Lyra: A Cross-Platform Language and Compiler for Data Plane
Programming on Heterogeneous ASICs

Jiaqi Gao'™, Ennan Zhai', Hongqiang Harry Liu', Rui Miao', Yu Zhou'°, Bingchuan Tian™*, Chen Sun'
Dennis Cai”, Ming ZhangT, Minlan Yu$

T Alibaba Group ¥Harvard University

ABSTRACT

Programmable data plane has been moving towards deployments
in data centers as mainstream vendors of switching ASICs enable
programmability in their newly launched products, such as Broad-
com’s Trident-4, Intel/Barefoot’s Tofino, and Cisco’s Silicon One.
However, current data plane programs are written in low-level,
chip-specific languages (e.g., P4 and NPL) and thus tightly cou-
pled to the chip-specific architecture. As a result, it is arduous and
error-prone to develop, maintain, and composite data plane pro-
grams in production networks. This paper presents Lyra, the first
cross-platform, high-level language & compiler system that aids the
programmers in programming data planes efficiently. Lyra offers a
one-big-pipeline abstraction that allows programmers to use simple
statements to express their intent, without laboriously taking care
of the details in hardware; Lyra also proposes a set of synthesis and
optimization techniques to automatically compile this “big-pipeline”
program into multiple pieces of runnable chip-specific code that
can be launched directly on the individual programmable switches
of the target network. We built and evaluated Lyra. Lyra not only
generates runnable real-world programs (in both P4 and NPL), but
also uses up to 87.5% fewer hardware resources and up to 78% fewer
lines of code than human-written programs.

CCS CONCEPTS

« Networks — Programmable networks; Programming inter-
faces; » Theory of computation — Abstraction;

KEYWORDS

Programmable switching ASIC; Programmable Networks; Program-
ming Language; Compiler; P4 Synthesis

ACM Reference Format:

Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao, Yu Zhou, Bingchuan
Tian, Chen Sun, Dennis Cai, Ming Zhang, Minlan Yu . 2020. Lyra: A Cross-
Platform Language and Compiler for Data Plane Programming on Heteroge-
neous ASICs. In Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols
for computer communication (SIGCOMM °20), August 10-14, 2020, Virtual
Event, NY, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3387514.3405879

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCOMM °20, August 10-14, 2020, Virtual Event, NY, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7955-7/20/08. .. $15.00
https://doi.org/10.1145/3387514.3405879

°Tsinghua University

*Nanjing University

1 INTRODUCTION

“C language lets you get close to the machine, without getting
tied up in the machine.”

— Dr. Brian Kernighan

Programmable network devices have gained significant traction in
the networking community, as a result of their powerful capability
allowing network programmers to customize the algorithms di-
rectly in the data plane and thus operate packets at the line rate. Peo-
ple have shown the tremendous benefits brought by the flexibility of
programmable network devices [38], e.g., load balancing [12, 27, 32],
network monitoring [2, 22, 35], consistency algorithms [24, 28], in-
network caching [25] and congestion control [29]. Currently, a
growing number of programmable switching ASICs (application-
specific integrated circuits) are being commercialized by main-
stream chip vendors. For example, Broadcom launched Trident-4
and Jericho-2 which are programmable by NPL [1], whereas In-
tel/Barefoot’s Tofino [6] and Cisco’s Silicon One [4] support P4
programming [15].

Despite the bloom of programmable network devices and pro-
gramming languages, the foundation of network programming on
data plane is still at an early stage—network programmers are still
using chip-specific languages and manually take care of numerous
details with hardware features, hardware capacities, and network
environments when developing data plane algorithms, comparably
similar to the era when software engineers use assembly languages
to write software on CPUs (central processing units). As a result,
the manageability of data plane programs is still unready for large
scale deployments and operations.

Specifically, there are three major problems faced by network
programmers nowadays with chip-specific languages.

Portability. First of all, current data plane programs have poor
portability because they are tightly coupled with specific ASIC
models from specific vendors. For instance, even for the same ven-
dor, a program running on Barefoot Tofino 32Q does not necessarily
run automatically on Tofino 64Q due to the varying numbers of
march-action units and different memory resources; not to men-
tion the migration from Barefoot Tofino to Broadcom Trident-4
which has totally different pipeline design and chip-specific lan-
guage. Therefore, network programmers are required to be not only
proficient in all the languages involved, but also knowledgeable
about the various pipeline architectures and resource constraints
of the different programmable ASICs.

Extensibility. Second, low-level languages focus on programming
individual ASICs, while there are data plane programs that require
to execute on multiple ASICs in a distributed way. For example, INT

https://doi.org/10.1145/3387514.3405879
https://doi.org/10.1145/3387514.3405879
https://doi.org/10.1145/3387514.3405879

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

(in-band network telemetry) [2] has different roles for ingress, tran-
sit, and egress switches; middle-boxes, e.g., load balancer (LB) [32],
can also collectively use table resources in multiple switches for
accommodating large-scale workloads. However, nowadays, net-
work programmers have to individually program each switch’s data
plane with its own low-level chip language because a high-level,
network-wide abstraction for the data plane programming does not
currently exist yet.

Composition. Last but not least, a practical deployment of pro-
grammable data plane must have multiple programs enabled. For
instance, a data center network might want both INT, LB, and
scheduler co-existed in the data plane. One particular combination
of programs can lead to a complete restructure of each individual
program and their deployment arrangements because of the con-
siderations on the details of switch capability, network topology,
and so forth. The whole process is arduous and error-prone.

We believe the fundamental reason for the above problems in the
state-of-the-art data plane programming is the lack of a high-level
language. In this paper, we present Lyra—a language & compiler
system for programmable data center networks (DCNs)—that fa-
cilitates data plane programs to achieve portability, extensibility,
and composition simultaneously.! Lyra language offers a one-big-
pipeline abstraction to network programmers, and the latter can
flexibly express the logic of their programs in a chip-neutral and
target-agnostic way; Lyra compiler compiles the Lyra program into
multiple pieces of runnable chip-specific code that can be launched
directly on the programmable switches of the target network, elim-
inating the need for engineer proficiency in any chip-specific ar-
chitectures and languages involved.

Lyra language. Different from the existing high-level abstractions
on control plane programming that focuses on packet forward-
ing [13, 14, 19, 31, 34], Lyra’s goal is to provide a high-level ab-
straction for data plane programming to express packet processing
logics, such as packet header write and arithmetic operations.

Lyra language offers a one-big-pipeline programming abstraction
that is simple and expressive for directly describing how packets
with different characters will be processed along a chain of algo-
rithms. Each algorithm is a tree-like procedure that defines the
packet processing logics with if-else statements and simple read,
write and arithmetic operations to packets. With this language, net-
work programmers can directly express packet process procedures
without worrying about how the underneath switches realize the
logics, e.g., using multiple tables to implement an if-else statement
or using one table to implement multiple if-else statements.

Lyra language also offers a critical ability to specify an algorithm
scope that explicitly defines the scope of candidate switches an
algorithm to be deployed into. For example, network programmers
may wish to deploy a stateful load balancer merely on ToR (top-
of-rack) switches. This feature provides an essential ability for
programmers to guide the final compilation and deployments with
high-level intents.

Lyra compiler. The core task of the Lyra compiler is to combine
the high-level Lyra program, algorithm scopes, network topology,

1We focus on programmable DCNGs in this work, but we believe Lyra is easily extendable
to more scenarios such as programmable WANs.

Gao et al.

and the low-level details of ASICs to generate correct and runnable
chip-specific code in the target network.

Different from prior works [14, 26, 41] that focus on resource
allocations with integer linear programming (ILP), Lyra faces more
complex scenarios due to conditional feature constraints, which
cannot be encoded with ILP, under the heterogeneity of ASICs.
For instance, if the address resolution protocol learning function is
deployed on an NPL/Trident-4 switch, we only need one table for
lookup, but the P4/Tofino switch requires more than two tables.

The key methodology of the Lyra compiler is to encode all logics
and constraints into an SMT (satisfiability modulo theories) prob-
lem and use an SMT solver to find the best implementation and
deployment strategy of a given Lyra program in the target network.
Lyra takes three steps to achieve this goal. First, Lyra translates
the Lyra program into a context-aware intermediate representation
(or context-aware IR), with important context information such
as instruction dependency and deployment constraints. Second,
Lyra synthesizes conditional language-specific implementations for
each algorithm based on its context-aware IR. Lyra puts the syn-
thesized conditional language-specific implementations into the
corresponding switches, and uses a logical formula to restrict that
there will be only one implementation exist of each algorithm in
the final solution. We design effective algorithms to solve the major
challenge at this step, which is the generation of language-specific
tables and their actions based on the dependencies of statements
written in Lyra language (§5.2 and §5.3). Finally, Lyra constructs an
SMT formula that encodes all resource and placement constraints
to decide the chip-specific implementation and placement of all
algorithms simultaneously. If an algorithm cannot be placed into a
single switch due to a lack of enough resources, Lyra can split it
into smaller ones and put them into multiple switches. The major
challenge here is to understand the resource allocation behaviors of
different ASICs and encode them into the SMT formula (§5.4-§5.5).

Evaluation. We have built Lyra and evaluated its effectiveness on
a variety of real-world programs. Lyra not only generated runnable
real-world programs (in both P4 and NPL), but also used up to 87.5%
fewer hardware resources and up to 78% fewer lines of code than
human-written programs.

2 OVERVIEW

As the major switch vendors, e.g., Broadcom, Cisco, Intel/Barefoot,
etc., embrace programmable data plane with their new mainstream
ASIC products for DCN, the revolution towards programmable
DCNs has already started.

However, despite that programmability on data plane offers pro-
grammers tremendous opportunities to customize network features
or offload computations to networks, one crucial requirement to
deploy and operate a programmable DCN is how to maintain the
manageability at least on the same level as current DCNs. With-
out meeting this need, the adoption of programmable DCN would
significantly slow down or even never happen in the worst case.

As one of the largest global service providers, Alibaba is already
focusing on the challenge to develop, maintain, and composite data
plane programs in realistic DCNs with heterogeneous ASICs. In
fact, DCNs are always heterogeneous in switch vendors and ASIC
types for two reasons. First, network operators need to prevent
the “vendor lock-in” problem [30, 36], so they intentionally use

ﬁomahaw@ ﬁomahaw@
Core 1 Core 2

:. = :._.. R
!|(Trident4)| |(Trident4]| i |(Trident-4)| |(Trident-4
il Agg1 Agg 2 1| Agg3 Agg 4
: :
| [Tofino-032q)| |(Tofino-064Q)| | |(Silicon OneJ| |(Silicon One)
E ToR 1 ToR 2 ' ToR 3 ToR 4

[]

[o]

o]
S5

S3

S6

s7

Figure 1: Motivating example. The network programmers deploy INT across the entire network, and stateful load balancer on

Agg 3, Agg 4, ToR 3 and ToR 4.

different vendors in their networks and require the equipment from
these vendors to be replaced transparently to their management
plane and applications. Second, different ASICs have distinctive
trade-offs among programmability, throughput, buffer size, and
cost, due to the physical limitations in chip manufacture. Differ-
ent layers of DCN, therefore, adopt different types of ASICs. For
example, ToR switches may use high-programmability ASICs (e.g.,
Barefoot Tofino and Broadcom Trident-4) for near-server computa-
tion offloading, while core switches employ high-throughput but
less programmable ASICs, e.g., Broadcom Tomahawk.

