
1

Scaling-up Distributed Processing of Data

Streams for Machine Learning
Matthew Nokleby, Haroon Raja, and Waheed U. Bajwa, Senior Member, IEEE

Abstract

Emerging applications of machine learning in numerous areas—including online social networks, remote sensing,

internet-of-things systems, smart grids, and more—involve continuous gathering of and learning from streams of

data samples. Real-time incorporation of streaming data into the learned machine learning models is essential for

improved inference in these applications. Further, these applications often involve data that are either inherently

gathered at geographically distributed entities due to physical reasons—e.g., internet-of-things systems and smart

grids—or that are intentionally distributed across multiple computing machines for memory, storage, computational,

and/or privacy reasons. Training of machine learning models in this distributed, streaming setting requires solving

stochastic optimization problems in a collaborative manner over communication links between the physical entities.

When the streaming data rate is high compared to the processing capabilities of individual computing entities and/or

the rate of the communications links, this poses a challenging question: how can one best leverage the incoming data

for distributed training of machine learning models under constraints on computing capabilities and/or communications

rate? A large body of research in distributed online optimization has emerged in recent decades to tackle this and

related problems. This paper reviews recently developed methods that focus on large-scale distributed stochastic

optimization in the compute- and bandwidth-limited regime, with an emphasis on convergence analysis that explicitly

accounts for the mismatch between computation, communication and streaming rates, and that provides sufficient

conditions for order-optimum convergence. In particular, it focuses on methods that solve: (i) distributed stochastic

convex problems, and (ii) distributed principal component analysis, which is a nonconvex problem with geometric

structure that permits global convergence. For such methods, the paper discusses recent advances in terms of distributed

algorithmic designs when faced with high-rate streaming data. Further, it reviews theoretical guarantees underlying

these methods, which show there exist regimes in which systems can learn from distributed processing of streaming

data at order-optimal rates—nearly as fast as if all the data were processed at a single super-powerful machine.

Index Terms

Convex optimization, distributed training, empirical risk minimization, federated learning, machine learning, mini-

batching, principal component analysis, stochastic gradient descent, stochastic optimization, streaming data

M. Nokleby (matthew.nokleby@target.com) is with the Target Corporation, Minneapolis, MN. H. Raja (hraja@umich.edu)

is with the Department of Electrical Engineering and Computer Science at the University of Michigan, Ann Arbor, MI. W.U. Bajwa

(waheed.bajwa@rutgers.edu) is with the Department of Electrical and Computer Engineering and Department of Statistics at Rutgers

University–New Brunswick, NJ.

The work of WUB has been supported in part by the National Science Foundation under awards CCF-1453073, CCF-1907658, and OAC-

1940074, by the Army Research Office under award W911NF-17-1-0546, and by the DARPA Lagrange Program under ONR/NIWC contract

N660011824020. The work of HR has been supported in part by the National Science Foundation under awards CCF-1845076 and IIS-1838179,

and by the Army Research Office under award W911NF-19-1-0027.

ar
X

iv
:2

00
5.

08
85

4v
2

 [c
s.L

G
]

31
 A

ug
 2

02
0

2

I. INTRODUCTION

A. Motivation and Background

Over the past decade—and especially the past few years—there has been a rapid increase in research and

development of artificial intelligence (AI) systems across the public and private sectors. A significant fraction of

this increase is attributable to remarkable recent advances in a subfield of AI that is termed machine learning.

Briefly, a machine learning system uses a number of data samples—referred to as training data—in order to learn

a mathematical model of some aspect of the physical world that can then be used for automated decision making;

see Fig. 1(a) for an example of this in the context of automated tagging of images of cats and dogs. Training a

machine learning model involves mathematical optimization of a data-driven function with respect to the model

variable. The decision making capabilities of a machine learning system, in particular, tend to be directly tied to

one’s ability to solve the resulting optimization problem up to a prescribed level of accuracy.

While solution accuracy remains one of the defining aspects of machine learning, the advent of big data—in terms

of data dimensionality and/or number of training samples—and the adoption of large-scale models with millions of

parameters in machine learning methods such as deep learning [1] has catapulted the computing time for training

(i.e., the training time) to another one of the defining parameters of modern systems. It is against this backdrop

that stochastic optimization methods such as stochastic gradient descent (SGD) and its variants [2]–[5], in which

training data are processed one sample or a small batch of samples—referred to as a mini batch—per iteration, as

opposed to deterministic optimization methods such as gradient descent [6], in which the entire batch of training

data is used in each iteration, have become the de facto standard for faster training of models.

Another major shift in machine learning practice concerns the use of distributed and decentralized computing

platforms, as opposed to a single computing unit, for training of models. There are myriad reasons for this paradigm

shift, which range from the focus on further decreasing the training times and preserving privacy of data to

adoption of machine learning for decision making in inherently decentralized systems. In particular, distributed and

decentralized training of machine learning models can be epitomized by the following three prototypical frameworks.

• Distributed computing framework: A distributed computing framework, also referred to as a compute cluster,

brings together a set of computing units such as CPUs and GPUs to accelerate training of large-scale machine

learning models from big data in a more cost-effective manner than a single computer with comparable storage

capacity, memory, and computing power. Computing units/machines in a compute cluster typically communicate

among themselves using either Ethernet or InfiniBand interconnects, with the intra-cluster communication

infrastructure often abstracted in the form of a graph in which vertices/nodes correspond to computing units.

A typical graph structure that is commonly utilized for distributed training within compute clusters is star

graph, which corresponds to the so-called master–worker architecture; see, e.g., Fig. 1(b). Training data within

this setup is split among the worker nodes, which perform bulk of the computations, while the master node

coordinates the distributed training of machine learning model among the worker nodes.

• Federated learning framework: The term “federated learning,” coined in [7], refers to any machine learning

setup in which a collection of autonomous entities (e.g., smartphones and hospitals), each maintaining its own

3

AI Systems

Machine Learning Systems

Training Data

Data‐driven
Optimization

Learned
Model

Untagged
Image

Predicted “Label”
for untagged Image

(a)

…

(b)Master–Worker Architecture
for Distributed Learning

(c)

…

Federated Learning
Framework

(d)Edge Computing Framework

Fig. 1. A schematic quad chart illustrating four different concepts in machine learning. (a) A simplified representation of a machine learning

system within the context of an image tagging application. (b) Master–worker architecture that can be used for distributed training of a machine

learning model within a compute cluster. (c) A federated machine learning system representing the federation of a group of autonomous hospitals.

(d) A representative edge computing framework that can be used for decentralized training of a machine learning model.

private training data, collaborate under the coordination of a central server to learn a “global” machine learning

model that best describes the collective non-collocated/distributed training data. A typical federated learning

system, in which entities collaborate only through communication with the central server and are prohibited

from sharing raw training samples with the server, can also be abstracted as a star graph; see, e.g., Fig. 1(c).

However, unlike a master–worker distributed machine learning system—in which the primary objective is

reduction of the wall-clock time for training of machine learning models, the first and foremost objective of

a federated learning system is to preserve privacy of the data of collaborating entities.

• Edge computing framework: The term “edge computing” refers to any decentralized computing system compris-

ing geographically distributed and compact computing devices that collaboratively complete a computational

task through local computations and device-to-device communications. Some of the defining characteristics of

an edge computing system, which set it apart from a compute cluster, include lack of a coordinating central

server, (relatively) slower-speed device-to-device communications (e.g., wireless communications and power-

line communications), and abstraction of inter-device communication infrastructure in terms of arbitrary graph

topologies (as opposed to star topology). Many emerging edge computing systems, such as the internet-of-things

(IoT) systems and smart grids, have each computing device connected to a number of data-gathering sensors

that generate large volumes of data. Since exchange of these large-scale “local” data among the computing

4

devices becomes prohibitive due to communication constraints, machine learning in such systems necessitates

decentralized collaborative training that involves each device learning (approximately) the same “local” model

through inter-device communications that best fits the collective system data; see, e.g., Fig. 1(d).

The purpose of this paper is to provide an overview of some important aspects of distributed/decentralized machine

learning that have implications for all three of the aforementioned frameworks. We slightly abuse terminology in

the following for ease of exposition and refer to training of machine learning models under any one of these

frameworks as distributed machine learning. When one considers distributed training of (large-scale) models from

(big) distributed datasets, it raises a number of important questions; these include: (i) What are the fundamental

limits on solution accuracy of distributed machine learning? (ii) What kind of optimization frameworks and

communication strategies (which exclude exchange of raw data among subcomponents of the system) result in

near-optimal distributed learning? (iii) How do the topology of the graph underlying the distributed computing

setup and the speed of communication links in the setup impact the learning performance of any optimization

framework? A vast body of literature in the last decade has addressed these (and related) questions for distributed

machine learning by expanding on foundational works in distributed consensus [8], [9], distributed diffusion [10],

distributed optimization [11], [12], and distributed computing [13]. Several of the key findings of such works have

also been elucidated through excellent survey articles and overview papers in recent years [14]–[23]. Nonetheless,

there remains a need to better understand the interplay between solution accuracy, communication capabilities, and

computational resources in distributed systems that carry out training using “streaming” data. Indeed, distributed

training using streaming data necessitates utilization of single-pass stochastic optimization within the distributed

framework, which gives rise to several important operational changes that are not widely known. It is in this

regard that this overview paper summarizes some of the key research findings, and their implications, in relation

to distributed machine learning from streaming data.

B. Streaming Data and Distributed Machine Learning

Continuous gathering of data is a hallmark of the digital revolution; in countless applications, this translates into

streams of data entering into the respective machine learning systems. Within the context of distributed machine

learning, the continuous data gathering has the effect of training data associated with each “node” in the distributed

system being given in the form of a data stream (cf. Fig. 3 in Section II). Since “(full) batch processing” is

practically infeasible in the face of continuous data arrival, distributed training of models from streaming data

requires (single-pass) stochastic optimization methods. Accordingly, we provide in this paper an overview of some

of the state-of-the-art concerning stochastic optimization-based distributed training from streaming data.

Unlike much of the literature on centralized machine learning from streaming data, (relative) streaming rate

of data—defined as the (average) number of new data samples arriving per second—fundamentally shapes the

discussion of streaming-based distributed machine learning. In this regard, our objective is to elucidate the perfor-

mance challenges and fundamental limits when the streaming rate of data is fast compared to the processing speed

of computing units and/or the communications speed of inter-node links in the system. In particular, this involves

addressing of the following question: what happens to the solution accuracy of distributed machine learning when it

5

is impossible to have high-performance computing machines for computing nodes and/or (multi-)gigabit connections

for inter-node communication links? Note that this question cannot be addressed by simply “slowing down” the data

stream(s) through regular discarding of incoming samples. Within a distributed computing framework, for instance,

letting some of the incoming samples pass without updating the model would be antithetical to its overarching

objective of accelerated training. Similarly, downsampling of time-series data streams in an edge computing system

would cause the system to lose out on critical high-frequency modes of data. In short, processing all data samples

arriving into the distributed system and incorporating them into the learned model is both paramount and non-trivial.

There are many ways to frame and analyze the problem of distributed machine learning from fast streaming

data, leading to far more relevant works than we can discuss in this overview paper. Instead, we provide a

very brief discussion of the different framings, and motivate our prioritization of the following system choices

under the general umbrella of distributed machine learning: decentralized-parameter systems, synchronous-

communications distributed computing, and statistical risk minimization for training of machine learning models.

We dive into the relevant distinctions for these system choices in the following.

C. General Framing of the Overview

The area of distributed machine learning is far too rich and broad to be covered in a paper. Instead, we cover only

some aspects of the area that are the most relevant to the topic of distributed machine learning from streaming data.

To put the rest of our discussion in context, we give a very coarse description of these aspects in the following,

drawing out some of the crucial distinctions and pointing out which aspects remain uncovered in the paper.

System models for distributed learning. We abstract away the dependence on any particular computing

architecture by modeling the architecture as an interconnected network of (computing) nodes having a certain

topology (e.g., star topology for the master–worker architecture). Accordingly, our discussion is applicable to any

of the computing frameworks discussed in Section I-A that adhere to the data and system assumptions described

later in Section II. In the interest of generality, we also move away from the so-called parameter-server system

model that is used in some distributed environments [24], [25]. In the simplest version of this model, a single

node—termed parameter server—maintains and updates parameters of the machine learning model, whereas the

remaining nodes in the network compute gradients of their local data that are then transmitted to the parameter

server and used to make updates to the shared set of parameters. We instead center our discussion around the

decentralized-parameter system model, where each node maintains and updates its own copy of the parameters.

This system model is more general, since any result that holds for a decentralized-parameter network also holds for

a parameter-server network, it prevents a single point of failure in the system, and it allows us to present a unified

discussion that transcends multiple system models.

Models for message passing and communications. Algorithmic-level synchronization (or lack thereof) among

different computing nodes is one of the most important design choices in distributed implementations. On one

hand, synchronous implementations (which often make use of “blocking” message passing protocols for synchro-

nization [26], [27]) can slow down training times due to either message passing (i.e., communications) delays

or “straggler” nodes taking longer than the rest of the network to complete their subtasks. On the other hand,

6

asynchronous implementations have the potential to drastically impact the solution accuracy. Such tradeoffs between

synchronous and asynchronous implementations, as well as approaches that hybridize the two, have been investigated

in recent years [28]–[33]. In this paper, we focus exclusively on synchronous implementations for the sake of

concreteness. In addition, we abstract lower-level communications within the synchronous system as happening in

discrete, pre-defined epochs (time intervals, slots, etc.). While such an abstraction models only a restrictive set of

communications protocols, it greatly simplifies the exposition without sacrificing too much of the generality.

Optimization framework for distributed machine learning. Machine learning problems involve the optimiza-

tion of a “loss” function with respect to the machine learning model. And this optimization side of machine learning

can be framed in two major interrelated ways. The first (and perhaps most well-known) framing is referred to as

empirical risk minimization (ERM). The objective in this case is to minimize the empirical risk f̂(w), defined as

the empirical average of the so-called (regularized) loss function `(w, ·) evaluated on the training samples, with

respect to the model variable w. Under mild assumptions on the loss function, data distribution, and training data,

the ERM solution w∗ERM ∈ arg minw f̂(w) is known to converge (with high probability) to the minimizer w∗ of the

“true” risk f(w), i.e., the expected loss f(w) := E[`(w, ·)] [34], with study of the rates of this convergence being

a long-standing and active research area [35]. Distributed learning literature within the ERM framework typically

supposes a fixed and finite number T of training samples distributed across computing nodes, and primarily focuses

on understanding convergence of the output ŵ∗ERM of different distributed optimization schemes to the ERM solution

w∗ERM [19]. The accuracy of the final solution, termed excess risk and defined as f(ŵ∗ERM)−f(w∗), is then provided

either implicitly or explicitly in the works as the sum of two gaps: (i) gap between the risk of the distributed

optimization solution and that of the ERM solution, i.e., f(ŵ∗ERM) − f(w∗ERM), and (ii) gap between the risk of

the ERM solution and that of the optimal solution, termed Bayes’ risk, i.e., f(w∗ERM) − f(w∗). In contrast to the

ERM framework, the second optimization-based framing of machine learning—termed statistical risk minimization

(SRM)—facilitates a direct bound on the excess risk; see, e.g., Fig. 2. This is because the objective in SRM

framework is to minimize expected loss (risk) over the true data distribution, as opposed to empirical loss over the

training data in ERM framework. The SRM framework falls squarely within the confines of stochastic optimization,

with a large body of existing work—covering both centralized and distributed machine learning—that characterizes

the excess risk of the resulting solution wSRM,T under the assumption that either the number of training samples T

is sufficiently large or it grows asymptotically. Since we are concerned with streaming data, in which a virtually

unbounded number of samples may arrive at the system, we focus on the SRM-based framework and single-pass

stochastic optimization for distributed machine learning. We discuss further the distinction between the convergence

results derived under the frameworks of ERM and SRM in the sequel.

Structure of the optimization objective function. The vast majority of works at the intersection of (stochastic)

optimization and (distributed) learning suppose that the loss function is convex with respect to the model parameters.

But some of the most exciting recent results in machine learning have come about in the context of deep learning,

where the objective function tends to be highly nonconvex and most practical methods do not even concern

themselves with global optimality of the solution [36], [37]. Nevertheless, for the purpose of being able to carry out

analysis, we focus in this overview on either convex problems or structured nonconvex problems, such as principal

7

Bayes’ RiskIdeal ERM SolutionNumerical ERM Solution

ERM Excess Risk:

Numerical SRM Solution

Fig. 2. A geometrical view of “excess risk,” defined as the gap between the expected loss f(w) (i.e., risk) of the solution w of a practical

machine learning algorithm and that of an ideal solution w∗ (i.e., Bayes’ risk f∗ := f(w∗)), under the ERM and SRM optimization frameworks

after receiving a total of T training data samples. Under the ERM framework, the excess risk of the solution is bounded as the sum of bounds

on two terms, namely, the gap between the risk of an ideal ERM solution and Bayes’ risk, (f∗T − f
∗), and the gap in risk due to the error

associated with numerical optimization, (f̃∗T − f
∗
T). In contrast, excess risk under the SRM framework is directly captured in terms of the gap

between the risk of the numerical SRM solution wSRM,T and Bayes’ risk, i.e., (fT − f∗).

component analysis (PCA), where the structure can be exploited by local search methods to find a global solution.

