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Abstract: We study the single electron model of a semi-infinite graphene sheet inter-
faced with the vacuum and terminated along a zigzag edge. The model is a Schroedinger
operator acting on L?(R?): Hekdge =—-A+ )\ZVn, with a potential V; given by a sum of
translates an atomic potential well, Vp, of depth A2, centered on a subset of the vertices
of a discrete honeycomb structure with a zigzag edge. We give a complete analysis of the
low-lying energy spectrum of Hédge in the strong binding regime (A large). In particular,
we prove scaled resolvent convergence of He/\dge acting on L?(RR?), to the (appropri-
ately conjugated) resolvent of a limiting discrete tight-binding Hamiltonian acting in
I>(Ny; C?). We also prove the existence of edge states: solutions of the eigenvalue prob-
lem for He)\dge which are localized transverse to the edge and pseudo-periodic plane-wave
like parallel to the edge. These edge states arise from a “flat-band” of eigenstates of the
tight-binding model.

1. Introduction

Tight binding models are discrete operators which are central to the modeling of spa-
tially periodic and more general crystalline structures in condensed matter physics. These
models apply when the the quantum state of the system is well-approximated by super-
positions of translates of highly-localized quantum states (orbitals) within deep atomic
potential wells centered at lattice sites [3]. An important example is the tight-binding
model of graphene, a planar honeycomb arrangement of carbon atoms with two atoms
per unit cell. The two-band tight-binding model yields an explicit approximation for its
lowest two dispersion surfaces, which touch conically at Dirac points over the vertices
of the Brillouin zone [69]. Such Dirac points are central to the remarkable electronic
properties of graphene [28,52,54,72] and its artificial (electronic, photonic, acoustic,
mechanical,...) analogues; see, for example, [8,40,46,51,59,66] and the survey [56].
The existence of Dirac points for generic honeycomb Schroedinger operators was proved
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in [25,26]; see also [6]. That the two-band tight-binding model gives an accurate approx-
imation of the low-lying dispersion surfaces in the regime of strong binding was proved
in [27]; see also Sect. 1.3. Other results on Dirac points for Schroedinger operators on
R? may be found in [1,2,14,30,42], coupled oscillator models [47] and on quantum
graphs in [17,41].

Edge states are modes which are plane-wave like parallel to an interface and which
are localized transverse to the interface. In condensed matter physics edge states describe
the phenomenon of electrical conduction along an interface. Two types of interfaces of
great physical interest are a sharp terminations of a bulk structure studied in this article
(see [15,29,49,50]) and domain wall / line-defects within the bulk (see [8,40,53,67]
and studied, for example, in [19,21,23,24,45]). The role of edge or surface modes in the
spectral theory of Schroedinger operators with potentials which model, for example, the
interface between a general periodic medium and a vacuum is studied in e.g. [13,39].

In this paper we study the low-lying energy spectrum (discrete and continuous spec-
trum) of a sharply terminated honeycomb structure, corresponding to a semi-infinite
sheet of graphene joined to the vacuum along a sharp interface. We prove convergence
of the operator resolvent to that of a discrete tight-binding model and construct the
continuous spectrum of edge states.

Edge states in honeycomb structures such as graphene are of particular interest as
foundational building blocks in the field topological insulators (TI). TI’s are materials
which are insulating in their bulk and are conducting along boundaries. This behavior
is robust against large localized perturbations. When graphene is subjected to a mag-
netic field, its edge currents become unidirectional and acquire such robustness. This
phenomenon has an explanation in terms of topological invariants associated with a
bulk Floquet-Bloch vector bundle, which takes on non-trivial values when time-reversal
symmetry are broken; see, for example, [18,33,37,38].

A key difference between the types of interfaces is that the sharply terminated
structure has no spectral gap, resulting in certain edge orientations supporting edge
states and others not. In contrast, the domain wall structures perturbations studied in
[19,21,23,24,45] have edge states which localize along arbitrary rational edges. For a
discussion of the roles played by edge orientation and the type of symmetry breaking in
the existence and robustness of edge states for domain wall / line-defects, see [21].