2.1 Motivation

Similar to control plane software, data plane programs also need to
be continuously upgraded for bugs fixing or introductions of new
features; Different data plane programs still have to co-exist inside
one DCN, and each program should be added or deleted as well.
Nonetheless, the current practice of data plane programming with
chip-specific languages can hardly achieve the above requirements,
especially under the heterogeneity of ASICs. Concretely, there are
critical problems resulting from low-level programming languages,
as we will explain with a simplified but realistic example.

Figure 1 shows an example for a programmable DCN that has
five types of ASICs (ToR and Agg layers are fully programmable)
and two data plane programs.

(i) INT [2]: INT was originally proposed to collect and report
network state by inserting the critical metadata in the packet header.
As shown in Figure 1(b), given a packet p, each programmable
switch k on the path inserts a metadata to p’s header by computing
8k(p) ~ N8k (p)- where ingr(p) and €8k (p) denote the ingress time
stamp and egress time stamp of p on k, respectively. In particular,
INT contains three algorithms: ingress INT, transit INT, and egress
INT. Ingress INT identifies the packets of interest, and inserts a
probe header and the metadata (see ToR; in Figure 1(b)). Transit
INT only inserts the metadata. Egress INT inserts the metadata,
and mirrors the received packet for post analyzing. In our example,
network programmers are required to deploy ingress and egress INT
on ToR switches, and deploy transit INT on aggregation switches.

(ii) Stateful L4 load balancer (LB) [32]: The L4 LB maps the
packets destined to a service with a virtual IP (or VIP), to a set of
servers holding the service with multiple destination IPs (or DIPs).
In Figure 1 example, network programmers are required to deploy
the LB in the scope {Agg 3, Agg 4, ToR 3, and ToR 4} to balance the

o Payioad
[
;= (Tofine) | | |(ricent4)| /|
: e ToR i Agg i
.,

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

In-Band Network Telemetry (INT)

28 L3 8 1CP Hoader 28 138 1CP Hoader | 1

(26 L3 & TCP Hoader

‘Probe Header Probe Header]

Probe Header
Agg i Metadata

26 L3 & TCP Hoader
Probe Header

ToR j Metadata
'Agg) Metadata

Agg j Metadata
‘Agg | Metadata

ToR i Metadata ToR | Metadata

ToR i Metadata Agg i Metadata

Payload Payload

Payload ToR | Metadata

Payload]

ToRj

Aggj

|l) 1
| [TridenM]m Siicon one)| | =]t

Connection

vIP

from 1.1.1.1:1234 | 10.0.0.2:20
102.0.0.1:80

TCP.

2.0.0.1:80 10.0.0.1:20

10.0.0.2:20

200.280 |10.0.1.3:33

ConnTable

VIPTable

action enable_int() {
enable_int = 1;

}

table check_src_ip {
reads {ipv4.src_ip:exact;}
actions {enable_int;}
size: 1024;

3

table check_dst_ip {
reads {ipv4.dst_ip:exact;}
actions {enable_int;}
size: 1024;

3

control int {
apply(check_src_ip);
apply(check_dst_ip);
} // P4

logical_table check_ip {
table_type:hash;
min_size:1024;
max_size:1024;
keys { bit[32] ip; }
key_construct() {
if (_LOOKUP®)
ip = ipv4.src_ip;
1f (_LOOKUP1)
ip = ipv4.dst_ip;
}
fields_assign() {
enable_int = 1;
3
}

program int {
check_ip.lookup(@);
check_ip.lookup(1);
} // NPL

Figure 2: Flow filter: P4 V.S. NPL.

traffic from core switches to servers S5-S8. A stateful L4 LB has two
tables, VIPTable and ConnTable, as shown in Figure 1(c). For a given
connection’s packet c, if ¢’s VIP hits one of the items in ConnTable,
c is directly forwarded to the corresponding DIP; otherwise, the LB
identifies the DIP pool based on ¢’s VIP in the VIPTable, and installs
this (VIP, DIP) pair to ConnTable. For example, in Figure 1(c), all
the subsequent packets of the connection matching (1.1.1.1:1234,
2.0.0.1:80, TCP) in ConnTable get forwarded to 10.0.0.2:20.

If network programmers develop, deploy and maintain the above
two data plane programs with P4 (on Tofino and Silicon One) and
NPL (on Trident-4), three problems stem from the complexity in
both the languages and ASIC architecture.

Problem 1: Portability. It is hard to migrate a low-level pro-
gram from one ASIC to another. In Figure 1, initially, the network
programmers develop ingress and egress INT programs in P4 on
ToR switches. Despite that all ToR switches support P4, network
programmers have to develop INT programs for each ASIC be-
cause Tofino-032Q, Tofino-064Q, and Silicon One have quite dif-
ferent pipeline architectures and resource constraints. For exam-
ple, Tofino-064Q and Tofino-032Q have 12 and 24 match-action
units (MAUs) [7] and different memory sizes respectively, caus-
ing Tofino-032Q’s INT program in P4 that uses 18 MAUSs compiles
unsuccessfully on Tofino-064Q, let alone on Cisco’s Silicon One;
so, per model tuning is a must. Even worse, in the aggregation
layer, the programmers rewrite the programs in NPL, because P4

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

Bqr@
o

Algorithm Scope * Topology & Configuration

Lyra Program b e

: [checker | [Preprocessor| | Code Analyzer| , - IR instructions :
E=s 7| (sec. 4.1) (Sec. 4.2) (Sec. 4.3) - Instruction dependency ;

- Deployment constraints |

Lyra's Front-End

P4 Code
(ToR1) [*]

Synthesizer
(Sec. 5.2 & 5.3)

SMT Solver

Lyra Compiler
: {0} guT | Encoding | - Conditional

: (Sec. 5.7) i;cj,a formula | (5e¢-54-56) Implementation
: - Constraints
Lyra's Back-End

Figure 3: Lyra workflow overview.

and NPL have different language features and ASIC architectures.
For example, Figure 2 shows the clear difference between the two
languages in implementing the flow filter function of INT—P4 has
to use two tables for matching both source and destination IPs,
while NPL uses one table with two lookups.

Problem 2: Extensibility. Low-level languages focus on how to
program individual ASICs, but a program is usually required to run
on top of multiple ASICs in a distributed setting. In Figure 1 exam-
ple, the programmers now need to deploy the stateful LB program
on Agg 3, Agg 4, ToR 3, and ToR 4. At the beginning, they only
need to write an NPL program implementing ConnTable, T;, and
VIPTable, T, on both Agg 3 and Agg 4. As the number of traffic
connections increases, the programmers expand the size of T, by
modifying the NPL program. However, the new NPL program com-
piles unsuccessfully because the total size of T,, and the expanded
ConnTable T/ exceeds the resource constraints of Trident-4 ASIC.
The programmers, therefore, decide to move the VIPTable from
Agg 3 and Agg 4 to ToR 3 and ToR 4 by writing another P4 pro-
gram for T,. It takes many hours for the programmers to make sure:
(1) the P4 program compiles well on Silicon One ASICs, and (2)
ConnTable and VIPTable can work together across switches. As
the number of connections continues to grow, the programmers
expand T/ again to get a bigger ConnTable, T/”, making T!” no
longer fit in a Trident-4 ASIC. In this tough case, the programmers
have to carefully split T” into T{ and T}, and make sure T{ and
T/, + Ty compilable on the corresponding ASICs, while coordinating
correctly. Obviously, the programmers spend a lot of effort and time
in the above depressing process.

Problem 3: Composition. It is non-trivial to make multiple low-
level programs co-exist well in a DCN. For example, in Figure 1,
any particular combination of INT and LB programs may result
in a complete restructure of each program and its deployment
arrangements. For example, once the programmers move too many
entries of ConnTable to the ToR switches, the program may not
compile successfully because of not only VIPTable but also ingress
and egress INT programs. As the number of deployed programs
increases, it would be much harder to find a “fittable” deployment.

Summary. The problems of portability, extensibility, and composi-
tion fundamentally undermine the manageability of programmable
DCN, since network programmers will get trapped into endless
program reconstructions and numerous hardware details in daily
operations. The root cause of this dilemma is the direct use of
low-level, chip-specific programming languages, since a high-level,

Gao et al.

1 | >HEADER:

2 header_type int_probe_hdr_t { // Define header type
3 bit[8] hop_count;

4 -

5 3

6 packet in_pkt { fields { ... } }

7

8 | >PIPELINES:

9 pipeline[INT]{int_in -> int_transit -> int_out};
10 pipeline[LB]{loadbalancer};

11

12 algorithm loadbalancer { // Define load balancer
13 load_balancing();

14 }

15 algorithm int_in { // Ingress INT

16 global bit[32][1024] packet_counter; // global variable
17 int_filtering();

18 if (int_enable) {

19 add_int_probe_header();

20 add_int_md_hdr();

21 3}

22 }

23 algorithm int_transit { ... } // Transit INT

24 algorithm int_out { ... } // Engress INT

25

26 | >FUNCTIONS:
27 func add_int_md_hdr() {

28 extern dict<bit[8] msg_type, bit[30] switch_id>[128]
< add_int_md_hdr_filter;

29 if (int_probe_hdr.msg_type in add_int_md_hdr_filter) {

30 add_header (int_md_hdr);

31 int_md.queue_len = get_queue_len();

32 int_info(int_info);

33 .

34 3

35 }

36 func load_balancing() {

37 extern dict<bit[32] hash,bit[32] ip>[1024] conn_table;

38 extern dict<bit[32] vip,bit[8] group>[1024] vip_table;

39 hash = crc32_hash(ipv4.srcAddr, ipv4.dstAddr, ipv4.
< protocol, tcp.srcPort, tcp.dstPort);

40 if (hash in conn_table) {

41 ipv4.dstAddr = conn_tablel[hash];

42 }

43

44 }

45

Figure 4: Lyra program for our motivating example.

cross-platform, network-wide programming language is missing at
present. This is our fundamental motivation to build Lyra.

2.2 Overview of Lyra Program & Workflow

Lyra enables programmers to efficiently program data plane. For ex-
ample, the network programmers can write a Lyra program shown
in Figure 4 for the case in Figure 1. By taking in this program, Lyra
compiler generates eight pieces of chip-specific code that compile
successfully on Agg 1-4 and ToR 1-4, while meeting the functional
correctness specified by the input Lyra program.

Lyra’s workflow. Figure 3 presents Lyra’s workflow. First, Lyra
takes as input: (1) a high-level Lyra program, (2) an algorithm scope
describing each algorithm’s placement, and (3) DCN topology and
configurations. Then, Lyra’s front-end generates a context-aware
intermediate representation (or context-aware IR), with important
information such as instruction dependency and deployment con-
straints. Finally, Lyra’s back-end uses the context-aware IR to syn-
thesize conditional implementations for different languages (e.g., P4
and NPL), and encodes various constraints in the form of SMT for-
mula. We solve the formula to get a solution that can be translated
into multiple pieces of chip-specific code.

Bitwise left shift and
inclusive OR

Comparison between ipv4.sip
and ipv4.dip

/* P4_14 Program */

action a_get_tmp() { action a_get v16_1() {
subtract (tmp, smac, dmac); shift_left(vle, v8_a, 8);}

} action a_get_vl6_2() {

action a_com_zero() { bit_or(vlé, v16, v8_b); }
// do something le get_v16_1 {

} {src_ip: exact}

table get_tmp { ns { a_get_vlé_1; }
actions { a_get_tmp; } 107}

get_v16_2 {

ns { a_get_vl16_2; }}

get_v16 {

ly(get_v16_1){

it { apply(get_v16_2);}}

/* P4_14 Program */

}
table com_zero {
I {tmp: exact}
s { a_com_zero; }

control com_smac_dmac { }
apply (get_tmp) ;
apply (com_zero) ; /* P4_16 Program */

} control get_vl16() {

ction a_get v16 1() {
/* P4_16 Program */ v1l6 = v8_a << 8;}
control com_smac_dmac () { table get_v16_1 {
if (smac[31:0] == dmac([31:0]){ k {src_ip: exact;}
if (smac[47:32]==dmac[47:32]) ns = {a_get_v16_1;}
{ 0;}

// do something apply {
} if (get_v16_l.apply() .hit) {
) vl6 = v16 | v8_b;} }
} }

/* Lyra Program */ /* Lyra Program */

if (smac == dmac) { extern list<bit[32]ip>[10] get_v16_1;
/ do something if(src_ip in get v16 1) ({

} v1l6 = (v8_a << 8 | v8_b);}

(a) (b)
Figure 5: Lyra program V.S. P4, chip-specific program.

