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ABSTRACT: The extreme density of DNA presents a
compelling advantage over current storage media; however,
to reach practical capacities, new systems for organizing and
accessing information are needed. Here, we use chemical
handles to selectively extract unique files from a complex
database of DNA mimicking 5 TB of data and design and
implement a nested file address system that increases the
theoretical maximum capacity of DNA storage systems by five
orders of magnitude. These advancements enable the
development and future scaling of DNA-based data storage
systems with modern capacities and file access capabilities.
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DNA is an excellent candidate for archival data storage as it
offers high raw information density as well as durability and
energy efficiency.1−4 Motivated by these compelling properties,
pioneering work has tackled many important features needed
for a DNA storage system. For example, encoding and
decoding algorithms have been developed to be tolerant to
errors while also being highly efficient in terms of density and
computational intensity.5−13 Strategies such as nested polymer-
ase chain reaction (PCR) architectures have also been
proposed to increase the number of file addresses in storage
systems.14 In addition, molecular manipulations have been
developed to access files through PCR amplification,8,9,11,15,16

encrypt and rewrite information using PCR and Sanger
sequencing,8,17 and implement DNA-based computations or
search functionalities through extraction of specific DNA
strands using biotin-functionalized DNA oligomers.18,19

Further accelerating the field, a recent implementation of a
200 MB DNA storage system demonstrated that current DNA
synthesis technologies are already capable of reasonable
modern storage capacities.15

Given these rapid advancements in DNA storage, it is timely
to anticipate the challenges that will arise as systems continue
to scale in capacity and density. Broadly encompassing these
challenges is the fact that as systems continue to scale, DNA
databases will become ever more diverse, crowded, and
physically disordered, thus posing inherent barriers to data
organization and retrieval. This analysis can be broken down
further into specific issues. For example, existing systems have

few enough strands to be completely read by modern DNA
sequencing technologies; in contrast, future high-capacity
systems will not be able to be sequenced in their entirety
(Figure 1, Supplementary Figure 1), nor will entire databases
be able to be decoded and stored using low latency systems
with much smaller capacities that are higher in storage
hierarchies (i.e., semiconductor-based systems). In addition,
high-capacity DNA storage systems will also require a large
number of available file addresses (i.e., PCR primer
sequences5,8−12,15,16) to organize the data. However, due to
increasing probabilities for potential off-target molecular
interactions as systems scale in capacity, addresses must be
sufficiently different from each other in sequence and are,
therefore, finite in number and limit total system capacities
(Figure 1, Supplementary Figure 1).
Our goal was to develop a robust platform with an easy to

adopt implementation that could address these capacity
limitations. Here, we leverage, innovate, and integrate
prior14,18,19 and new robust biomolecular tools and encoding
strategies to implement a platform capable of scaling storage
system capacities. In particular, we present a system for
nondestructively accessing specific data from high-capacity
DNA-based databases in conjunction with a nested file address
system that can handle the organization of exascale databases.
We refer to this overall storage system, which uses DNA
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Enrichment and Nested SEparation, as DENSE data storage.
This system, through the integrated use of magnetic bead
purifications and nested PCR primers, directly addresses the
challenges arising from the molecularly crowded nature of
high-capacity DNA storage systems while functioning within a
single physical pool of DNA. Therefore, it not only harnesses
the raw capacity and density advantages of DNA but also
drives the practical scalability of high-capacity data storage
systems.
The current state-of-the-art file access method uses many

cycles of PCR to amplify a desired file’s corresponding DNA
strands (referred to as random access8,9,11,15,16). However,
random access is theoretically predicted to exhibit decreasing
sequencing efficiencies with increasing database size as
eventually PCR will not be able to overwhelm large quantities
of nontarget database strands. To experimentally measure this

