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ABSTRACT
Medical research is risky and expensive. Drug discovery requires
researchers to efficiently winnow thousands of potential targets to
a small candidate set. However, scientists spend significant time and
money long before seeing the intermediate results that ultimately
determine this smaller set. Hypothesis generation systems address
this challenge by mining the wealth of publicly available scientific
information to predict plausible research directions. We present AG-
ATHA, a deep-learning hypothesis generation system that learns
a data-driven ranking criteria to recommend new biomedical con-
nections. We massively validate our system with a temporal hold-
out wherein we predict connections first introduced after 2015
using data published beforehand. We additionally explore biomedi-
cal sub-domains, and demonstrate AGATHA’s predictive capacity
across the twenty most popular relationship types. Furthermore,
we perform an ablation study to examine the aspects of our se-
mantic network that most contribute to recommendation quality.
Overall, AGATHA achieves best-in-class recommendation quality
when compared to other hypothesis generation systems built to
predict across all available biomedical literature. Reproducibility:
All code, experimental data, and pre-trained models are available
online: sybrandt.com/2020/agatha .
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1 INTRODUCTION
As the rate of global scientific output continues to climb [39], an
increasing portion of the biomedical discovery process is becom-
ing a “big data” problem. For instance, the US National Library of
Medicine’s (NLM) database of biomedical abstracts, MEDLINE, has
steadily increased the number of papers added per year, and has
added significantly over 800,000 papers every year since 2015 [1].
Buried within the large and growing MEDLINE database are many
undiscovered implicit connections — those relationships that are
implicitly discoverable, yet have not been identified by the research
community [35]. Hypothesis generation systems aim to exploit the
wealth of public scientific text by automatically identifying plausible
new research directions [32, 35]. However, existing systems are of-
ten either specialized to particular biomedical subdomains [25, 42],
or require significant human interpretation [33, 34, 37].

This work presents AGATHA, a deep learning technique to au-
tomatically identify plausible biomedical hypotheses across the
entire span of biomedical literature. In this context, a hypothesis is
a proposed association between two entities of interest. AGATHA
constructs and embeds a large semantic graph containing over ten-
billion edges from the literature, and then trains a transformer en-
coder [40] to rank plausible connections. This work fundamentally
changes our development of hypothesis generation systems that are
in active use for drug discovery. Our initial system, MOLIERE [37],
constructs a smaller semantic network, which it uses to identify
key abstracts and perform topic modeling based on user-supplied
connections of interest. Using heuristically derived ranking crite-
ria [38], the MOLIERE system successfully identified a novel gene
treatment target for HIV-associated Neurodegenerative Disorder
through the inhibition of DDX3X, which was confirmed in wet lab
experiments [3].

AGATHA establishes a next-generation approach to hypothesis
generation by challenging many of the assumptions that under-
pin the MOLIERE system. Most dramatically, AGATHA replaces
MOLIERE’s heuristically derived ranking criteria with a data-driven
measure that we learn directly from the distribution of existing
biomedical connections. We observe substantial performance im-
provements when comparing MOLIERE and AGATHA ranking

Applied Research Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

2757

http://sybrandt.com/2020/agatha
https://doi.org/10.1145/3340531.3412684
https://doi.org/10.1145/3340531.3412684
https://doi.org/10.1145/3340531.3412684


quality. Specifically, on the same benchmark with the same train-
ing data, AGATHA scores a ROC AUC of 0.97 and a PR AUC of
0.98, whereas MOLIERE scores 0.72 and 0.82 respectively [36]. Fur-
thermore, AGATHA performs queries orders of magnitude faster
than MOLIERE, and requires less human oversight than many con-
temporary systems [9, 33, 37]. Specifically, AGATHA can perform
nearly 500 queries per second on one GPU, while MOLIERE re-
quired an average of 100 seconds per query [36]. For these reasons,
we currently supply an up-to-date instance of AGATHA for use
in the scientific community, and with help from the NSF we are
in the process of releasing an update specialized for accelerating
COVID-19 research.

