloyFLmu and AlloyFLhy. We use
the Ochiai formula for AlloyFLco, AlloyFLmu and AlloyFLhy.
The AlloyFLmu weight is set to 0.4 for AlloyFLhy. The most
accurate techniques are highlighted in bold and blue for each
fault and metric. The #Flt column shows the number of actual
faults in each model. The bottom of Figure 9 gives a sum-
mary of the performance of each technique across all faults.
Avg/Sum shows the average of distance metrics per technique,
the sum of top-k metrics per technique, and the total number
of faults across all faulty models. Win shows the number
of times the corresponding technique gives the best result
for each metric. Un, Co, Mu and Hy represent AlloyFLun,
AlloyFLco, AlloyFLmu and AlloyFLhy, respectively. Note that
the sorting method might be unstable, so the final result might
vary slightly for different runs, e.g. metric values when λ = 0
or 1 in Figure 8 is slightly different from the values in Figure 9.

With AlloyFLhy, users can find at least one fault by
inspecting 9.2, 10.4 and 14.1 AST nodes from the top 1,
5 and 10 reported nodes under NNUD, respectively. Users
need to inspect 6.0 and 8.2 AST nodes to find at least one



Model nnud-1 nnud-5 nnud-10 nnd nndw top-1 top-5 top-10 #FltUn Co Mu Hy Un Co Mu Hy Un Co Mu Hy Un Co Mu Hy Un Co Mu Hy Un Co Mu Hy Un Co Mu Hy Un Co Mu Hy
addr1 24 78 1 1 57 78 5 5 57 73 10 10 10 50 1 1 15 57 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1

arr1 20 51 14 14 56 51 38 34 61 51 38 49 61 32 8 8 64 41 15 15 0 0 0 0 0 0 0 0 0 0 0 0 1
arr2 1 29 1 1 2 26 4 5 2 26 4 8 1 22 1 1 3 52 3 3 1 0 1 1 1 0 1 1 1 0 1 1 2
arr3 1 3 3 3 3 14 3 5 3 17 3 7 1 2 2 2 3 4 4 4 1 0 0 0 1 0 1 1 1 0 1 1 1
arr4 1 62 1 1 3 62 5 5 3 62 6 10 1 32 1 1 1 44 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
arr5 1 60 1 1 3 60 5 5 3 60 6 10 1 38 1 1 1 53 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
arr6 45 45 45 45 45 40 18 13 45 40 18 22 45 26 4 4 68 38 13 13 0 0 0 0 0 0 0 0 0 0 0 0 1
arr7 1 19 1 1 3 14 5 5 3 17 6 9 1 19 1 1 1 22 1 1 1 0 1 1 2 0 2 1 2 0 2 2 2
arr8 1 3 1 1 2 14 5 5 2 17 6 10 1 2 1 1 3 5 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
arr9 53 53 21 21 53 44 5 5 53 44 7 10 53 31 4 4 84 44 5 5 0 0 0 0 0 0 1 1 0 0 1 1 1

arr10 57 48 57 57 43 48 57 57 52 48 57 57 31 50 57 50 50 72 78 72 0 0 0 0 0 0 0 0 0 0 0 0 1
arr11 75 75 1 1 75 64 5 5 75 64 7 10 75 42 1 1 98 53 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1
bst1 32 32 5 5 55 58 5 5 55 65 6 10 5 5 5 5 5 5 5 5 0 0 0 0 0 0 1 1 0 0 1 1 1
bst2 3 3 4 1 15 15 14 5 15 28 10 10 2 2 7 1 6 6 7 5 0 0 0 1 0 0 0 1 0 0 1 1 4
bst3 68 19 1 1 34 47 5 5 34 62 10 10 14 6 1 1 17 9 1 1 0 0 1 1 0 0 2 1 0 0 3 1 3
bst4 3 3 64 3 15 5 53 5 27 10 59 10 2 2 50 2 2 2 54 2 0 0 0 0 0 1 0 1 0 1 0 1 3
bst5 32 32 5 5 57 59 5 5 57 67 6 10 5 5 5 5 5 5 5 5 0 0 0 0 0 0 1 1 0 0 1 1 1
bst6 108 69 1 1 78 81 5 5 78 100 8 10 34 19 1 1 36 21 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1
bst7 58 58 4 4 80 82 5 5 80 89 6 10 6 6 4 4 6 6 4 4 0 0 0 0 0 0 1 1 0 0 1 1 1
bst8 57 57 4 4 79 82 5 5 79 97 10 10 6 6 4 4 6 6 4 4 0 0 0 0 0 0 1 1 0 0 1 1 3
bst9 58 58 4 4 84 90 5 5 84 99 6 10 6 6 4 4 6 6 4 4 0 0 0 0 0 0 1 1 0 0 1 1 1