transition point, we generated a library of five files, each with
unique PCR primer sequences (Figure 2a, Supplementary
Figure 2a), and mixed it with increasing quantities of
background database strands. As it is currently cost prohibitive
to order large databases of completely unique strands of DNA,
large DNA databases can be mimicked in mass proportions by
mixing copies of an individual file (i.e., 1.94 “nonunique” GB
of File 3 strands = 1.14 × 109 total strands) with many more
background database strands (i.e., 6.22 GB to 19.4 TB of a
single nonspecific DNA strand, 3.66 × 109 to 1.14 × 1013 total
strands, respectively). After 30 cycles of random-access PCR to
amplify File 3 from this series of databases, the relative
abundance of File 3 strands to background DNA was
compared by quantitative PCR. As predicted, the percentage
of the sample that was File 3 monotonically decreased as a
function of increasing background DNA (Figure 2b). File 3 fell
below 50% of the total sample once the database size reached
31.1 GB and higher. Thus, in high-capacity systems, random
access becomes ineffective for specific file retrieval.
To address this database capacity limitation, we sought to

physically separate newly created copies of specific files from
the database while preserving the original library, allowing for
the nondestructive and efficient sequencing and analysis of
only desired data. Inspired by prior examples of biotin-
mediated separations of DNA,18,19 we modified this approach
to create moiety-labeled copies of target file strands while
leaving original unmodified file strands in the database. We did
this by using moiety-modified primers in one cycle of PCR to
create chemically labeled copies of a desired file’s DNA strands
(Figure 2c). These labeled copies of individual files were then
separated from the database of five files using magnetic beads
and fully recovered, as confirmed by next generation
sequencing (NGS) (Figure 2d, e, Supplementary Figure 2b−
d). We also expanded this approach to three other distinct
modification systems and showed they were all capable of
efficient and complete file access (biotin−streptavidin,
fluorescein−antibody, digoxigenin−antibody, polyA−polyT
oligomers). NGS results indicated sequencing efficiencies
above 86%, representing a reduction in wasted sequencing
throughput. Of note, to access files in this manner, we found
that only a single emulsion PCR cycle was needed to
chemically label files prior to their separation from the
database. Importantly, we observed no destruction of the
original database in the remaining solution following
separation (Figure 2d, e, Supplementary Figure 2d).
Furthermore, we determined that the same or a different file
could be repeatedly accessed from this previously “used”
database solution (Figure 2d). Taken together, this approach
to physically separate files is nondestructive and represents a
reusable DNA-based storage system.
To directly compare the performance of DENSE storage

with random access in high-capacity systems, we compared the
relative enrichments of File 3 from a 5.53-TB database (Figure
2f, g). In this experiment, to better mimic a true high-capacity
and high-diversity database, File 1 was mutagenized by two
rounds of error prone PCR20 to an estimated 5.53 TB of
unique data. Whereas random access was not able to
significantly enrich File 3 strands from this high-capacity
database, all four DENSE separation methods enriched File 3
to above 99% of the total sample after 30 cycles of emulsion
PCR using the corresponding chemically modified primers.
High-capacity systems require many unique addresses to

store and access information, yet there are roughly 28 000

Figure 1. Theoretical analysis of readable files sizes, total system
capacity limits, and improvements through physical data extraction
and nested encoding. Limited readable files sizes: Current sequencing
platforms can only sequence a fraction (∼20−30 GB) of the
theoretical maximum capacity of current systems (84 TB) assuming a
sequencing depth of 10. Capacity limits: The linear plots of system
capacities are based on current best estimates of 28 000 usable
primers15 and an average file size stored per unique address of 3 GB.
As the total number of unique strands within a database increases, so
does the total system capacity, limited ultimately by the number of
primers available. Thus, the availability of noninteracting primers
limits the theoretical maximum capacity of storage systems. The
system capacity limit for current one-primer encodings using 28 000
primers (all 27 999 files sharing 1 antisense primer) storing 3-GB files
is 84 TB (total capacity = total file addresses × file size); this
corresponds to 7.88 × 1012 unique 200 bp long strands. In contrast,
using the same distinct primers in double or triple nested
architectures increases the number of possible addresses exponentially
(total file addresses = 27 999 N number of nests). As a result, the total
capacities also increase to 2.35 EB (2.52 × 1017 unique strands) and
65.8 ZB (8.98 × 1021 unique strands), respectively. The limits of
commonly used next generation sequencing platforms are included for
reference: Oxford nanopore flow cells can sequence 1.5 × 1011 bases
or roughly 1.27 GB per flow cell using our encoding scheme and
average sequencing depth of 10. Illumina’s Novaseq6000 platform can
sequence 2 × 1010 of our 200 bp strands per run or roughly 28.9 GB.
The aqueous solubility of DNA is roughly between 1018 and 1019 per
milliliter, depending on ionic concentrations.
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usable primer addresses that will not cross interact.15 Thus, in
a storage system comprised of 3 GB file sizes, 28 000 primers
limit total system capacity to ∼84 TB (Figure 1, “Single primer
encoding”), given our strand organization and encoding
strategy. To address this database capacity limitation, we
were inspired by nested PCR architectures that were previously
posed as a way to expand the number of possible addresses.14