3 LYRA LANGUAGE

Lyra introduces a high-level abstraction for the network program-
mers to express their algorithms without the hassle of low-level
details. Figure 6 shows the grammar.

3.1 Why Lyra is High-Level?

Compared with current chip-specific languages (e.g., P4 and NPL),
Lyra’s abstraction is easier to use for the following two reasons.
First, Lyra programming only relies on simple semantics (e.g., if-
else) to express packet processing logic rather than “mandatory”
built-in data structures such as tables and registers in P4 and NPL. In
other words, using Lyra, the programmer does not need to take into
account how many tables they need to create, what functions should
be put in which tables, or how to assign registers to different stateful
variables. Second, Lyra is an architecture-independent language,
which allows the programmer to program without considering
chip-specific resource limitation (e.g., how many bits each stage can
support) or architecture constraints (e.g., how many shared register
between stages and can the same stages be accessed multiple times
or just once). In some sense, the relationship between Lyra and chip-
specific languages can be compared to the relationship between C
language and processor-specific assembly languages.

Figure 5 shows two examples to illustrate the difference between
Lyra and P4. In Figure 5(a), the programmer wants to check whether
the source MAC address, smac, is equal to the destination MAC
address, dmac. While P4 language itself does not limit the maxi-
mum bit width in such a comparison, some of programmable ASICs,
say ASIC-X, cannot support the comparison of longer-than-44-bit
variables.? In P44, the programmer has to address this restriction
by creating two additional tables: one for subtract(tmp, smac,
dmac) and another one for checking tmp is zero or not; in P44,

2We use examples from real ASICs, but omit the ASIC names.

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

the programmer needs to reduce the original 48-bit variable com-
parison to two 32-bit variable comparisons; on the contrary, the
programmer can use Lyra to directly write if(smac == dmac)
rather than handling the above low-level details in person, and
then Lyra compiler can automatically generate P4 code according
to the underlying ASICs’ restrictions. In Figure 5(b), the program-
mer implements a set of simple bitwise operations by introducing
multiple actions and tables in both P44 and P44¢ for assignment,
bitwise left shift and bitwise inclusive OR, due to the sequential
read-write dependency of ASIC-X. Using Lyra, on the other hand,
the programmer only needs to write: vi6 = (v8_a « 8 | v8_b).

The above examples are similar to the memory allocation situ-
ations in C and assembly languages. If using assembly languages
(e.g., ARM and x86), we pay attention not only to the low-level
instructions (e.g., MOV and PUSH), but also to the usage of register
and memory; on the contrary, we can use higher-level C language
to express memory allocation by just writing a malloc.

3.2 Lyra’s Programmable Model

Lyra introduces a new programming model named one big pipeline,
or OBP. This programming model treats each data plane program
involving multiple algorithms as a single pipeline covering these al-
gorithms. OBP aims to avoid low-level details such as table-oriented
grammar (like P4). In Figure 1, INT is an OBP consisting of three
algorithms: ingress INT, transit INT, and egress INT, and stateful
L4 LB is another OBP. We can implement these two OBPs in a Lyra
program that must consist of three parts: (1) pipeline specification,
and (2) function, and (3) header definition.

Pipelines & algorithm definition (Line 8 in Figure 4). The OBP
allows the programmers to treat what they want to deploy as
a single pipeline that contains one or more algorithms. We use
pipeline to define an OBP, and use algorithm to specify each
algorithm in the OBP. In our motivating example, as an OBP, INT
has three algorithms: (1) int_in (defined in Lines 16-22 in Figure 4),
(2) int_transit (Line 23), and (3) int_out (Line 24), correspond-
ing to ingress, transit, and egress INT, respectively. On the other
hand, the stateful LB is another OBP which only has one algorithm,
defined in Lines 13-15 in Figure 4. In Lyra, we recursively specify
all the algorithms in an OBP. In Figure 4 example, we define these
two OBPs in Lines 9-10, respectively. Using the OBP abstraction,
the programmers only need to focus on what algorithms should be
involved in an OBP.

Function definition. An algorithm (e.g., int_in) may contain
multiple functions. In Lyra, the definition of each function is similar
to the C language. In Figure 4, Lines 36-43 define the only function
for the LB algorithm. Lyra also offers many predefined library-
function calls that commonly exist in the state-of-the-art chip-
specific languages. For example, both NPL and P4 have functions
that extract the queue length, so that Lyra offers a predefined library-
function call get_queue_len(), as shown in Line 31 in Figure 4.

Header definition. The programmers should specify the packet
header and parser for each deployed algorithm. This part is sim-
ilar to the header and parser definitions in P4. In Lyra, we use
header_type and parser_node to define the header type and
parser, respectively.

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

prog = declaration* Lyra program
declaration == header Header type

| bigPipe One big pipeline

| alg Algorithm

| func Function

|
cmd = if | func| ... Commands
str = string String
header := header_type str {hBody} = Header type
hBody = fields {hFields} Header body
hFields = typestr Header field
bigPipe := pipeline [str] {bpB} ; One big pipeline
bpB = str(->str)” A list of algorithms
alg = algorithm str {pBody} Network algorithm
pBody = cmd* Functions
func = func str(para) {funBody} Define a function
para = typestr (., typestr)”* Parameters
funBody = item” Table items

| cmd* Commands
item i External variables

extern tableType

Figure 6: Lyra language grammar.

3.3 Specifying Algorithm Scope

Lyra allows the programmers to specify the fine-grained scope
for each algorithm in a given pipeline. The algorithm scope is
designed for extensibility and composition. Note that specifying
such a scope should be the main job of network operators rather
than programmers, so that Lyra allows either programmers or
operators (or both) to define each algorithm’s scope. Due to different
business needs and deployments, we should use the scope to “tailor”
the underlying data plane in a specific way for each of DCNs.

The algorithm scope can be specified as:

algorithm_name: [region | deploy | direct]

Region. For an algorithm A, we use region to specify a set of
switches for A’s potential placement, e.g., all ToR switches or a
single switch Agg 3.

Deploy. The programmers may want to deploy the copies of A on
multiple switches. In Figure 1 example, the copies of int_in are
deployed on the four ToR switches, respectively. On the other hand,
the programmers may use multiple switches to realize one single
algorithm. For example, loadbalancer in Figure 1 is deployed on
four switches. The programmers can distinguish the above two
cases by specifying deploy field in the algorithm scope specification.
The value of the deploy field is either PER-SW or MULTI-SW. PER-
SW means copying the algorithm on each of the specified switches,
and MULTI-SW means realizing the algorithm across the specified
switches. In Figure 7, we use PER-SW for INT’s three algorithms.
ToR”™ and Agg™* denote all ToR and Agg switches.

Direct. When an algorithm is deployed on a set of switches, we
need to specify the direction of the packet flow via the direct
field. As shown in Figure 7, because the algorithm loadbalancer
specifies MULTI-SW, we should define the packet flow direction via
direct; thus, direct is (Agg3,Agg4->ToR3, ToR4), which means
the load balancer algorithm needs to handle the packet flow entering
Agg 3 and Agg 4 and leaving from ToR 3 and ToR 4. This information
is critical for the compiler because it restricts the possible paths the
packet could take, so that the compiler can decide where to deploy
the program. For example, in Figure 7, a packet traverses the load
balancer could never take a path from ToR 4 to Agg 4.

Gao et al.
int_in: [ToR* | PER-SW | -]
int_transit: [Aggx | PER-SW | -]
int_out: [ToRx | PER-SW | -]
loadbalancer:
[ToR3,ToR4,Agg3,Agg4 | MULTI-SW | (Agg3,Agg4->ToR3,ToR4)]

Figure 7: An example for algorithm scope example.

3.4 Variables in Lyra Programs

Lyra defines three types of variables: internal variable, global vari-
able, and external variable.

Internal variable. The internal variable is straightforward. It is
created when a packet comes in the pipeline and destroyed when the
packet leaves. Internal variable is fixed-width and single-element.
For example, bit[8] in Line 3 in Figure 4 is an internal variable.

Global variable. The global variable provides an index-based array
interface. Different from internal variables, global variables keep
the information across packets. They are created when the Lyra
program is burnt into the programmable switching ASIC, and last
until the switch is down or the program is replaced by another.
For example, global bit[32][1024] pkt_counter in Line 11 in
Figure 4 defines a global variable, pkt_counter, which has 1024
elements, and each element is 32 bit wide. The global variable
supports read and write on the data plane.

External variable. The external variable exposes an “table inter-
face” bridging the data plane and control plane. To define an ex-
ternal variable, we need to define its type, input type, output type,
and element number, such as extern list<bit[32] ip>[1024]
known_ip. The external variable also allows the value (both input
and output) to be a tuple:

extern dict<<bit[32] src,bit[32] dst>,bit[8] p>[1024] route

We discuss how to translate the external variables into the tables
exposed to the control plane in §5.8.

4 LYRA’S FRONT-END

The front-end of Lyra takes in a Lyra program and outputs a context-
aware intermediate representation (or context-aware IR). Lyra’s
front-end, as shown in Figure 3, has three key modules: (1) given a
Lyra program P, checker checks the syntax and semantics of
(§4.1); (2) Preprocessor enriches and optimizes P to generate an
IR (§4.2); and (3) Code analyzer (§4.3) analyzes IR’s context infor-
mation (e.g., instruction dependency and deployment constraints)
to form a context-aware IR for post synthesizing.

4.1 Checker

Similar to any compiler, Lyra uses a checker for the syntax and
semantic correctness checking. Suppose a Lyra program, #, is input.
We check P with grammar defined in §3.

4.2 Preprocessor

The preprocessor translates (e.g., Figure 8(a)) into an IR (e.g.,
Figure 8(c)). IR is crucial for post synthesizing, because high-level
Lyra program % hides too many details, which makes it hard to
directly synthesize chip-specific code from #. In this section, we
use Figure 8 to illustrate how preprocessor generates the IR.

Step 1: Function inlining. We iterate all the algorithms in the
Lyra program. In each algorithm, we inline all the functions with
their function bodies. For example, we expand int_info(int_info)

1: algorithm int_in {
1 funcint_info (bit[32] info) { z .
2: info = 0; 3 if (m_t_ena_ble_) {
3 info=(ig_ts - eg_ts) & OXOffff: 4 bit[32] int_info;
4 info=info & (sw_id << 28); 5 int_info = 0;
5} 6 int_info = (ig_ts - eg_ts) & OxOfffffff;
/ 7 int_info = int_info & (sw_id << 28);
6: algorithm int_in { “1 8
7. (b) Expanding int_info function Y
8: if (int_enable o
9 (bi@Z] intﬁ?n(fo; ;: algorithm int_in {
1? int_info(in.info); 3' v1 =int_enable ? ig_ts - eg_ts;
12: } 4: int_info1 = int_enable ? v1 & OxOfffffff;
13: 5. v2=int_enable ? sw_id << 28;
14: } 6: int_info2 = int_enable ? int_info1 & v2;
’ 7.
8 }

(a) Lyra Program (c) Intermediate Representation
Figure 8: Example. (a) is a Lyra program, (b) is the result of

function expansion, and (c) is the generated IR.