In addition to increased quality and performance compared to
MOLIERE, AGATHA has advantages when compared to other sys-
tems in the state of the art. Many are constructed to predict im-
plicit connections from domain-specific graphs [25, 42]. In con-
trast, AGATHA is trained to predict connections from the entire
scope of biomedical literature. Yet still, in this work we find that
our more generalized ranking model is capable of high quality
domain-specific connection recommendation. Other modern sys-
tems require human oversight, for instance via the interpretation
of visualizations or clusters [9, 33, 37]. While these techniques
provide much needed intractability to the hypothesis generation
pipeline, the human-in-the-loop strategy inevitably slows discov-
ery and introduces additional bias. As a result of these limita-
tions inherent to many modern techniques, many provide very
restricted validation experiments, often consisting of only a hand-
ful of queries [15, 20, 21, 29]. By combining automated analysis, a
more generalized prediction space, and high-performance queries,
we are able to validate AGATHA on thousands of queries, and per-
form large scale recommendation across a wide set of possibilities.
Deployment Details: AGATHA supports collaborations with the
Drug Discovery and Biomedical Sciences department at the Uni-
versity of South Carolina, as well as other departments within
Clemson. We are working with the startup Scifeat to produce an
interpretable dashboard for AGATHA results. Using this interface,
we are creating a large dataset of generated hypotheses pertraining
to COVID-19 for use by the broader biomedical community. For
organizations wishing to work with AGATHA directly, the entire
system is open source and we provide models trained on up-to-date
datasets.
Our contribution: (1) We introduce a novel approach to construct
large semantic graphs that use the granularity of sentences to rep-
resent documents. These graphs are constructed using a pipeline of
state of the art NLP techniques that have been customized for under-
standing scientific text, including SciBERT [6] and ScispaCy [27]. (2)
We deploy our deep-learning transformer-based model that trained
to predict likely connections between term-pairs at scale. This is
done by embedding our proposed semantic graph to encode all
sentences, entities, n-grams, lemmas, UMLS terms, MeSH terms,
chemical identifiers, and SemRep predicates [4] (over 10 billion
edges) in a common space using the PyTorch-BigGraph embed-
ding [24]. (3) We perform an ablation study to compare the quality
of the AGATHA ranking criteria when trained against various sub-
graphs of our full semantic network. (4) We validate our system
using the massive validation techniques presented in [38], and also
demonstrate the ability of AGATHA to generalize across biomedical

subdomains. We compare these results to a similar ranking model
proposed by Edge2Vec [13], which outperformed other methods.

This system is open-source, easily installed, and all prepared data
and trained models are available to perform hypothesis queries at
sybrandt.com/2020/agatha . We additionally encourage enthusiastic
readers to view a more detailed long version of this paper online1.

2 BACKGROUND
Hypothesis Generation Systems. Swanson posited that undis-
covered public knowledge, those facts that are implicitly available
but not explicitly known, would accelerate scientific discovery if
an automated system were capable of returning them [35].

Our former approach to address these challenges is posed by the
MOLIERE system [37], and its accompanying plausibility ranking
criteria [38]. This system expands on theA−B−C model by describ-
ing a range of connection patterns, as represented by an LDA topic
model [7], when receiving an A,C query. To do so, the MOLIERE
system first finds a short-path of interactions bridging theA−C con-
nection from within a large semantic graph. This structure includes
nodes that correspond to different entity types that are both tex-
tual and biomedical, such as abstracts, predicate statements, genes,
diseases, proteins, etc. Edges between entities indicate similarity.
For instance, an edge may exist between an abstract and all genes
discussed within it, or between two proteins that are discussed in
similar contexts. Using the short-path discovered within the seman-
tic network between A and C , the MOLIERE system also reports
an LDA topic model [7]. This model summarizes popular areas of
conversation pertaining to abstracts identified near to the returned
path. As a result, the user can view various fuzzy clusters of entities
and the importance of interesting concepts across documents.

To reduce the burden of topic-model analysis on biomedical
researchers, the MOLIERE system is augmented by a range of tech-
niques that automatically quantify the plausibility of the query
based on its resulting topic models. Our measures, such as the
embedding-based similarity between keywords and topics, as well
as network analytic measures based on the topic-nearest-neighbors
network, were heuristically backed, and were combined into a meta-
measure to best understand potential hypotheses. Using this tech-
nique, we both validated the overall performance of the MOLIERE
system, and used it to identify a new gene-treatment target for
HIV-associated neurodegenerative disease through the inhibition
of DDX3X [3].
PyTorch-BigGraph (PTBG) [24] is an open-source, large-scale,
distributed graph-embedding technique aimed at heterogeneous
information networks [30]. These graphs consist of nodes of var-
ious types, connected by typed edges. We define each node and
relationship type contained in our semantic graph as input to this
embedding technique. PTBG distributes edges such that all ma-
chines compute on disjoint node-sets. We choose to encode edges
through the dot product of transformed embeddings, which we
explain in more detail in Section 3.
The Transformer [40] model is built with multi-headed atten-
tion. Conceptually, this mechanism works by learning weighted
averages per-element of the input sequence, over the entire input

1Long form version: https://arxiv.org/abs/2002.05635
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Figure 1: AGATHA multi-layered graph schema.

sequence. Specifically, this includes three projections of each ele-
ment’s embedding, represented as packed matrices: Q , K , and V .
The specific mechanism is defined as follows, with dk representing
the dimensionality of each Q and K embedding:

Attention(Q,K,V ) = softmax

(
QK⊺√
dk

)
V (1)

The “multi-headed” aspect of the transformer indicates that the
attention mechanism is applied multiple times per-layer, and re-
combined to form a joint representation. IfW (x ) indicates a matrix
of learned weights, then this operation is defined as:

MultiHead(X ) = [h1; . . . ;hk ]W (4)

where hi = Attention
(
XW

(1)
i ,XW

(2)
i ,XW

(3)
i

) (2)

By using only the encoder half of the transformer model, and
by omitting any positional mask or encoding, we apply the self-
attention mechanism to understand input sets while reducing the
effect of the arbitrary ordering imposed by a sequence model. One
encoder layer is defined as:

E(X ) = LayerNorm(FF (α) + α)

where FF (α) = max
(
0,αW (5)

)
W (6)

and α = LayerNorm(MultiHead(X ) + X )

(3)

3 DATA PREPARATION
We propose a significant data processing pipeline, to convert raw-
text sources into a semantic graph (Fig. 1). An embedding of this
graph enables our learned ranking criteria.
Text Pre-Processing.We begin with raw MEDLINE XML files 2.
We attempt to extract the paper id (PMID), version, title, abstract
text, date of first occurrence, keywords, and publication language.
Next, we filter out non-English documents. For fair validation of
our system, we additionally discard any document (or another infor-
mation) that is dated after January 1st, 2015.

We split the text of each abstract into sentences. For each sen-
tence, we identify parts-of-speech, dependency tags, and named
entities using ScispaCy [27]. The result of this process is a record
per-sentence, including the title, that contains all metadata associ-
ated with the original abstract, as well as all algorithmically identi-
fied annotations.

Using the lemma information of each sentence, we perform n-
gram mining in order to identify common phrases that may not
have been picked up by entity detection. First, we provide a set of
part-of-speech tags we mark as “interesting” from the perspective

2At the time of writing, the bulk release at the end of 2019 contained 1,014 files,
containing nearly 30-million documents

ofn-grammining. These are: nouns, verbs, adjectives, proper nouns,
adverbs, interjections, and “other.” We additionally supply a short
stopword list, and assert that stopwords are uninteresting. Then, for
each sentence, we produce the set of n-grams of length two-to-four
that both start and end with an interesting lemma. We record any
n-gram that achieves an overall support of at least 100. However,
we find it necessary to introduce an approximation factor, that an
n-gram must have a minimum support of five within a datafile for
those occurrences to count.
Semantic Graph Construction. After splitting sentences, while
simultaneously identifying lemmas, entities and n-grams, we can
begin constructing the semantic graph. We begin this process by
creating edges between similar sentences. The simplest edge we
add is that between two adjacent sentences from the same abstract.
For instance, sentence i in abstract A will produce edges to Ai−1
and Ai+1, with the paper title serving as A0.

To capture edges between similar sentences in different abstracts,
we compute an approximate-nearest-neighbors network on the
set of sentence embeddings. We derive these embeddings from
the average of the final hidden layer of the SciBert 3 NLP model
for scientific text [6]. This 768-dimensional embedding captures
context-sensitive content regarding each word in each sentence.

However, we have over 155-million sentences in the 2015 vali-
dation instance of AGATHA, which makes performing a nearest-
neighbors search per-sentence (typically O(n2d)) computationally
difficult. Therefore, we leverage FAISS to perform dimensionality re-
duction, as well as approximate-nearest neighbors, in a distributed
setting. First, we collect a one-percent sample of all embeddings
on a single machine, wherein we perform product quantization
(PQ) [18]. This technique learns an efficient bit representation of
each embedding.We use 96-quantizers, and each considers a disjoint
8-dimensional chunk of the 768-dimensional SciBert embeddings.
Each quantizer then learns to map its input real-valued chunk into
output 8-bit codes, such that similar input chunks receive output
codes with low hamming distance.

Still using the 1% sample on one machine, FAISS performs k-
Means over PQ codes in order to partition the reduced space into
self-similar buckets. By storing the centroid of each bucket, we can
later select a relevant sub-space pertaining to each input query,
dramatically reducing the search space. We select 2048 partitions to
divide the space, and when performing a query, each input embed-
ding is compared to all embeddings residing in the 16 most-similar
buckets.

Once the PQ quantizers and k-means buckets are determined,
the initial parameters are distributed to each machine in the cluster.
Every sentence can be added to the FAISS nearest-neighbors index
structure in parallel, and then the reduced codes and buckets can
be merged in-memory on one machine. We again distributed the
nearest-neighbors index, now containing all 155-million sentence
codes, to each machine in the cluster. In parallel, these machines
can identify relevant buckets per-point, and record their 25 approx-
imate nearest-neighbors. If we havem machines, each with p cores,
and search q = 16 of the b = 2048 buckets-per-query, we reduce

3We specifically use the pre-trained “scibert-scivocab-uncased” model, which was
trained on over 1.14-million full-text papers.
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complexity for identifying all nearest-neighbors from O(dn2) to
O

(
qdn2/32bpm

)
.