Specifically, for the tight-binding model, edge states exist at sharp terminations along
a zigzag edge for a subinterval of parallel quasi-momenta, k| € [0, 27) associated with
the direction of translation invariance parallel to the edge. They do not exist at the
sharp termination along an armchair edge; see, for example, [15,29,49,50] and Sect. 2.
Such results may be interpreted as consequences of the non-vanishing of the Berry—Zak
phase, Z(k)), defined as the integral of the Berry connection over the one-dimensional
Brillouin zone associated with the type of edge [15,49]. This is a variant of the bulk-edge
correspondence, which we prove holds in the continuum for the strong binding regime.

1.1. Mathematical setup. In this paper we initiate a study of these phenomena in the
context of the underlying continuum equations of quantum physics, in particular the
single-electron model of bulk (infinite) graphene and its terminations. In particular, we
study Schroedinger operators on R? for a sharp termination of a honeycomb structure
along a zigzag edge.

We denote the equilateral triangular lattice in R? by.

A =70 Zv,, (1.1
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where v and v, are given by

L 0
v = , by = . (1.2)
1 1
The dual lattice, A*, is given by
AN =ZR ®ZLRAK, , (1.3)
where & and 8, are given by
2v3 _3
gi=2r| 7 |, m=2¢| 7. (1.4)
0 1
Note that
R -0, =276,. (1.5)

To generate the honeycomb structure, we first fix base points in R:

va=(00), vg= (1/2, 1/(2f3)). (1.6)

The honeycomb structure, H, is the union of the two interpenetrating sublattices
Ag=Va+ A, Ap=vg+A : (L.7)
H= Ag U Ap. (1.8)

Let Vp(x) be an atomic potential well which may be considered, for the present dis-
cussion, to be real-valued, radially symmetric and compactly supported with supp Vo C
B,,(0), the open disc of radius ro about 0. We discuss more general and physically
reasonable conditions on V| below in Sect. 3.

Our bulk Hamiltonian is the self-adjoint honeycomb Schroedinger operator:

H* = —A+2?V(x) acting on L>(R?), (1.9)

bulk

where V(x) is a superposition identical atomic potential wells, centered at the vertices
of H:

V(x) =Z Vo(x — V), x € RZ. (1.10)
veH

The potential V (x) satisfies the conditions of a honeycomb lattice potential in the
sense of Definition 2.1 of [26]. For all but a discrete subset of values of A, € (including
A = 0), the operator H/,, has Dirac points at energy / quasi-momentum pairs, (E }[‘), K,),
where K,, varies over the vertices of the Brillouin zone [25,26].

Remark 1.1. The set € may contain non-zero A. Indeed, comparing our present results for
large A with the results of [26], applied to small A, one can construct examples where for
certain special non-zero value of A, three dispersion surfaces touch at a high symmetry
quasi-momentum, but only two dispersion surfaces meet conically in a Dirac point for
neighboring values of A.



C. L. Fefferman, M. I. Weinstein

' o O o e o o o o ®

Fig. 1. a H: Bulk honeycomb structure consists of all vertices (circles, light and dark). b Hy: Honeycomb
structure terminated along a zigzag edge consists of vertices indicated by dark circles; see (1.11). ¢ Dx:
Indicated strip is a choice of fundamental cell for the cylinder £ = R2/Zp,. Dy = D_; UDgU D U
<UDy, U--- . Sites: V’Z‘, v’é in finite parallelograms ©,, n > 0, are sites in Hy. ©_; denotes the infinite
parallelogram containing no vertices of the terminated structure, Hy

Moreover, for A large (strong binding), the low-lying Floquet-Bloch dispersion sur-
faces of Hb)l‘1 » When rescaled, are uniformly approximated by the dispersion surfaces of
the two-band tight-binding model [27].

Consider now a “half-plane” of vertices Hy C H, whose extreme points trace out a

zigzag pattern:

Hi ={va + Nov; @Zvs} U {vp + Nov| @ Zv,}, No=1{0,1,2,...}.
(1.11)

The set H; is invariant with respect to translations by v, and is the subset of sites in H
to the right of an infinite zigzag edge; see Fig. 1.

The set of zigzag edge (boundary) sites, also translation invariant by vy, is given by:
{va + Zvy} U {vp + Zv,}.