bst10 32 32 5 32 33 56 5 12 45 58 10 10 5 5 5 5 5 5 5 5 0 0 0 0 0 0 1 0 0 0 3 1 4
bst11 67 34 69 69 15 15 69 69 34 8 64 64 23 51 129 51 23 52 221 52 0 0 0 0 0 0 0 0 0 1 0 0 2
bst12 39 19 7 7 39 46 5 5 39 53 10 10 39 6 5 5 156 17 6 6 0 0 0 0 0 0 1 1 0 0 1 1 2
bst13 32 32 5 5 57 59 5 5 57 67 6 10 5 5 5 5 5 5 5 5 0 0 0 0 0 0 1 1 0 0 1 1 1
bst14 58 58 4 4 83 86 5 5 83 95 6 10 6 6 4 4 6 6 4 4 0 0 0 0 0 0 1 1 0 0 1 1 1
bst15 32 32 5 5 57 59 5 5 57 67 6 10 5 5 5 5 5 5 5 5 0 0 0 0 0 0 1 1 0 0 1 1 1
bst16 140 92 140 4 106 107 17 16 106 128 26 26 44 26 9 3 50 32 10 4 0 0 0 0 0 0 0 0 0 0 0 0 1
bst17 32 32 5 32 69 56 5 5 69 74 10 10 5 5 5 5 5 5 5 5 0 0 0 0 0 0 1 1 0 0 3 2 3
bst18 32 32 5 5 58 59 5 5 58 68 6 10 5 5 5 5 5 5 5 5 0 0 0 0 0 0 1 1 0 0 1 1 2
bst19 7 19 4 4 28 46 5 29 53 57 10 10 5 6 8 8 13 14 16 16 0 0 0 0 0 0 1 0 0 0 1 1 3
bst20 58 58 4 4 80 81 5 5 80 102 10 10 6 6 4 4 6 6 4 4 0 0 0 0 0 0 2 2 0 0 2 2 2
bst21 71 71 4 4 99 106 5 5 99 114 6 10 12 12 4 4 13 13 4 4 0 0 0 0 0 0 1 1 0 0 1 1 1
bst22 1 40 6 6 5 62 5 5 9 28 10 10 1 32 7 7 5 73 11 11 1 0 0 0 1 0 1 1 1 0 1 1 4

bempl1 19 19 3 3 19 7 10 10 19 17 17 19 19 6 2 2 48 6 2 2 0 0 0 0 0 0 0 0 0 0 0 0 1
cd1 45 37 4 1 45 38 5 5 45 45 10 10 45 11 3 1 58 13 5 1 0 0 0 1 0 0 1 1 0 0 1 1 2
cd2 34 16 1 1 34 25 4 5 34 25 4 6 34 6 1 1 47 9 2 2 0 0 1 1 0 0 1 1 0 0 1 1 1
cd3 22 37 2 1 38 46 5 5 38 46 10 10 11 11 2 1 14 13 2 1 0 0 0 1 0 0 2 2 0 0 2 2 2