We additionally add simpler sentence-occurrence edges for lem-
mas,n-grams and entities. In each case, we produce an edge between
s and x provided that lemma, entity,n-gram, or metadata-keyword x
occurs in sentence s . The last node type is SemRep predicates [4].
Each has associated metadata, such as the sentence in which it
occurred, its raw text, and its relevant UMLS coded terms. For each
unique subject-verb-object triple, we create a node in the seman-
tic graph. We then create edges from that node to each relevant
sentence, keyword, lemma, entity, and n-gram. Our overall graph
consists of 184-million nodes and 12.3-billion edges.
Graph Embedding.We utilize the PyTorch-BigGraph (PTBG) em-
bedding utility to perform a distributed embedding of the entire
network [24]. PTBG learns typed embeddings, and we define node
types corresponding to each presented in our semantic graph schema.
Each undirected edge in our graph schema is also coded as two
directional edges of types x → y and y → x .

When computing embeddings, we specify for edges to be en-
coded via the dot-product of nodes, and for relationship types to be
encoded using a learned translation per-type. We generate a total
of 100 negative samples per edge, 50 chosen from nodes within
each batch, and 50 chosen from nodes within the corresponding
partitions. Dot products between embeddings are learned using the
supplied softmax loss, with the first dimension of every embedding
acting as a bias unit.

Formally, if an edge ij exists between nodes i and j of types
ti and tj respectively, then we learn an embedding function e(·)
that is used to create a score for ij by projecting each node into
RN where N is a predetermined embedding dimensionality. In our
experiments we consider N = 512. This embedding function uses
the typed translation vectorT (ti tj ) ∈ RN that is shared for all edges
of the same type as ij. This score is defined as:

s(ij) = e(i)1 + e(j)1 +T
(ti tj )
1 +

N∑
k=2

e(i)k

(
e(j)k +T

(ti tj )
k

)
(4)

Then, for each edge ij, we generate 100 negative samples in
the form x

(i j)
n y

(i j)
n . Their scores are compared to that of the posi-

tive sample using the following loss function, which indicates the
component of overall loss corresponding to edge ij:

GraphLossi j = −s(ij) + log
100∑
n=0

exp
(
s
(
x
(i j)
n y

(i j)
n

))
(5)

TrainingData. In order to learnwhat makes a plausible biomedical
connection, we collect the set of published connections present in
our pre-2015 training set. For this, we turn to the Semantic Medical
Database (SemMedDB), which contains over 19-million pre-2015
SemRep [4] predicates parsed from all of MEDLINE. A SemRep
predicate is a published subject-verb-object triple that is identified
algorithmically. In lieu of a true data set of attempted hypotheses,
we can train our model on these published connections. However,
this approach comes with some drawbacks. Firstly, SemRep predi-
cates are defined on the set of UMLS terms, which will restrict our
system to only those entities that have been coded. This limitation is
acceptable given size size of UMLS, and presence of existing bench-
marks defined among UMLS terms [38]. Secondly, the predicate set

Figure 2: AGATHA ranking transformer encoder.

is noisy, and may contain entries that are incorrect or obsolete, as
well as algorithmically introduced inaccuracies. However, we find
at scale that these sources of noise do not overwhelm the useful
signal present within SemMedDB.

4 RANKING PLAUSIBLE CONNECTIONS
We train a model to rank published SemRep [4] predicates above
noisy negative samples using the transformer architecture [40]. To
do so we first formulate a predicate with subject α and object β
for input into the model. Those predicates that are collected from
SemRep are “positive samples” (PS). The function Γ(·) indicates the
set of neighbor predicates that include a term as either a subject or
object. We represent the αβ predicate as a set with elements that
include both terms, as well as a fixed-size sample with-replacement
of size s = 15 of each node’s non-shared predicates:

PSα β =
{
α, β,γ

(α )
1 , . . . ,γ

(α )
s ,γ

(β )
1 , . . . ,γ

(β )
s

}
where γ (α )i ∼ {Γ(α) − Γ(β)}, and γ (β )i ∼ {Γ(β) − Γ(α)}

(6)

Negative Samples We cannot learn to rank positive training ex-
amples in isolation. Instead, we first generate negative samples
to accompany each published predicate. This includes two types
of samples: scrambles and swaps. Both are necessary, as we find
during training that the easier-to-distinguish scrambles aid early
convergence, while the swaps require the model to understand the
biomedical concepts encoded by the semantic graph embedding.