D. An Outline of the Overview Paper

We now provide an outline of the remainder of this paper. Section II gives a formal description of the learning and

system models considered in this paper, including the loss function, the streaming data model, the communications

model, and the way compute nodes exchange messages with each other during distributed learning. In Section III,

we discuss relevant results in (distributed) machine learning that prefigure the state-of-the-art being reviewed in the

paper. Section IV and Section V of the paper are devoted to coverage of the state-of-the-art in terms of distributed

machine learning from fast streaming data. The main distinction between the two sections is the nature of the

communications infrastructure underlying the distributed computing framework. Section IV focuses on the case of

(relatively) high-speed communications infrastructure that enables completion of message-passing primitives such as

AllReduce [27] in a “reasonable” amount of time, whereas Section V discusses distributed machine learning from

streaming data in systems with (relatively) lower-speed communications infrastructure. In both cases, we discuss

scenarios and distributed algorithms that can lead to near-optimal excess risk for the final solution as a function

of the number of data samples arriving at the system; in addition, we present results of numerical experiments to

corroborate some of the stated results. One of the key insights delivered by these two sections is that a judicious

use of (implicit or explicit) mini-batching of data samples in distributed systems is fundamental in dealing with fast

streaming data in compute- and/or communications-limited scenarios. To this end, we provide theoretical results

for the optimum choice of the size of (network-wide and local) mini-batches as well as conditions on when mini-

batching is sufficient to achieve near-optimal convergence. We conclude the paper in Section VI with a brief recap

8

of the implications of presented results for the practitioners as well as a discussion of possible next steps for

researchers working on distributed machine learning.

E. Notational Convention

We use regular-faced (e.g., a and B), bold-faced lower-case (e.g., a), and bold-faced upper-case (e.g., A) letters

for scalars, vectors, and matrices, respectively. We use calligraphic letters (e.g., A) to represent sets, while [[N]] :=

{1, . . . , N} denotes the set of first N natural numbers, and R≥0 and Z+ denote the sets of non-negative real

numbers and positive integers, respectively. Given a vector a and a matrix A, ‖a‖2 :=
√∑

i |ai|2, ‖A‖2 :=

arg maxv:v 6=0
‖Av‖2
‖v‖2 , and ‖A‖F :=

√∑
i,j |aij |2 denote the `2-norm of a, the spectral norm of A, and the

Frobenius norm of A, respectively. Given a symmetric matrix A ∈ Rd×d, λi(A) denotes its i-th largest-by-

magnitude eigenvalue, i.e., |λ1(A)| ≥ · · · ≥ |λd(A)| ≥ 0. Given a function f : Rd × Z → R that is partially

differentiable in the first argument, ∇f denotes the gradient of f(·, ·) with respect to its first argument. Given

functions f(x) and g(x), we use Landau’s Big-O notation (e.g., f(x) = O(g(x)) or f(x) = o(g(x))) to describe the

scaling relationship between them. Finally, E{·} denotes the expectation operator, where the underlying probability

space (Ω,F ,P) is either implicit from the context or is explicitly noted.

II. PROBLEM FORMULATION

In this section, we discuss the problem of distributed processing of fast streaming data for machine learning in

three parts. First, we describe the general statistical optimization problem underlying machine learning. Second, we

describe the system model that formalizes distributed processing of streaming data . Finally, we formalize the notion

of fast streaming data in terms of, among other things, data streaming rate, processing rate of compute nodes, and

communications rate of inter-node links within the distributed environment.

A. Statistical Optimization for Machine Learning

Most machine learning problems can be posed as data-driven optimization problems, with the objective termed

a loss function that quantifies the error (classification, regression or clustering error, mismatch between the learned

and true data distributions, etc.) in a candidate solution. We denote this loss function by ` :W×Z → R≥0, where

W denotes the space of candidate machine learning models and Z denotes the space of data samples. Given a

model w ∈ W , `(w, z) measures the modeling loss associated with w in relation to the data sample z ∈ Z .1

Several examples of loss functions and their respective model space(s) for supervised learning (e.g., regression

and classification) and unsupervised learning (e.g., feature learning and clustering) problems are listed below.

Loss functions and models for supervised machine learning. Data samples in supervised learning can be ex-

pressed as tuples z := (x, y) ∈ Rd×R =: Z , with x referred to as data and y referred to as its label. In particular, fo-

cusing on the linear classification problem with label y ∈ {−1, 1}, augmented data x̃ := [xT 1]T ∈ Rd+1, and model

1The model spaceW in most formulations is taken to be one that is completely described by a set of parameters. For example, ifW denotes

the space of all polynomials of degree (d− 1), a model w ∈ W is uniquely characterized by the d coefficients of the respective polynomial. In

this paper, we slightly abuse the notation and use w to denote both the model and, when the model is parameterizable, its respective parameters.

9

space W := Rd+1, the model w describes an affine hyperplane in Rd and two common choices of loss functions

are: (i) Hinge loss: `(w, z) := max
(
0, 1− y ·wTx̃

)
, and (ii) Logistic loss: `(w, z) := ln

(
1 + exp (−y ·wTx̃)

)
.

Loss functions and models for unsupervised machine learning. Data samples in unsupervised machine learning

do not have labels, with the unlabeled data sample z ∈ Rd =: Z in this case. We now describe the loss functions

and models/model parameters associated with two popular unsupervised machine learning problems.

• Principal component analysis (PCA): The k-PCA problem is a feature learning problem in which the model

space isW :=
{
A ∈ Rd×k : ATA = I

}
, the matrix-valued model W ∈ W describes a k-dimensional subspace

of Rd, and the loss function is `(W, z) := ‖z−WWTz‖22.

• Center-based clustering: The k-means clustering problem has the model spaceW := Rd × · · · × Rd︸ ︷︷ ︸
k times

, the model

(w1, . . . ,wk) ∈ W is a k-tuple of d-dimensional cluster centroids, and a common choice of the loss function

is ` ((w1, . . . ,wk), z) := min1≤i≤k ‖z−wi‖22.

In this paper, our discussion of machine learning revolves around the statistical learning viewpoint [34]. To this

end, we suppose each data sample z is drawn from some unknown probability distribution D that is supported on

Z . The overarching goal in (statistical) machine learning then is to obtain a model w ∈ W that has the smallest

loss averaged over all z ∈ Z . Specifically, let

f(w) := Ez∼D
{
`(w, z)

}
(1)

denote the expected loss, also referred to as (statistical) risk, associated with model w for the entire data space Z .

Then, the objective of machine learning from the statistical learning perspective is to approach the Bayes optimal

solution w∗ that minimizes the statistical risk, i.e.,

w∗ ∈ arg min
w∈W

f(w). (2)

The risk incurred by w∗ (i.e., f(w∗)) is termed Bayes’ risk. The main challenge in machine learning is that the

distribution D is unknown and therefore (2) cannot be directly solved. Instead, one uses training data samples

{zt′}t′∈Z+ that are independently drawn from D to obtain a model ŵ whose risk comes close to Bayes’ risk as

a function of the number of training samples. In particular, the performance of a machine learning algorithm is

measured in terms of either the excess risk of its solution, defined as f(ŵ)− f(w∗), or the parameter estimation

error calculated in terms of some distance between the solution ŵ and the set of minimizers arg minw∈W f(w).

Since optimization is central to machine learning, the geometrical structure and properties of the loss function

determine whether and how easily a method finds a solution ŵ that has (nearly) minimal excess risk / estimation

error. We describe this structure and properties of `(w, z) in terms of its gradients, convexity, and smoothness.

Definition 1 (Existence of Gradients). A loss function `(w, z) is said to have its gradients exist everywhere if

∇w`(w, z) exists for all (w, z) ∈ W ×Z .

Definition 2 (Convexity and Strong Convexity). A loss function `(w, z) is convex in w if for all w1,w2 ∈ W , all

z ∈ Z , and all α ∈ [0, 1], we have

`(αw1 + (1− α)w2, z) ≤ α`(w1, z) + (1− α)`(w2, z).

10

In words, the function `(·, z) for all z ∈ Z must lie below any chord for the loss function to be convex in w.

Further, a loss function whose gradients exist everywhere is said to be strongly convex with modulus m > 0 if for

all w1,w2 ∈ W and all z ∈ Z , we have

(∇w`(w1, z)−∇w`(w2, z))T(w1 −w2) ≥ m‖w1 −w2‖22.

Definition 3 (Smoothness). We say that a loss function whose gradients exist everywhere is smooth if its gradients

are Lipschitz continuous with some constant L > 0, i.e., for all w1,w2 ∈ W and all z ∈ Z , we have

‖∇w`(w1, z)−∇w`(w2, z)‖2 ≤ L‖w1 −w2‖2.

Going forward, we drop the subscript w in ∇w`(w, z) for notational compactness. Note that in the case of

a smooth, convex (loss) function, gradient-based local search methods are guaranteed to converge to a global

minimizer of the function. In addition, the global minimizer is unique for strongly convex functions and convergence

of gradient-based methods to the minimizer of these functions is provably fast.

Our discussion revolves around both convex and (certain structured) nonconvex loss functions. Some of it in

relation to convex losses requires an assumption on the variance of the gradients with respect to the data distribution.

Definition 4 (Gradient Noise). We say the gradients of `(·, z) have bounded variance if for every w ∈ W , we have

Ez∼D
{
‖∇`(w, z)−∇f(w)‖22

}
≤ σ2.

In the following, we term σ2 as the gradient noise variance. In addition, we use the notion of single-sample

covariance noise variance in lieu of gradient noise variance in relation to our discussion of the nonconvex loss

function associated with the 1-PCA problem.

Definition 5 (Sample-covariance Noise). We say the single-sample covariance matrix zzT associated with data

sample z drawn from distribution D has bounded variance if we have

Ez∼D

{∥∥zzT − Ez∼D
{
zzT

}∥∥2
F

}
≤ σ2.

The gradient (resp., sample covariance) noise variance controls the error associated with evaluating the gradient

(resp., sample covariance) at individual sample points z instead of evaluating it at the statistical mean of the unknown

distribution D. Smaller gradient (resp., sample covariance) noise variance results in faster convergence, and the main

message of this paper is that leveraging distributed streams to average out gradient (resp., sample covariance) noise

is often an optimum way to speed up convergence in compute- and/or communications-limited regimes.

The last definition we need is that of a bounded model space, which plays a role in the analysis of optimization

methods for convex loss functions.

Definition 6 (Bounded model space). Let DW :=
√

maxu,v∈W ‖u− v‖22/2 denote the expanse of the model

space W . We say that an optimization problem has bounded model space if DW <∞.

Since our focus is training from fast streaming data that necessitates distributed processing, we next formalize

the distributed processing / communications framework underlying the algorithms being discussed in the paper.

11

…

Data
Splitter

(b)

(a) (c)

Fig. 3. Distributed training of machine learning models from streaming data can arise in several contexts, including (a) the master–worker

computing framework and (b) the edge computing and federated learning frameworks. In this paper, we study a unified abstraction (c) of such

frameworks, in which a data stream is split into N parallel streams, one for each compute node in a network G = (V, E) of N nodes.

B. Distributed Training of Machine Learning Models from Streaming Data

In addition to optimality, in the face of large volumes and high dimensionality of data in modern applications, the

solution needs to be efficient in terms of resource utilization as well (e.g., computational, communication, storage,

energy, etc.). In Section I, we discussed three mainstream distributed frameworks for resource-efficient machine

learning, where each of the frameworks is primarily designed to adhere to specific practical constraints posed due

to characteristics of the training data. One such characteristic is the physical locality of data, which results in

following two common scenarios involving streaming data: (i) for the master–worker learning framework, the data

stream arrives at a single master node and, in order to ease the computational load and accelerate training time,

the data stream is then divided among a total of N worker nodes (Fig. 1(b) and Fig. 3(a)), or (ii) for the federated

learning and edge computing frameworks, there is a collection of N geographically distributed nodes—each of

which receives its own independent stream of data—and the goal is to learn a machine learning model using

information from all these nodes (Fig. 1(c), Fig. 1(d), and Fig. 3(b)). Despite the apparent physical differences

between these two scenarios, we can study them under a unified abstraction that assumes the data are arriving at a

hypothetical “data splitter” that then evenly distributes the data across an interconnected network of N nodes for

distributed processing (Fig. 3(c)).

Mathematically, let us discretize the data arrival time as t′ = 1, 2, . . . , and let zt′ be a stream of independent

and identically distributed (i.i.d.) data samples arriving at the splitter at a fixed rate of Rs samples per second. The

splitter then evenly distributes the data stream across a network of N nodes, which we represent by an undirected

connected graph G := (V, E); here, V := [[N]] denotes the set of all nodes in the network and E ⊆ V × V denotes

the set of edges corresponding to the communication links between these nodes, i.e., (n, k) ∈ E means there is a

12

Data stream (𝒛௧ᇲ)

Algorithm output (𝒘௧)

. . .

Computation
phase

Splitter

Communication rounds:

ଵ ஻

...

ଶ஻ ଷ஻

Communications
phase

𝑁 parallel data
streams ()

[ಳ
ಿ samples per 𝑡]

ᇱ

ସ஻.

SplitterSplitterSplitter

. . .

. . .

𝒘ଵ

𝒘ଵ 𝒘ଶ 𝒘ଷ

Fig. 4. Data arrival, splitting, processing, and communications timelines within the distributed mini-batch framework of the paper. A stream of

data, zt′ , arriving at a splitter at the rate of Rs samples per second, is evenly split every B samples across N nodes in the network. This results

in mini-batched data streams Zn,t :=
{
zn,b,t

}B/N

b=1,t∈Z+
within the network, with Zn,t denoting the t-th mini-batch of B/N samples at node

n. The system processes these distributed mini-batches by engaging in local computations followed by R rounds of inter-node communications

and produces an output wt before the arrival of the next set of mini-batches.

communication link between nodes n and k. We also define t ∈ Z+ to be the index that denotes the total number

of data-splitting operations that have been performed within the system. Without loss of generality, we take each

data-splitting round to be the time in which nodes carry out a single iteration of a distributed algorithm; i.e., after

t data-splitting rounds, the nodes have carried out t iterations of the distributed algorithm under study.

We next set the notation for the distributed data streams within our data-splitting abstraction to facilitate the

prevalent practice of training using mini-batches of data samples. To this end, we assume without loss of generality

that a total of B ∈ {N, 2N, 3N, . . . } samples arrive at the network during each data-splitting round. That is, a

system-wide mini-batch of size B is processed by the network during each algorithmic iteration (see, e.g., Fig. 4).

Hence, each splitting operation results in a mini-batch of size B
N ∈ Z+ arriving at each node. The data splitting

across N nodes in the system therefore gives rise to N i.i.d. streams of mini-batched data, where we denote the
B
N i.i.d. data samples within the t-th mini-batch at node n as

{
zn,b,t

i.i.d.∼ D
}B/N
b=1,t∈Z+

, with the mapping of these

samples to the ones in the original data stream zt′ given in terms of the relationship t′ = b+(n−1)B/N+(t−1)B.

Given this distributed, streaming data model, our goal is study of machine learning algorithms that can efficiently

process and incorporate the B newest-arriving network-wide samples into a running approximation of the Bayes

optimal solution (cf. (2)) before the arrival of the next mini-batch of data. In order to highlight the challenges

involved in the designs of such algorithms, we can divide the task of processing of a mini-batch of B samples

within the network into two phases (cf. Fig. 4): (i) the computation phase, in which each node performs computations

over its local mini-batch of B/N data samples, and (ii) the subsequent communications phase, in which nodes

share the outcomes of their local computations with each other for eventual incorporation into the (network-wide,

decentralized) machine learning models {wn,t}n∈V .

13

Consider now the compute-limited regime within our framework, in which the distributed system comprising

N compute nodes is incapable of finishing computations on B samples between two consecutive data-splitting

instances because of the fast data streaming rate. (Indeed, the time between two data-splitting instances decreases

as Rs increases.) One could push the system out of this compute-limited regime by adding more compute nodes

to the system. Keeping the system-wide mini-batch size B fixed (and large), this will result in smaller local mini-

batch size B/N . Alternatively, keeping the local mini-batch size fixed, this will result in larger time between two

data-splitting instances. And in either case, the system no longer remains compute limited. However, as one adds

more and more compute nodes into the distributed system, it could be pushed into the communications-limited

regime, in which the size/topology of the network prevents the nodes from completing full exchange of their

local computations between two consecutive data-splitting instances. This communications-limited regime—which

becomes especially pronounced in systems with slower communications links—can only be mitigated through larger

data-splitting intervals, which in turn necessitates a larger B for any fixed data streaming rate Rs. But this can again

push the system into the compute-limited regime. Therefore, any machine learning algorithm intending to process

fast streaming data in an optimal fashion must strike a balance between the compute- and the communications-

limited regimes through judicious choices of system parameters such as B and N . We now formalize some of

this discussion in the following, which should lead to a better understanding of the interplay between the data

streaming rate, the computational capabilities of compute nodes, the communications capabilities of the network,

the system-wide mini-batch size B, and the number of compute nodes N in distributed systems.

C. Interplay Between System Parameters in Distributed, Streaming Machine Learning

We have already defined Rs as the number of data samples zt′ arriving per second at the splitter. We also assume

the N compute nodes in the system to be homogenous in nature and use Rp to denote the processing/compute rate

of each of these nodes, defined as the number of data samples per second that can be locally processed per node

during the computation phase. Distributed algorithms also involve the use of message passing routines for inter-node

communications. We use Rc to denote the rate of messages shared among nodes using such routines, defined as the

number of messages (synchronously) communicated between nodes per second during the communications phase.

This parameter Rc also subsumes within itself any overhead associated with implementation of the message passing

routine such as time spent on additional computations or communications necessitated by the implementation.