ctree1 18 18 39 39 18 5 56 56 18 8 21 21 18 4 61 47 67 4 71 51 0 0 0 0 0 1 0 0 0 1 0 0 1
dll1 4 6 4 4 16 30 19 14 16 33 19 26 3 4 3 3 6 7 6 6 0 0 0 0 0 0 0 0 0 0 0 0 2
dll2 4 6 1 1 16 30 5 5 16 36 10 10 3 4 1 1 7 8 1 1 0 0 1 1 0 0 2 1 0 0 2 2 2
dll3 31 1 1 2 26 5 5 5 26 7 10 10 11 1 1 2 13 1 1 2 0 1 1 0 0 1 2 2 0 1 2 2 3
dll4 4 6 1 1 16 30 4 5 16 33 4 8 3 4 1 1 7 8 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1
dll5 23 39 1 1 53 64 5 5 53 68 6 10 10 11 1 1 20 21 1 1 0 0 1 1 0 0 1 1 0 0 1 1 2
dll6 37 6 11 11 20 30 10 10 20 33 21 28 11 4 5 5 19 12 11 11 0 0 0 0 0 0 0 0 0 0 0 0 2
dll7 4 6 1 1 3 15 5 5 3 21 8 10 3 4 1 1 6 7 2 2 0 0 1 1 1 0 1 1 1 0 1 1 2
dll8 51 6 1 1 24 30 5 5 24 33 7 10 11 4 1 1 20 13 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1
dll9 21 1 2 2 21 5 5 5 21 9 10 10 21 1 2 2 123 4 4 4 0 1 0 0 0 1 1 1 0 1 1 1 1

dll10 1 55 1 1 2 40 5 5 2 40 5 8 1 26 1 1 1 33 2 2 1 0 1 1 1 0 1 1 1 0 1 1 1
dll11 51 6 11 11 20 30 5 5 20 33 6 10 11 4 3 3 20 13 3 3 0 0 0 0 0 0 1 1 0 0 1 1 1
dll12 4 6 4 4 16 30 19 14 16 33 19 26 3 4 3 3 6 7 6 6 0 0 0 0 0 0 0 0 0 0 0 0 1
dll13 30 3 1 1 30 15 5 5 30 27 10 10 30 2 1 1 80 5 2 2 0 0 1 1 0 0 1 1 0 0 1 1 1
dll14 4 6 1 1 3 15 5 5 3 21 8 10 3 4 1 1 6 7 2 2 0 0 1 1 1 0 1 1 1 0 1 1 2
dll15 51 6 11 11 24 30 5 5 24 33 10 10 11 4 3 3 20 13 3 3 0 0 0 0 0 0 1 1 0 0 1 1 2
dll16 4 6 4 4 16 30 19 14 16 33 19 26 3 4 3 3 6 7 6 6 0 0 0 0 0 0 0 0 0 0 0 0 1
dll17 4 6 4 4 3 30 5 5 3 33 8 10 3 4 3 3 6 7 6 6 0 0 0 0 1 0 1 1 1 0 1 1 3
dll18 14 59 14 14 40 43 44 43 40 56 10 10 11 26 11 11 25 33 25 25 0 0 0 0 0 0 0 0 0 0 1 1 4
dll19 11 29 1 1 37 53 5 5 37 60 5 9 8 9 1 1 15 16 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1
dll20 59 18 2 2 50 41 5 5 50 48 10 10 24 6 3 3 25 9 3 3 0 0 0 0 0 0 1 1 0 0 2 1 3