(Line 10 in Figure 8(a)) with its body (Line 2-4 in Figure 8(a)), ob-
taining Line 5-7 shown in Figure 8(b).

Step 2: Branch removal. A Lyra program may contain conditional
statements, e.g., Lines 8-12 in Figure 8(a), which complicate depen-
dency analysis [37]. We, therefore, convert each if-else condition
into a predicate, and then apply this predicate to all the instructions
in the condition body. For example, the if condition int_enable,
in Line 3 in Figure 8(b), is converted into a predicate, int_enable
? ..., andis applied to all instructions in this condition body, thus
getting Lines 3-6 in Figure 8(c). Once all the branches are removed,
the body of the algorithm becomes a straight-line code block.

Step 3: Single operator tuning. We expand the instructions that
have more than one operator. For example, Line 6 in Figure 8(b) is
flattened into Lines 3 and 4 in Figure 8(c).

Step 4: Static single assignment (SSA) form conversion. SSA
assigns each variable a version field. When the variable is assigned
to a new value, the version increases accordingly. SSA guarantees
no versioned variable is assigned twice and removes the Write-
After-Read and Write-After-Write dependencies. After this step,
only Read-After-Write dependency remains. The int_info1 and
int_info2 (i.e., Lines 4 and 6 in Figure 8(c)), for example, are as-
signed to different versions.

Step 5: Variable type inference. The width of program variables
is inferred based on 3 rules: (1) function call, such as crc32_hash
returns a 32-bit variable; (2) operation, and operation generates a
1-bit variable; and (3) variable lookup, the input/output type of
the table are defined explicitly. For example, in Figure 8(c), the v1

is inferred as a 32-bit variable as the ig_ts and eg_ts are 32 bits.

4.3 Code Analyzer

So far, the preprocessor has translated a Lyra program % to an IR.
Nevertheless, this IR is a plain-text IR, which lacks context informa-
tion (e.g., instruction dependency, and deployment constraints) for
chip code synthesizing (§5). We, therefore, build a code analyzer to
add “context” to the IR.

Instruction dependency generation. We first analyze the depen-
dencies among IR instructions to generate an instruction depen-
dency graph. This is important, because it would determine the
execution order and placement of these instructions in the chip-
specific code synthesizing. For example, if instruction b relies on
another instruction a, b should be placed in the stage behind a’s

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

stage; if there is no dependency between a and b, we can parallelize
their executions in different ALUs even in the same stage.

Since IR has been a straight-line code with only read-after-write
dependency, it is straightforward to build an IR instruction depen-
dency graph, where each node represents an IR instruction, and
a directed edge from node a to node b means the instruction b
reads one or more variables written by instruction a. For example
in Figure 8(c), there are three dependencies: (1) Line 3 — Line 4; (2)
Line 4 — Line 6; and (3) Line 5 — Line 6.

Deployment constraints generation. Given the network topol-
ogy information and algorithm scope specification, as shown in Fig-
ure 3, we can generate the following data: (1) target network topol-
ogy with the algorithm-scope tags, such as the Agg 4 in Figure 1 is
tagged with algorithms int_transit and loadbalancer; and (2) poten-
tial flow paths in each scope, such as in the Load Balancer scope
there are four possible flow paths: Agg3 — ToR3, Agg3 — ToR4,
Agg4 — ToR3, and Agg4 — ToR4.

5 LYRA’S BACK-END

By taking in the context-aware IR, Lyra’s back-end synthesizes
chip-specific code. Specifically, this section first models our prob-
lem (§5.1). Then, we describe how to synthesize conditional imple-
mentations for P4 (§5.2) and NPL (§5.3). Next, we use the public
RMT architecture [16, 26] as an example to illustrate how to en-
code chip-specific constraints for the portability (§5.4). We further
present how to encode deployment constraints for the composi-
tion (§5.5) and resource extensibility (§5.6). We put all the above
encoded constraints in the set of conditional placement constraints,
and call an SMT solver to solve the formulas, obtaining a solution
which can be translated into chip-specific code (§5.7). Finally, we
present the control plane interfaces exposed by Lyra in §5.8.

5.1 Problem Modeling

A Lyra program contains a list of algorithms G. For an algorithm
a € G, it has a specified algorithm scope, Sg, e.g., Figure 7, which
represents a group of switches. §4 describes how does the front-end
transform a to a collection of IR instructions, defined as I,. We use
I,(j) to denote the jth IR instruction in I,. We define fs(I,(j)) asa
boolean function, which indicates whether the IR instruction I 0
should be deployed on the switch s € Sg. The goal of this section
is to find a feasible combination of f; that meets the constraints in
the target network. Note that an IR instruction can be deployed on
multiple switches, as long as the correctness of the program holds.

5.2 Conditional P4 Synthesis

This section synthesizes conditional P4 implementation based on
the context-aware IR. Intuitively, conditional P4 synthesis aims
to map the instructions in IR representation to tables in P4 by
analyzing the dependencies among those IR instructions.

Before describing the details of the synthesis algorithm, we need
to define several important terminologies.

e Potentially deployed IR. We define R as a set containing all
IR instructions potentially deployed on switch s. We learn R
because we know the scope of the algorithm any IR instruction
belongs to.

o Predicate blocks. A predicate block is a set containing IR instruc-
tions, where (1) IR instructions have the same predicate, and (2)

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

IR instructions have no dependency. For example, in Figure 8(c),
Line 4 and Line 5 should be put in the same predicate block
because (1) they have the same predicate int_enable? and (2)
they have no dependency. Based on the above definition, in Fig-
ure 8(c), we have three predicate blocks: {Line 3}, {Line 4, Line 5},
and {Line 6}. Predicate blocks are important because they are
used to determine tables and the match-action in those tables.

Relationships between predicate blocks. There are three types of
relationships between predicate blocks B, and By: (1) Predicate
block dependency: A predicate block B, depends on another block
By, if there is an instruction in By, that writes the predicate of B,.
Because each predicate is written only once, each predicate block
has only one predicate block it depends on. In this case, B, and By,
would be mapped to two P4 tables. (2) Mutually exclusive: B, and
By, are located in different branches of if-else or different cases
in the switch statement (e.g., the NetCache program segment
in §7.1). In this case, B, and B, should formulate the same P4
table. (3) No-correlation: If there is no dependency or mutually
exclusive between B, and By, then we say B, and By, have no
correlation. In this case, it is highly possible that B, and B, would
formulate two P4 tables.

In Figure 8(c) example, three predicate blocks {Line 3}, {Line 4,
Line 5}, and {Line 6} formulate three P4 tables. More specifically,
in the first table (generated by {Line 3}), the match and action
should correspond to int_enable and ig_ts-eg_ts, respectively.
Similarly, {Line 4, Line 5} generate the second P4 table with actions
vl & OxFFFFffffand sw_id « 28. The third P4 table is generated
by predicate block {Line 6}, and has actions int_infol & v2.
Synthesis algorithm. Algorithm 1 presents the details of the syn-
thesis. Given the algorithm a’s scope, for each P4 switch s, we
extract R (Line 2 in Algorithm 1). Because we have learned the
dependencies between IR instructions from the front-end (§4.3), we
group R into many predicate blocks, PBs (Line 3 in Algorithm 1).
With predicate blocks in hand, we build a dependency tree, PBTrees,
for PBg based on the above-defined predicate block dependency.

We traverse PBTrees bottom-up. For each traversed predicate
block pb;, we check if it is mutually exclusive with other predicate
blocks (say pby). If not, we append pb; to its parent node’s table
list; if yes, we merge pb; and pby, and append the merged result to
their parent node’s children predicate block list.

Finally, we traverse PBTrees top-down to compute whether the
one predicate block should be compiled into a new P4 table or merge
with the existing P4 tables. For each traversed predicate block pb,
we scan its child predicate block list. For each predicate block m
in the ChildPBList, we check if m’s predicate is only reading pb;’s
table output. If so, we translate m into its parent predicate block
pb j’s action a,,, and the read variable is translated into action ay,’s
parameters (Line 12 in Algorithm 1). Otherwise, we create a new
table for m, append it to the table list L, and add the instructions
in m into instruction identify list 7. In principle, L contains tables
that are potentially deployed on switch s, and L is used to encode
resource constraints (§5.4). Zs contains all instructions that decide
whether each predicate block in L would eventually be a table, so
that we use Z to encode table validity constraint below.

Table constraints encoding. The set 7 is one of the most impor-
tant parts for the set of conditional placement constraints, so that

Gao et al.

Algorithm 1: Conditional P4 implementation synthesis.

Input: I;: Context-aware IR for algorithm a.
Output: £: The potential table group for all P4 switches.
Output: J: The instructions identify L.

1 foreach P4 switchs € S, do

2 Rs « Extract(Iy)

3 PBg « predict_block_gen(Rs)

4 PBTrees «— dependency_tree(PBs)

5 foreach node pb; € PBTrees by bottom-up do

6

7

if pb; is mutually exclusive with predicate block pby. then
L pb; « merge(pb, pby)
8 L append pb; to pb;.parent.ChildPBList
9 foreach node pb; € PBTrees by top-down do
10 foreach m € pb;.ChildPBList do
1 if m.predicate.reads(pb;.extern_output) then
12 L pb jAadd_action(m)
13 else
14 L;.append(m)
15 1.append(m.table_condition)

16 return L and 7

we encode P4 table constraints based on 7. We first encode the
validity of each table. Because each instruction is conditionally de-
ployed on switch s, we encode the validity as: \/;c 7 fs(i). Based on
I, we can also encode (1) the dependency between two predicate
blocks, (2) the match field width constraints, (3) the number of ac-
tions, and (4) the number of entries. The above-encoded constraints
are put in the set of conditional placement constraints.

5.3 Conditional NPL Synthesis

Network programming language (NPL) is a data-plane program-
ming language used by Broadcom [3]. It has been used to program
Broadcom’s ASICs, such as Trident-4 and Jerrico-2 [1]. Given the
fact that Broadcom’s switching ASICs account for the largest market
share, we believe NPL would become increasingly more common.
Similar to P4, a typical NPL program contains at least five elements:
(1) header and parser, (2) logical table, (3) logical register, (4) func-
tions, and (5) logical bus. Compared NPL with P4, NPL is more
similar to C++ language. The logical table and function in NPL are,
in principle, similar to virtual function and function instance in C++.
This feature enables Lyra to compile the IR into the conditional
NPL implementation easier than P4.

NPL synthesis takes the same inputs as P4 synthesis in §5.2. We
briefly describe the synthesis approach as follows:

Packet header and function synthesis. Because the grammar of
packet header and function in our IR is similar to NPL, synthesizing
packet header and function is straightforward.

Logical bus usage synthesis. The logical bus in NPL handles local
variables; thus, we collect all local variables in R (defined earlier),
getting Vs. We define 7p, as a set that contains instructions reading
or writing any element in Vs. Whether i € 7p,,; should be deployed
on switch s can be encoded as ;e 7, fs ().

Logical table synthesis. NPL has a unique feature that allows
multiple lookups on the same logical table; thus, we traverse all the
instructions in R, and merge the instructions that read the same
external variables into one logical table. All the logical tables for s
are put in L.

Logical register. NPL only supports name-based indexing, e.g.,
register_r.field_a, so that we translate the global variables that have
only one element into logical tables. For other global variables, i.e.,
arrays containing more than one element, we distribute them across
target switches.