The negative scramble (NScr) selects two arbitrary terms x and
y, as well as 2s arbitrary predicates from the set of training data.
While we enforce that x and y do not share a predicate, we do
not enforce any relationship between the sampled predicates and
these terms. Therefore these samples are easy to distinguish from
positive examples. If T denote all positive-set terms, and P denotes
all predicates, then a negative scramble associated with positive
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sample αβ is notated as:
NScrα β = {x,y,γ1, . . . ,γ2s }

where x,y ∼ T , and γi ∼ P

s.t. Γ(x) ∩ Γ(y) = ∅

(7)

The negative swap (NSwp) selects two arbitrary terms, but sam-
ples the associated predicates in the same manner as the positive
sample. Therefore, the observed term-predicate relationship will
be the same for each half of this negative sample (α and γ (α )i ). This
sample requires the model to learn that some αβ pairs should not go
together, and this will require an understanding of the relationships
between biomedical terms. A negative scramble associated with αβ
is notated as:

NSwpα β =
{
x,y,γ

(x )
1 , . . . ,γ

(x )
s ,γ

(y)
1 , . . . ,γ

(y)
s

}
where γ (x )i ∼ {Γ(x) − Γ(y)}, , and γ (y)i ∼ {Γ(y) − Γ(x)}

s.t. Γ(x) ∩ Γ(y) = ∅

(8)

Objective. We minimize the margin ranking loss between each
positive sample and all associated negative samples. The ranking
formulation allows the model to be certain of some hypotheses,
and shaky on others without facing a penalty, which is important
for real-world applications. The contribution of positive sample αβ
to the overall loss is defined as:

L(α, β) =
n∑
i=0

L
(
PSα β ,Nscr

(i)
α β

)
+

n′∑
j=0

L
(
PSα β ,Nswp

(j)
α β

)
where L(p,n) = max (0,m −H(p) +H(n))

(9)

Here n = 10 denotes the number of negative scrambles, n′ = 30
is the number of negative swaps,m = 0.1 is the desired margin be-
tween positive and negative samples, andH is the learned function
that produces a ranking criteria given two terms and a sample of
predicates.
Model. Using the transformer encoder summarized in Section 2, as
well as the semantic graph embedding, we construct our model. If
e(x) represents the semantic graph embedding of x , FF represents
a feed-forward layer, and E represents an encoder layer, then our
model H is defined as:

H(X ) = sigmoid(MW )

M =
1
|X |

∑
xi ∈X

EN (FF (e(xi )))

Ei+1(x) = E(Ei (x)), and E0(x) = x

(10)

Here N = 4 represents the number of encoder layers, andW
indicates the learned weights associated with the final ranking
projection. By averaging the transformer output over the input
sequence X , then projecting that result down to a single real value
withW , and applying the sigmoid function, we produce an out-
put per-predicate in the unit interval. This function is depicted in
Figure 4. The supplemental information containing training param-
eters and additional model detail.

5 VALIDATION
Testing hypothesis generation, in contrast to information retrieval,
is difficult as ultimately these systems are intended to discover infor-
mation that is unknown to even those designing them [43]. Without

the resource to perform expensive wetlab experiments, most de-
signing hypothesis generation systems evaluate their system on the
ability to uncover recent findings using historical data [38]. An ad-
ditional challenge comes from the broad scope of AGATHA. While
most hypothesis generation systems focus on particular biomedical
subdomains [25, 32, 42], this system incorporates the entire MED-
LINE dataset. Therefore, we compare our proposed system to both
our prior work, MOLIERE [37], as well as a biomedically-specialized
knowledge graph embedding technique intended for hypothesis
generation applications, Edge2Vec [13].
Comparison with Heuristic-Based Ranking.We begin by com-
paring the performance numbers obtained through our proposed
learned ranking criteria with other ranking methods posed in [38].
Specifically, the MOLIERE system presents experimental numbers
for various training-data scenarios for the same 2015 temporal hold-
out as used in this work [36]. For a direct comparison, we use our
proposed method to rank the same set of positive and negative
validation examples.
Comparison by Subdomain Recommendation. As mentioned
in [16], theMOLIERE validation set has limitations.We improve this
set by expanding both the quantity and diversity of considered term
pairs, as well as evaluating AGATHA through the use of all-pairs
recommendation queries within popular biomedical subdomains.
As a result, this comparison effectively uses subdomain-specific
negative examples, which makes for a harder benchmark than
that presented in the MOLIERE work. It is worth nothing that
these all-pairs searches are made possible by the very efficient
neural-network inference within AGATHA, and would not be as
computationally efficient in the MOLIERE shortest-path and topic-
modeling approach.