We integrated this strategy into DENSE by using a hierarchical

encoding scheme where primer sequences are nested and used
in sequential combination (Figure 3a). Theoretically, this
architecture can more than exponentially increase the number
of unique addresses for files without increasing the total
number of unique primers needed: nesting two primers would
increase theoretical system capacity by five orders of
magnitude to enable exascale capacities (Figure 1, “Two
primer hierarchy encoding”), while nesting more than two

Figure 2. Physical file separations in DENSE storage rescue the decreased sequencing efficiency experienced by high-capacity databases. (a) A
library of five files was ordered and analyzed using NGS to confirm an even file distribution. (b) File 3 strands were enriched over increasingly
higher capacity backgrounds of nonspecific DNA strands using 30 cycles of random-access PCR. Random access failed to enrich File 3 to above
50% of the total sample once the background capacity reached 31.1 GB, as measured by quantitative PCR. (c) DENSE physically extracts a file
(orange) from the database so only its strands are sequenced. A primer functionalized with a chemical handle (yellow diamond) is used to execute
one emulsion PCR cycle to create chemically labeled copies of the desired file’s strands. Functionalized magnetic beads (brown) that bind to the
chemical handle are added to the sample. The desired file is bound to the bead, and the unbound solution containing the original database is
removed and saved for future reuse. The bound file is then eluted from the bead. (d) After biotin−streptavidin file extractions, the remaining
solution still contained all files, while the target files were enriched and physically separated, as measured by NGS. By mapping sequencing reads to
the original file sequences, all targeted data were confirmed recovered. The target file was retained in the supernatant containing the database and
was able to be copied and extracted again. File 1 was extracted three sequential times, and File 2 was extracted from the solution remaining after an
initial extraction of File 1. (e) File extractions using fluorescein, digoxigenin, and polyA(25) as chemical handles also successfully separated target
files from the database. (f) A large-scale background mimicking diverse data was created using error prone PCR20 to mutagenize and amplify File 1.
(g) Random access was compared directly to chemical handle extractions. File 3 strands, with a starting fraction of 0.025% of the total number of
strands, were enriched over a high-capacity background equivalent to 5.53 TB of undesired, nonspecific strands using either random access (black)
or PCR followed by chemical handle primer extractions (blue, green, purple, or pink). After 5, 15, and 30 cycles of PCR (random access),
enrichment of File 3 was 0.0, 0.0, and 1.69% of the total sample, respectively. After biotin-modified PCR followed by extraction, the enrichment of
File 3 was 0.2, 87.5, and 100% of the total sample, respectively. After fluorescein-modified PCR followed by extraction, the enrichment of File 3 was
0.1, 49.6, and 100% of the total sample, respectively. After digoxigenin-modified PCR followed by extraction, the enrichment of File 3 was 0.2, 14.2,
and 100% of the total sample, respectively. After poly(A)-25-modified PCR followed by extraction, the enrichment of File 3 was 0.09, 0.47, and
100% of the total sample, respectively.
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primers would result in exponentially larger numbers of total
addresses (i.e., 28 000 unique primersN number of nests). Using this
hierarchical PCR architecture with nested primers used in
sequential combination (but with no physical extractions),
both File 4 and File 5 were separately and selectively accessed
using opposite temporal amplification sequences, albeit there
were substantial amounts of contaminating off-target strands
(Figure 3b, Supplementary Figure 3). This contamination
arises because the original strands of both File 4 and File 5 are
still present in the second PCR step, and both files would
therefore be amplified in both PCR steps. This problem would
be further exacerbated in higher capacity systems because of
the high background and larger file sizes. Therefore, we
combined this hierarchical strategy with biotin separations
after each PCR step to remove the background strands
(including the undesired contaminating file) and saw a
reduction of these contaminating off-target strands. Specifi-
cally, the desired file in each case comprised either 96.9 or
86.8% of the sample, as measured by quantitative PCR,
showing the specificity of nested addresses when used in the
correct hierarchical temporal sequence and in conjunction with
file separation (Figure 3b, Supplementary Figure 3).
DENSE is practical in that it reduces the number of PCR