5.4 Encoding Chip-Specific Constraints

We have presented how to synthesize the conditional implemen-
tation for two representative languages. We now describe how to
encode chip-specific constraints. Chip-specific constraints en-
coding is the key effort for the portability. We choose recon-
figurable match tables (RMT) architecture [16, 26] as an example
to show how do we encode constraints for ASICs. Lyra can also
encode other ASICs’ constraints, e.g., Tofino and Trident-4.

RMT architecture. RMT is a reconfigurable pipeline-based archi-
tecture for switching ASICs. The RMT architecture has an ingress
and an egress pipeline. Each pipeline consists of a parser, multiple
match-action stages, and a deparser. Each match-action stage has
several SRAM and TCAM memory blocks, and several action units.

Encoding chip-specific constraints. To check whether the syn-
thesized tables meet the underlying resource constraints, we model
the architecture resources of RMT. For each table ¢ in the synthe-
sized table group L (obtained from §5.2 and §5.3), we define: M; as
the match field length, E; as the total number of entries, A; as the
total number of actions, and V; as the validity of table t. Because
one table can be split into multiple stages, for ¢, we define & stqrt
and ¢; .,q as the start and end stages of the table ¢, respectively. If
&t start = &1 eng» then t should be deployed on only one stage.

We define E; s as the total number of entries that table ¢ deploys
on stage s. The stage constraints are encoded as:

D Ey=0,) Eij=0, > EyzE)

J<&tstart J>&t end Et,start<J<&t end

We also encode the RAM memory constraints based on [26]. Sup-
pose each stage in the RMT switch has Nyyemory RAM blocks with
h entries and w bit-width. For each stage j:

E .
[21- M
Z [——1* valid®) < Nmemory)
w

tel
where Valid(t) represents the validity of table t, and its value is either
1 or 0. In similar ways, we can also encode other constraints such as
the maximum number of stages, the maximum number of tables per
stage, the maximum number of entries in the parser TCAM table,
PHYV allocation, predefined library-function call related resources,
packet transactions [37]. Please see Appendix A for more details
of chip constraint encoding. All the encoded constraints are put in
the set of conditional placement constraints.

5.5 Encoding Deployment Constraints

Besides the constraints related to the conditional implementation
and different switching ASICs, we also need to encode constraints
like scope, flow path, and instruction dependencies. This section
describes how to encode these constraints, which is important for
the composition. Note that the constraints in this section cannot
be encoded by integer linear programming (ILP), since ILP cannot
encode “if-else” and dependency.

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

Algorithm 2: Extensible resource encoding.

Input: I;: Context-aware IR for algorithm g, target switch s.
Output: £: The variables in the resource and the existence condition.
1 S « DownStreamSwitches(s);
2 foreach local variable v € I, do
I,, <« Writelnstruction(ov)
I, « ReadInstructions(v)
foreach switchsq € S do
Viv.append (s, (Iv))
foreach read instruction I, € I, do

L ’Fr.append(fsd (L))
9 Vy.append(\ Fr)
0 | L[U]:(vq/w)@(vq/r)

11 return L

% N o w e W

Encoding topology constraints. As shown in §4.3, topology con-
straints in context-aware IR contain two parts: algorithm scope and
flow paths in the specified scope.

Scope constraints. For each IR instruction in I, it can only be
deployed in the specified scope: \/r¢y, s¢s, fs(I) = False.

Flow path constraints. For each possible flow path p within the
scope, an instruction I must be deployed on only one of switches,
s, on each path. Yrey, sep If (fs(1),1,0) = 1
Encoding instruction dependencies. We now encode the in-
struction dependencies in the context-aware IR. If an instruction I’
is deployed on one switch s on the path p, then (1) for each instruc-
tion I the instruction I’ depends on, I cannot be deployed on the
switches behind s; (2) for another instruction I’” depended by I, I
cannot be deployed on switches in front of s. Thus, we have:

I’ depends on I = \/ for(I') = False

s’ eprev(s, p)I’ €succ(l)

fsr (I") = False

®)

I depends on I” =
s enext(s, p)I"’ €pred(I)
where prev(s, p) means all the switches in front of s on the path p,
next(s, p) represents all the switches behind s, pred(I) denotes all
the predecessor instructions in the instruction dependency graph,
and succ(I) means all the successor instructions.

Encoding external and global variables. See Appendix B.

5.6 Encoding Resource Extensibility

To support extensibility, Lyra is able to handle the algorithm even
though it is distributed across multiple switches, e.g., splitting Con-
nTable on ToRs and Aggs in Figure 1. Because other constraints
such as the instruction dependencies and global variable constraints
are already encoded, the data can only flow from upstream to down-
stream (e.g., from Agg to ToR in a DCN). It is impossible that the up-
stream switch (e.g., Agg) requires a result generated by downstream
switches (e.g., ToR); thus, in order to encode the resource extensibil-
ity, we only consider what is the information downstream switches
require from the upstream and pass this information through.
Specifically, in a Lyra program, there are two types of informa-
tion required by the downstream: value in the local variable and
the result of a predicate. Lyra passes this information via pushing
it in the packet header, enabling the downstream switches to get
it from the parser. We call such information as extensible resources.
These resources “bridge” the upstream and downstream switches,
and keep their “correlations”. For example in Figure 1 LB program,
suppose the ConnTable and VIPTable are deployed on the Agg and

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

Gao et al.

P4y, Lyra
Synthesized P4, Synthesized NPL
Lyra Lyra Longest

LoC/ Lyra LoC/| Compile Compile Code

Program Logic LoC | Tables | Actions |Registers| Logic LoC | Time |Tables|Actions|Registers| Time | Tables |Registers| Path
Ingress INT 308/99 9 8 0 207/62 0.987s 8 7 0 0.78s 4 0 9
Transit INT 275/66 6 6 0 193/46 0.914s 5 5 0 0.72s 2 0 4
Egress INT 282/73 7 7 0 197/47 0.897s 6 6 0 0.73s 2 0 4
Speedlight 453/351 21 23 6 194/97 1.352s 16 20 6 0.95s 9 6 18
NetCache 1137/937 96 96 40 372/153 1.909s 12 14 40 1.17s 3 40 20
NetChain 319/211 16 16 2 177/73 1.530s 13 16 2 0.85s 6 2 18
NetPaxos 241/140 6 11 5 150/69 1.158s 6 11 5 0.84s 3 5 4
flowlet_switching | 195/130 8 7 2 113/43 0.91s) 7 2 0.70s 4 2 12
simple_router 101/66 4 0 72/31 0.852s 4 0 0.67s 3 0 10
switch 4924/3876 | 131 363 0 4151/2563 33.6s 131 363 0 19.4s 125 0 53

Figure 9: Experimental results conducted on a workstation with Intel Core i7 3.7GHz 6-core CPU and 16GiB RAM.

ToR switches respectively. Given the fact that the VIPTable needs
the ConnTable’s table hit/miss information, Lyra needs to ask the
Agg switch to pack that information in the packet header, so that
the ToR switch can apply or skip the VIPTable based on the result.
Similarly, if the ConnTable is split across two switches, then Lyra
adds the first ConnTable’s entry hit/miss information to the header.

The extensible resource encoding algorithm is shown in Algo-
rithm 2. Because the program could be split at any position, the
content in the extensible resources is also dynamic. In a nutshell, the
extensible resource contains all the local variables that are not writ-
ten but read by the downstream switches. Lyra checks each local
variable and collects the instruction that writes or reads the variable.
After the SSA form conversion (step 4 in §4.2), there should be only
one write instruction F,, and a list of read instructions #. Next,
we can calculate whether the variable is read V; or written V,, by
the downstream via the deployment boolean function. Finally, we
can compute the existence condition by comparing whether two
flags V; and V,, are different.

5.7 Translator

With a set of conditional placement constraints, i.e., the constraints
encoded in §5.2-§5.6, we call an SMT solver to solve them, obtaining
a solution that presents a concrete placement plan for tables, in-
structions, and variables. We equip the back-end with different chip
language (e.g., P4 and NPL) templates; thus, we can easily trans-
late the solved plan into multiple pieces of chip-specific code. The
current Lyra prototype supports P414, P416 and NPL generation.

5.8 Control Plane Interfaces

Lyra does not synthesize the control plane programs/functions such
as installing flow table entries and configuration policies. Instead,
Lyra allows the programmers to explicitly specify the tables as ex-
ternal variables (defined in §3.4) in Lyra program without worrying
about how these tables are allocated or distributed. In other words,
the connection between the control plane and data plane supported
by Lyra is abstracted to the variables in OBP representation, so
programmers only need to fill in the control plane tables, but do not
need to know exactly how each table is mapped to target devices.

For example, Lines 36-43 in Figure 4, Lyra defines two control
plane variables, extern dict<bit[32] hash, bit[32] real_ip>
[1024] conn_table and extern dict<bit[32] vip, bit[8]
group> [1024] vip_table via the keyword extern (also ex-
plained in §3.4). After this, Lyra compiler compiles the program

into multiple pieces of chip code for distributing across the un-
derlying switches. Thus, the programmers do not need to focus
on the details such as hardware and resource constraints of these
tables across the target switches. Lyra can also generate a set of
“empty” control-plane programs for each table. For example, Lyra
also generates “empty” Python functions (e.g., conn_table_entry_
set(key, value) and conn_table_entry_get(key)) for the pro-
grammers to easily add the code manipulating table entries. In other
words, Lyra generates P4 or NPL tables according to what the Lyra
program specifies, and these tables play a role as the “interfaces”
between control plane code and the synthesized data plane code.

6 OPTIMIZATION

We further propose a collection of optimization techniques to im-
prove the efficiency and resource usage, such as reducing the num-
ber of generated P4 tables and optimizing the results via diverse
metrics. Due to limited space, please see Appendix C for details.

7 EVALUATION

We have built Lyra with 7,000 lines of Python code. Lyra relies on
Z3 [18] for SMT solving. Lyra compiler can compile P414 and P46
for Tofino, and NPL for Trident-4.

Our evaluation aims to answer whether Lyra can successfully
offer portability (§7.1), extensibility (§7.2), and composition (§7.3).
The target network for our evaluation is a fat-tree data-center
testbed consisting of eight servers and ten programmable switches:
four ToR switches (Tofino), four Agg switches (Trident-4), and
two Core switches (Tofino). All compilations were conducted on a
desktop with Intel Core i7 3.7GHz 6-core CPU and 16GiB RAM.

7.1 Portability

To evaluate the portability, we wrote Lyra programs for the state-of-
the-art network algorithms (e.g., NetCache [25], and NetChain [24]
and INT [2]), and then evaluated whether these Lyra programs can
generate P4 and NPL code runnable on Tofino and Trident-4. The
Tofino constraint is encoded according to the RMT architecture.
Figure 9 shows the comparison between our compiled chip-
specific code with the manually-written P44 code. We evaluated
Lyra in two aspects. (1) Lines of Codes: in Figure 9, LoC is the total
LoC and Logic LoC is the code ignoring the header and parser be-
cause this is a better metric to show the labor on writing a program.
(2) Resource usage: for P4, we compare the total number of tables,
actions, and registers used. For NPL, we show the number of logical

tables and logical registers, and the length of the longest code path.
All our generated code can compile on the corresponding ASICs.

First, as shown in Figure 9, Lyra can dramatically reduce the total
line of codes to implement a program. It, for example, takes only
22% of LoC to implement the logic component of NetCache [25].
This shows Lyra language can describe the program more concisely.