farmer1 17 90 9 9 94 90 26 26 94 79 40 43 13 97 7 7 30 119 12 12 0 0 0 0 0 0 0 0 0 0 0 0 1
fsm1 4 50 1 1 19 49 5 5 19 50 10 10 3 71 1 1 7 91 1 1 0 0 1 1 0 0 1 1 0 0 1 1 2
fsm2 59 59 1 1 59 59 5 5 59 59 10 10 59 69 1 1 87 78 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1
fsm3 1 34 1 1 2 29 4 5 2 30 4 8 1 25 1 1 6 40 6 6 1 0 1 1 1 0 1 1 1 0 1 1 1
fsm4 36 36 36 36 36 31 5 5 36 32 10 10 36 90 3 3 153 144 3 3 0 0 0 0 0 0 1 1 0 0 1 1 2
fsm5 34 34 34 34 34 29 66 43 34 30 10 10 34 35 18 18 107 48 19 19 0 0 0 0 0 0 0 0 0 0 1 1 3
fsm6 50 50 3 3 50 49 11 11 50 50 30 30 50 39 32 26 116 57 35 29 0 0 0 0 0 0 0 0 0 0 0 0 1
fsm7 24 25 25 25 24 15 40 40 24 19 10 10 24 27 27 27 61 33 30 30 0 0 0 0 0 0 0 0 0 0 1 2 2
fsm8 59 59 59 59 59 59 12 12 59 59 10 10 59 69 8 9 88 79 8 9 0 0 0 0 0 0 0 0 0 0 1 1 1
fsm9 8 34 34 34 24 29 34 29 24 30 34 30 5 45 34 45 7 57 86 57 0 0 0 0 0 0 0 0 0 0 0 0 5

grade1 19 1 23 4 19 5 15 5 19 7 25 10 19 1 42 16 56 1 71 16 0 1 0 0 0 1 0 1 0 1 0 1 1
other1 27 27 28 28 27 28 5 5 27 17 7 10 27 14 8 8 60 18 9 9 0 0 0 0 0 0 1 1 0 0 1 1 1

scl1 4 7 11 11 18 21 8 8 18 41 24 17 3 4 5 5 11 12 11 11 0 0 0 0 0 0 0 0 0 0 0 0 1
scl2 4 9 4 4 18 26 5 5 18 47 10 10 3 4 4 4 11 6 5 5 0 0 0 0 0 0 1 1 0 0 1 1 2
scl3 1 3 3 3 4 9 13 12 4 24 10 10 1 2 2 2 4 10 10 10 1 0 0 0 2 0 0 0 2 0 1 1 3
scl4 4 7 11 11 18 21 8 8 18 42 24 17 3 4 5 5 11 12 11 11 0 0 0 0 0 0 0 0 0 0 0 0 1
scl5 4 7 11 11 18 21 8 8 18 42 24 17 3 4 5 5 11 12 11 11 0 0 0 0 0 0 0 0 0 0 0 0 1
scl6 10 32 1 1 45 38 5 5 45 9 7 10 5 35 1 1 7 51 1 1 0 0 1 1 0 0 2 1 0 1 2 2 4
scl7 1 3 1 1 5 9 5 5 5 24 10 10 1 2 1 1 7 10 7 7 1 0 1 1 2 0 1 1 2 0 1 1 3
scl8 4 7 4 4 19 22 23 9 19 47 23 21 3 4 3 3 6 7 6 6 0 0 0 0 0 0 0 0 0 0 0 0 1
scl9 66 9 1 1 66 36 5 5 66 47 10 10 66 4 1 1 166 5 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1