cycles needed compared to random-access methods: only one
cycle was necessary to access data from the five-file database.
This reduces not only the amount of dNTPs and other
reagents needed but also the chances of mutational errors and
alterations in strand distributions that may arise from PCR
(Supplementary Figures 4−6). Consequently, in conjunction
with DENSE, encoding algorithms may not need to sacrifice as
much information density toward error correction. We do note
that when the capacities of databases increase, more PCR
cycles are required to access target files using DENSE (Figure
2g). At higher capacities, DENSE outperforms PCR alone
(random access was not able to access target files at all), but
this requirement for increased PCR cycles suggests additional

biochemical engineering should be pursued to improve the
specificities and affinities of the many complex molecular
interactions that can occur during file separation.
Although initially designed to address barriers to scaling to

the extreme capacities anticipated in the future (∼PB and
higher), DENSE storage is already useful and needed for
smaller and imminently achievable capacities. For example,
while the largest system created to date is 200 MB,15 GB or TB
amounts of DNA are routinely achieved by mainstream DNA
synthesis companies in their aggregate purchase orders. Even
for such modest systems, if common file sizes of ∼25 MB are
desired, there will be challenges in providing enough unique
addresses without harnessing nested address architectures
(Supplementary Figure 1, “25 MB files”). These nested
architectures will also need to be integrated with physical file
separations to avoid obtaining undesired contaminating
strands, as each sequential PCR would otherwise have all
database files available as templates, defeating the purpose of a
nested architecture. Furthermore, without physical file
separations, reading data from GB to TB level systems will
be wasteful and perhaps infeasible even using state-of-the-art
sequencing capabilities. For instance, Illumina’s NovaSeq6000
can read only 20−30 GB of data when conservatively
accounting for 10 redundant copies per strand (i.e., read
depth of 10) (Figure 1, Supplementary Figure 1). Critically,
this work demonstrates the enrichment and physical separation
of 9.15 unique kBs of targeted DNA strands from 5.53 unique
TBs of undesired database strands (Figure 2g). When
considering the file’s raw capacity instead of unique data,
DENSE was able to enrich 1.94 GB of nonunique DNA
strands from 5.53 TB of background strands. In other words,
target strands starting at only 0.025% of the original database
were enriched to over 99% purity in the separated sample.
Therefore, as systems continue to scale, DENSE could be used
to store and access individual files containing at least GBs of
data. Thus, this file access approach can be combined with a

Figure 3. Combining a nested, hierarchical address strategy with physical separations results in purified enrichment of the desired file. (a) Strand
architectures of Files 4 and 5 exhibit nested primer addresses. Binding sites for primers A and B are shared by both files but in opposite orders. Both
files share a common antisense primer. (b) Experimental demonstration that PCR using primer A followed by primer B enriches for File 4. PCR
amplification using two rounds of the same primer enriches for the incorrect file. In conjunction with physical extractions, File 4 is specifically
accessed using hierarchical PCRs. The extraction after the first PCR amplification increases File 4 enrichment from 81 to 97% over no extraction, as
measured by qPCR.
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hierarchical, nested-address system to increase the theoretical
total capacity of DNA storage systems by over five orders of
magnitude (see Figure 1, Supplementary Figure 1, and eqs 1
and 2 in the Methods section for calculations).
While there are many challenges, and likely many still

unanticipated, there are recent promising breakthroughs in all
necessary aspects of DNA storage: advances continue to be
made in DNA synthesis and sequencing, encoding and error
correction, and physical file access and system architecture.
This work provides a conceptual and quantitative framework to
think about DNA storage systems and their challenges,
proposes practical strategies to address key barriers to scaling
system capacities, and suggests that DNA-based data storage
systems with reasonable modern capacities and file access
capabilities are not only immediately achievable but also
scalable to extreme capacities in the future.