Second, by comparing with programs written by researchers and
engineers (e.g., NetCache, Speedlight, and INT), Lyra can reduce the
total number of tables and actions. This means we can reduce the
resource occupation in the switch. For example, we observed that
manually-written NetCache and SpeedLight programs have more
tables than the Lyra-generated ones, because the manually-written
version kept many independent tables for modularity, but Lyra
merged these independent tables into a single table.

if (nc_hdr.op == NC_READ_REQUEST) {
apply (check_cache_valid);

} else if (nc_hdr.op == NC_UPDATE_REPLY)
apply (set_cache_valid);

In the above code in the NetCache program, check_cache_valid
and set_cache_valid have no match field and only one action.
Lyra merged the tables with match field nc_hdr. op. Note that Net-
Cache is the only program for which Lyra can save 87.5% hardware
resources. For the rest of the programs, e.g., Speedlight and INT,
Lyra can save 10% - 23% resources. For the programs posted on the
p4c [5] project, e.g., switch.p4, Lyra generates an equal P4 code.
In our experience, whether the manually-written ASIC code (e.g.,
P4 or NPL) is optimal or not totally depends on the expertise and
knowledge of the programmers. If the program is simple or the
programmer is knowledgeable enough, it is highly possible the
written code is optimal, i.e., no more resource saved by Lyra. If the
program is already optimized, Lyra can perform the same. However,
in order to write an optimized code, even the most knowledgable
programmer may need to spend tons of time and effort; on the
contrary, Lyra can reduce these efforts and burdens, so that the
programmer only needs to focus on implementing the logic itself.

7.2 Extensibility

To evaluate the extensibility, we conducted a real-world case study
similar to LB example in §2.1. Initially, we set the size of both Con-
nTable and VIPTable to one million entries, so that these two tables
can be put in the same aggregation switch. Both Tofino and Trident-
4 ASICs can hold about three million entries at most. After we
increased the size of ConnTable to 2.5 million and 4 million entries,
respectively, Lyra can intelligently generate the response solutions.
For example, if we set ConnTable’s size to 4 million entries, Lyra
generates an NPL-version ConnTable program with 2.5 million en-
tries on each aggregation switch, and a P4-version ConnTable and
VIPTable programs holding 1.5 and 1 million entries, respectively,
on each ToR switch. Lyra also generates a function that passes the
entry hit information between switches to lookup the ConnTable
on ToRs, if the ConnTable on aggregation switches misses. This en-
sures the generated distributed programs work correctly. Compared
with manually-written programs, Lyra compiles the programs for
the above two updates less than 10 seconds, which only needed the
programmer to change the size of the external variable ConnTable
in the Lyra program; on the contrary, our well-trained programmer
needed about 1.5 days to write these programs manually.

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

Load Balancer (MULTI-SW) Tofino ——+—— Trident-4 —H&—

% NetCache (PER-SW) Tofino ——— Trident-4
S 100 k NetCache (MULTI-SW) Tofino —— Trident-4 —4A—
(o3
E 1
[
o
£ = o ——_ |
8 1 g ==
4 8 32

16 24
Number of Switches Deployed

Figure 10: The scalability for extensibility.

Scalability. In general, the complexity of Lyra is related to the
size of the topology, the length, and resources used by the Lyra
program. To evaluate the scalability, we deployed NetCache and
stateful LB on a pod of a simulated fat tree DCN. For the LB, we set
all the switches in the pod as the scope, which means they serve
together as a single LB. For NetCache, we deployed it in two modes,
one in PER-SW mode, which means each switch has its own copy
of the program; one in MULTI-SW mode, which is the same as the
LB. We evaluated two ASICs: Tofino with the P4 and Trident-4
with the NPL, and changed the topology size by varying k = 4
to k = 32, where k is the number of ports per switch and also
equals to the total number of switches deployed. Figure 10 shows
the result. As the topology size increases, we observe that both the
MULTI-SW algorithms compilation time increases, but Lyra is still
able to find a solution in less than 100 seconds, even in the largest
topology. For PER-SW mode NetCache, the compilation time stays
the same, because all the switches have the same program and Lyra
can generate the program for each switch in parallel. By comparing
two MULTI-SW mode algorithms, we see that the complexity of
language and ASIC matters a lot: Lyra generates NPL/Trident-4
programs 2X faster than P4/Tofino programs, as NPL synthesizing
needs no predicate block construction process and has shorter SMT
formulas due to language complexity.

7.3 Composition

To evaluate composition, we attempted to deploy multiple algo-
rithms into our testbed by changing the scope from eight switches
to only one switch. For the scope, smaller is more challenging,
since it evaluates whether Lyra can handle resource constraints in
the code composition. First, we wrote a Lyra program including
a classifier, firewall, gateway, LB, and scheduler, which is similar
to Dejavu [40]. Then, we compiled the Lyra program by gradually
changing the scope from the entire network to a single switch.
For either case (the entire network and single switch), Lyra spent
less than five seconds to generate P44 program that successfully
compiles on the Tofino ASIC. We also asked the programmers to
manually write a program for this goal manually. It took them about
two days (10000X more time than using Lyra) to compress these
programs into a single ASIC.

Lyra independently generates chip-specific code for each algo-
rithm. For example, all the generated variables and tables for al-
gorithm firewall are assigned the same prefix-name firewall. Thus,
there is no shared program-level resource between generated code.

8 DISCUSSION

This section discusses Lyra’s implementation details and limitations.
More discussions can be found in Appendix D.

Does the synthesized code always compile? It is possible that
the synthesized chip code unsuccessfully compiles on the target

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

ASICs, if some of the constraints are missing from the Lyra compiler.
For example, egress timestamp must be collected in the egress
pipeline; otherwise, the synthesized P4 code cannot compile on
Tofino ASIC or is meaningless. In Lyra, we manually check and
encode ASIC’s resource constraints based on the ASIC specifications
provided by the chip vendors. By far, while we are not aware of
any “constraint missing” cases, we cannot exclude such a possibility.
Thus, we offer an encoding template for the programmers to encode
the missed constraints as a plug-in patch for Lyra.

Recirculation. P4 supports recirculation and resubmission, which
allows the packet to go through the pipeline one more time. In Lyra,
the programmers need to explicitly define the recirculation, as there
is no switch concept in Lyra. Instead, Lyra uses the recirculation as
an optimization method to pack a longer program into one switch.

Copy-to-cpu. Both P4 and NPL support sending a copy of the cur-
rent packet to the switch’s CPU but in different ways. Lyra provides
a uniformed API called copy_to_cpu() to enable such a function.
This API is translated into the corresponding APIs in different lan-
guages. Similar to the control plane interface, the programmer only
needs to focus on what to do with the copied packet, rather than
taking care of which switch the packet is copied at.

Multi-pipeline support. Programmable ASICs use multiple iden-
tical pipelines to increase the throughput. For example, the Tofino
64Q model has 4 pipelines. The program deployed on each pipeline
thus is typically the same. Lyra allows the programmer to individ-
ually specify each pipeline via our OBP abstraction. Furthermore,
switches, e.g., RMT, split one above-mentioned pipeline into two:
ingress pipeline and egress pipeline. Different from the pipeline
mentioned above, these two pipelines have different capabilities:
the programmer can only designate the egress port at the ingress
pipeline because the egress pipeline is directly connected to the
physical port and cannot re-direct the packet; all the queuing infor-
mation (e.g., queue length and queuing time) must be gathered in
the egress pipeline as the queuing buffer sits between the ingress
and egress pipeline. Lyra models the two pipelines as two individual
switches and connects them via a link. Next, Lyra adds constraints
that the pipeline exclusive statements cannot be deployed in the
other pipeline. The SMT solver then allocates the statements.

Synthesizing incremental changes. Since Lyra relies on an SMT
solver to generate a feasible allocation solution, a potential chal-
lenge is an incremental change in the Lyra program may result in
a significantly different allocation plan. This may cause difficulty
in debugging or upgrading the network in practice. Currently, if
the changes are small (e.g., few lines of code), our programmers
manually modify the chip code, because such modifications may
not violate resource constraints; if the changes are significant, we
directly re-run Lyra to generate the chip code from scratch.

Unifying different ASIC libraries. Given that the programmable
ASICs from different vendors offer different chip-specific libraries,
in Lyra compiler, we hard-code a collection of functions converting
these libraries into common IR. See Appendix D for more details.

9 RELATED WORK

Abstractions for forwarding packets. Software-defined network-
ing (SDN) allows the network operators to specify the packet for-
warding policy via network-wide abstractions such as SNAP [14],

Gao et al.

NetKAT [13, 31], Magellan [41], NetCore [33], and Frenetic [19]. In
terms of the programming model, SNAP’s one-big-switch (OBS) ab-
straction [14] is the most relevant to Lyra; however, the OBS model
cannot explicitly specify the fine-grained scope, e.g., a specific set
of switches. P4Runtime [10] offers control plane-level APIs for P4
programs, rather than a compiler generating ASIC code. In general,
the state-of-the-art programming models in SDN aim to generate
the forwarding rules, which have different goals from Lyra.

Programmable ASIC compilers. The state-of-the-art efforts in
programmable ASIC compilers focus on compilation for individual
devices. uP4 [39] also targets portability and composition problems;
different from Lyra, however, yP4 only supports P4-family program-
ming, and does not target data plane programming across multiple
switches. Jose et al. [26] compiles P4 programs to architectures
such as the RMT and FlexPipe. Domino [37] builds upon the Banzai
machine model that supports stateful packet processing, supporting
a much wider class of data plane algorithms. Chipmunk [20, 21]
leverages slicing, a domain-specific synthesis technique, to optimize
Domino in compilation time and resource usage. Different from the
state of the arts, Lyra offers a new, chip detail-orthogonal language,
generates chip-specific code (like NPL and P4), and supports data
plane programming across multiple switches.

P4 synthesis for programmable NICs. Programmable NICs (e.g.,
Netcope [8], Netronome [9] , and Pensando [11]) support P4. Com-
pared with Lyra, there are two differences. First, Lyra takes as input
an OBP program and generates chip-specific programs for different
ASIC architectures. The P4 compilers for programmable NICs take
as input P4 programs and generate binary code. Second, Lyra can
generate code across a distributed setting consisting of multiple
programmable switches, but P4 NICs do not target such a goal.
We believe Lyra is potentially extendable to programmable NICs,
but this requires non-trivial extensions such as new NIC-function
synthesis algorithm and NIC-specific constraints encoding.

P4 Virtualization. P4 virtualization (e.g., Hyper4 [23], HyperV [42],
HyperVDP [43], and P4Visor [44]) offers a general-purpose P4 pro-
gram that can be dynamically configured to adopt behaviors equiv-
alent to other P4 programs. Different from Lyra, P4 virtualization
aims to mimic the target P4 program’s behavior by configuring
table entries for the underlying “hypervisor” program (e.g., hp4.p4
in Hyper4 [23]), rather than generating chip-specific code like Lyra.

10 CONCLUSION

Lyra is the first compiler that allows the network programmers to
program data plane while achieving portability, extensibility, and
composition. Lyra offers a one big pipeline programming model
for the programmers to conveniently express their data plane algo-
rithms, and then generates chip-specific code across multi-vendor
switches. Our evaluation results show that Lyra not only generates
runnable real-world programs (in both P4 and NPL), but also uses
fewer hardware resources than human-written programs.

This work does not raise any ethical issues.

ACKNOWLEDGMENTS

We thank our shepherd, Noa Zilberman, and SIGCOMM review-
ers for their insightful comments. Jiaqi Gao and Minlan Yu are
supported in part by the NSF grant CNS-1413978.

REFERENCES

(1]

(2]

=
2

(1]

[12]

[13

[15]

[16

[17

=
&

[19]

[20]

[21

oo
0

[23]

[24

[25

[26

[27]

2019. Broadcom’s new Trident 4 and Jericho 2 switch devices of-
fer programmability at scale. https://www.broadcom.com/blog/
trident4-and-jericho2- offer-programmability-at-scale.