scl10 4 7 11 11 19 22 8 8 19 47 25 17 3 4 5 5 11 12 11 11 0 0 0 0 0 0 0 0 0 0 0 0 1
scl11 8 23 11 11 38 41 10 10 38 70 27 17 6 7 9 9 16 17 15 15 0 0 0 0 0 0 0 0 0 0 0 0 1
scl12 90 7 11 11 29 31 5 5 29 46 10 10 11 4 3 3 20 13 3 3 0 0 0 0 0 0 2 2 0 0 2 2 2
scl13 116 45 1 1 116 63 5 5 116 98 10 10 116 11 1 1 204 18 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1
scl14 9 34 1 1 46 40 5 5 46 10 7 10 5 40 1 1 7 52 1 1 0 0 1 1 0 0 2 1 0 1 2 1 4
scl15 4 7 11 11 22 21 8 8 22 43 24 17 3 4 5 5 11 12 11 11 0 0 0 0 0 0 0 0 0 0 0 0 1
scl16 32 1 60 1 32 5 56 5 32 10 64 10 32 1 63 1 94 1 94 1 0 1 0 1 0 1 0 1 0 3 0 1 4
scl17 4 32 11 11 22 38 11 9 22 9 9 19 3 55 5 5 11 69 11 11 0 0 0 0 0 0 0 0 0 1 1 0 2
scl18 17 74 4 4 4 53 5 5 4 76 10 10 8 12 9 9 10 14 9 9 0 0 0 0 1 0 1 1 1 0 1 1 3
scl19 1 3 1 1 5 12 5 5 9 24 10 10 1 2 1 1 1 4 3 3 1 0 1 1 1 0 1 1 1 0 1 1 3

Avg/Sum 28.6 29.2 11.7 9.2 35.0 39.9 12.1 10.4 36.0 45.6 14.2 14.1 16.0 17.0 8.7 6.0 31.5 24.1 13.1 8.2 12 4 29 32 19 6 68 65 19 12 81 77 162
Win 35 17 62 65 20 10 58 65 22 10 55 36 40 14 62 67 35 13 72 77 12 4 29 32 16 5 58 55 16 7 63 60

Fig. 9: Effectiveness for Real Faults.

fault for NND and NNDW, respectively. In total, users can
find 32, 65 and 77 faults by inspecting the top 1, 5 and 10
nodes, respectively. In terms of Win, AlloyFLhy performs the
best under NNUD-1, NNUD-5, NND, NNDW and the top-1
metrics. AlloyFLmu performs the best under NNUD-10 and

top-5, top-10 metrics. On average, AlloyFLun performs better
than AlloyFLco but worse than AlloyFLmu, and AlloyFLhy

performs the best.
These results show an important tradeoff between the types

of faults each technique is best equipped to handle. Notably,



ratio nnud-1 nnud-5 nnud-10 nnd nndw top-1 top-5 top-10
10 40.8 39.0 40.9 37.6 80.1 8.2 23.5 28.0
20 29.0 28.2 31.4 26.3 52.7 15.5 35.4 43.5
30 21.1 21.3 24.9 18.6 35.4 19.2 43.7 52.9
40 16.9 17.1 20.7 13.9 25.9 21.3 50.5 61.2
50 15.1 15.5 19.3 12.0 21.5 23.5 52.9 64.5
60 12.3 13.0 17.2 9.2 15.3 26.3 56.0 67.7
70 11.5 12.5 16.3 8.4 13.1 27.5 57.5 70.4
80 10.7 11.7 15.5 7.5 11.2 28.7 60.8 73.3
90 10.2 11.1 14.9 7.0 10.0 29.4 61.7 75.4

100 9.2 10.4 14.1 6.0 8.2 32.0 65.0 77.0

Fig. 10: Test Size Impact for AlloyFLhy.

AlloyFLco is accurate for omission faults, e.g. when users
leave the entire predicate body empty (scl16) or when the
user misses some conjunct/disjunct constraints at the body
level of a predicate (grade1). On the contrary, AlloyFLmu

is more accurate for faults that can be fixed with mutations,
e.g. addr1 and bst3. AlloyFLhy performs, on average, better
than AlloyFLco and AlloyFLmu because it benefits from the
strengths of both AlloyFLco and AlloyFLmu. On the other
hand, AlloyFLun prioritizes AST nodes that are highlighted
the most number of times by the unsat core across all unsatis-
fiable failing tests, so it is comparable or more accurate than
using a single unsatisfiable failing test, i.e. the traditional way
an Alloy user would debug a faulty model using the unsat core.
However, since the unsat core is still too coarse grained and
cannot handle underconstrained models, AlloyFLun cannot
locate faults accurately. Finally, our results also confirm our
hypothesis and show that AlloyFLhy is substantially more
effective than AlloyFLun under all metrics.