Distributed machine learning algorithms typically involve multiple message passing rounds within the communi-

cations phase (cf. Fig. 4), which we denote by R ∈ Z+. This parameter R, which we assume remains fixed for the

duration of the training, can be constrained in terms of the system parameters B, N , Rs, Rp, and Rc as follows:

0 < R ≤

⌊
BRc

(
1

Rs
− 1

NRp

)⌋
. (3)

Our focus in this paper is on algorithms that make use of either “exact” or “inexact” distributed averaging procedures

within the communications phase for information sharing. Specifically, let {vn ∈ Rd}n∈V be a set of vectors that

is distributed across the N nodes in the network at the start of any communications phase and define v̂n to be an

14

estimate of the average v̄ := 1
N

∑
n∈V vn of these vectors at node n. We then have the following communications-

related characterizations of the algorithms being studied in the paper.

1) Exact averaging algorithms. After R message passing rounds within the communications phase, these

algorithms can exactly estimate the average at each node, i.e., ∀n ∈ V , ‖v̂n − v̄‖2 = 0.

2) Inexact averaging algorithms. After R message passing rounds within the communications phase, these

algorithms can only guarantee ε-accurate estimates, i.e., ∀n ∈ V , ‖v̂n − v̄‖2 ≤ ε for some parameter ε > 0

that typically increases as R decreases and/or N increases.

Exact averaging algorithms often find applications in settings like high-performance computing clusters and enter-

prise cloud computing systems, where communications is typically fast and reliable. In contrast, inexact averaging

algorithms tend to be more prevalent in settings like edge computing systems, multiagent systems, and IoT systems,

where the network connectivity can be sparser and the communications tend to be slower and unreliable.

We have now described all the system parameters needed to formalize the notion of effective (mini-batch)

processing rate, Re, of the distributed system, which is defined as the number of mini-batches comprising B

samples that can be processed by the system per second. (In the non-distributed setting, corresponding to N = 1, it

is straightforward to see that Re = Rp/B.) Under the assumption of a synchronous system in which computation

and communications phases are carried out one after the other, the parameter Re can be defined as follows:

Re :=
1

time spent in computation + time spent in communication
=

1
B

NRp
+ R

Rc

=

(
B

NRp
+

R

Rc

)−1
. (4)

This expression formally highlights the tradeoff between the compute-limited and the communications-limited

regimes. In the case of fixed Rp and Rc, for instance, increasing the effective processing rate requires an increase

in N . Doing so, however, necessitates an increase in R that—beyond a certain point—can only be accomplished

through an increase in B (cf. (3)), which in turn also increases the first term in (4).

The overarching theme of this paper is discussion of algorithmic strategies that can be used to tackle the challenge

of near-optimal training of machine learning models from fast streaming data, where “fast” is defined in the sense

that Rs
Re
� B. This discussion involves allowable selections of system parameters such as the network-wide mini-

batch size B, the number of nodes N , and the number of communications rounds R that facilitate taming of the

fast incoming data stream without compromising the fidelity of the final solution. In particular, the recommended

strategies end up pushing the ratio Rs
Re

to satisfy either Rs
Re
≤ B or Rs

Re
= (B + µ) for an appropriate parameter

µ ∈ Z+, where the latter scenario involves discarding of µ samples per splitting instance t at the data splitter.

In order to prime the reader for subsequent discussion, we also provide a simple example in Fig. 5 that illustrates

the impact of the choice of (network-wide) mini-batch size B on system performance. We suppose a network of

N = 10 compute nodes, and focus on the exact averaging paradigm described above. We assume a data streaming

rate of Rs = 106 samples per second, whereas the data processing rate per node is taken to be Rp = 1.25 × 105

samples per second. We plot the ratio of the streaming rate and the effective (mini-batch) processing rate Re as

defined in (4), for communications rates Rc = 103 and Rc = 104, as a function of the mini-batch size B. As

noted earlier, the number of samples effectively processed by the network keeps pace with the number of samples

15

10
0

10
1

10
2

10
3

10
4

Mini-batch size (B)

10
0

10
1

10
2

10
3

10
4

R
a

ti
o

 R
s
/R

e

0

200

400

600

800

1000

Fig. 5. An illustration of the impact of mini-batching on distributed, streaming processing under the exact averaging paradigm.

arriving at the system provided Rs/Re ≤ B, and we observe that for sufficiently large mini-batch size B, the ratio

indeed drops below the Rs/Re = B line plotted in Fig. 5.

Next, we also overlay corresponding plots of the excess risk predicted for Distributed Minibatch SGD, presented

in Section IV-A, after t′ = 106 samples have arrived at the system. These plots show that increased mini-batch

size helps the excess risk, but only to a point. Eventually, B becomes so large that the reduction in the number

of algorithmic iterations carried out by the network hurts the overall performance more than the increase in the

effective processing rate helps it. This illustrates that the mini-batch size B must be chosen judiciously, and in the

following sections we will discuss theoretical results that shed light on this choice.

III. AN OVERVIEW OF THE TECHNICAL LANDSCAPE

This paper ties together research in optimization and distributed processing within the context of machine learning.

To elucidate the state of the art and set the stage for the results described in Sections IV and V, we present an

overview of these areas and describe in detail key results that will be used later.

A. Optimization for Machine Learning

As mentioned in Section I-C, the literature on optimization for machine learning can be roughly divided into two

interrelated frameworks, namely, statistical risk minimization (SRM) and empirical risk minimization (ERM). Both

these frameworks aim to find a solution to the statistical optimization problem (2) and, as such, fall under the broad

category of stochastic optimization (SO) within the optimization literature [38]. In particular, the SRM framework

is often referred to as stochastic approximation (SA) and the ERM framework is sometimes termed sample-average

approximation (SAA) in the literature [39]. In terms of specifics, the SA/SRM framework considers directly the

statistical learning problem (2), and researchers have developed algorithms that minimize the risk f(w) using “noisy”

(stochastic) samples of its gradient ∇f(w). In contrast, the risk in the SAA/ERM framework is approximated by

the empirical distribution over a fixed training dataset ZT := {z1, . . . , zT } of T data samples. This empirical risk,

16

defined as f̂(w) := 1
T

∑T
t′=1 `(w, zt′), is then minimized directly within the ERM framework, usually via some

form of gradient-based (first-order) deterministic optimization methods. In the following, we describe a few key

results from these two frameworks that are the most relevant to our discussion in this paper.

1) Stochastic Approximation (SA): The general assumption within the SA framework is that one has access to a

stream of noisy gradients {g1,g2, . . . } in order to solve (2), where the noisy gradient gt at iteration t is defined as

gt := ∇f(wt) + ζt, (5)

with ζt denoting i.i.d. noise with mean zero and finite variance, i.e., E{‖ζt‖22} ≤ σ2. In the parlance of SA, we

have access to a first-order “oracle” that can be queried for a noisy gradient evaluated at the query point wt. In the

parlance of machine learning, we have a stream of data samples {z1, z2, . . . }, each drawn i.i.d. according to the

data distribution D, and we solve (2) using the gradients gt := ∇`(wt, zt), which have gradient noise variance as

defined in Definition 4.2 It is straightforward to verify that these two formulations are equivalent: E{gt} = ∇f(wt),

so we can define ζt := gt −∇f(wt) to be the zero-mean gradient noise in our problem setup.

The prototypical SA algorithm for loss functions whose gradients exist is stochastic gradient descent (SGD) [40],

in which iterations/iterates take the form

wt+1 = [wt − ηtgt]W , (6)

where [·]W denotes projection onto the constraint set W and ηt > 0 denotes an appropriate stepsize that is either

fixed (constant stepsize) or that decays to 0 with increasing t according to a prescribed strategy (decaying stepsize).

Remark 1. The term ‘stochastic gradient descent’ is overloaded in the literature. Many papers (e.g., [41], [42]) use

the term in the SA sense described here, with a continuous stream of data in which no sample is used more than

once. However, other papers (e.g., [2], [43]) use the term within the ERM framework to describe algorithms that

operate on a fixed dataset, from which mini-batches of data are sampled with replacement and noisy gradients are

computed. To disambiguate, some authors (e.g., [44]) use the term single-pass SGD to indicate the former usage.

Convex Problems. A common elaboration on SGD for convex loss functions is Polyak–Ruppert averaging [41],

[45]–[47], in which a running average of iterates wt is maintained as wav
t := 1

t

∑t−1
τ=0 wτ . The convergence rates

of SGD for convex SA have been studied under a variety of settings, both with and without iterate averaging. The

following result with a modified form of Polyak–Ruppert averaging comes from [3], in which iterate averaging

takes the form

wav
t :=

(
t−1∑
τ=0

ητ

)−1 t−1∑
τ=0

ητwτ+1. (7)

2Note that the data arrival index t′ and the algorithmic iteration index t are one and the same in a centralized setting; we are using t here

in lieu of t′ to facilitate comparisons with results in distributed settings.

17

Theorem 1. For convex and smooth loss functions `(w, z) with (gradient) Lipschitz constant L, gradient noise

variance σ2, and bounded model space with expanse DW , there exist stepsizes ηt such that the approximation error

of SGD with iterate averaging in (7) satisfies:

E{f(wav
t)} − f(w∗) = O(1)

[
L

t
+

σ√
t

]
. (8)

Remark 2. In [3], an optimal constant stepsize ηt = η is given in the case where the optimization ends at a finite

time horizon t := T known in advance. In this case, the prescribed stepsize is η := min
{

1/(2L),
√
D2
W/(2T)

}
,

and this achieves the bound in (8). When the time horizon is unknown, a varying stepsize policy ηt = O(1/
√
t)

achieves expected excess risk O(σ/
√
t), which is optimum for t much larger than L. For simplicity, we are working

with the optimum stepsize proposed in [3] to retain the analysis for t not necessarily much larger than L.

Remark 3. It is desirable in some applications to state the SGD results in terms of convergence of the averaged

iterate wav
t to w∗. In the case of convex, smooth, and twice continuously differentiable loss functions, [47] provides

such results for Polyak–Ruppert averaging in the almost sure sense and also proves asymptotic normality of wav
t , i.e.,

√
t(wav

t −w∗) converges to a zero-mean Gaussian vector. In the case of strongly convex and smooth loss functions,

[41] derives non-asymptotic convergence results for the Polyak–Ruppert averaged iterate wav
t in the mean-square

sense. However, since machine learning is often concerned with minimizing the excess risk E{f(wav
t)− f(w∗)},

we do not indulge further in discussion of convergence of the SGD iterates to the Bayes optimal solution w∗.

A natural question is whether the convergence rate of Theorem 1 can be improved upon by another algorithm. It

has been shown that incorporating Nesterov’s acceleration [48] into SGD can indeed improve this rate somewhat.

Roughly speaking, Nesterov’s acceleration introduces a “momentum” term into the SGD iterations, allowing the

directions of previous gradients to impact the direction taken during the current step and thereby speeding up

convergence. The following formulation is an SGD-based simplification of the accelerated stochastic mirror descent

algorithm of [3]. Define the accelerated SGD updates as follows:

ut = β−1t vt + (1− β−1t)wt, (9)

vt+1 = [ut − ηtgt]W , and (10)

wt+1 = β−1t vt+1 + (1− β−1t)wt, (11)

where gt := ∇f(ut) + ζt, and βt > 0 and ηt > 0 are stepsizes. We then have the following result from [3].

Theorem 2. For convex and smooth loss functions `(w, z) with (gradient) Lipschitz constant L, gradient noise

variance σ2, and bounded model space with expanse DW , there are stepsizes ηt and βt such that the expected risk

of accelerated SGD is bounded by

E{f(wt)} − f(w∗) = O(1)

[
L

t2
+

σ√
t

]
. (12)

Remark 4. Similar to standard SGD, [3] prescribes stepsizes in the case of known and finite time horizon T , with

βt = t/2 and η = t/2 min{1/(2L),
√

6/DW/(σ(T + 1)3/2)}. Again a varying stepsize policy achieves excess risk

18

O(σ/
√
T) for large t, and we suppose the optimum stepsize given in [3] in order to facilitate analysis for t not

necessarily much larger than L.

Both Theorem 1 and Theorem 2 explicitly bring out the dependence of the convergence rates on the gradient

noise variance σ2. In doing so, they hint at the potential performance advantages of (centralized or distributed)

mini-batching of data. As the number of samples/iterations t goes to infinity and all else is held constant, the

O(σ/
√
t) terms dominate the convergence rates in (8) and (12). Mini-batching can reduce the “equivalent” noise

variance σ2 of the mini-batched data samples and speed up convergence, but only to a point. If mini-batching

forces the O(σ/
√
t) term smaller than the respective first terms in (8) and (12), then gradient noise is no longer the

bottleneck to performance and mini-batching cannot improve convergence speed any further. Indeed, in the sequel

we will choose the mini-batch size to carefully balance the two terms in (8) and (12), and we will further see that

more aggressive mini-batching is advantageous when using accelerated methods.

We conclude our discussion of SA for convex loss functions by noting that the convergence rate of accelerated

SGD is provably optimal for smooth, convex SA problems in the minimax sense: there is no single algorithm that

can converge for all such SA problems at a rate faster than O(L/t2 + σ/
√
t). (See [3] for an argument for this.)

However, generalized and sometimes improved rates are possible outside of the regime of this setting. In particular,

when `(w, z) is smooth and strongly convex, a convergence rate of O(σ2/t) is possible for σ2 bounded away from

zero, and it is the minimax rate [41], [49]. Results are also available when the loss function is non-smooth, when

the solution is sparse or otherwise structured, and when the optimization space has a geometry that can be exploited

to speed up convergence [3], [50], [51].

Nonconvex Problems. Nonconvex functions can have three types of critical points, defined as points w for which

∇f(w) = 0: saddle points, local minima, and global minima. This makes optimization of nonconvex (loss) functions

using only first-order (gradient) information challenging. While works such as [52]–[58] provide convergence rates

for nonconvex problems that are similar to their convex programming analogs, the convergence is only guaranteed

to a critical point that is not necessarily a global optimum. Nonetheless, global optimization of nonconvex SA

problems has been studied in the literature under a variety of assumptions on the geometry of objective functions.

A major strand of work in this direction involves modifying the canonical SGD algorithm by injecting slowly

decreasing Monte Carlo noise in its iterations. The resulting SA methods have been investigated in works such

as [59]–[65] under the monikers of (continuous) simulated annealing and stochastic gradient Langevin dynamics.

(Strictly speaking, [65] does not fall under the SA framework being discussed in this section.) A recent work [66]

also provides global convergence guarantees for SGD for the class of (nonconvex) Morse functions.

Another major strand of work in global optimization of nonconvex functions involves explicit exploitation of the

geometry of structured nonconvex problems such as principal component analysis (PCA), dictionary learning, phase

retrieval, and low-rank matrix completion for global convergence guarantees. In this paper, we focus on one such

structured nonconvex SA problem that corresponds to estimating the top eigenvector w∗ ∈ Rd of the covariance

matrix Σ ∈ Rd×d of i.i.d. samples {z1, z2, . . . } ⊂ Rd. The investigation of this 1-PCA problem in the paper, whose

global convergence behavior has been investigated in works such as [42], [67]–[69], serves two purposes. First, it

19

helps validate the generality of the main message of this paper that the mismatches between the data streaming rate,

compute rate, and communications rate can be accounted for through judicious choices of system parameters such

as R, B, and N . Second, it helps crystallize the key characteristics of any global convergence analysis of nonconvex

problems that can facilitate the convergence speed-up guarantees for the distributed mini-batch framework.

The loss function for the 1-PCA problem under the assumption of zero-mean distribution D supported on Rd

and having covariance matrix Σ := Ez∼D{zzT} takes the form

`(w, z) = −wTzzTw

‖w‖22
. (13)

Note that ∇`(w, z) = − 2zzTw
‖w‖22

+ 2(wTzzTw)w
‖w‖42

and the optimal solution w∗ ∈ arg minw [f(w) := Ez∈D`(w, z)]

corresponds to the dominant eigenvector of Σ. In this paper, we focus on the SA approach termed Krasulina’s

method [70] that approximates the optimal solution w∗ from data stream {z1, z2, . . . } using iterations of the form

wt = wt−1 + ηt

(
ztz

T
t wt−1 −

wT
t−1ztz

T
t wt−1

‖wt−1‖22
wt−1

)
. (14)

Notice that changing ηt to ηt
‖wt−1‖22

in (14) gives us the SGD iteration. Despite the empirical success of SA iterations

such as (14) in approximating the top eigenvector of Σ, earlier works only provided asymptotic convergence

guarantees for such methods. Recent studies such as [42], [67], [68], [71], [72] have filled this gap by providing

non-asymptotic results. The following theorem, which is due to [67], provides guarantees for Krasulina’s method.

Theorem 3. Let the i.i.d. data samples be bounded, i.e., ∀t, ‖zt‖2 ≤ κ, define gap := λ1(Σ)−λ2(Σ) > 0, fix any

δ ∈ (0, 1), and define c := c0
2gap for any c0 > 2. Next, pick any

Q ≥ 512e2d2κ4 max(1, c2)

δ4
ln

4

δ
(15)

and choose the stepsize sequence as ηt := c/(Q + t). Then there exists a sequence (Ω
′

t)t∈Z+
of nested subsets of

the sample space Ω such that P
(
∩t>0Ω

′

t

)
≥ 1− δ and

Et
{
f(wt)

}
− f(w∗) ≤ C1

(Q+ 1

t+Q+ 1

) c0
2

+ C2

(κ2

t+Q+ 1

)
, (16)

where Et is the conditional expectation over Ω
′

t, and C1 and C2 are constants defined as

C1 :=
λ1(Σ)

2

(
4ed

δ2

) 5
2 ln 2

e2c
2λ2

1(Σ)/Q and C2 :=
2c2λ1(Σ)e(c0+2c2λ2

1(Σ))/Q

(c0 − 2)
.