■ METHODS
Data Representation, Encoding, and Decoding. We

adopted an approach for representing and encoding data
similar to that reported in recent work.6,9,15 We partitioned a
digital file into blocks of data that fit in DNA strands that are
200 bp long. Each strand consists of multiple fields. A primer
binding site occupies each end and enables DNA polymerase
chain reactions. Between the primers, we placed three fields
that represent the index of the strand within the file, the data
payload, and a checksum to detect errors within the strand. We
used a fixed length index that is 16 bp-long and a fixed length
checksum that is 8 bp-long. This leaves the remaining 136 bp-
long sequence to represent the data payload of each strand. We
designed 8 bp-long codewords to represent one byte of data.
The codewords have no repetition of bases both individually
and when appended, and they are GC balanced. Each byte of
file is converted one byte at a time into a corresponding
codeword and appended together to form the payload of a
strand. The checksum is a single-byte XOR-accumulation of all
the data in the payload that is encoded and appended to the
end of the data payload. The checksum allows each strand to
self-check its own data. The only notable difference for
hierarchical encoding is that it requires an additional primer
binding site in each strand, thereby reducing the size of the
data payload.
We also adopted a redundant XOR-style encoding proposed

by Bornholt et al.9 to enhance the reliability of our system. In
our design, indices with even values hold data, and odd indices
store the XOR-ed content of their adjacent strands. This
redundancy enables recovery of data even if some strands are
lost or discarded due to an invalid checksum. The decoder
algorithm for our encoding is similar to that used in previous
work9 with the modification that we can disregard any read
with an invalid checksum. It is important to note that for
clarity of analysis and ease of comparison across systems, the
file and database sizes estimated in the figures do not take into
account the overhead required to implement XOR or other
encodings that may be used. Thus, we present best case
scenarios, whereas true capacity challenges and limitations are
likely even more severe than described in this work.
Primer Design. Primers used in this work were designed to

achieve multiple goals. First, they must facilitate effective
PCRs. The primers were designed such that GC content is
between 40 and 60%, and their melting temperature is between
50 and 60 °C. We required that the last base is G, but the GC
content in the last 5 bases could not exceed 60%. Second,

primers were designed to reduce the likelihood of nonspecific
binding with other primer binding sites. We required a
Hamming distance of >10 between all primers to minimize the
likelihood of such binding. We also performed NUPACK
simulations of homodimer, hairpin, and heterodimer bind-
ings.21 We required a Gibbs free energy greater than −10 kcal/
mol at 50 °C on all likely complexes to select the primer. Note,
we compared each candidate primer to all other primers to
ensure no heterodimer bindings are likely, and we included the
Illumina NEXTERA primers in this process. Third, to reduce
the likelihood of nonspecific binding between a primer and the
data payload, we required that primers must contain a
repeating nt every 5 bases. This guaranteed that primers
would differ from all length 20 subsequences of the data
payload.
We used a computer program written in Python to automate

the generation of candidate primer sequences and screened
them against the requirements stated above. The python
program invoked the relevant analysis in NUPACK as needed.

Emulsion PCR. The emulsion PCR (ePCR) protocol from
Schutze et al.22 was modified slightly and used for all PCR
steps. Emulsions were created by mixing 150 μL of emulsion
oils (73% v/v Tegosoft DEC (Evonik, 99068594), 20% v/v
mineral oils (Sigma-Aldrich, 330779), and 7% ABIL WE
(Evonik, 99068358)) with 25 μL aqueous PCR samples.
Samples were then vortexed for 5 min until a persistent
emulsion was formed. Samples were aliquoted into four PCR
tubes, and a standard Q5 polymerase PCR protocol was used.
Twenty cycles were sufficient to reach the maximum yield of
DNA product. After amplification, aliquots were pooled in an
Eppendorf tube and emulsions were broken with the addition
of 1 mL of isobutanol followed by a 5 s vortex. Five volumes of
(125 μL for 25 μL PCR reaction volume) binding buffer
(Biobasic Canada Inc. BS664) was added to samples, gently
mixed, and centrifuged at 2400g for 30 s. The organic phase
was removed and discarded while the remaining aqueous phase
was purified using AMPure XP beads (Beckman Coulter,
A63881). DNA was eluted in 50 μL of water.