This analysis begins by extracting semantic types [2], which cat-
egorize each UMLS term per-predicate into one of 134 categories,
including “Lipid,” ”Plant,” or “Enzyme.” From there, we can group αβ
predicate-term pairs by types tα and tβ . We select the twenty pred-
icate type pairs with the most popularity in the post-2015 dataset,
and within each type we identify the top-100 predicates with the
most rapid non-decreasing growth of popularity determined by
the number of abstracts containing each term-pair per year. These
predicates form the positive class of the validation set. We form
the rest of the subdomain’s validation set by recording all possible
undiscovered pairs of type tα tβ from among the UMLS terms in the
top-100 predicates. We then rank the resulting set by the learned
ranking criteria, and evaluate these results using a range of metrics.
Edge2Vec Comparison. We compare AGATHA performance to
the recent ranking model built using Edge2Vec embeddings [13].
Edge2Vec is a biomedical knowledge graph embedding technique in-
tended for a similar applications as AGATHA, which we summarize
in Section 7. This method was also chosen because it significantly
outperforms several other methods (see [13]) which makes our
comparison with them meaningless. We train Edge2Vec on the
knowledge graph of predicate statements, wherein edges are triples
of the form “subject-verb-object.” We train a model that learns to
rank a potential subject-object connection by concatenating their
corresponding Edge2Vec representations and then projecting down
to the unit interval. We fit this model with the same margin ranking
loss objective and optimizer as used to train AGATHA.
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System Instance ROC AUC PR AUC

AGATHA 0.97 0.98
Edge2Vec 0.92 0.92
MOLIERE [Abstract] 0.72 0.82
MOLIERE [Full Text] 0.80 0.78

Table 1: Benchmark comparison betweenMOLIERE andAG-
ATHA on the same benchmark.

Ablation Study. To further explore the impact that each aspect
of the AGATHA semantic graph has on its predictive capacity, we
perform an ablation study. In this study, we selectively remove
different aspects of the semantic graph, retrain graph embeddings,
and then retrain the AGATHA ranking model. We then evaluate
the result against the same queries described above for subdomain
recommendation. We consider the following ablations: the entire
graph (Full), the graph with sentence nodes removed (No Sent.),
with entity nodes removed (No Ent.), with lemma nodes removed
(No Lemmas), with n-Gram nodes removed (No n-Grams), with the
sentence nearest-neighbors edges removed (No Sent. k-NN), and
lastly, the smallest graph that still enables training, containing only
predicates and coded terms (Only Pred.).
Metrics. The first metrics we consider are typical for determining
a classification threshold: the area under the receiver-operating-
characteristic curve (AUC ROC) and the area under the precision-
recall curve (AUC PR). We additionally provide recommendation
system metrics, such as top-k precision (P.@k), average precision
(AP.@k), and overall reciprocal rank (RR). Top-k precision is simply
the number of published term-pairs appearing in the firstk elements
of the ranked list, divided by k . Top-k average precision weights
each published result by its location in the front of the ranked list.
The reciprocal rank is the inverse of the rank of the first published
term pair.

6 RESULTS
First, we compare the performance of AGATHA to MOLIERE using
the benchmark established in [36]. These results can be found in
Table 1. Note that we include results for the version of MOLIERE
trained on the same dataset as AGATHA, as well as the higher-
performing version trained on full text papers [36], and also the
Edge2Vec model trained on the predicate knowledge network. We
observe that AGATHA significantly outperforms MOLIERE. This is
because the AGATHA ranking criteria is learned directly from the
distribution of terms, as opposed to the heuristic criteria used in
MOLIERE [38]. Furthermore, we find that AGATHA outperforms
Edge2Vec. AGATHA leverages significantlymore informationwhen
learning embeddings, and receives additional information in the
form of samples neighbors when performing predictions.

Beyond quality, the find that AGATHA performs queries faster
than MOLIERE, which has to perform expensive graph traversals
and topic modeling for each query. In contrast, AGATHA can store
all needed embeddings in memory, and can batch process queries on
GPU. While MOLIERE spends an average of 100 seconds per query,
and the full-text version spends over 75 minutes [36], AGATHA can
perform around 500 queries per second.

Next, we compare AGATHAperformance across popular biomed-
ical subdomains in Table 2. This task requires AGATHA to recom-
mend new research directions from large many-to-many collections
of queries. As a result, the area under the precision-recall curve (PR
AUC) is likely the most meaningful single metric, followed by the
precision (P) and average precision (AP). We observe that across
many subdomains, AGATHA outperforms the baseline established
by Edge2Vec. For instance, we find that the average PR AUC across
trials is higher (0.212 compared to 0.191) and that AGATHA has a
higher top-10 precision (0.360 compared to 0.335). Looking at spe-
cific subdomains, we find that AGATHA is best able to recommend
gene to cell-function (gngm:cell) and gene to neoplastic process
(gngm:neop).