E. RQ4: Test Size Impact

Figure 10 shows the average distance metrics and the
sum of top-k metrics for different test sizes for AlloyFLhy

(with Ochiai formula and AlloyFLmu weight λ = 0.4). The
ratio column shows the test size in percentage we randomly
selected from the full test suite. For each test size, we run
the experiment for 10 trials and report the average results. For
each trial, we make sure that any test suite with a smaller
size is a subset of any test suite with a larger size. AlloyFLhy

reaches the best performance under all metrics when using the
full test suite. The effectiveness of AlloyFLhy decreases as the
test size decreases.

Specifically, AlloyFLhy is inaccurate with only 10% of
the tests. It is much more accurate with >50% of the tests.
The average effectiveness increases slowly as the test ratio
increases from 50% to 100%. Moreover, we observe that some
specific trials with a test ratio <100% can give better results
than using the full test suite. This is due to the randomness
as sometimes computing the suspiciousness scores from the
sampled tests gives more accurate rankings. To make the result
reliable and stable, AlloyFLhy should use the entire test suite.

F. RQ5: AlloyFL Time Overhead

Figure 11 shows the time overhead in seconds for each
model. Avg shows the average time overhead over all faulty
models for each technique. We use the Ochiai formula

Model Un Co Mu Hy
addr1 1.4 1.3 8.5 8.4

arr1 0.9 0.9 2.8 2.8
arr2 1.1 1.1 7.9 7.8
arr3 1.1 1.1 7.8 7.7
arr4 1.6 1.6 11.5 10.9
arr5 1.3 1.2 7.7 7.9
arr6 1.1 1.1 6.6 6.5
arr7 1.2 1.1 8.6 8.4
arr8 1.2 1.2 10.7 10.9
arr9 1.3 1.2 10.5 10.1

arr10 0.9 1.0 3.1 3.2
arr11 1.5 1.6 9.5 9.5
bst1 3.1 3.2 41.1 40.5
bst2 3.3 3.2 75.0 75.9
bst3 3.9 3.9 86.4 86.0
bst4 3.4 3.7 85.8 83.2
bst5 3.8 3.9 65.1 64.1
bst6 3.9 4.1 65.0 64.6
bst7 3.5 3.5 47.2 47.9
bst8 3.1 3.1 60.7 60.5
bst9 3.6 3.8 57.7 57.6

bst10 5.1 4.9 114.4 114.8
bst11 3.6 3.5 75.4 75.4
bst12 3.5 3.1 67.2 67.5
bst13 3.5 3.5 63.2 64.5
bst14 3.5 3.4 61.3 62.7
bst15 4.0 3.8 65.7 66.8
bst16 3.7 3.6 72.3 72.1
bst17 3.9 3.9 82.3 83.2
bst18 3.6 3.6 68.1 66.7
bst19 3.5 3.6 57.0 57.4
bst20 4.2 4.0 83.0 80.6
bst21 3.7 3.5 56.3 56.5
bst22 2.9 2.9 52.8 52.6

bempl1 0.9 1.0 3.6 3.5
cd1 0.8 0.8 3.7 3.8
cd2 0.8 0.8 2.0 2.1
cd3 0.8 0.8 3.3 3.3

ctree1 0.9 0.8 6.7 6.7
dll1 1.4 1.4 9.0 9.0
dll2 1.6 1.4 11.6 11.9
dll3 1.5 1.5 10.3 10.0
dll4 1.5 1.6 9.8 9.7
dll5 1.5 1.4 11.6 11.5
dll6 1.7 1.6 11.1 11.3
dll7 1.5 1.5 11.5 11.8
dll8 1.6 1.8 11.3 11.2
dll9 1.1 1.2 13.1 13.6