Biotin−Streptavidin File Extractions. File-specific sense
(“coding”) primers were ordered with a biotin modification on
the 5′ end. PCR amplified samples were purified (AMPure XP
beads) and added to prewashed streptavidin magnetic beads
(NEB #S1420S) (wash and bind buffer: 20 mM Tris-HCl pH
7.4, 2 M NaCl, 2 mM EDTA pH 8) and incubated at room
temperature on a rotisserie for 30 min. The database files were
retained by collecting the supernatant. The beads were then
washed once with 100 μL of the binding buffer and once with
100 μL of a low-salt wash buffer (20 mM Tris-HCl pH 7.4, 150
mM NaCl, 2 mM EDTA pH 8). Amplified DNA was
subsequently eluted (elution buffer: 95% formamide (Sigma,
F9037) in water). DNA sizes and concentrations of the
purified (AMPure XP beads) supernatants and elutions were
measured on a Fragment Analyzer (Advanced Analytical,
DNF-474) before the addition of Illumina sequencing
adapters. Representative DNA gel images of biotin separations
are shown in Supplementary Figure 2b.

Fluorescein and Digoxigenin File Extractions. File-
specific sense (“coding”) primers were ordered with either
fluorescein or digoxigenin on the 5′ end (Eurofins Genomics).
Antibodies (anti-fluorescein: Novus Biologicals, NB600-493,
Lot 19458; anti-Digoxigenin (21H8): Novus Biologicals,
NBP2-31191, 17E16) were bound to magnetic protein A or
G beads (BioRad Cat. # 161-4013 and 161-4023) through a 30
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min room temperature incubation (bind and wash buffer: 20
mM Tris-HCl pH 8, 300 mM NaCl, 2 mM EDTA). PCR
amplified samples were purified (AMPure XP beads) and
added to the antibody-linked beads and incubated at room
temperature on a rotisserie for 2 h. The database files were
retained by collecting the supernatant. The beads were washed
once with 100 μL of the binding buffer and once with 100 μL
of a low salt wash buffer (20 mM Tris-HCl pH 7.4, 150 mM
NaCl, 2 mM EDTA pH 8). DNA sizes and concentrations of
the purified (AMPure XP beads) supernatants and elutions
were measured on a Fragment Analyzer (Advanced Analytical,
DNF-474) before the addition of Illumina sequencing
adapters. Representative DNA gel images of a fluorescein
separation are shown in Supplementary Figure 2c.
Oligo-d(T) Magnetic Bead Separation. File-specific

sense (“coding”) primers were ordered with a poly(A)-25
tail on the 5′ end (Eurofins Genomics). Oligo-d(T)25 beads
(NEB #S1419S) were washed twice with 100 μL wash and
bind buffer (20 mM Tris-HCl pH 7.4, 2 M NaCl, 2 mM EDTA
pH 8). PCR amplified samples were purified (AMPure XP
beads) and added to the desired amount of bead based on the
amount of DNA present and theoretical binding capacity. The
mixture was heated in a thermal mixer at 90 °C and 500 rpm
for 2 min, allowed to cool to room temperature, and the
database files were retained by removing the supernatant. The
beads were washed twice with 100 μL of a low salt wash buffer
(20 mM Tris-HCl pH 7.4, 150 mM NaCl, 2 mM EDTA pH
8). Beads were then resuspended in 1× TE buffer and heated
in the thermal mixer at 50 °C and 500 rpm for 2 min. The
desired file was extracted while the mixture was still hot by
removing the eluted sample from the beads. DNA sizes and
concentrations of the purified (AMPure XP beads) super-
natants and elutions were measured on a Fragment Analyzer
(Advanced Analytical, DNF-474) before the addition of
Illumina sequencing adapters.
Calculation of Data Quantity from Total Number of