Lastly, we compare the ablations of AGATHA in Table 3. Here
we present the average performance across the subdomain recom-
mendation benchmark for each model. Interestingly, we find that
the AGATHA model that removes n-Grams outperforms the larger
model. We found, while developing MOLIERE, that n-grams were
crucial for expert analysis of topic modeling results, and included
them within AGATHA as a way to facilitate a similar alternate
query strategy. However, we find that the degree distribution of
our n-grams is significantly different from the other textual node
types. As a result, there appears to be an unexpected convergence
issue when performing graph embeddings, which contributes to
decreases recommendation quality. Beyond this single unexpected
result, we also find that there are substantial performance benefits
to including the sentence subgraph, as removing sentence nodes
or nearest-neighbors edges has the two largest impacts in perfor-
mance. This finding confirms our initial assumption that keyword
associations alone (provided by the lemmas and entities) are insuf-
ficient to accurately identify semantically similar sentences. With
high-quality sentence embeddings, it would appear that we also
receive higher quality predicate embeddings, which are directly
used by the AGATHA ranking model.

7 RELATED WORK
Foster et al. [12] identify a series of common successful research
strategies often used by scientists. In doing so they demonstrate
that high-risk and innovative strategies are uncommon among
the scientific community in general. It follows that the field of
hypotheses generation obeys similar rules. Many systems have
found success using algorithmic techniques that approximate these
common research strategies by studying term co-occurrences [17,
19, 41], or predicting links with a graph of biomedical entities [11,
28]. While the Foster’s model of research strategies has proven to be
useful, the mechanisms involved in complex scientific discoveries
remain unexplored.

Unsurprisingly, we find that hypothesis generation systems uti-
lize algorithmic techniques in a range of complexity that is anal-
ogous to these human research strategies. The first hypothesis
generation system, ARROWSMITH, presents the ABC model of
automatic discovery [34]. This technique identifies a list of terms
that are anticipated to help explain a connection between two
terms of interest. This basic algorithm remains in some modern
systems, such as [22]. However, ABC-based techniques have sig-
nificant limitations [31], including their similarity metrics defined
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ROC AUC PR AUC RR P@10 P@100 AP@10 AP@100
A E A E A E A E A E A E A E

aapp:dsyn 0.77 0.70 0.23 0.19 0.20 1.00 0.30 0.40 0.32 0.27 0.32 0.54 0.37 0.33
aapp:aapp 0.77 0.72 0.10 0.09 0.07 0.25 0.00 0.10 0.12 0.10 0.00 0.25 0.13 0.12
aapp:cell 0.72 0.72 0.23 0.20 0.33 1.00 0.60 0.20 0.31 0.23 0.51 0.60 0.39 0.27
aapp:gngm 0.74 0.68 0.24 0.19 0.20 1.00 0.20 0.40 0.43 0.29 0.23 0.73 0.41 0.39
aapp:neop 0.73 0.72 0.28 0.26 1.00 1.00 0.60 0.20 0.40 0.34 0.57 0.83 0.49 0.39
bacs:aapp 0.77 0.66 0.15 0.11 0.50 0.25 0.30 0.30 0.23 0.17 0.53 0.34 0.26 0.22
bacs:gngm 0.74 0.64 0.19 0.16 1.00 0.50 0.30 0.50 0.25 0.23 0.87 0.71 0.36 0.45
bpoc:aapp 0.76 0.69 0.21 0.17 0.50 0.12 0.40 0.30 0.32 0.30 0.59 0.22 0.38 0.32
cell:aapp 0.72 0.71 0.19 0.23 0.50 1.00 0.40 0.60 0.25 0.30 0.57 0.59 0.33 0.52
dsyn:dsyn 0.78 0.75 0.12 0.17 0.25 0.50 0.10 0.60 0.18 0.28 0.25 0.72 0.21 0.48
dsyn:humn 0.77 0.77 0.19 0.18 0.50 0.12 0.30 0.10 0.25 0.23 0.48 0.12 0.32 0.20
gngm:aapp 0.74 0.70 0.22 0.17 1.00 1.00 0.40 0.10 0.37 0.19 0.58 1.00 0.41 0.20
gngm:celf 0.69 0.74 0.35 0.38 0.33 0.25 0.30 0.40 0.49 0.45 0.32 0.31 0.43 0.45
gngm:cell 0.75 0.67 0.24 0.19 1.00 1.00 0.60 0.30 0.35 0.30 0.80 0.77 0.46 0.40
gngm:dsyn 0.77 0.69 0.17 0.15 0.50 1.00 0.30 0.30 0.27 0.28 0.56 0.87 0.32 0.41
gngm:gngm 0.78 0.71 0.18 0.13 0.14 0.20 0.30 0.20 0.23 0.12 0.22 0.21 0.23 0.15
gngm:neop 0.73 0.75 0.36 0.38 1.00 1.00 0.60 0.80 0.46 0.47 0.81 0.88 0.53 0.65
orch:gngm 0.77 0.72 0.22 0.18 0.50 1.00 0.20 0.30 0.28 0.23 0.42 0.81 0.30 0.32
phsu:dsyn 0.77 0.71 0.20 0.17 1.00 0.50 0.50 0.30 0.29 0.29 0.55 0.36 0.40 0.33
topp:dsyn 0.77 0.72 0.16 0.12 0.50 0.33 0.50 0.30 0.26 0.23 0.57 0.32 0.41 0.23
Mean 0.752 0.709 0.212 0.191 0.551 0.651 0.360 0.335 0.303 0.265 0.488 0.559 0.357 0.342