dll10 1.4 1.4 8.2 8.2
dll11 1.5 1.5 10.2 10.4
dll12 1.4 1.6 8.8 9.0
dll13 1.5 1.4 13.1 13.0
dll14 1.4 1.4 11.4 11.8
dll15 1.7 1.6 15.4 15.5
dll16 1.5 1.5 9.2 9.0
dll17 1.5 1.4 11.4 10.9
dll18 5.0 4.7 134.3 136.4
dll19 1.3 1.4 9.7 9.6
dll20 1.4 1.4 14.0 13.8

farmer1 2.6 2.7 28.2 28.2
fsm1 0.8 0.8 4.7 5.1
fsm2 0.8 0.8 4.9 4.8
fsm3 0.7 0.8 4.8 4.7
fsm4 0.8 0.8 7.2 7.1
fsm5 0.8 0.7 4.7 4.7
fsm6 0.8 0.8 5.1 5.2
fsm7 0.8 0.7 4.3 4.6
fsm8 0.8 0.8 4.9 4.7
fsm9 0.7 0.8 3.1 3.4

grade1 1.3 1.2 6.3 6.0
other1 0.9 0.8 3.1 3.2

scl1 2.4 2.4 24.5 24.1
scl2 2.6 2.5 39.5 39.5
scl3 2.7 2.5 65.5 67.0
scl4 2.3 2.3 24.5 28.2
scl5 2.6 2.6 24.8 27.5
scl6 2.4 2.4 32.2 34.5
scl7 2.6 2.5 47.2 47.3
scl8 2.4 2.5 31.9 31.9
scl9 2.2 2.3 42.3 42.4

scl10 2.7 2.5 29.2 29.3
scl11 2.5 2.7 31.7 31.4
scl12 2.7 2.7 55.8 56.1
scl13 2.3 2.4 57.0 57.2
scl14 2.4 2.5 31.8 33.7
scl15 2.6 2.5 32.0 32.0
scl16 1.4 1.4 11.7 11.4
scl17 2.7 2.5 33.1 34.0
scl18 2.5 2.4 47.7 48.0
scl19 2.4 2.4 41.6 41.6

Avg 2.1 2.1 30.5 30.7

Fig. 11: Time Overhead (sec) for Real Faults.



for AlloyFLco, AlloyFLmu and AlloyFLhy. The AlloyFLmu

weight is set to 0.4 for AlloyFLhy. We observe that AlloyFLun

and AlloyFLco are comparable and it takes both techniques
less than 6 seconds to finish for each model. AlloyFLmu

and AlloyFLhy are comparable and they are slower than
both AlloyFLun and AlloyFLco for each model. AlloyFLmu

and AlloyFLhy take a minimum of 2.0 and 2.1 seconds,
respectively, to finish for cd2. They take a maximum of 134.3
and 136.4 seconds, respectively, to finish for dll18. A majority
of AlloyFLhy’s time overhead is attributed to AlloyFLmu. On
average, AlloyFLun, AlloyFLco, AlloyFLmu and AlloyFLhy

finish in 2.1, 2.1, 30.5 and 30.7 seconds, respectively. Since
AlloyFLhy finishes around 30 seconds on average, its time
overhead is acceptable because it is substantially more accurate
than AlloyFLun.

G. Threats to Validity

There exists several threats to the validity of our results. The
real faulty models we use in the experiment are limited in the
sense that most of them are written by graduate students (with
few real faults written by experienced developers). Therefore,
the results may not generalize to faulty models written by
experienced developers. However, we collected faulty models
to the best of our ability.

The best AlloyFLmu weight 0.4 is chosen based on the
experimental faulty models, so it may not generalize to unseen
faulty models.