The convergence guarantees in Theorem 3 depend on problem parameters such as d, gap, and δ. Recent

works [71], [73] have provided lower bounds on the dependence of convergence rates on these parameters for

the stochastic PCA problem. Theorem 3 achieves these lower bounds with respect to gap and δ up to logarithmic

factors. But the dependence on data dimension in Theorem 3 is d4, while the lower bound suggests Ω(log(d))

dependence. In addition, convergence guarantees for a variant of Krasulina’s method termed Oja’s algorithm are

known to achieve this lower bound dependence on data dimensionality [68], [71], [72], [74].

Despite this somewhat suboptimal nature of Theorem 3, Krasulina’s method lends itself to relatively simpler

analysis for the distributed (mini-batch) framework being studied in this paper. Specifically, as alluded to in our

discussion in Section II-A, implicit averaging out of the sample-covariance noise is the key reason for the potential

20

speed-up in convergence within any distributed processing framework. And while Theorem 3 does not have an

explicit dependence on the noise variance σ2, a variance-based analysis of Krasulina’s method—discussed in detail

in Section IV and having similar dependence on d, gap, and δ as Theorem 3—has been provided in a recent

work [75]. In contrast, results in [71], [72] are oblivious to the variance in sample covariance and hence cannot be

used to show faster convergence within distributed frameworks. On the other hand, while the results in [68], [74]

do take the noise variance into account, the probability of success in these works cannot be improved beyond 3/4

in a single-pass SA setting.

2) Empirical Risk Minimization (ERM): Given the fixed training dataset ZT of T i.i.d. samples drawn from

the distribution D and the corresponding empirical risk f̂(w), the main objective within the ERM framework

is to directly minimize f̂(w) in order to obtain the ERM solution w∗ERM ∈ arg minw∈W f̂(w). Such problems,

sometimes referred to as finite-sum optimization problems, have traditionally been solved using (deterministic,

projected) gradient descent or similar methods. But the advent of massive datasets has made direct computations

of gradients of f̂(w) intractable. This has led to the development of several families of SGD-type methods for the

ERM problem, where the stochasiticity in these methods refers to noisy gradients of the empirical risk f̂(w), as

opposed to noisy gradients of the true risk f(w) within the (single-pass) SA framework. Specifically, the prototypical

SGD algorithm for the ERM problem samples with replacement a single data sample zk (or a small mini-batch of

samples) from ZT in each iteration k, computes the gradient ∇`(wk, zk), and takes a step in the negative of the

computed gradient’s direction. The iterates wk of this particular SGD variant are known to converge reasonably

fast to the ERM solution w∗ERM under various assumptions on the geometry of the loss function `(w, z) [2], [76].

A variety of adaptive and more elaborate SGD-style algorithms, such as Adagrad, RMSProp, and Adam [77],

[78], which introduce adaptive stepsizes, momentum terms, and Nesterov-style acceleration, have been developed in

recent years. Empirically, these methods provide faster convergence to at least a stationary point of f̂(w), especially

when training deep neural networks. (Note that some of these methods have provable convergence issues, even for

convex problems [79].) A family of so-called variance-reduction methods [4], [69], [80]–[82], such as stochastic

variance reduced gradient (SVRG), stochastically controlled stochastic gradient (SCSG), and NATASHA, have also

been developed in the literature for the ERM problem. In these methods, iterates from previous epochs are averaged

to produce a low-complexity estimate of the gradient with provably small variance, which speeds up convergence. In

terms of theoretical analysis, SGD-style and variance-reduction algorithms are studied in both convex and nonconvex

settings. Unlike the SA framework, however, the convergence analysis of these methods for the ERM setting is in

terms of the computational effort, measured in terms of the number of gradient evaluations, needed to approach a

global optimum or a stationary point of the empirical risk f̂(w).

Since optimization methods for the ERM framework primarily provide bounds on either [f̂(wk) − f̂(w∗ERM)]

or ‖wk − w∗ERM‖2, a bound on the excess risk [f(wk) − f(w∗)] under the ERM setting necessitates additional

analytical steps that typically involve bounding the generalization error, defined as [f(w∗ERM)−f̂(w∗ERM)], of the ERM

solution. Classic generalization error bounds have been provided in terms of the Vapnik–Chervonenkis dimension or

Rademacher complexity of the class of functions induced by W [34], [83], or in terms of the uniform or so-called

“leave-one-out” stability [84]–[87] of the solution. Together, the optimization-theoretic bounds and the learning-

21

theoretic bounds on quantities such as the generalization error result in excess risk bounds that decay at rates

O(T−1/2) or O(T−1) for various loss functions as long as the number of optimization iterations k is on the order

of the number of training samples T . Thus, the ERM framework can yield excess risk bounds that match the sample

complexity of the ones under the SA framework. Nonetheless, we focus primarily on the SA setting in this paper for

two reasons. First, we are concerned with the statistical optimization problem (2), and the SA framework measures

performance directly with respect to this problem, whereas the ERM/finite-sum setting yields the final results only

after a combination of optimization-theoretic and learning-theoretic bounds. Second, the SA framework is naturally

well-suited to the setting of streaming data, whereas ERM supposes access to the entire dataset.

B. Distributed Optimization and Machine Learning

Distributed optimization is an extremely broad field, with a rich history. In this paper, we only discuss the

portion of the literature most relevant to our problem setting. Specifically, we focus on methods for distributing

SGD-style algorithms over collections of computing devices and/or processors that communicate over networks

defined by graphs and aggregate data by averaging information over the network. We further divide these methods

into two categories, based on the nature of distributed averaging that is employed within each algorithm: exact

averaging, in which processing nodes use a robust message passing interface (MPI) communications primitive such

as AllReduce [27] to compute exact averages of gradients and/or iterates in the network, and inexact averaging, in

which an approximate approach such as distributed consensus/diffusion [8]–[10] is used to approximate averages of

gradients and/or iterates in the network. The former category of algorithms requires careful network configuration in

order to coordinate AllReduce-style averaging, whereas the latter category requires minimal explicit configuration,

but the algorithms can suffer from slower convergence due to approximation error in the averaging step.

1) Exact Averaging and Distributed Machine Learning: In the case of algorithms utilizing exact averaging,

processing nodes employ an MPI library to compute exact averages in a robust manner. While implementations

differ, a generic approach is to compute averages over a spanning tree in the network. Reusing the notation introduced

in Section II-C, let {vn ∈ Rd}n∈V be the set of vectors distributed across the network at the start of the averaging

subroutine and let v̄ := 1
N

∑
n∈V vn denote their average. Then, the average v̄ can be obtained at each node

in a two-pass manner. In the first pass, each leaf node n in the spanning tree passes its vector vn to its parent

node, which averages together the vectors of its child nodes and passes the average to its parent node; this process

continues recursively until the root node has the average v̄. In the second pass, the root node disseminates v̄ to the

network by passing it to its child nodes; this continues recursively until all of the leaf nodes posses v̄. This type

of averaging is provably efficient, requiring only R = O(N) exchange of messages within the network.

This generic approach to computing exact averages has been applied to distributed machine learning via a

variety of implementations, especially under the distributed computing framework. TensorFlow has a package for

parameter-server distributed learning on multiple GPUs that uses exact averaging; worker nodes compute gradients,

which are forwarded to the parameter server for exact averaging [25]. By contrast, Horovod [88] is a distributed-

parameter library for deep learning that averages gradients using ring AllReduce; the GPU nodes are connected

into a ring topology, which makes for simple and efficient exact averaging.

22

2) Inexact Averaging and Distributed Machine Learning: In the case of algorithms utilizing inexact averaging,

processing nodes use local communications, without network-wide coordination, to compute approximate averages

of their data. A widespread method for this is averaging consensus, a mainstay of distributed control, signal

processing, and learning [15], [89]. Again suppose {vn ∈ Rd}n∈V is the set of vectors distributed across the

network at the start of the averaging subroutine and v̄ denotes the exact average of these vectors. Next, define

a doubly stochastic matrix A ∈ RN×N that is consistent with the topology of the network G = (V, E). That is,

A is a matrix whose entries are non-negative, whose rows and columns sum to one, whose diagonal entries an,n

are non-zero, and whose (n,m)-th entry an,m 6= 0 only when (n,m) ∈ E . Averaging consensus then proceeds in

multiple rounds of the following iteration using local communications:

vr+1
n =

N∑
m=1

an,mvrm. (17)

Here, r ∈ Z+ denotes the iteration index for averaging consensus, vrn denotes an approximation of v̄ at node n

after r iterations, and v0
n := vn. In words, each processing node takes a convex combination of the estimate of

v̄ at its neighboring nodes. Under mild conditions, averaging consensus converges geometrically on v̄, with the

approximation error scaling as ‖vrn − v̄‖2 = O (|λ2(A)|r).

Distributed gradient descent (DGD) is a classic approach to distributed optimization via inexact averaging [12].

It uses only a single round of averaging consensus per iteration, i.e., R = 1 using the notation of Section II-C,

and it is posed in the setting of finite-sum optimization: each node n has a local cost function f̂n(w), and the

objective is to minimize the sum f̂(w) :=
∑N
n=1 f̂n(w). While DGD was originally posed in the framework

of distributed control, it applies equally well to the distributed ERM setting in which f̂n(w) corresponds to the

empirical risk over the training data at node n. In terms of specifics, the original DGD formulation supposes a

synchronous communications model in which each node n computes a weighted average of its neighbors’ iterates

at each iteration t, after which it takes a gradient step with respect to its local cost function:

wn,t+1 = wn,t +

N∑
m=1

an,mwm,t − ηt∇f̂n(wn,t). (18)

Thus, each node takes a standard gradient descent step preceded by one-round averaging consensus on the iterates.

Several extensions to DGD have been proposed in the literature, including extensions to time-varying and directed

graphs [90]–[92] and variations with stronger convergence guarantees [93]–[95]. Other related works have studied

distributed (stochastic) optimization via means other than gradient descent, including distributed dual averaging [96],

[97] and the alternating direction method of multipliers (ADMM) [98]–[100]. The convergence of DGD-style

methods has been studied under a variety of settings; two relevant results are that stochastic DGD-style algorithms

have error decaying as O(log(t)/
√
t) for general smooth convex functions and O(log(t)/t) for smooth strongly

convex functions, even if the network is time varying [90], [91].

We conclude by noting that inexact averaging-based distributed algorithms have also been analyzed/proposed

for nonconvex optimization problems. In particular, DGD-style methods for nonconvex finite-sum problems are

presented in [101]–[103], and convergence rates to stationary points and, when possible, local minima are derived.

23

Further particularization of these works to problems with “nicer” geometry of saddle points and to structured

nonconvex problems such as PCA can be found in works such as [104]–[107].

C. Roadmap for the Remainder of the Paper

Putting the results presented in this paper in the context of the preceding discussion, the rest of the paper describes

recent results in distributed machine learning from fast streaming data over networks that aggregate the distributed

information using both exact and inexact averaging. Specifically, we synthesize results from four recent papers [75],

[108]–[110] that focus on the distributed SA setting of Section II. Among these works, nodes in [75], [108] exchange

messages using a robust MPI primitive such as AllReduce, allowing exact averaging of messages for processing.

The main distinction between these two works is that [108] focuses on distributed convex SA problems, whereas [75]

studies the distributed PCA problem under the SA setting. In contrast, nodes in [109], [110] exchange messages using

multiple rounds of averaging consensus and thus, similar to DGD, aggregate information using inexact averaging

of messages. Both these works study distributed convex SA problems, with [109] focusing on dual averaging and

[110] investigating gradient descent as solution strategies.

IV. DISTRIBUTED STOCHASTIC APPROXIMATION USING EXACT AVERAGING

We detail two machine learning algorithms in this section for the distributed mini-batch framework of Section II,

with one algorithm for general convex loss functions and the other one for the nonconvex loss function corresponding

to the 1-PCA problem. Both these algorithms operate under the assumption of nodes aggregating distributed

information via exact averaging using AllReduce-style communications primitives. The main focus in both these

algorithms is to strike a balance between streaming, computing, and communications rates, while ensuring that the

error in the final estimates is near optimal in terms of the number of samples arriving at the distributed system.

Both the algorithms take advantage of the fact that (implicit or explicit) mini-batching reduces (gradient / sample

covariance) noise variance. Between any two data-splitting instances, nodes in each algorithm compute average

gradients/iterates over the newest (network-wide) B data samples and use these exactly averaged quantities for a

stochastic update. Given ample compute resources and keeping everything else fixed, an increase in network-wide

mini-batch size B under such a strategy decreases both the noise variance and demands on the communications

resources. In doing so, however, one also reduces the number of algorithmic iterations that take place within

the network per second, which has the potential to slow down the convergence rates of the algorithms to the

optimal solutions. An important question then is whether (and when) it is possible to utilize network-wide mini-

batch averaging to simultaneously balance the compute-limited and communications-limited regimes in high-rate

streaming settings (i.e., ensure Rs
Re
6� B), reduce the noise variance, and guarantee that (order-wise) the convergence

rate is not adversely impacted. We address this question in the following for the case of exact averaging.

A. Distributed Mini-batched Stochastic Convex Approximation

Due to the high impact of mini-batching on the performance of distributed stochastic optimization, distributed

methods deploying mini-batching and utilizing exact averaging have been studied extensively in the past few years;

24

Algorithm 1 The Distributed Mini-batch (DMB) Algorithm [108]
Require: Provisioning of compute and communications resources to ensure fast effective processing rate, i.e., either

Rs ≤ BRe or Rs = (B + µ)Re, as well as guaranteed exact averaging in R rounds of communications

Input: Data stream {zt′
i.i.d.∼ D}t′∈Z+

that is split into N streams of mini-batched data {zn,b,t}B/Nb=1,t∈Z+
across the

network of N nodes (after possible discarding of µ samples per split) and stepsize sequence {ηt ∈ R+}t∈Z+

Initialize: All compute nodes initialize with w0 = 0 ∈ Rd

1: for t = 1, 2, . . . , do

2: ∀n ∈ {1, . . . , N}, gn,t ← 0 ∈ Rd

3: for b = 1, . . . , B/N do . Node n receives the mini-batch {zn,b,t}B/Nb=1 and updates gn,t locally

4: ∀n ∈ {1, . . . , N}, gn,b,t ← ∇`(wt, zn,b,t)

5: ∀n ∈ {1, . . . , N}, gn,t ← gn,t + 1
B/N gn,b,t

6: end for

7: Compute gt ← 1
N

∑N
n=1 gn,t in the network using exact averaging

8: Set wt+1 ← [wt − ηtgt]W across the network

9: if Rs = (B + µ)Re then . Slight under-provisioning of compute/communications resources

10: The system receives (B + µ) additional data samples during execution of Steps 2–8, out of which

µ ∈ Z+ samples are discarded at the splitter

11: end if

12: end for

Return: An estimate wt of the Bayes optimal solution after receiving t′ = (B + µ)t samples

see, e.g., [5], [108], [111], [112]. Among these works, the results in [108] provide an upper bound on the network-

wide mini-batch size B that ensures sample-wise order-optimal convergence in SA settings. In contrast, [5], [111],

[112] focus on the selection of mini-batch size under ERM settings. Since the SA setting is best suited for the

streaming framework of this paper, our discussion here focuses exclusively on the distributed mini-batch (DMB)

algorithm proposed in [108] for stochastic convex approximation. The DMB algorithm is listed as Algorithm 1 in

the following and discussed further below.

We begin with the data-splitting model of Section II and initially assume sufficient provisioning of resources so

that Rs ≤ BRe. The DMB algorithm at iteration t in this setting has a mini-batch {zt′ , t′ = (t− 1)B+ 1, . . . , tB}

of B data samples at the splitter, which is then distributed as N smaller mini-batches of size B/N each across the

network of N compute nodes. Afterwards, the nodes in the network locally (and in parallel) compute an average

gradient gn,t of the loss function over their local mini-batch of B/N data samples (see Steps 3–6 in Algorithm 1).

Next, nodes engage in distributed exact averaging of their local mini-batched gradients using an AllReduce-style

communications primitive to obtain the network-wide mini-batched average gradient gt (cf. Step 7, Algorithm 1),

which is then used to update the network-wide estimate wt of the machine learning model (cf. Step 8, Algorithm 1).

The DMB algorithm can also deal with reasonable under-provisioning of resources without sacrificing too much

25

in terms of the quality of the estimate wt. Recall that the distributed processing framework cannot process all

incoming samples when Rs > BRe. However, as long as Rs 6� BRe, the DMB algorithm simply resorts to

dropping µ (∈ Z+) := (RsRe − B) samples per splitting instance at the splitter in this resource-constrained setting

and then proceeds with Steps 2–8 using the remaining B samples as before.

The main analytical contribution of [108] was providing upper bounds on the mini-batch size B and, when

necessary, the number of discarded samples µ that ensure sample-wise order-optimal convergence for the DMB

algorithm. We summarize these results of [108] in the following theorem.