Table 2: The above lists metrics that quantify recommendation quality across popular biomedical subdomains. We compare
Agatha (A) with Edge2Vec (E).
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ROC 0.745 0.738 0.677 0.734 0.740 0.738 0.752
PR 0.205 0.208 0.148 0.192 0.195 0.199 0.211
RR 0.512 0.562 0.483 0.526 0.612 0.449 0.551
P@10 0.315 0.355 0.180 0.260 0.320 0.325 0.360
P@100 0.288 0.287 0.169 0.259 0.249 0.271 0.303
AP@10 0.423 0.486 0.422 0.474 0.486 0.421 0.487
AP@100 0.346 0.352 0.213 0.307 0.321 0.325 0.357

Table 3: Average performance of the AGATHA across abla-
tions. Reported values represent the average of all subdo-
main results.

on heuristically determined term lists, as well as their reliance on
manual validation processes. As a result, ABC systems are know to
be biased towards finding incremental discoveries [23].

A completely different strategy of performing LBD is proposed
by Spangler et al. in [33]. To explore the p53 kinase, the authors
use neighborhood graphs constructed from entity co-occurrence
rates. The approach relies on domain experts and requires manual
oversight to provide MEDLINE search queries, and to prune re-
dundant terms, but produces promising results. In [10] the authors
demonstrate that this technique can identify kinase NEK2 as an
inhibitor of p53, and in [5] a similar scientist-in-the-loop technique
identifies a number of RNA-binding proteins associated with ALS.

A significant step beyond ABC and human-assisted techniques
is to incorporate a domain specific datasets. Bipartite graphs, such
as the gene-disease [26] or the term-document [14] networks, are
frequent choices. These systems usually aim to perform a number
of graph traversals between node-pairs in order to rank the most

viable options. However, the number of generated paths may be pro-
hibitively large, which reduces ranking quality [15] To address this
problem, Gopalakrishnan proposes two-stage filtering through a
"single-class classifier" which is able to prune up to 90% hypotheses
prior to the ranking scheme [14]

One recent approach is to use deep learning models to help
extract viable biomedical hypotheses. Sang et al. [29] describe GrE-
DeL, a way to generate new hypotheses using knowledge graphs
obtained from predicate triples in the form of “subject, verb, object”.
This approach finds all possible paths between a given drug and
decease, provided those paths include a particular target entity.
Then these paths are evaluated using a LSTM model that captures
features related to drug-disease associations. While the GrEDeL
system is successful at identifying some novel drug-disease rela-
tionships, this approach has some important trade-offs: (1) Their
proposed model is trained using SemRep graph traversals as a
sequence, which the authors note is a highly noisy dataset. Fur-
thermore, multiple redundant and similar paths exist within their
dataset, which decrease the quality of their validation holdout set.
The AGATHA system overcomes this limitation by leveraging node
neighborhoods in place of paths. (2) The GrEDeL LSTM model is
trained to only discover drug-disease associations, and does not
generalize to other biomedical subdomains. (3) GrEDeL relies on the
TransE method [8], which supposes that relationships can be mod-
eled as direct linear transformations. When using the large number
of relationship types present in SemRep, this assumption greatly
reduces the useful variance in the resulting node embeddings.

Edge2Vec [13] is a biomedically-specialized knowledge graph em-
bedding that uses the well-proven approach of aggregating graph
random walks. This approach differs from more common walk
strategies by utilizing an estimated edge-type transition matrix to
capture the context of nodes, and is paired with the Expectation-
Maximization model to train embeddings. However, we observe
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that the Edge2Vec model, which uses a common one-layer neural
network strategy to fit embeddings, is limited in its ability to pre-
serve higher-order graph features. Importantly, the Edge2Vecmodel
is intended as a knowledge graph embedding strategy, and there-
fore can be augmented in a number of ways to facilitate various
hypothesis generation applications.
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