2019. In-band Network Telemetry (INT) Dataplane Specification. https://github.
com/p4lang/p4-applications/blob/master/docs/INT.pdf.

2019. NPL 1.3 Specification. https://github.com/nplang/NPL-Spec.

2019. ONE Silicon, ONE Experience, MULTIPLE Roles. https://blogs.cisco.com/
sp/one-silicon-one-experience-multiple-roles.

2019. p4c, a reference compiler for P4 programming language. https://github.
com/p4lang/p4c.

2020. Barefoot Tofino. https://www.barefootnetworks.com/products/brief-tofino.
2020. Barefoot Tofino’s 32Q-model and 64Q-model. https://www.arista.com/en/
products/7170-series.

2020. Netcope P4 - Flexible FPGA Programming. https://www.netcope.com/en/
products/netcopep4.

2020. Netronome P4. https://www.netronome.com/technology/p4/.

2020. P4Runtime. https://p4.org/p4-runtime/.

2020. Pensando Expands What SmartNIC Offloads Can Do. https://pivotnine.
com/2020/05/18/pensando-expands-what- smartnic-offloads-can-do/.
Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA:
distributed congestion-aware load balancing for datacenters. In ACM SIGCOMM
(SIGCOMM,).

Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter
Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT: Semantic foundations
for networks. In 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL).

Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer Rexford,
and David Walker. 2016. SNAP: Stateful network-wide abstractions for packet
processing. In ACM SIGCOMM (SIGCOMM).

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: programming protocol-independent packet processors.
Computer Communication Review 44, 3 (2014), 87-95.

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin
Izzard, Fernando A. Mujica, and Mark Horowitz. 2013. Forwarding metamorpho-
sis: fast programmable match-action processing in hardware for SDN. In ACM
SIGCOMM (SIGCOMM,).

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding metamorpho-
sis: Fast programmable match-action processing in hardware for SDN. ACM
SIGCOMM Computer Communication Review 43, 4 (2013).

Leonardo Mendonca de Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT
solver. In 14th Tools and Algorithms for the Construction and Analysis of Systems
(TACAS).

Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer
Rexford, Alec Story, and David Walker. 2011. Frenetic: a network program-
ming language. In 16th ACM SIGPLAN international conference on Functional
Programming (ICFP).

Xiangyu Gao, Taegyun Kim, Aatish Kishan Varma, Anirudh Sivaraman, and
Srinivas Narayana. 2019. Autogenerating fast packet-processing code using
program synthesis. In 18th ACM Workshop on Hot Topics in Networks (HotNets).
Xiangyu Gao, Taegyun Kim, Michael D. Wong, Divya Raghunathan, Aatish Kis-
han Varma, Pravein Govindan Kannan, Anirudh Sivaraman, Srinivas Narayana,
and Aarti Gupta. 2020. Switch code generation using program synthesis. In ACM
SIGCOMM (SIGCOMM,).

Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and
Walter Willinger. 2018. Sonata: query-driven streaming network telemetry. In
ACM SIGCOMM (SIGCOMM).

David Hancock and Jacobus E. van der Merwe. 2016. HyPer4: Using P4 to
virtualize the programmable data plane. In 12th International Conference on
emerging Networking EXperiments and Technologies (CONEXT).

Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-free sub-RTT coordination.
In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI).

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing key-value stores
with fast in-network caching. In 26th Symposium on Operating Systems Principles
(SOSP).

Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown. 2015. Compiling
packet programs to reconfigurable switches. In 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI).

Naga Praveen Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and
Jennifer Rexford. 2016. HULA: Scalable load balancing using programmable data

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

planes. In Symposium on SDN Research (SOSR).

Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K. Ports.

2016. Just say NO to Paxos overhead: Replacing consensus with network ordering.

In 12th USENIX Symposium on Operating Systems Design and Implementation

(OSDI).

Yuliang Li, Rui Miao, Honggiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,

Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu. 2019.

HPCC: High precision congestion control. In ACM SIGCOMM (SIGCOMM,).

Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri Tallapragada, Nuno P.

Lopes, Andrey Rybalchenko, Guohan Lu, and Lihua Yuan. 2017. CrystalNet:

Faithfully emulating large production networks. In 26th Symposium on Operating

Systems Principles (SOSP).

[31] Jedidiah McClurg, Hossein Hojjat, Nate Foster, and Pavol Cerny. 2016. Event-

driven network programming. In 37th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI).

Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.

SilkRoad: Making stateful layer-4 load balancing fast and cheap using switching

ASICs. In ACM SIGCOMM (SIGCOMM).

Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker. 2012. A

compiler and run-time system for network programming languages. In 39th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL).

Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David

Walker. 2013. Composing software defined networks. In 10th USENIX Symposium

on Networked Systems Design and Implementation (NSDI).

[35] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.
Language-directed hardware design for network performance monitoring. In
ACM SIGCOMM (SIGCOMM,).

[36] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy

Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand

Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Holzle,

Stephen Stuart, and Amin Vahdat. 2015. Jupiter rising: A decade of Clos topologies

and centralized control in Google’s datacenter network. In ACM SIGCOMM

(SIGCOMM).

Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad

Alizadeh, Hari Balakrishnan, George Varghese, Nick McKeown, and Steve Licking.

2016. Packet transactions: High-level programming for line-rate switches. In

ACM SIGCOMM (SIGCOMM,).

Anirudh Sivaraman, Thomas Mason, Aurojit Panda, Ravi Netravali, and

Sai Anirudh Kondaveeti. 2020. Network architecture in the age of programmabil-

ity. Computer Communication Review 50, 1 (2020).

[39] Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate Foster. 2020.

Composing dataplane programs with pP4. In ACM SIGCOMM (SIGCOMM).

Dingming Wu, Ang Chen, T. S. Eugene Ng, Guohui Wang, and Haiyong Wang.

2019. Accelerated service chaining on a single switch ASIC. In 18th ACM Workshop

on Hot Topics in Networks (HotNets).

Yang Richard Yang, Kai Gao, Kerim Gokarslan, Dong Guo, and Christopher Leet.

2019. Magellan: Toward high-level programming and analysis of SDN using flow

algebra. In ACM SIGCOMM Workshop on Networking and Programming Languages

(NetPL).

Cheng Zhang, Jun Bi, Yu Zhou, Adbul Basit Dogar, and Jianping Wu. 2017.

HyperV: A high performance hypervisor for virtualization of the programmable

data plane. In 26th International Conference on Computer Communication and

Networks (ICCCN).

[43] Cheng Zhang, Jun Bi, Yu Zhou, and Jianping Wu. 2019. HyperVDP: High-

Performance virtualization of the programmable data plane. IEEE ¥. Sel. Areas

Commun. 37, 3 (2019), 556-569.

Peng Zheng, Theophilus Benson, and Chengchen Hu. 2018. P4Visor: Lightweight

virtualization and composition primitives for building and testing modular pro-

grams. In 14th International Conference on emerging Networking EXperiments and

Technologies (CONEXT).

[28

[29

[30

(32

[33

[34

[37

[38

[40

[41

[42

[44

APPENDIX

Appendices are supporting material that has not been peer-reviewed.

A RESOURCE CONSTRAINT ENCODING

In this section, we detail more about how to encode the resource
constraints in the Reconfigurable Match Tables (RMT) architec-
ture [17]. For other ASIC architectures, e.g., Trident-4 and Silicon
One, the constraint encoding principle is the same.

https://www.broadcom.com/blog/trident4-and-jericho2-offer-programmability-at-scale
https://www.broadcom.com/blog/trident4-and-jericho2-offer-programmability-at-scale
https://github.com/p4lang/p4-applications/blob/master/docs/INT.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT.pdf
https://github.com/nplang/NPL-Spec
https://blogs.cisco.com/sp/one-silicon-one-experience-multiple-roles
https://blogs.cisco.com/sp/one-silicon-one-experience-multiple-roles
https://github.com/p4lang/p4c
https://github.com/p4lang/p4c
https://www.barefootnetworks.com/products/brief-tofino
https://www.arista.com/en/products/7170-series
https://www.arista.com/en/products/7170-series
https://www.netcope.com/en/products/netcopep4
https://www.netcope.com/en/products/netcopep4
https://www.netronome.com/technology/p4/
https://p4.org/p4-runtime/
https://pivotnine.com/2020/05/18/pensando-expands-what-smartnic-offloads-can-do/
https://pivotnine.com/2020/05/18/pensando-expands-what-smartnic-offloads-can-do/

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

A.1 Preliminary

Before detailing each type of resource encoding, we first describe
important preliminaries for the post usage.

Predicate block. Because RMT supports P4 [26], we first analyze
the whole Lyra program and synthesize the P4 program with meth-
ods introduced in §5.2.

The synthesizing algorithm returns a list of predicate blocks L
and the dependency relationship between the predicate blocks. As
we stated earlier, each predicate block is potentially deployed as a
table in the data plane: if any of the instructions i that belongs to
the predicate block B is deployed in the switch s, then the predicate
block should be in the switch. So we encode the validity Vg of a
predicate block B on switch s as:

Vs=\/ i) @

iEIB

where 7 denotes the instructions in predicate block B.

Header usage. We say a header is unused if no instruction de-
ployed in the switch reads or writes the fields in the header. The
header usage affects the resource occupation, thus we want to re-
move unused headers as much as possible. Similar to the predicate
block validity computation, the usage of one header h on switch s
is encoded as:

wy = \/ £i(i) (5)

iely

where 7}, denotes the instructions that read or writes header h. If a
header is unused, it does not necessarily mean the header takes no
resource in the switch, because we also need to take into account
the header dependency (see below).

Header validity. In the configurable parser, RMT doesn’t provide
any mechanism to skip header bytes. Thus we assume the packet is
parsed from the starting bit until the last valid header. This means if
a TCP header is parsed, then all the headers before the TCP header
(IPv4/IPv6, Ethernet) are also parsed. So we need to compute the
header dependency relationship based on the parser definition. For
two headers h; and hj, we say h; depends on h; if in the parser graph
hj sits on one of the paths from the root to h;. For example, the
TCP header depends on the Ethernet header, but does not depend
on the UDP header. Here, h; depends on hj means if h; is parsed,
then hj must also be parsed.

So the validity of a header V}, (whether the header should be
parsed) is encoded as:

Vih=upVv \/ Up, 6)
h;eD(h)

where D (h) denotes all the headers that depends on header h.

Variable validity. Because there is no dependency relationship
between variables in the Lyra program, the variable’s validity can be
computed via the header usage computation method. The validity
of the internal, global and external variable is denoted as V;, Ve, and
Ve respectively.

Gao et al.

A.2 Parser

In RMT, the parser is implemented as a state machine. Each state in
the state machine represents a parser node in the program and the
transition in the state machine maps to the transition of the parser
nodes. In the hardware, the state machine data is stored in a TCAM
and a RAM table. Each entry in the TCAM table matches 32 bits
of incoming data and 8 bits of parser state. The RAM table stores
the next parser state and where the parsed data is stored. When a
packet comes in, the parser checks both the packet header content
and its own state to decide the action such as consume how many
bits and jump to which next state.