Theorem 4. Let the loss function `(w, z) be convex and smooth with L-Lipschitz gradients and gradient noise vari-

ance σ2. Then, assuming bounded model space W and choosing stepsizes as ηt = 1
L+(σ/DW)

√
t
, the approximation

error of Algorithm 1 after t iterations is bounded as follows:

E {f(wt)} − f(w∗) ≤ (B + µ)

(
2D2
WL

t′
+

2DWσ√
t′

)
. (19)

Furthermore, if B = (t′)ρ for any ρ ∈ (0, 1/2) and µ = o(B), then the approximation error is bounded as

E {f(wt)} − f(w∗) ≤ 2DWσ√
t′

+ o
(1√

t′

)
. (20)

It can be seen from Theorem 4 that the DMB algorithm results in near-optimal convergence rate of O(1/
√
t′),

which corresponds to speed-up by a factor of O(B), in two cases. First, when Rs ≤ BRe and thus µ ≡ 0, it can be

seen from (19) that this speed-up is obtained as long as B = O(
√
t′). Second, even when Rs > BRe and therefore

µ = (RsRe − B) > 0, (19) guarantees the convergence speed-up as long as B = o(
√
t′) and µ = o(B). Stated

differently, the speed-up can be obtained provided the streaming rate (Rs) does not exceed the effective processing

rate per sample (BRe) by too much, i.e., Rs
BRe

= O(1).

B. Numerical Experiments for the DMB Algorithm

We demonstrate the effectiveness of the scaling laws implied by Theorem 4 by using the DMB algorithm to train

a binary linear classifier (supervised learning problem) from streaming (labeled) data using logistic regression [113].

To this end, we take the labeled data as the tuple z := (x, y) with x ∈ Rd and the labels y ∈ {−1, 1}, define

the regression model as w := (w̃, w0) ∈ Rd × R, and recall that the convex and smooth loss function for logistic

regression can be expressed as `(w, z) = ln
(
1 + exp(−y(w̃Tx + w0))

)
. Note that the optimal batch solution for

logistic regression corresponds to the maximum likelihood estimate of the ground-truth regression coefficients that

generate data z = (x, y) [113].

The experimental results reported in this section correspond to d = 5 and are averaged over 50 Monte Carlo trials.

In order to generate data for each trial, we first generate ground-truth regression parameters via a random draw from

the standard normal distribution, w∗ = (w̃∗, w∗0) ∼ N (0, I). Next, we generate data samples as independent draws

from another standard normal distribution, xt′ ∼ N (0, I), and generate the corresponding labels yt′ as independent

draws from the Bernoulli distribution induced by the regression coefficients, i.e.,

Pr(yt′ = 1|xt′) = 1/(1 + exp (−(w̃∗Txt′ + w∗0))). (21)

26

10
0

10
2

10
4

10
6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

(a) Impact of the mini-batch size on the convergence rate of the

DMB algorithm for the resourceful regime. Note that the B = 1

plot is effectively standard SGD.

10
0

10
2

10
4

10
6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

(b) Performance of the DMB algorithm in a resource-constrained

regime (i.e., Rs > BRe), which causes loss of µ samples per

iteration; here, (N,B) = (10, 500).

Fig. 6. Convergence behavior of the DMB algorithm for the case of synthetic data under two scenarios: (a) No data loss (µ = 0) and (b) loss

of µ > 0 samples per algorithmic iteration.

We report results of two experiments for the distributed, streaming framework of Section II. The first experiment

deals with the resourceful regime, i.e., Rs ≤ BRe, and uses mini-batches of size B ∈ {1, 10, 100, 1000}. The

results, shown in Fig. 6(a), are obtained for stepsize of the form c/
√
t (as prescribed by Theorem 4), where the

corresponding value of c chosen for different batch sizes is c ∈ {0.1, 0.1, 0.5, 1, 1}. In order to select these values

of c, we ran the experiment for multiple choices of c and picked the values that achieved the best results. Note that

the results in Fig. 6(a) correspond to the optimality gap ‖wt −w∗‖22 of the iterates from the ground truth; since

the logistic loss is Lipschitz continuous, this trivially upper bounds the square of the excess risk f(wt)− f(w∗).

It can be seen from these results that, as predicted by Theorem 4, the estimation error ‖wt −w∗‖22 after t = t′/B

iterations of the DMB algorithm is roughly on the order of O(1/t′) for B ∈ {1, 10, 100, 1000}, while it is worse

by an order of magnitude for B = 104 >
√
t′.

Next, we demonstrate the performance of the DMB algorithm for resource-constrained settings, i.e., Rs > BRe,

which causes the algorithm to discard µ = (Rs/Re − B) samples per iteration. The experiment for this setting

corresponds to a network of 10 nodes (N = 10) with network-wide mini-batch of size B = 500 (i.e., B/N = 50).

We consider different mismatch factors between streaming, processing, and communication rates in this experiment,

which result in the number of samples being discarded as µ ∈ {0, 100, 500, 1000, 2000, 5000}. The results are plotted

in Fig. 6(b), which shows that the error ‖wt−w∗‖22 for µ = 100 is comparable to that for µ = 0 and progressively

worsens as µ increases from µ = 500 to µ = 5000.

C. Distributed Mini-batched Streaming PCA

Mini-batching and variance-reduction techniques have also been utilized for nonconvex stochastic optimization

problems in both centralized and distributed settings [23], [57], [69], [114]–[119]. But these and similar works

27

Algorithm 2 Distributed Mini-batch Krasulina (DM-Krasulina) Algorithm [75]
Require: Same as the DMB algorithm in Algorithm 1

Input: Same as the DMB algorithm in Algorithm 1

Initialize: All compute nodes initialize with the same w0 ∈ Rd randomly generated over the unit sphere

1: for t = 1, 2, . . . , do

2: ∀n ∈ {1, . . . , N}, ξn,t ← 0 ∈ Rd

3: for b = 1, . . . , B/N do . Node n receives the mini-batch {zn,b,t}B/Nb=1 and updates ξn,t locally

4: ∀n ∈ {1, . . . , N}, ξn,t ← ξn,t + zn,b,tz
T
n,b,twt−1 −

wT
t−1zn,b,tz

T
n,b,twt−1wt−1

‖wt−1‖22

5: end for

6: Compute ξt ← 1
N

∑N
n=1 ξn,t in the network using exact averaging

7: Update the eigenvector estimate in the network as follows: wt ← wt−1 + ηtξt

8: if Rs = (B + µ)Re then . Slight under-provisioning of compute/communications resources

9: The system receives (B + µ) additional data samples during execution of Steps 2–7, out of which

µ ∈ Z+ samples are discarded at the splitter

10: end if

11: end for

Return: An estimate wt of the eigenvector w∗ associated with λ1(Σ) after receiving t′ = (B + µ)t samples

typically either only guarantee convergence to first-order stationary points [69], [119] and/or they are not applicable

to the single-pass SA setting [57], [114]–[118]. In the following, we focus on the structured nonconvex SA problem

of estimating the top eigenvector of a covariance matrix from fast streaming i.i.d. data samples (i.e., the streaming

1-PCA problem). Global convergence guarantees for this problem, as noted in Section III-A, have been derived

in the literature for “slow” data streams. Our discussion here revolves around the distributed mini-batch Krasulina

(DM-Krasulina) algorithm that has been recently proposed and analyzed in [75] for the distributed mini-batch

framework of Section II for fast streaming data.

The DM-Krasulina algorithm (see Algorithm 2) can be seen as a slight variation on the DMB algorithm for solving

the 1-PCA problem from fast streaming data. In particular, DM-Krasulina is nearly identical to the DMB algorithm

except for the fact that the generic gradients gn,t and gt in Algorithm 1 are replaced by pseudo-gradient terms

ξn,t and ξt, respectively, in Algorithm 2. Therefore, the implementation details provided for the DMB algorithm

in Section IV-A also apply to DM-Krasulina. Nonetheless, the analytical tools utilized by [75] to theoretically

characterize the interplay between the solution accuracy of DM-Krasulina and different system parameters differ

greatly from those utilized for Theorem 4.

In order to discuss the convergence behavior of DM-Krasulina, we recall the assumptions stated in Section III-A

for the 1-PCA problem. Specifically, the i.i.d. data samples zt′ have zero mean and are bounded almost surely

by some positive constant κ, i.e., E{zt′} = 0 and ∀t′, ‖zt′‖2 ≤ κ. Notice that Steps 3–6 in Algorithm 2 lead to

an implicit computation of an unbiased estimate of the population covariance matrix Σ = Ez∼D{zzT} from the

28

network-wide mini-batch of B samples, which we denote by At := (1/B)
∑N
n=1

∑B/N
b=1 zn,b,tz

T
n,b,t. The results

for DM-Krasulina depend on the variance of this unbiased sample covariance, which is defined as follows.

Definition 7 (Variance of sample covariance in DM-Krasulina). The variance of the distributed sample covariance

matrix At in DM-Krasulina is defined as follows:

σ2
B := ED


∥∥∥∥∥∥ 1

B

N∑
n=1

B/N∑
b=1

zn,b,tz
T
n,b,t −Σ

∥∥∥∥∥∥
2

F

 .

Note that σ2
B for B = 1 corresponds to the single-sample covariance noise variance σ2 defined in Section II. It

is also straightforward to show that σ2
B ≤ σ2/B. And since all moments of the probability distribution D exist by

virtue of the norm boundedness of zt′ , the variance σ2
B as defined above exists and is finite. We now provide the

main result for DM-Krasulina from [75] that expresses the convergence behavior of DM-Krasulina in terms of the

mini-batched noise variance σ2
B .

Theorem 5. Let the i.i.d. data samples be bounded, i.e., ∀t′, ‖zt′‖2 ≤ κ, define gap := λ1(Σ) − λ2(Σ) > 0, fix

any δ ∈ (0, 1), and pick c := c0
2gap for any c0 > 2. Next, suppose Rs ≤ BRe (i.e., no discarded data) and define

Q1 :=
64edκ4 max(1, c2)

δ2
ln

4

δ
, Q2 :=

512e2d2σ2
B max(1, c2)

δ4
ln

4

δ
, (22)

pick any Q ≥ Q1 +Q2, and choose the stepsize sequence as ηt := c/(Q+ t). Then, we have for DM-Krasulina that

there exists a sequence (Ω
′

t)t∈Z+ of nested subsets of the sample space Ω such that P
(
∩t>0Ω

′

t

)
≥ 1− δ and

Et {f(wt)} − f(w∗) ≤ C1

(Q+ 1

t+Q+ 1

) c0
2

+ C2

(σ2
B

t+Q+ 1

)
, (23)

where Et is the conditional expectation over Ω
′

t, and C1 and C2 are constants defined as

C1 :=
λ1(Σ)

2

(
4ed

δ2

) 5
2 ln 2

e2c
2λ2

1(Σ)/Q and C2 :=
2c2λ1(Σ)e(c0+2c2λ2

1(Σ))/Q

(c0 − 2)
.

Theorem 5 is similar in flavor to Theorem 4 in the sense that their respective excess risk bounds in (19) and (23)

have (asymptotically) dominant error terms that involve the noise variance (gradient noise for the convex problem

and covariance noise for the 1-PCA problem). In particular, since σ2
B ≤ σ2/B, the excess risk f(wt) − f(w∗)

in DM-Krasulina can be driven down faster by increasing the mini-batch size B up to a certain limit, as noted in

the next result. But the two theorems also have some key differences, which can be attributed to DM-Krasulina’s

focus on global convergence for the nonconvex 1-PCA problem. The first difference is that the excess risk in (23)

is being bounded in expectation over a subset of the sample space, whereas the expectation in Theorem 4 is over

the whole sample space Ω. The second difference is that the result in Theorem 4 is independent of the ambient

dimension d, whereas the result for the 1-PCA problem has d4 dependence.

We now provide a corollary of Theorem 5 that highlights the speed-up gains associated with DM-Krasulina as

long as the mini-batch size B does not exceed a certain limit.

Corollary 1. Let the parameters and constants be as specified in Theorem 5. Next, pick parameters (Q′1, Q
′
2) such

that Q′1 ≥ Q1 and Q′2 ≥ Q2/σ
2
B , and denote the total number of samples processed by DM-Krasulina as t′ := tB.

29

Then, as long as assumptions from Theorem 5 hold and the network-wide mini-batch size satisfies B ≤ (t′)
1− 2

c0 ,

there exists a sequence (Ω
′

t)t∈Z+
of nested subsets of the sample space Ω such that P

(
∩t>0Ω

′

t

)
≥ 1− δ and

Et {f(wt)} − f(w∗) ≤ c0C1
Q′1

c0/2

t′
+ c0C1

(
σ2Q′2
t′

)c0/2
+
C2σ

2

t′
. (24)

Proof. Substituting t = t′/B in (23) and using simple upper bounds yield

Et {f(wt)− f(w∗)} ≤ C1

(Q+ 1

Q+ t

) c0
2

+ C2

(σ2
B

t

)
≤ 2C1

(Q
t

) c0
2

+ C2

(σ2
B

t

)
.

Next, substituting Q = Q′1 + σ2
BQ
′
2 in this expression gives us

Et {Ψt} ≤ c0C1

(Q′1
t

) c0
2

+ c0C1

(σ2
BQ
′
2

t

) c0
2

+ C2

(σ2
B

t

)
. (25)

Since σ2
B ≤ σ2/B and t = t′/B, (25) reduces to the following expression:

Et {f(wt)− f(w∗)} ≤ c0C1

(
BQ′1
t′

)c0/2
+ c0C1

(
σ2Q′2
t′

)c0/2
+
C2σ

2

t′
.

The proof now follows from the assumption that B ≤ (t′)
1− 2

c0 . �

In words, Corollary 1 states that DM-Krasulina achieves the optimal excess risk of O(1/t′) for the 1-PCA

problem, which corresponds to a speed-up gain by a factor of B, as long as B = O((t′)
1− 2

c0) and network

resources are provisioned to ensure Rs ≤ BRe.

We can also leverage this result to demonstrate how the distributed mini-batch framework of this paper helps

us tradeoff computation resources for communication resources. Suppose we are in a compute-rich distributed

environment, in which exact averaging requires R rounds of communications, and it is desired to achieve order-

optimal risk of O(1/t′) for DM-Krasulina. This requires that Rc be fast enough to ensure completion of the

communications phase within the time between the end of the computation phase and the arrival of next mini-batch

of data; using the definitions from Section II, this means:

R

Rc
≤ B

Rs
− B

NRp
=⇒ Rc ≥

NRRsRp
B (NRp −Rs)

. (26)

We can see from this lower bound that increasing the mini-batch size B up to a certain point, while keeping

everything else fixed, relaxes the requirement on the communications rate within the network without affecting the

quality of the final solution.

We conclude this section by extending Theorem 5 to the under-provisioned setting in which Rs > BRe, possibly

due to slower communications links. Similar to our discussion for the DMB algorithm, we express Rs as Rs =

(B + µ)Re for some µ ∈ Z+ that corresponds to the number of samples that must be discarded at the splitter per

iteration due to the mismatch between Rs and BRe. The following result captures the impact of this data loss on

the convergence behavior of DM-Krasulina.

Corollary 2. Let the parameters and constants be as specified in Corollary 2, and define the final number of

algorithmic iterations for DM-Krasulina as tµ := t′/(B+µ). Then, as long as the assumptions in Theorem 5 hold

30

10
0

10
2

10
4

10
6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

(a) Impact of the mini-batch size on the convergence rate of

DM-Krasulina for the resourceful regime. Note that the B = 1

plot is effectively Krasulina’s method.

10
0

10
2

10
4

10
6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

(b) Performance of DM-Krasulina in a resource-constrained regime

(i.e., Rs > BRe), which causes loss of µ samples per iteration;

here, (N,B) = (10, 100).

Fig. 7. Convergence behavior of DM-Krasulina for the case of synthetic data under two scenarios: (a) No data loss (µ = 0) and (b) loss of

µ > 0 samples per algorithmic iteration.

and the network-wide mini-batch size satisfies B ≤ (t′)
1− 2

c0 , there exists a sequence (Ω
′

t)t∈Z+
of nested subsets of

the sample space Ω such that P
(
∩t>0Ω

′

t

)
≥ 1− δ and

Etµ {f(wtµ)} − f(w∗) ≤ c0C1

(
(B + µ)Q′1

t′

)c0/2
+ c0C1

(
(B + µ)σ2Q′2

Bt′

)c0/2
+
C2σ

2(B + µ)

Bt′
. (27)

It can be seen from this result that as long as the number of discarded samples per iteration in DM-Krasulina sat-

isfies µ = O(B), we will have sample-wise order-optimal convergence rate of O(1/t′) in the network. This result

concerning the impact of discarded samples in under-provisioned distributed systems is similar to the one reported

in Theorem 4 for the DMB algorithm.

D. Numerical Experiments for DM-Krasulina

In this section, we provide results of numerical experiments on both synthetic and real-world data to demonstrate

the impact of mini-batch size on the performance of DM-Krasulina’s method.

1) Synthetic data: For a covariance matrix Σ ∈ R10×10 with λ1(Σ) = 1 and eigengap λ1(Σ) − λ2(Σ) = 0.1,

we generate t′ = 106 samples from a normal distribution N (0,Σ). The first experiment in this case deals with

the resourceful regime, i.e., RS ≤ BRe, with mini-batches of sizes B ∈ {1, 10, 100, 1000}. Results of these

experiments are shown in Fig. 7(a), which correspond to stepsize ηt = c/t and parameter c = 10 that was selected

after multiple trial-and-error runs. As predicted by Corollary 1, we see the excess risk after t = t′/B iterations of

DM-Krasulina is on the order of O(1/t′) for B ∈ {1, 10, 100}, while it is not optimal anymore for B = 1000.