The tests used to capture desired model properties (e.g.
the test in Figure 1b) can require some effort to create. In
this paper, all tests are automatically generated using MuAl-
loy [59] and the expected behavior (expect 0 or expect 1)
of each test is automatically verified using the correct model.
In practice, users need to specify the expected behavior but
no manual effort is needed to create test predicates if users
choose to use MuAlloy. We use generated test predicates to
evaluate AlloyFL since we did not find a reasonably large set
of manually written tests for every real faulty model. So our
result may not generalize to manually written tests.

Additionally, although our distance metrics simulate differ-
ent ways users may inspect code highlighted by AlloyFL, users
may use the reported Alloy expressions in a different manner.
Nevertheless, we also evaluate AlloyFLhy using the traditional
top-k metrics to enhance the credibility of the conclusion.

VI. RELATED WORK

This paper presents AlloyFLhy – the first automated fault
localization technique for Alloy that leverages multiple test
predicates. AlloyFLhy highlights suspicious code more ac-
curately than the unsat cores based technique AlloyFLun.
Moreover, AlloyFLhy enables the evaluation of program repair
techniques, e.g. ARepair [58], for Alloy models. Note that
ARepair assumes that the faulty locations are given and
it focuses on synthesizing code snippets. On the contrary,
AlloyFLhy focuses on locating faults.

Automated debugging of Alloy models can be traced back
to Alloy’s early days when highlighting unsat cores in unsat-
isfiable Alloy expressions is introduced [51]. Moreover, for

satisfiable expressions, Alloy’s symmetry breaking indirectly
supports debugging by allowing the user to inspect fewer
instances [13, 42, 50]. More recent work on Amalgam allows
the user to ask questions of the form “why a tuple is or is
not in a relation” for a chosen instance [41]. While Amalgam
provides a useful tool to aid debugging by allowing the user to
enhance their understanding of the model, the restricted form
of the questions users can ask limits its effectiveness, e.g. the
user cannot ask why certain expressions hold or not, or why
certain relations are empty.

A number of approaches assist users in writing correct Alloy
models. Montaghami and Rayside [36, 37] enable Alloy users
to more easily provide partial instances, which are expressive
example solutions that aid in writing correct, complete models.
Our prior work [55] follows the spirit of JUnit and introduces
a test automation framework for Alloy by defining test, test
execution and model coverage. AUnit has further enabled test
automation efforts for Alloy, ranging from automated test
generation to mutation testing [54, 59]. ASketch helps users
to generate complicated Alloy expressions based on a partial
Alloy model and a set of tests [60, 61]. Other techniques have
been developed to run a subset of AUnit tests [62] or reduce
the test execution time [63].

While our focus in this paper is on declarative models
written in Alloy, fault localization for imperative languages
is a well-studied area. AlloyFLco, AlloyFLmu and AlloyFLun

implement spectrum-based, mutation-based, and SAT-based
techniques, respectively. Among these, spectrum-based tech-
niques [2, 4, 6, 8, 9, 11, 12, 16, 22, 23, 25, 29, 35, 46,
47, 66, 67, 73], are the most widely studied; they focus on
collecting execution information, such as statements and meth-
ods. Mutation-based fault localization techniques [15, 38, 43]
were introduced more recently. They perform mutations on
the faulty program to study their impact on the test results
and determine likely faulty locations. SAT-based techniques
use either the minimal satisfiability [14] or the negation of
maximal satisfiability [24] to identify suspicious code.

VII. CONCLUSIONS

This paper introduces AlloyFLhy, a fault localization tech-
nique for declarative Alloy models. AlloyFLhy is the first
technique that utilizes a suite of test predicates (either automat-
ically generated or manually written) that capture the desired
properties of Alloy models to locate faults at the AST node
granularity. We also propose new distance metrics, i.e. NNUD,
NND and NNDW, to evaluate AlloyFLhy. The evaluation is
performed on 90 real faulty models and shows that AlloyFLhy

is substantially more effective than the baseline technique
AlloyFLun. We also show that using the Ochiai formula and
setting the AlloyFLmu weight to 0.4 make AlloyFLhy achieve
the best effectiveness.
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