The complexity of the header directly affects the number of
entries in the parser’s TCAM table. In a nutshell, the more headers
or the more transitions between the parser nodes, the more entries
in the TCAM table. For each header h, Lyra can compute the entries
required to parse the header. For example, the TCP header requires
an entry that matches the ethernet.ether_type field. Because one
table entry e may be required by multiple headers, whether it should
be in the TCAM is decided by all related header’s validity. The above
entry is required by both TCP header and UDP header, so as long
as one header is valid, the entry should be deployed in the TCAM.
As a result, the deployment of an entry D, is encoded as:

De=\/ Vi %)

heS,

where S, denotes the set of headers that requires entry e to be
deployed in the TCAM. And we can compute the total number of
entries in the TCAM table by summing all D, up:

Nparser = Z De 8
e

In RMT [17], the maximum number of entries is 256, 50 Npgrser <
256. In reality, Lyra can skip this encoding when it figures out that
the header is not complex enough that even all headers are valid,
the encoded entries cannot overflow the TCAM table.

A.3 Packet Header Vector

Packet header vector (PHV) acts as the bus that transmitting the
data between the physical stages. It takes the data generated by
the parser and contains the fields used for matching and actions’
output. The basic component of PHV is called word. In RMT, there
are 64, 96, 64 words with 8, 16, and 32-bit width respectively. In
total, the width of the PHV is 4Kb.

How the fields are stored in the PHV is also interesting. Multiple
units of small words can be combined together to act as a larger
word. For example, to host a 48b source MAC address, RMT can
use either six 8-bit words, three 16-bit words, one 32-bit word, and
one 16-bit word, and so on.

Given a field f with length I¢, we can calculate all packing
strategies C by dynamic programming. Each strategy c is a three-
element tuple ¢ = (co, ¢1, c2) that represents the number of words
used to hold the field. Because only one strategy is valid, we intro-
duce a Boolean variable B, ¢ for each strategy and add the constraint
that only one of the Boolean variables can be true:

D (1 Beyp) =1 ©

CGCf

So take the 8-bit word as an example, the total PHV usage can
be encoded as:

Ngp= > | > elo]-Bes-Vp (10)

feF \ceCyr

where 7 denotes all the fields including header fields and internal
variables, Vy denotes the validity of the field f. If field f is an
internal variable, then Vf = V;, if it is a header field, then the
validity equals the validity of header h, Vy = V},. Similarly, we can
encode the usage of 16 and 32-bit words. The total usage should
not exceed what is available in the RMT architecture.

A.4 Memory Block

All the table entries, action parameters, and stateful objects take
memory space. In RMT, the memory is counted in block: each stage
has 106 SRAM blocks of 1K entries with 80b width, 16 TCAM blocks
of 2K entries with 40b width.

To improve memory allocation efficiency, RMT introduces an ar-
chitectural trick called word-packing. The packing allows multiple
table entries packed together horizontally. For example, for a 48-bit
MAC address, one 80-bit-wide entry in the SRAM block can only
fit one entry, if we pack two memory blocks together and form a
160-bit wide, 1K entry packing unit, each entry can fit three 48-bit
MAC addresses.

RMT does not mention the maximum block packing capability;
thus, Lyra assumes it can pack as many blocks as possible. Suppose a
table requires w bits match width and h entries, while each memory
block is wy, wide and has h;, entries, the minimum number of
memory blocks can be computed as:
[]-w

1 (11)

Nmemory = |—
m

Without word-packing, the number of memory blocks is:
h w
Nmemory: fET : f@1 (12)

For the assignment overhead, such as action parameters and
registers, Lyra uses the method introduced in Jose et al. [26] to
compensate for the overhead. As shown in RMT architecture [17,
26], if a table requires more blocks than a stage is able to provide,
it could expand to multiple stages to meet the requirement. The
memory block constraint is encoded along with the table constraint
introduced in §A.6.

A.5 Stateful Operations

RMT does not explain how to implement a stateful operation except
the counters and meters. So Lyra uses the solution introduced in
Domino [37] called atom. In a nutshell, an atom is a collection
of hardware circuits that able to perform comparison, arithmetic
operations, read and write in a single clock cycle. There are many

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

types of atoms introduced in Domino [37], Lyra uses the most
powerful one called Pairs.

In a Lyra program, the global variable is the only component
that is stateful. When compiling to an RMT switch, Lyra uses the
algorithm introduced in Domino [37] to check if the algorithm can
fit into the atom. If not, then all the related instructions cannot be
deployed in this switch, Lyra has to find other switches to deploy
them. If so, replace all related instructions with an atom call. Note
that this computation is done before the preparation step because
it affects predicate block computations.

A.6 Table and Pipeline

Table is the core component of the RMT architecture and imple-
ments the logic of the data plane program. The RMT requires that
if one table T, reads the output of another table Tj, T, must be
deployed in a stage after Tj,. On the other side, RMT has only 32
stages in the ingress and egress pipeline, and according to Jose et
al. [26], RMT only allows 8 tables per stage. So we have to deploy
the tables wisely.

As we stated earlier, each synthesized predicate block is a table
if it is deployed in the switch. Thus the tables’ dependency rela-
tionship is already encoded in the predicate block’s dependency
graph. For each predicate block, based on the content and each in-
struction’s validity, we can compute the properties of the predicate
block, such as the total number of entries Eg, the width Wg.

The table and pipeline constraint can be encoded with the fol-
lowing steps: Firstly, because each table could be deployed across
many stages, for each predicate block B;, Lyra creates two inte-
gers &g, stare and &g, ong indicating the start and end stage of the
predicate block. If &g, start = &B, end, the predicate block is only
deployed in one stage.

Secondly, let S denotes the number of stages in RMT, for each
predicate block B;, Lyra creates S integers, each integer Ep, s de-
notes the total number of entries B; deploys on stage s. So we have
the following constraints:

Z EBi,s =0, Z EBi,s =0,

5<fBi,start S>§Bi.end

Ep;s = Ep;

13
§Bi,start S5§§Bi.end ()
where Ep; denotes the total number of entries in B;.

Thirdly, we encode the dependency relationship between the
tables, if predicate block B; depends on Bj, then we have:

VBi A VBj = SBi,f > SBj,l (14)

Finally, Lyra encodes the memory constraint. For each stage s,
there are M memory blocks, so we have:

Eg; s
I- hly -I Bi
Z [14V, <M (15)

W,
B;eB m

A.7 Other Constraints

Besides the above constraints mentioned in the RMT architecture,
Lyra can encode other constraints using similar techniques. Such
as total number of atoms per stage, number of atoms per table,
number of actions per stage, power consumption limitation, etc.

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

B EXTERNAL & GLOBAL VARIABLES
ENCODING

We have presented how to encode deployment constraints in §5.5.
This section further shows how do we encode external variable
constraints (§B.1) and global variable constraints (§B.2).

B.1 Encoding External Variable Constraints

An external variable can be split and deployed on multiple switches
due to the memory constraint. Each external variable e should co-
exist with all the instructions that read e. Also on each possible
path p in the scope, there are no duplicated or missing elements
of e. Let &, denotes the total size of e, E&; denotes the number of
elements deployed on switch s, I, denotes all the instructions that
read e, thus we have:

Z.Ss:(cje,/\ff(\/fs(i),(gs>O,85=O) (16)

SEp sep iel,

B.2 Encoding Global Variable Constraints

The global variable is special, because its value is maintained over
the entire data plane, and any packet on different paths should
be able to read and write this shared information. We encode a
constraint that all the write operations and read operations that
occurred earlier than the last write operation with respect to the
global variable must co-exist on the same switch.

C OPTIMIZATIONS

We put more details about our Lyra’s optimizations.

C.1 Reducing P4 Tables

Reducing the number of P4 tables. The first optimization aims

to reduce the number of tables in the synthesized P4 programs. In

one of the P4 features, the metadata in packet header can be set by

set_metadata(dst_v, src_v) during the packet header parsing;

thus, in the conditional implementation synthesis (§5.2), we tra-
verse each extracted predicate block to identify the set_metadata.
For each set_metadata, we backtrack the dependency of its dst_v

to check whether the dst_v was read in somewhere. If not, we move

this set_metadata to the parser body, preventing the set_metadata
from being enveloped as a table. In other words, we do the best

to reduce the chance of set_metadata generating tables. This op-
timization can yield a 50% reduction to the number of generated

tables in our P4 INT program.

C.2 Optimizing Results via Metrics

Lyra further offers the network programmers with options that
allow them to specify a requirement for optimizing the generated

Gao et al.

chip code. Such a requirement could be maximizing the usage of
a certain switch or compacting the Lyra program to minimize the
number of programmed switches in each scope. To achieve this
optimization, we implement the constraints specific to each option.
For example, we can minimize the number of switches hosting the
generated tables by minimizing Y.re;, sep If (fs(I), 1, 0). For another

example, we can maximize the number of tables on a specified
switch, by assigning a much bigger weight for that specified switch

and minimizing the final result.

D MORE DISCUSSIONS

This section discusses more details about Lyra’s implementation,
including unifying different ASIC libraries and the expressiveness
of Lyra model.

Unifying different ASIC libraries. Given that programmable
ASICs from different vendors offer different chip-specific libraries,
in Lyra compiler, we hard-code a collection of mapping functions
that convert chip-specific libraries into common IR representa-
tion. In our experience, we met two types of mapping. First, li-
braries from different ASICs offer the same functions but with dif-
ferent APIs. For example, in P4, a CRC hash calculation is realized
through a combination of field_list, field_list_calculation,
and modify_field_with_hash_based_offset; while in NPL, the
CRC hash calculation is implemented as a special function call.
For this type, Lyra compiler provides a predefined library-function,
called crc_hash(), which hard-codes the CRC hash calculation
APIs in different programmable ASICs.

The second type is: some of the chip-specific libraries only ex-
ist on their own ASICs. For example, ASIC A may support range
matching tables, ASIC B may only provide TCAM matching tables.
In this case, Lyra also hard-codes mapping functions to unify the
chip-specific features across different ASICs, such as converting the
range matching rules (for ASIC A) into multiple TCAM matching
rules (for ASIC B). For multi-switch case, Lyra would also search
a solution across the ASICs defined in the given scope. If there is
no mapping function and cannot find an alternative ASIC, Lyra
compiler would report a compilation error.

The expressiveness of Lyra model. Lyra’s constraint solving
is built on the SMT solver; thus, our synthesis capability heavily
relies on the expressiveness of SMT solver. Although our experience
observed that many constraints are hard to encode, we have not
seen any of resource constraints that cannot be encoded into SMT
model yet. By far, while we are not aware of cases that can not be
encoded by Lyra, we cannot exclude such possibility.

	Abstract
	1 Introduction
	2 Overview
	2.1 Motivation
	2.2 Overview of Lyra Program & Workflow

	3 Lyra Language
	3.1 Why Lyra is High-Level?
	3.2 Lyra's Programmable Model
	3.3 Specifying Algorithm Scope
	3.4 Variables in Lyra Programs

	4 Lyra's Front-End
	4.1 Checker
	4.2 Preprocessor
	4.3 Code Analyzer

	5 Lyra's Back-End
	5.1 Problem Modeling
	5.2 Conditional P4 Synthesis
	5.3 Conditional NPL Synthesis
	5.4 Encoding Chip-Specific Constraints
	5.5 Encoding Deployment Constraints
	5.6 Encoding Resource Extensibility
	5.7 Translator
	5.8 Control Plane Interfaces

	6 Optimization
	7 Evaluation
	7.1 Portability
	7.2 Extensibility
	7.3 Composition

	8 Discussion
	9 Related Work
	10 Conclusion
	References
	A Resource Constraint Encoding
	A.1 Preliminary
	A.2 Parser
	A.3 Packet Header Vector
	A.4 Memory Block
	A.5 Stateful Operations
	A.6 Table and Pipeline
	A.7 Other Constraints

	B External & Global Variables Encoding
	B.1 Encoding External Variable Constraints
	B.2 Encoding Global Variable Constraints

	C Optimizations
	C.1 Reducing P4 Tables
	C.2 Optimizing Results via Metrics

	D More Discussions