DNA Strands. In Figures 1, 2, and Supplementary Figures 1
and 2, we refer to file and database sizes (MB, GB, etc.). For
clarity and ease of comparison, all values were calculated based
on the total number of DNA strands. Each strand is comprised
of 200 nts, 20 of which are used for each primer sequence, 16
for the index, and 8 for the checksum. Eight nts comprise each
1-byte codeword. Thus, each strand addressed with a single
primer pair contains 17 bytes of data. Specifically, in Figure 2,
we assumed a 10-copy physical redundancy per unique strand
to provide a conservative estimate for a realistic system where
multiple copies of each strand would likely be needed to avoid
strand losses and inhomogeneous strand distributions. Thus, in
Figure 2 total file and database sizes are divided by 10.
Calculation of System Capacity. In Figure 1 and

Supplementary Figure 1, we calculate the system capacity by
following eq 1 and eq 2.

=B PUDsystem capacity( ) (1)

=
−

strand density(B/strand)
strand length strand overhead

encoding density (2)

Where P is the number of primers available to the system, U
is the number of unique strands that can be supported for each
file, and D is strand density in units B/strand. The density, D,
in B/strand can be calculated by dividing the number of bases

available for data encoding by the encoding density in units of
B/base. For Figure 1 and Supplementary Figure 1, we start
with a strand length of 200 and subtract off the overhead
associated with both flanking primers, which will be a total of
40 bases in the case of a single primer system and 60 bases in
the case of a hierarchical primer system. The leftover bases can
then be either allocated to the index region of the strand or to
the payload region. With the number of bases selected for the
index region, the number of unique strands supported for each
file, U, can then be determined by applying the encoding
method utilized by the system for the index. In our examples,
we conservatively choose a base-3 encoding; thus, U will be
equal to 3N, where N is the number of bases allocated to the
index region. With the remaining bases, strand density can be
calculated by dividing the number of remaining bases by the
encoding density in units of B/base, where in our examples, we
conservatively choose an encoding density of 0.125 B/base (8
bases for each byte).

Error Prone PCR. Template DNA was amplified using 0.5
μL of Taq DNA polymerase (5 units/μL, Invitrogen,
100021276) in a 50 μL reaction containing 1× Taq
polymerase Rxn Buffer (Invitrogen, Y02028), 2 mM MgCl2
(Invitrogen, Y02016), the sense and antisense primers at 1E13
strands each, and dATP (NEB, N0440S), dCTP (NEB,
N0441S), dGTP (NEB, N0442S), dTTP (NEB, N0443S),
dPTP (TriLink, N-2037), and 8-oxo-dGT (TriLink, N-2034),
each at 400 mM. PCR conditions were 95 °C for 30 s, 50 °C
for 30 s, and 72 °C for 30 s for 35 cycles with a final 72 °C
extension step for 30 s.

qPCR. qPCR was performed using SsoAdvanced Universal
SYBR Green Supermix (BioRad). qPCRs were performed in 5
μL format using SYBR Green (95 °C for 2 min and then 50
cycles of: 95 °C for 10 s, 50 °C for 20 s, and 60 °C for 20 s).
qPCR results were compared to next generation sequencing
results for samples that were analyzed using both methods. File
compositions measured using both methods showed strong
agreement (Supplementary Table 1).

Illumina Library Preparation. Illumina TruSeq Nano
DNA Library Preps (Illumina, 20015965) were performed
according to manufacturer instructions beginning from the
“Repair Ends and Select Library Size” step, as DNA
fragmentation was unnecessary. The quality and band sizes
of libraries were assessed using the High Sensitivity NGS
Fragment Analysis Kit (Advanced Analytical, DNF-474) on
the 12 capillary Fragment Analyzer (Advanced Analytical) at
multiple steps during each protocol, typically after size
selection and PCR amplification. Unless otherwise stated,
libraries were normalized to balance estimated sequencing
depth across similar samples (e.g., all elutions had estimated
sequencing depth of ∼100 reads) using the molar concen-
trations measured on the Fragment Analyzer. The pooled
sample had a concentration of 8 nM and was sequenced using
the MiSeq v2 chemistry 150 PE kit that was operated as a 300
SR run. PhiX DNA was added at 20% of total DNA to increase
sequence diversity.