Next, we demonstrate the performance of DM-Krasulina for resource constrained settings, i.e., Rs > BRe, which

causes the system to discard µ := (Rs/Re − B) samples per iteration. Using the same data generation setup as

before, we run DM-Krasulina for a network of 10 nodes (N = 10) with network-wide mini-batch of size B = 100

31

10
0

10
1

10
2

10
3

10
4

10
5

10
-6

10
-4

10
-2

10
0

(a) CIFAR-10 Data (µ = 0): Impact of network-wide mini-batch

size B on the convergence behavior of DM-Krasulina for the

resourceful regime.

10
0

10
1

10
2

10
3

10
4

10
5

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

(b) CIFAR-10 Data (N = 10; B = 100): Convergence behavior

of DM-Krasulina in a resource-constrained regime, which causes

loss of µ samples per iteration.

Fig. 8. Performance of DM-Krasulina for the CIFAR-10 dataset under two scenarios: (a) No data loss (µ = 0) and (b) loss of µ > 0 samples

per algorithmic iteration.

(i.e., B/N = 10). We consider different mismatch factors between streaming, processing, and communication rates

in this experiment, which result in the number of samples being discarded as µ ∈ {0, 10, 100, 200, 1000}. The

results are plotted in Fig. 7(b), which show that the values of excess risk for µ ∈ {10, 100, 200} are comparable to

that for µ = 0, but the error for µ = 1000 is an order of magnitude worse than the nominal error.

2) Real-world Data: We next demonstrate the performance of DM-Krasulina on CIFAR-10 dataset [120],

which consists of roughly 5 × 104 training samples with d = 3072. Our first set of experiments for this dataset

uses the stepsize ηt = c/t with c ∈ {8 × 104, 8 × 104, 9 × 104, 105, 105} for network-wide mini-batch sizes

B ∈ {1, 10, 100, 1000, 5000} in the resourceful regime (µ = 0). The results, which are averaged over 50 random

initializations and random shuffling of data, are given in Fig. 8(a). It can be seen from this figure that the final

error relatively stays the same as B increases from 1 to 1000, but it starts getting affected significantly as the

network-wide mini-batch size is further increased to B = 5000. Our second set of experiments for the CIFAR-10

dataset corresponds to the resource-constrained regime with (N,B) = (10, 100) and stepsize parameter c = 8×104

for the number of discarded samples µ ∈ {0, 10, 100, 200, 500}. The results, averaged over 200 trials and given in

Fig. 8(b), show that the system can tolerate loss of some data samples per iteration without significant increase in

the final error; the increase in error, however, becomes noticeable as µ approaches B. Both these observations are

in line with the insights of the theoretical results.

V. DISTRIBUTED STOCHASTIC APPROXIMATION USING INEXACT AVERAGING

In this section, we discuss recent results for distributed learning from fast streaming data when the averages

computed among nodes in the network are inexact. As mentioned earlier, inexact averaging occurs in networks where

the communications topology either changes with time or it is unknown in advance to facilitate construction of an

32

MPI infrastructure for AllReduce-style computations. Similar to Section IV, we require here that nodes compute

distributed averages of their stochastic gradients in order to reduce their variance and speed up convergence. Unlike

Algorithms 1 and 2, however, these averages are computed via R rounds of averaging consensus, as described in

Section III-B. This introduces a fundamental trade-off: the more consensus rounds R used per algorithmic iteration,

the smaller the effective gradient noise and averaging error, but the longer it takes to complete each iteration.

Similar to the DMB algorithm described in Section IV-A, we mitigate this trade-off by careful mini-batching of

gradient samples. Each node n first locally averages the gradients for its local mini-batch of B/N data samples,

after which nodes approximately average the mini-batched gradients via consensus iterations. Such mini-batching

again speeds up the effective processing rate, allowing the network to process more samples. In this section we

detail the precise conditions under which this speed-up is enough to achieve near-optimum convergence rates.

We focus exclusively on convex loss functions `(w, z) in this section and present two algorithms for tackling fast

streaming data under inexact averaging: distributed stochastic gradient descent (D-SGD) and accelerated distributed

stochastic gradient descent (AD-SGD). Both these algorithms are distributed variants of the SGD and accelerated

SGD methods described in Section III-A1: after computing local mini-batch gradients and performing distributed

averaging consensus, nodes in these algorithms take (accelerated) SGD steps with respect to the averaged gradients.

A. Algorithms for Distributed Stochastic Convex Approximation

We now present algorithmic details for D-SGD and AD-SGD, both of which are distilled and unified versions

of algorithms published in [109], [110].3 The operating assumption here is that there is sufficient provisioning

of resources within the system to ensure Rs ≤ BRe. In the next section, we present the convergence rates of

D-SGD and AD-SGD under this assumption, and explicitly describe the regimes of system parameters in which

these methods have optimum convergence rates. An important feature of these forthcoming results is the impact of

acceleration in these regimes. Accelerated methods provide additional “headroom,” allowing for larger mini-batches

that can process faster data streams while still yielding optimum convergence rates.

The algorithmic descriptions in the following make use of a symmetric, doubly stochastic matrix A ∈ RN×N

that is consistent with the network graph G, as discussed in Section III-B2. We suppose that the second-largest

eigenvalue magnitude obeys |λ2(A)| < 1, where the inequality must be strict. This rather mild assumption is

guaranteed, inter alia, by choosing A to have elements strictly greater than zero for all elements corresponding

to an edge of a connected graph G, i.e., each node includes its entire neighborhood (including itself) in the local

convex combination it computes for each consensus round.

1) Description of D-SGD: The D-SGD algorithm generalizes SGD with Polyak–Ruppert averaging to the setting

of distributed, streaming data. We mathematically detail the steps of D-SGD in Algorithm 3, and summarize them

here. At the beginning of every iteration t of D-SGD, each node n receives a mini-batch {zn,b,t}B/Nb=1 of B/N

i.i.d. data samples. Each node n afterwards computes gn,t, the average gradient over its local mini-batch, and then

3In particular, [109] presents a distributed learning strategy based on dual averaging, a method for stochastic convex optimization that has

convergence rates similar to those of SGD. In contrast, [110] presents a strategy based on mirror descent, a generalization of SGD-style methods.

For clarity of exposition, we present results in here under the SGD framework.

33

Algorithm 3 Distributed Stochastic Gradient Descent (D-SGD)
Require: Provisioning of compute and communications resources to ensure Rs ≤ BRe
Input: Data stream {zt′

i.i.d.∼ D}t′∈Z+
that is split into N streams of mini-batched data {zn,b,t}B/Nb=1,t∈Z+

across N

nodes, doubly stochastic matrix A, number of consensus rounds R, and stepsize sequence {ηt ∈ R+}t∈Z+

Initialize: All compute nodes initialize with wn,0 = 0 ∈ Rd

1: for t = 1, 2, . . . , do

2: ∀n ∈ {1, . . . , N}, gn,t ← 0 ∈ Rd

3: for b = 1, . . . , B/N do . Node n receives the mini-batch {zn,b,t}B/Nb=1 and updates gn,t locally

4: ∀n ∈ {1, . . . , N}, gn,b,t ← ∇`(wn,t, zn,b,t)

5: ∀n ∈ {1, . . . , N}, gn,t ← gn,t + 1
B/N gn,b,t

6: end for

7: ∀n ∈ {1, . . . , N}, hn,t,0 ← gn,t . Get mini-batched gradients

8: for r = 1, . . . , R and n = 1, . . . , N do . R rounds of averaging consensus

9: hn,t,r ←
∑N
m=1 an,mhm,t,r−1

10: end for

11: for n = 1, . . . , N do

12: wn,t+1 ← [wn,t − ηthn,t,R]W . Projected SGD step

13: wav
n,t+1 ←

(∑t
τ=0 ητ

)−1∑t
τ=0 ητwn,τ+1 . Averaging of iterates

14: end for

15: end for

Return: Decentralized estimates {wav
n,t}n∈V of the Bayes optimal solution after receiving t′ = Bt samples

engages in R ∈ Z+ rounds of averaging consensus, where the parameter R satisfies the constraints in (3). This

results in an approximate average of all N mini-batches at each node n, which we denote by hn,t,R. Each node

finally takes an SGD step using hn,t,R and engages in Polyak–Ruppert averaging to obtain the estimate wav
n,t.

2) Description of AD-SGD: The AD-SGD algorithm generalizes accelerated SGD, as presented in Section III-A1,

to the distributed setting. The generalization is similar to D-SGD’s extension of the SGD procedure: Nodes collect

mini-batches {zn,b,t}B/Nb=1 from their data streams, compute average gradients gn,t, and get approximate gradient

averages hn,t,R via R rounds of averaging consensus. However, instead of taking a standard SGD step, compute

nodes take an accelerated SGD step using hn,t,R. This involves each node maintaining iterates un,t, vn,t, and wn,t

as in accelerated SGD, which are averaged and updated according to two sequences of stepsizes βt ∈ [1,∞) and

ηt ∈ R+. We mathematically detail the steps of AD-SGD in Algorithm 4.

B. Convergence Results and Scaling Laws

Here, we present results on the convergence speeds of D-SGD and AD-SGD as well as their gap to the ideal case

in which data streams can be centrally processed by a single powerful machine, or, equivalently, compute nodes

can process instantaneously and communicate at infinite rates. We begin by presenting results for D-SGD.

34

Algorithm 4 Accelerated Distributed Stochastic Gradient Descent (AD-SGD)
Require: Provisioning of compute and communications resources to ensure Rs ≤ BRe
Input: Incoming mini-batched data streams at N compute nodes, expressed as {zn,b,t}B/Nb=1,t∈Z+

, doubly stochastic

matrix A, number of consensus rounds R, and stepsize sequences {ηt, βt ∈ R+}t∈Z+

Initialize: All compute nodes initialize with un,0,vn,0,wn,0 = 0 ∈ Rd

1: for t = 1, 2, . . . , do

2: ∀n ∈ {1, . . . , N}, un,t ← β−1t vn,t + (1− β−1t)wn,t

3: ∀n ∈ {1, . . . , N}, gn,t ← 0 ∈ Rd

4: for b = 1, . . . , B/N do . Node n receives the mini-batch {zn,b,t}B/Nb=1 and updates gn,t locally

5: ∀n ∈ {1, . . . , N}, gn,b,t ← ∇`(un,t, zn,b,t)

6: ∀n ∈ {1, . . . , N}, gn,t ← gn,t + 1
B/N gn,b,t

7: end for

8: ∀n ∈ {1, . . . , N}, hn,t,0 ← gn,t . Get mini-batched gradients

9: for r = 1, . . . , R and n = 1, . . . , N do . R rounds of averaging consensus

10: hn,t,r ←
∑N
m=1 an,mhm,t,r−1

11: end for

12: for n = 1, . . . , N do . Project A-SGD step

13: vn,t+1 ← [un,t − ηthn,t,r]W
14: wn,t+1 ← β−1t vn,t+1 + (1− β−1t)wn,t

15: end for

16: end for

Return: Decentralized estimates {wn,t}n∈V of the Bayes optimal solution after receiving t′ = Bt samples

Theorem 6. Let the loss function `(w, z) be convex and smooth with L-Lipschitz gradients and gradient noise

variance σ2, and suppose a bounded model space with expanse DW . Further suppose that nodes engage in R

rounds of consensus averaging in each iteration of D-SGD. Then, there exist stepsizes ηt such that the expected

excess risk at each node n after t iterations is bounded by

E
{
f(wav

n (t))
}
− f(w∗) ≤ 2L

t
+

√
4∆2

t

t
+

√
1

2

ΞtDW
L

, (28)

where

Ξt :=

(
σ√
B/N

)
(1 +N2|λ2(A)|R)((1 +N2|λ2(A)|R)t − 1) (29)

and

∆2
t := 4σ2/B + 2

(
σ√
B/N

)2

(1 +N4|λ2(A)|2R)((1 +N2|λ2(A)|R)t − 1)2 + 4|λ2(A)|2Rσ2N3/B (30)

quantify the moments of the effective gradient noise.

35

Proof Sketch. The convergence analysis follows that of standard results of SGD-style methods, with careful analysis

of the equivalent gradient noise resulting from distributed consensus averaging. In particular, ∆2
t bounds the

equivalent noise variance, and it has two components: 4σ2/B, which is the equivalent variance if distributed

gradients are averaged exactly, and additional terms that express variance increases due to inexact averaging. These

latter terms go to zero geometrically as R → ∞. The term Ξt bounds the gradient bias, which is entirely due to

averaging errors and which also goes to zero as R→∞. Inserting these bounds on the bias and variance into the

analysis of SGD (see, e.g., [3]) gives the result. See [110] for a detailed proof. �

Remark 5. The result in Theorem 6 is stated in terms of the ideal stepsizes discussed in Remark 2, which suppose

a finite and known time horizon t. Although the time horizon may not be known in advance, the conditions for

optimality discussed in the following depend on the time horizon; as such, we retain these ideal stepsizes to make

explicit this dependence of the results on the time horizon / final iteration count t.

The convergence rate in Theorem 6 has the same form as that of standard SGD given in Theorem 1. The main

difference is in the bias and variance of the stochastic gradients, which depend on the processing and communications

rates relative to the data streaming rate, and therefore on how many rounds of averaging consensus nodes can carry

out per iteration of D-SGD.

The critical question for D-SGD is how fast communication needs to be for order-optimum convergence speed,

i.e., the convergence speed that one would obtain if nodes had noiseless access to other nodes’ gradient estimates in

each iteration. Recall that the system has received t′ = tB data samples after t data-splitting instances. Centralized

SGD—with access to all tB data samples in sequence—achieves the convergence rate O
(
L
Bt + σ√

Bt

)
, where the

final term dominates the error as a function of t if σ2 > 0. In the following corollary we state conditions under

which the convergence rate of D-SGD matches this term.

Corollary 3. The optimality gap for D-SGD at each node n satisfies

E
{
f(wav

n (t))
}
− f(w∗) = O

(
σ√
t′

)
, (31)

provided the network-wide mini-batch size B, the communications rate Rc, and the number of nodes N satisfy

B/N = Ω

(
1 +

log(t′)

ρ log(1/|λ2(A)|)

)
, B/N = O

(
σ
√
t′

N

)
,

Rc = Ω

(
Rs log(t′)

σ
√
t′ log(1/|λ2(A)|)

+
Rs
RpN

)
, t′ = Ω

(
N2

σ2

)
,

where

ρ := N
Rc
Rs
− 1

Rp

is the ratio of the “effective” communications rate per sample, which discounts the time spent in computation, and

the rate at which streaming data arrive at the system.

This corollary describes the dependence of the convergence rate of D-SGD on the processing, communications

and streaming rates, network topology, and network-wide mini-batch size. We now point out a few connections

36

between this result and the one for the DMB algorithm described in Section IV-A. In the case of the DMB algorithm,

recall that a maximum local mini-batch size of B/N = O(
√
t′/N) is prescribed to ensure that the O(1/t′) term

in the SGD convergence bound does not dominate. Corollary 3 further prescribes a minimum local mini-batch size

B/N needed to ensure that nodes have time to carry out sufficient consensus. This condition fails to obtain when

the communications rate is too slow to accommodate the required mini-batch size. Indeed, for all else constant, the

optimum local mini-batch size is merely Ω(log(t′)), and the condition on Rc essentially ensures B/N = O(t1/2).

Further, Corollary 3 dictates the relationship between the size of the network and the total number of data samples

obtained at each node. Leaving the other terms constant, Corollary 3 requires t′ = Ω(N2), which implies that the

total number of data samples processed per node should scale faster than the number of nodes in the network. This

is a relatively mild condition for big data applications; indeed, many applications involve data streams that are large

relative to the size of the network.

Along similar lines, ignoring other constants and log terms, Corollary 3 indicates that a communications rate of

Rc = Ω
(
Rs/
√
t′ + Rs/(RpN)

)
is sufficient for order optimality. Thus, if the total number of data samples per

node grows faster than the number of nodes, the required communications rate approaches the ratio between the

sampling and processing rates of the network, i.e., communications need only be fast enough that processing is not

the bottleneck. This implies that for fixed networks or network families in which the spectral gap 1 − |λ2(A)| is

bounded away from zero, even slow communications is sufficient for near-optimum learning.

Next, we bound the expected gap to optimality of the AD-SGD iterates.

Theorem 7. Let the loss function `(w, z) be convex and smooth with L-Lipschitz gradients and gradient noise

variance σ2, and suppose a bounded model space with expanse DW . Further suppose nodes engage in R rounds

of consensus averaging in each iteration of AD-SGD, and use stepsizes ηt = (t+ 1)/2η, for 0 < η < 1/(2L) and

βt = (t+ 1)/2. Then, the expected excess risk at each node n after t iterations of AD-SGD is bounded by

E{f(wn(t))} − f(w∗) ≤ 8L

t2
+ 4

√
4∆2

t

t
+
√

32Ξt,

where

∆2
t = 2(σ/

√
B/N)2((1 + 2ηtN

2L|λ2(A)|R)t − 1)2 +
4σ2

B/N
(|λ2(A)|2RN2 + 1/N)

and

Ξt = (σ/
√
B/N)(1 +B2|λ2(A)|R)((1 + 2ηtN

2L|λ2(A)|R)t − 1).

Proof sketch. The result again follows from a careful analysis of the bias and variance of the equivalent gradient

noise. As before, as R → ∞, the variance term ∆2
t has order O(σ2/B) and the bias term Ξt vanishes. Putting

these quantities into the analysis of accelerated SGD gives the result; we refer the reader to [110] for details. �

Remark 6. Theorem 7 is also stated in terms of the ideal stepsizes given in [3], which suppose a finite and known

time horizon; we again retain this form of the result in order to keep explicit the dependence on time horizon.

37

Corollary 4. The excess risk for AD-SGD at each node n satisfies

E
{
f(wn(t)

}
− f(w∗) = O

(
σ√
t′

)
,

provided

B/N = Ω

(
1 +

log(t′)

ρ log(1/|λ2(A)|)

)
, B/N = O

(
σ1/2(t′)3/4

N

)
,

Rc = Ω

(
Rs log(t′)

σ(t′)3/4 log(1/|λ2(A)|)
+

Rs
RpN

)
, t′ = Ω

(
N4/3

σ2

)
,

where again ρ := N Rc
Rs
− 1

Rp
is the ratio of the effective communications rate per sample and the streaming rate.

Notice that the crucial difference between the two schemes is that AD-SGD has a convergence rate of 1/t2 in

the absence of noise. This faster term, which is often negligible in centralized SGD, means that AD-SGD tolerates

more aggressive mini-batching without an impact on the order of the convergence rate. As a result, the condition

on Rc is relaxed by 1/4 in the exponent of t′. This is because the condition B/N = O(t1/2), which holds for

standard stochastic methods, is relaxed to B/N = O(t3/4) for accelerated SGD. Thus, the use of accelerated

methods increases the domain in which order-optimum rate-limited learning is guaranteed.

C. Numerical Experiments for D-SGD and AD-SGD

In order to demonstrate the scaling laws predicted by Corollaries 3 and 4 and to investigate the empirical

performance of D-SGD and AD-SGD, we once again resort to binary linear classification using logistic regression.

Similar to Section IV-B, we examine performance on synthetic data in order to have a “ground truth“ data distribution

against which to compare performance. For the sake of richness, we generate data in here using a slightly different

probabilistic model than in Section IV-B. Specifically, we suppose the data follow conditional Gaussian distributions:

For yt′ ∈ {−1,+1}, we let xt′ ∼ N (µyt′ , σ
2
xI), where µyt′ ∈ {µ−1, µ1} is one of two mean vectors, and σ2

x > 0

is the noise variance (not to be confused with gradient noise variance σ2.) For the experiments, we pick d = 20,

choose σ2
x = 2, and draw the elements µ−1 and µ1 randomly from the standard normal distribution.

We compare the performance of D-SGD and AD-SGD against several other schemes. As a best-case scenario,

we consider centralized counterparts of D-SGD and AD-SGD, meaning that all B data samples and their associated

gradients at each data-splitting instance are available at a single machine, which carries out SGD and acceler-

ated SGD. Both these algorithms naturally have the best average performance. As a baseline, we consider local

(accelerated) SGD, in which nodes simply perform SGD on their own data streams without collaboration. This

scheme benefits from an insensitivity to the mismatch ratio ρ (defined in Corollary 4), i.e., it does not require any

mini-batching, and therefore it represents a minimum standard for performance.

Finally, we consider a communications-constrained adaptation of DGD [121] (see Section III-B for a description

of DGD). Note that DGD implicitly supposes ρ = 1; to handle the ρ < 1 case, we consider two adaptations: naive

DGD, in which data samples that arrive between computation+communications rounds are simply discarded, and

mini-batched DGD, in which nodes compute local mini-batches of size B/N = 1/ρ, take gradient updates using

the local mini-batch, and carry out a consensus round. While it is not designed for the communications-limited

38

10
1

10
2

10
3

10
-4

10
-3

10
-2

10
-1

10
0

(a) t′ = N2

10
1

10
-4

10
-3

10
-2

10
-1

10
0

(b) t′ = N3/2

Fig. 9. Performance of different distributed and centralized first-order methods on 6-regular expander graphs, for ρ = 1/2, measured in terms

of the excess risk for binary logistic regression.

scenario, DGD has good performance in general, so it represents a natural alternative against which to compare the

performance of D-SGD and AD-SGD.

For network topology, we use expander graphs, which are families of graphs that have spectral gap 1− |λ2(A)|

bounded away from zero as N →∞. In particular, we use 6-regular graphs, i.e., regular graphs in which each node

has six neighbors, drawn uniformly from the ensemble of such graphs. Because |λ2(A)| is strictly bounded above

by 1 for expander graphs, one can more easily examine whether performance of D-SGD and AD-SGD agrees with

the ideal scaling laws discussed in Corollaries 3 and 4. At the same time, because D-SGD and AD-SGD make use

of imperfect averaging, expander graphs also allow us to examine non-asymptotic behavior of the two schemes.

Per Corollaries 3 and 4, we choose B/N = 1
10

log(t′)
ρ log(1/|λ2(A)|) . While such scaling is guaranteed to be sufficient

for optimum asymptotic performance, we chose the multiplicative constant 1/10 via trial-and-error to give good

non-asymptotic performance.

In Fig. 9 we plot the performance of different methods averaged over 600 Monte Carlo trials. We take ρ = 1/2,

and consider the regimes t′ = N2 (Fig. 9(a)) and t′ = N3/2 (Fig. 9(b)). For D-SGD, the stepsizes are taken to be

ηt = 2.5/
√
t. For AD-SGD, we take βt = t/2 as prescribed in [3], as well as ηt = 8/(t+ 1)3/2 when t′ = N3/2

and ηt = 14/(t+1)3/2 when t′ = N2. We arrived at the constants in front of ηt via trial-and-error. We see that AD-

SGD and D-SGD outperform local methods, while their performance is roughly in line with asymptotic theoretical

predictions. The performance of DGD, on the other hand, depends on the regime: For t′ = N2, it appears to have

order-optimum performance, whereas for t′ = N3/2 it has suboptimum performance on par with local methods.

The reason for the dependency of DGD on regime is not immediately clear and suggests the need for further study

into DGD-style methods in the case of rate-limited networks.

39

VI. CONCLUSION AND FUTURE DIRECTIONS

The development, characterization, and implementation of efficient learning from fast (and distributed) streams

of data is a challenge for researchers and practitioners for the coming decade. In this paper, we have laid out results

that suggest that such learning is possible—even when the processing rates of individual compute nodes and/or

network communications are slow relative to the streaming rate of data. In particular, we have framed this problem

as a distributed stochastic approximation problem, in which streams of independent and identically distributed (i.i.d.)

data samples arrive at compute nodes that are connected by communications networks and that exchange messages

at a fixed rate—which may be slower than the rate at which samples arrive.

Within this framework, we have discussed distributed first-order stochastic optimization methods that efficiently

solve the learning problem, both in systems with robust communications networks that can implement exact

AllReduce-style aggregation of data, and in systems with decentralized communications networks that implement

approximate aggregation of data via averaging consensus. We have also presented performance guarantees for these

methods for general convex problems and for the “well-behaved” nonconvex problem of principal component

analysis (PCA), for both of which global optimization is possible.

A critical component of these methods is explicit local mini-batching, in which nodes average together the

gradients (or gradient-like quantities) of multiple samples. Nodes then need only communicate the gradient of

the entire local mini-batch, which substantially reduces the communications burden of distributed learning. A

consistent through-line of these results is that both the (implicit) network-wide and the (explicit) local mini-batch

sizes must be chosen carefully; small mini-batches do not slow down algorithmic iterations sufficiently to counter

the fast streaming rate and/or reduce the communications load, and large mini-batches slow them down so far

that convergence is slowed down. We give both a precise characterization of the necessary mini-batch size and

the network constraints—in terms of the size, topology, and communications rates—under which it is possible to

obtain convergence rates that are as fast (order-wise) as the ideal case in which there are ample compute nodes and

communications between the nodes is perfect and instantaneous. Perhaps surprisingly, these results show that even

relatively slow communication links are often sufficient for optimal distributed learning.

We conclude this paper with discussion of a subset of research questions that these results leave open.

Nonconvex losses. The results presented here are for convex losses or for the PCA problem, a special case in

which all local optima are global, and first-order methods can converge on a global optimum. But many important

machine learning problems, including deep learning, are highly nonconvex. Recently, several works have proposed

and analyzed methods for distributed nonconvex optimization [101]–[103]. However, to the best of our knowledge,

the question of general nonconvex learning from fast, distributed data streams with global guarantees remains open.

One of the major challenges in extending the results presented here is pinpointing the impact of inexact averaging

on the potential mini-batching gains. When nodes compute inexact averages of their gradients, their iterates may

diverge. This divergence may be catastrophic in the case of nonconvex learning, as nodes’ iterates may end up in

different basins of attraction. In this scenario, gradients will be taken with respect to increasingly distant operating

points, and averaging them according to the recipe of this paper may not result in good search directions.

40

Message quantization. This work supposes nodes exchange real-valued messages, whereas messages are quan-

tized in digital communications networks. Further, in addition to local mini-batching, nodes can speed up commu-

nications by explicitly quantizing their messages, thereby reducing the network throughput required to exchange

messages. But quantization introduces additional noise into the system, which requires further analysis and algorith-

mic control. A variety of methods have been proposed for tackling quantization-aware learning, both in centralized

and distributed settings [122]–[124], including signSGD [125], in which nodes exchange one-bit quantized gradients.

An open question is when and whether such schemes are optimal for distributed learning from fast streaming data.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, May 2015.

[2] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Proc. 19th Intl. Conf. Computational Statistics

(COMPSTAT’2010), Paris, France, Aug. 2010, pp. 177–187.

[3] G. Lan, “An optimal method for stochastic composite optimization,” Mathematical Programming, vol. 133, no. 1-2, pp. 365–397, 2012.

[4] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive variance reduction,” in Proc. Conf. Neural Information

Processing Systems (NeurIPS’13), 2013, pp. 315–323.

[5] M. Li, T. Zhang, Y. Chen, and A. J. Smola, “Efficient mini-batch training for stochastic optimization,” in Proc. 20th ACM Intl. Conf.

Knowledge Discovery and Data Mining (SIGKDD’14), 2014, pp. 661–670.

[6] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. Springer, 2006.

[7] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated optimization: Distributed machine learning for on-device

intelligence,” arXiv preprint arXiv:1610.02527, 2016.

[8] J. Tsitsiklis and M. Athans, “Convergence and asymptotic agreement in distributed decision problems,” IEEE Trans. Automatic Control,

vol. 29, no. 1, pp. 42–50, Jan. 1984.

[9] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Syst. Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[10] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for distributed optimization and learning over networks,” IEEE Trans. Signal

Process., vol. 60, no. 8, pp. 4289–4305, Aug. 2012.

[11] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous deterministic and stochastic gradient optimization algorithms,” IEEE

Trans. Automatic Control, vol. 31, no. 9, pp. 803–812, Sep. 1986.

[12] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-agent optimization,” IEEE Trans. Automatic Control, vol. 54,

no. 1, p. 48, 2009.

[13] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,” in Proc. 6th Conf. Symp. Operating Systems

Design Implementation (OSDI’04), San Francisco, CA, 2004, pp. 1–10.

[14] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1,

pp. 215–233, Jan. 2007.

[15] A. Olshevsky and J. N. Tsitsiklis, “Convergence speed in distributed consensus and averaging,” SIAM Rev., vol. 53, no. 4, pp. 747–772,

2011.

[16] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed Optimization and Statistical Learning Via the Alternating Direction

Method of Multipliers, ser. Foundations and Trends in Machine Learning. Hanover, MA: Now Publishers Inc., Jan. 2011, vol. 3, no. 1.

[17] A. H. Sayed, Adaptation, Learning, and Optimization Over Networks, ser. Foundations and Trends in Machine Learning. Hanover, MA:

Now Publishers Inc., Jul. 2014, vol. 7, no. 4-5.

[18] A. Nedić, “Distributed optimization over networks,” in Multi-agent Optimization, F. Facchinei and J.-S. Pang, Eds. Springer International

Publishing, 2018, pp. 1–84.

[19] A. Nedić, A. Olshevsky, and M. G. Rabbat, “Network topology and communication–computation tradeoffs in decentralized optimization,”

Proc. IEEE, vol. 106, no. 5, pp. 953–976, May 2018.

[20] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods, and future directions,” IEEE Signal Process.

Mag., vol. 37, no. 3, pp. 50–60, 2020.

41

[21] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, R. G. L.

D’Oliveira, S. E. Rouayheb, D. Evans, J. Gardner, Z. Garrett, A. Gascon, B. Ghazi, P. B. Gibbons, M. Gruteser, Z. Harchaoui, C. He,

L. He, Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi, G. Joshi, M. Khodak, J. Konecny, A. Korolova, F. Koushanfar, S. Koyejo,

T. Lepoint, Y. Liu, P. Mittal, M. Mohri, R. Nock, A. Ozgur, R. Pagh, M. Raykova, H. Qi, D. Ramage, R. Raskar, D. Song, W. Song, S. U.

Stich, Z. Sun, A. T. Suresh, F. Tramer, P. Vepakomma, J. Wang, L. Xiong, Z. Xu, Q. Yang, F. X. Yu, H. Yu, and S. Zhao, “Advances

and open problems in federated learning,” arXiv preprint arXiv:1912.04977, 2019.

[22] Z. Yang, A. Gang, and W. U. Bajwa, “Adversary-resilient distributed and decentralized statistical inference and machine learning: An

overview of recent advances under the Byzantine threat model,” IEEE Signal Process. Mag., vol. 37, no. 3, pp. 146–159, 2020.

[23] R. Xin, S. Kar, and U. A. Khan, “Decentralized stochastic optimization and machine learning: A unified variance-reduction framework

for robust performance and fast convergence,” IEEE Signal Process. Mag., vol. 37, no. 3, pp. 102–113, 2020.

[24] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed

machine learning with the parameter server,” in Proc. 11th USENIX Symp. Operating Systems Design and Implementation (OSDI’14),

2014, pp. 583–598.

[25] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg,

R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:

A system for large-scale machine learning,” in Proc. 12th USENIX Symp. Operating Systems Design and Implementation (OSDI’16),

Savannah, GA, Nov. 2016, pp. 265–283.

[26] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker, “An introduction to the MPI standard,” University of Tennessee, Tech. Rep., 1995.

[27] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.

Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI: Goals, concept, and design of a next generation MPI implementation,”

in Proc. 11th European PVM/MPI Users’ Group Meeting, Budapest, Hungary, Sep. 2004, pp. 97–104.

[28] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild!: A lock-free approach to parallelizing stochastic gradient descent,” in Proc. Conf.

Neural Information Processing Systems (NeurIPS’11), 2011, pp. 693–701.

[29] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Consensus-based distributed optimization: Practical issues and applications in large-scale

machine learning,” in Proc. 50th Annu. Allerton Conf. Communication, Control, and Computing, Oct. 2012, pp. 1543–1550.

[30] H. Zhang, C.-J. Hsieh, and V. Akella, “Hogwild++: A new mechanism for decentralized asynchronous stochastic gradient descent,” in

Proc. IEEE 16th Intl. Conf. Data Mining (ICDM’16), 2016, pp. 629–638.

[31] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting distributed synchronous SGD,” in Proc. Intl. Conf. Learning Representations

(ICLR’16) Workshop Track, 2016.

[32] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient coding: Avoiding stragglers in distributed learning,” in Proc. 34th

Intl. Conf. Machine Learning (ICML’17), Sydney, Australia, Aug. 2017, pp. 3368–3376.

[33] J. Wang, V. Tantia, N. Ballas, and M. Rabbat, “SlowMo: Improving communication-efficient distributed SGD with slow momentum,” in

Proc. Intl. Conf. Learning Representations (ICLR’20), 2020.

[34] V. Vapnik, “An overview of statistical learning theory,” IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 988–999, 1999.

[35] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan, “Stochastic convex optimization,” in Proc. Conf. Learning Theory (COLT’09),

2009.

[36] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng, “On optimization methods for deep learning,” in Proc. 28th Intl.

Conf. Machine Learning (ICML’11), Madison, WI, 2011, pp. 265–272.

[37] B. Neyshabur, R. R. Salakhutdinov, and N. Srebro, “Path-SGD: Path-normalized optimization in deep neural networks,” in Proc. Conf.

Neural Inf. Process. Syst. (NeurIPS’15), 2015, pp. 2422–2430.

[38] J. C. Spall, “Stochastic optimization,” in Handbook of Computational Statistics: Concepts and Methods, J. E. Gentle, W. K. Härdle, and

Y. Mori, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 173–201.

[39] S. Kim, R. Pasupathy, and S. G. Henderson, “A guide to sample average approximation,” in Handbook of Simulation Optimization, M. C.

Fu, Ed. New York, NY: Springer New York, 2015, pp. 207–243.

[40] H. Robbins and S. Monro, “A stochastic approximation method,” Ann. Math. Statist., vol. 22, no. 3, pp. 400–407, 1951.

[41] E. Moulines and F. R. Bach, “Non-asymptotic analysis of stochastic approximation algorithms for machine learning,” in Proc. Advances

in Neural Information Processing Systems (NeurIPS’11), 2011, pp. 451–459.

[42] O. Shamir, “Convergence of stochastic gradient descent for PCA,” in Proc. 33rd Intl. Conf. Machine Learning (ICML’16), New York,

NY, Jun. 2016, pp. 257–265.

42

[43] A. Bijral, A. Sarwate, and N. Srebro, “Data-dependent convergence for consensus stochastic optimization,” IEEE Trans. Autom. Control,

vol. 62, no. 9, pp. 4483–4498, Sep. 2017.