Error Analysis. Before proceeding with an error analysis of
sequenced strands, the error-free reference strand for each
sequenced strand needed to be determined. To find the error-
free reference strands, a mapping operation was performed to
match each sequenced strand with its original database strand.
Due to the large number of sequenced strands in samples (up
to 571k reads), the mapping operation was carried out in two
steps: the first step partitioned the large read space using the
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primer sequences of the different files, and the second step
further analyzed each partition to match each strand in a
partition with its corresponding database strand.
The first step of mapping divided the initial sequencing read

space into partitions, one for each file in the database, with the
exception of Files 4 and 5 (hierarchical encodings) where each
of these files had two partitions. These two partitions were
used to separate nested address strands that were truncated
from the first PCR step and reads where the nested address
strands were not truncated. Other partitions were also created
for special strands like the background strands used to simulate
high-capacity data storage and for unknown strands that could
not be categorized into a file’s partition. A strand from
sequencing was placed into a partition by looking for a
subsequence that matched a file’s sense primer or the reverse
complement of the antisense primer. The reverse complement
of the antisense primer was used because all NGS sequencing
reads are in the 5′ to 3′ direction. A subsequence was deemed
acceptable if it matched a sense primer or antisense primer’s
reverse complement within a Levenshtein distance of 4. A
Levenshtein distance of 4 was chosen as the cutoff point to
ensure that the matched subsequence was not data within a
DNA strand, but one of the primers of interest. When a primer
of interest is found in a sequenced strand, the sequenced
strand is placed in the primer’s respective partition.
After categorizing each strand in a sample’s sequence pool,

each partition was analyzed further to determine the original
database strand for each sequenced strand in the partition. To
find out the correct original strand, each original strand from a
file was compared to each sequenced strand placed in the file’s
partition by calculating the Levenshtein distance between the
sequenced strand and the original strand. If the distance was
less than or equal to 12, the original strand was considered as a
candidate for a match. Because some of the original strands in
the database have small edit distances between them, file
strands that are close to the candidate were also checked
against the sequenced strand to make sure the correct original
strand was chosen. Once a candidate was concluded to
correspond to a specific original strand, the location of the
matching strand in the file along with the sequenced strand’s
location in the read space was recorded. A distance of 12 was
chosen as the threshold to reduce the amount of checking that
was required once a candidate was found, while ensuring that
error rates would not be artificially low due to choosing
candidates that were within a small number of edit operations.
With a completed mapping of sequenced strands to their

corresponding database strands, analyses such as error rates per
base, strand error rates, and read distributions were performed.
To calculate the error rate for a nt position, eq 3 was used,
where L is the number of unique edit operations considered
(insertions, deletions, substitutions), M is the number of
unique strands in the database, sj is the jth strand in the
database, Nj is the number of sequenced strands that map to
strand sj, sk is the kth strand that maps to database strand sj, T
is the total number of strands from the sample that has been
mapped to some database strand, and EOl(sj, sk)i is the number
of edit operations of type l at the ith nt position to transform sj
to sk. This equation calculates the total error rate for base
position i by summing all of the edit operations of each type at
the ith position needed to transform each original database
strand to the sequenced strands that map to it and then
dividing by the total number of mapped strands in the sample.

=
∑ ∑ ∑= = = s s

T
total error rate

EO ( , )
i

l
L

j
M

k
N

l j k i1 1 1
j

(3)

Similarly, the error rate for each strand in the original
database was calculated using eq 4, where L is the number of
unique edit operations, sj is a strand from the original database,
Nj is the number of sequenced strands that map to strand sj, sk
is the kth strand that maps to sj, Tsj is the total number of
mappings in the sample for sj, and EOl(sj, sk) is the number of
edit operations of type l to transform sj to sk.

=
∑ ∑= = s s

T
total error rate
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