[44] R. Frostig, R. Ge, S. M. Kakade, and A. Sidford, “Competing with the empirical risk minimizer in a single pass,” in Proc. 28th Conf.

Learning Theory (COLT’15), Jul. 2015, pp. 728–763.

[45] B. Polyak, “A new method of stochastic approximation type,” Avtomat. i Telemekh, no. 7, pp. 98–107, 1990.

[46] D. Ruppert, “Efficient estimators from a slowly convergent Robbins-Monro process,” School of Operations Research and Industrial

Engineering, Cornell University, Ithaca, NY, Tech. Rep. No. 781, 1988.

[47] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approximation by averaging,” SIAM J. Control and Opt., vol. 30, no. 4, pp.

838–855, 1992.

[48] Y. E. Nesterov, “A method for solving the convex programming problem with convergence rate O(1/k2),” in Dokl. Akad. Nauk SSSR,

vol. 269, 1983, pp. 543–547.

[49] H. Kushner and G. G. Yin, Stochastic Approximation and Recursive Algorithms and Applications. Springer Science & Business Media,

2003, vol. 35.

[50] A. Agarwal, M. J. Wainwright, P. L. Bartlett, and P. K. Ravikumar, “Information-theoretic lower bounds on the oracle complexity of

convex optimization,” in Proc. Conf. Neural Information Processing Systems (NeurIPS’09), 2009, pp. 1–9.

[51] L. Xiao, “Dual averaging methods for regularized stochastic learning and online optimization,” J. Machine Learning Res., vol. 11, pp.

2543–2596, Oct. 2010.

[52] S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods for nonconvex stochastic programming,” SIAM J. Opt., vol. 23, no. 4,

pp. 2341–2368, 2013.

[53] ——, “Accelerated gradient methods for nonconvex nonlinear and stochastic programming,” Mathematical Programming, vol. 156, no.

1-2, pp. 59–99, 2016.

[54] R. Ge, F. Huang, C. Jin, and Y. Yuan, “Escaping from saddle points—online stochastic gradient for tensor decomposition,” in Proc. Conf.

Learning Theory (COLT’15), 2015, pp. 797–842.

[55] E. Hazan, K. Y. Levy, and S. Shalev-Shwartz, “On graduated optimization for stochastic non-convex problems,” in Proc. Intl. Conf. Mach.

Learning (ICML’16), 2016, pp. 1833–1841.

[56] E. Hazan, S. Kale, and S. Shalev-Shwartz, “Near-optimal algorithms for online matrix prediction,” SIAM J. Computing, vol. 46, no. 2,

pp. 744–773, 2017.

[57] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola, “Stochastic variance reduction for nonconvex optimization,” in Proc. Intl. Conf.

Mach. Learning (ICML’16), 2016, pp. 314–323.

[58] S. J. Reddi, S. Sra, B. Póczos, and A. Smola, “Fast stochastic methods for nonsmooth nonconvex optimization,” arXiv preprint

arXiv:1605.06900, 2016.

[59] H. Kushner, “Asymptotic global behavior for stochastic approximation and diffusions with slowly decreasing noise effects: global

minimization via Monte Carlo,” SIAM J. Appl. Math., vol. 47, no. 1, pp. 169–185, 1987.

[60] S. B. Gelfand and S. K. Mitter, “Recursive stochastic algorithms for global optimization in Rd,” SIAM J. Control Optim., vol. 29, no. 5,

pp. 999–1018, 1991.

[61] H. Fang, G. Gong, and M. Qian, “Annealing of iterative stochastic schemes,” SIAM J. Control Optim., vol. 35, no. 6, pp. 1886–1907,

1997.

[62] G. Yin, “Rates of convergence for a class of global stochastic optimization algorithms,” SIAM J. Optim., vol. 10, no. 1, pp. 99–120, 1999.

[63] J. Maryak and D. Chin, “Global random optimization by simultaneous perturbation stochastic approximation,” IEEE Trans. Autom.

Control, vol. 53, no. 3, pp. 780–783, Apr. 2008.

[64] M. Raginsky, A. Rakhlin, and M. Telgarsky, “Non-convex learning via stochastic gradient Langevin dynamics: A nonasymptotic analysis,”

in Proc. Conf. Learning Theory (COLT’17), Amsterdam, Netherlands, Jul. 2017, pp. 1674–1703.

[65] M. A. Erdogdu, L. Mackey, and O. Shamir, “Global non-convex optimization with discretized diffusions,” in Proc. Advances in Neural

Information Processing Systems (NeurIPS’18), 2018, pp. 9671–9680.

[66] B. Shi, W. J. Su, and M. I. Jordan, “On learning rates and Schrödinger operators,” arXiv preprint, 2020. [Online]. Available:

https://arxiv.org/abs/2004.06977

[67] A. Balsubramani, S. Dasgupta, and Y. Freund, “The fast convergence of incremental PCA,” in Proc. Conf. Neural Information Processing

Systems (NeurIPS’13), 2013, pp. 3174–3182.

https://arxiv.org/abs/2004.06977

43

[68] P. Jain, C. Jin, S. M. Kakade, P. Netrapalli, and A. Sidford, “Streaming PCA: Matching matrix Bernstein and near-optimal finite sample

guarantees for Oja’s algorithm,” in Proc. Conf. Learning Theory (COLT’16), 2016, pp. 1147–1164.

[69] Z. Allen-Zhu and E. Hazan, “Variance reduction for faster non-convex optimization,” in Proc. Intl. Conf. Mach. Learning (ICML’16),

2016, pp. 699–707.

[70] T. Krasulina, “The method of stochastic approximation for the determination of the least eigenvalue of a symmetrical matrix,” USSR

Comput. Mathematics and Mathematical Physics, vol. 9, no. 6, pp. 189–195, 1969.

[71] Z. Allen-Zhu and Y. Li, “First efficient convergence for streaming k-PCA: A global, gap-free, and near-optimal rate,” in Proc. IEEE 58th

Annu. Symp. Found. Comput. Sci. (FOCS’17), 2017, pp. 487–492.

[72] C. Tang, “Exponentially convergent stochastic k-PCA without variance reduction,” in Proc. Advances in Neural Information Processing

Systems (NeurIPS’19), 2019, pp. 12 393–12 404.

[73] M. Simchowitz, A. El Alaoui, and B. Recht, “Tight query complexity lower bounds for PCA via finite sample deformed Wigner law,”

in Proc. 50th Annu. ACM Symp. Theory Comput., 2018, pp. 1249–1259.

[74] P. Yang, C.-J. Hsieh, and J.-L. Wang, “History PCA: A new algorithm for streaming PCA,” arXiv preprint arXiv:1802.05447, 2018.

[75] H. Raja and W. U. Bajwa, “Distributed stochastic algorithms for high-rate streaming principal component analysis,” arXiv preprint

arXiv:2001.01017, 2020.

[76] M. Hardt, B. Recht, and Y. Singer, “Train faster, generalize better: Stability of stochastic gradient descent,” in Proc. Intl. Conf. Machine

Learning (ICML’16), 2016, pp. 1225–1234.

[77] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” J, Machine Learning

Res., vol. 12, no. Jul, pp. 2121–2159, 2011.

[78] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.

[79] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of Adam and beyond,” in Proc. Intl. Conf. Learning Representations (ICLR’18),

2018.

[80] L. Lei, C. Ju, J. Chen, and M. I. Jordan, “Non-convex finite-sum optimization via SCSG methods,” in Proc. Conf. Neural Information

Processing Systems (NeurIPS’17), 2017, pp. 2348–2358.

[81] Z. Allen-Zhu, “Natasha: Faster non-convex stochastic optimization via strongly non-convex parameter,” in Proc. 34th Intl. Conf. Machine

Learning (ICML’17), 2017, pp. 89–97.

[82] ——, “Natasha 2: Faster non-convex optimization than SGD,” in Proc. Conf. Neural Information Processing Systems (NeurIPS’18), 2018,

pp. 2680–2691.

[83] P. L. Bartlett and S. Mendelson, “Rademacher and Gaussian complexities: Risk bounds and structural results,” J. Machine Learning Res.,

vol. 3, no. Nov, pp. 463–482, 2002.

[84] M. Kearns and D. Ron, “Algorithmic stability and sanity-check bounds for leave-one-out cross-validation,” Neural Computation, vol. 11,

no. 6, pp. 1427–1453, 1999.

[85] O. Bousquet and A. Elisseeff, “Stability and generalization,” J. Machine Learning Res., vol. 2, pp. 499–526, Mar. 2002.

[86] S. Mukherjee, P. Niyogi, T. Poggio, and R. Rifkin, “Learning theory: Stability is sufficient for generalization and necessary and sufficient

for consistency of empirical risk minimization,” Adv. Comput. Math., vol. 25, no. 1, pp. 161–193, Jul. 2006.

[87] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan, “Learnability, stability and uniform convergence,” J. Machine Learning Res.,

vol. 11, pp. 2635–2670, Oct. 2010.

[88] A. Sergeev and M. Del Balso, “Horovod: Fast and easy distributed deep learning in TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.

[89] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione, “Gossip algorithms for distributed signal processing,” Proc.

IEEE, vol. 98, no. 11, pp. 1847–1864, 2010.

[90] A. Nedić and A. Olshevsky, “Distributed optimization over time-varying directed graphs,” IEEE Trans. Automatic Control, vol. 60, no. 3,

pp. 601–615, 2014.

[91] ——, “Stochastic gradient-push for strongly convex functions on time-varying directed graphs,” IEEE Trans. Automatic Control, vol. 61,

no. 12, pp. 3936–3947, 2016.

[92] F. Saadatniaki, R. Xin, and U. A. Khan, “Optimization over time-varying directed graphs with row and column-stochastic matrices,”

IEEE Trans. Automatic Control, 2020.

[93] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order algorithm for decentralized consensus optimization,” SIAM J. Opt.,

vol. 25, no. 2, pp. 944–966, 2015.

44

[94] C. Xi and U. A. Khan, “DEXTRA: A fast algorithm for optimization over directed graphs,” IEEE Trans. Automatic Control, vol. 62,

no. 10, pp. 4980–4993, 2017.

[95] R. Xin and U. A. Khan, “A linear algorithm for optimization over directed graphs with geometric convergence,” IEEE Control Syst. Lett.,

vol. 2, no. 3, pp. 315–320, Jul. 2018.

[96] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for distributed optimization: Convergence analysis and network scaling,”

IEEE Trans. Automatic control, vol. 57, no. 3, pp. 592–606, 2011.

[97] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-sum distributed dual averaging for convex optimization,” in Proc. 51st IEEE Conf.

Decision and Control (CDC’12), 2012, pp. 5453–5458.

[98] E. Wei and A. Ozdaglar, “On the O(1/k) convergence of asynchronous distributed alternating direction method of multipliers,” in Proc.

IEEE Global Conf. Signal and Information Processing, 2013, pp. 551–554.

[99] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear convergence of the ADMM in decentralized consensus optimization,” IEEE

Trans. Signal Process., vol. 62, no. 7, pp. 1750–1761, 2014.

[100] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “DQM: Decentralized quadratically approximated alternating direction method of

multipliers,” IEEE Trans. Signal Process., vol. 64, no. 19, pp. 5158–5173, 2016.

[101] T. Tatarenko and B. Touri, “Non-convex distributed optimization,” IEEE Trans. Automatic Control, vol. 62, no. 8, pp. 3744–3757, 2017.

[102] H.-T. Wai, J. Lafond, A. Scaglione, and E. Moulines, “Decentralized Frank–Wolfe algorithm for convex and nonconvex problems,” IEEE

Trans. Automatic Control, vol. 62, no. 11, pp. 5522–5537, 2017.

[103] J. Zeng and W. Yin, “On nonconvex decentralized gradient descent,” IEEE Trans. Signal Process., vol. 66, no. 11, pp. 2834–2848, 2018.

[104] L. Li, A. Scaglione, and J. H. Manton, “Distributed principal subspace estimation in wireless sensor networks,” IEEE J. Sel. Topics Signal

Process., vol. 5, no. 4, pp. 725–738, 2011.

[105] A. Bertrand and M. Moonen, “Distributed adaptive estimation of covariance matrix eigenvectors in wireless sensor networks with

application to distributed PCA,” Signal Process., vol. 104, pp. 120–135, 2014.

[106] I. D. Schizas and A. Aduroja, “A distributed framework for dimensionality reduction and denoising,” IEEE Trans. Signal Process., vol. 63,

no. 23, pp. 6379–6394, 2015.

[107] J. Fan, D. Wang, K. Wang, and Z. Zhu, “Distributed estimation of principal eigenspaces,” Ann. Statist., vol. 47, no. 6, pp. 3009–3031,

2019.

[108] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal distributed online prediction using mini-batches,” J. Machine Learning

Res., vol. 13, pp. 165–202, Jan. 2012.

[109] K. I. Tsianos and M. G. Rabbat, “Efficient distributed online prediction and stochastic optimization with approximate distributed averaging,”

IEEE Trans. Signal Inform. Proc. over Netw., vol. 2, no. 4, pp. 489–506, 2016.

[110] M. Nokleby and W. U. Bajwa, “Stochastic optimization from distributed, streaming data in rate-limited networks,” IEEE Trans. Signal

Inform. Proc. over Netw., vol. 5, no. 1, pp. 152–167, Mar. 2019.

[111] R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu, “Sample size selection in optimization methods for machine learning,” Mathematical

Programming, vol. 134, no. 1, pp. 127–155, 2012.

[112] O. Shamir and N. Srebro, “Distributed stochastic optimization and learning,” in Proc. 52nd Annu. Allerton Conf. Communications, Control,

and Computing, 2014, pp. 850–857.

[113] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[114] H. Zhang, S. J. Reddi, and S. Sra, “Riemannian SVRG: Fast stochastic optimization on Riemannian manifolds,” in Proc. Conf. Neural

Information Processing Systems (NeurIPS’16), 2016, pp. 4592–4600.

[115] Z. Allen-Zhu and Y. Yuan, “Improved svrg for non-strongly-convex or sum-of-non-convex objectives,” in Proc. Intl. Conf. Machine

Learning (ICML’16), 2016, pp. 1080–1089.

[116] H. Sato, H. Kasai, and B. Mishra, “Riemannian stochastic variance reduced gradient algorithm with retraction and vector transport,”

SIAM J. Opt., vol. 29, no. 2, pp. 1444–1472, 2019.

[117] B. Li, S. Cen, Y. Chen, and Y. Chi, “Communication-efficient distributed optimization in networks with gradient tracking and variance

reduction,” in Proc. Intl. Conf. Artificial Intelligence and Statistics (AISTATS’20), 2020, pp. 1662–1672.

[118] H. Sun, S. Lu, and M. Hong, “Improving the sample and communication complexity for decentralized non-convex optimization: A joint

gradient estimation and tracking approach,” arXiv preprint arXiv:1910.05857, 2019.

[119] M. Assran, N. Loizou, N. Ballas, and M. Rabbat, “Stochastic gradient push for distributed deep learning,” in Proc. Intl. Conf. Mach.

Learning (ICML’18), 2018.

45

[120] A. Krizhevsky, “Learning multiple layers of features from tiny images,” Department of Computer Science, University of Toronto, Tech.

Report, 2009. [Online]. Available: http://www.cs.toronto.edu/∼kriz/cifar.html

[121] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1,

pp. 48–61, 2009.

[122] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with limited numerical precision,” in Proc. Intl. Conf.

Machine Learning (ICML’15), 2015, pp. 1737–1746.

[123] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-Net: Training low bitwidth convolutional neural networks with low

bitwidth gradients,” arXiv preprint arXiv:1606.06160, 2016.

[124] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “TernGrad: Ternary gradients to reduce communication in distributed deep

learning,” in Proc. Conf. Neural Information Processing Systems (NeurIPS’17), 2017, pp. 1509–1519.

[125] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar, “signSGD: Compressed optimisation for non-convex problems,” in

Proc. Intl. Conf. Machine Learning (ICML’18), 2018, pp. 560–569.

http://www.cs.toronto.edu/~kriz/cifar.html

	I Introduction
	I-A Motivation and Background
	I-B Streaming Data and Distributed Machine Learning
	I-C General Framing of the Overview
	I-D An Outline of the Overview Paper
	I-E Notational Convention

	II Problem Formulation
	II-A Statistical Optimization for Machine Learning
	II-B Distributed Training of Machine Learning Models from Streaming Data
	II-C Interplay Between System Parameters in Distributed, Streaming Machine Learning

	III An Overview of the Technical Landscape
	III-A Optimization for Machine Learning
	III-A1 Stochastic Approximation (SA)
	III-A2 Empirical Risk Minimization (ERM)

	III-B Distributed Optimization and Machine Learning
	III-B1 Exact Averaging and Distributed Machine Learning
	III-B2 Inexact Averaging and Distributed Machine Learning

	III-C Roadmap for the Remainder of the Paper

	IV Distributed Stochastic Approximation Using Exact Averaging
	IV-A Distributed Mini-batched Stochastic Convex Approximation
	IV-B Numerical Experiments for the DMB Algorithm
	IV-C Distributed Mini-batched Streaming PCA
	IV-D Numerical Experiments for DM-Krasulina
	IV-D1 Synthetic data
	IV-D2 Real-world Data

	V Distributed Stochastic Approximation Using Inexact Averaging
	V-A Algorithms for Distributed Stochastic Convex Approximation
	V-A1 Description of D-SGD
	V-A2 Description of AD-SGD

	V-B Convergence Results and Scaling Laws
	V-C Numerical Experiments for D-SGD and AD-SGD

	VI Conclusion and Future Directions
	References