We define the potential

Vix) = > Vox—v). xeR% (1.12)
VGEﬂg

The self-adjoint operator

H* = —A+)*Vi(x)

edge

models a half-plane of graphene interfaced with the vacuum along a zigzag edge. Note
the translation invariance: Vi (x + v2) = V;(x) forall x € R2.
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Let (E}, p;(x)), with p§ > 0 and L?-normalized, denote the ground state eigenpair
of the atomic Hamiltonian

H: = —A+22Vp(x).

atom

Let p,. denote the hopping coefficient, given by:
_ A 2 A
o= [ P Mo sy - e ay. (1.13)
lyl<ro

where e is any vector from one lattice site in H to a nearest neighbor in Hl, e.g. vp — v4.
The potential Vj(y) and ground state p(’)\ (y) are localized around y = 0, while pé (y—e),
is localized at any nearest neighbor site e € H. Recall that supp Vp is contained in the
set where |x| < rg. For A large p;, is exponentially small (see (3.3)) [27].

The key accomplishments of this paper are the following:

(1) Theorem 1.2 (Scaled resolvent convergence): We prove for A > A, sufficiently large
(the strong binding regime), that the re-centered and scaled resolvent,
(0

edge

i —1

has a universal limit (in the uniform operator norm) described by a discrete (tight-
binding) Hamiltonian, defined on a truncated honeycomb structure, H. The band
structure of this limiting operator is displayed in Fig. 2.
(2) Theorem 1.3 (Zigzag edge states): We construct a continuum of edge state modes.
These are eigenstates of Hé\dge» which are plane-wave like parallel to and localized
transverse to the zigzag edge. Upon appropriate A-dependent rescaling, these edge-
states are close to (and converge as A tends to infinity to) the flat band of zero energy
edge states of the tight-binding model; see Fig. 2.

(3) Resolvent kernel bounds on arbitrary discrete sets: The methods of this article go
considerably beyond those our previous article on the strong binding regime [27],
which established convergence to the (universal) two-band tight binding spectrum
for the bulk graphene-like structures. Since Theorems 1.2 and 1.3 involve con-
vergence of operators and eigenstates on an infinite cylinder (Fig. 1), we required
pointwise decay properties of the resolvent kernel H fdge for energies near Eé. These
bounds are stated in Theorem 10.1. In Proposition 10.15 we establish these ker-
nel estimates for potentials which are a sum of atomic potentials centered on an
arbitrary discrete set of lattice sites ' C R? (not necessarily translation invariant)
whose minimal pairwise distance is Mrq, where ry is the radius of the support of Vj
and M > 2 is some positive constant. We then specialize to a translation invariant
set to obtain Theorem 10.1. We believe the technique we have developed will be
quite broadly applicable.

We next introduce the edge state eigenvalue problem. Associated with the translation
invariance of —A + 22 Vi (x) by 3 is a parallel quasi-momentum, denoted k € [0, 27).
The condition that an edge state, @, is plane-wave like parallel to the zigzag edge is:

d(x+1;) =M d(x), xR, (1.14)
We introduce the cylinder

¥ =R?/Zv,. (1.15)
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Spectrum of H;m(ku) vs ky for zigzag edge
¥ T T T T T

Energy, E

Parallel quasimomentum, k|

TB
Fig. 2. Spectrum of tight-binding Hamiltonian HIJ (ky), for O < k| < 27, described in Theorem 2.2. This

spectrum contains a flat band of zero energy states; Hé‘ (k)) has an isolated simple 0-energy eigenstate for

27 /3 < k| < 47/3. Shaded regions consist of essential spectrum. For sufficiently large A, the low-lying part

of the spectrum of —A + 22 Vi — E())‘, after rescaling by p,, is approximated by spectrum of the 2-band model
TB

Hti ; see Theorem 1.3

The space L?(X) consists of functions on R? which are square integrable over a the
strip ®y (fundamental cell) shown in Fig. 1, and which satisfy the periodic boundary
condition with respect to v>: ¢ (X + v2) = ¢ (x) for almost all x € RZ.

We enforce the condition that (i) ® is kj-pseudo-periodic parallel to the zigzag edge,

(1.14), and (ii) decaying to zero transverse to the zigzag edge as x tends to infinity by
requiring

Lk
i mRXp(x) € LA(X).

For such functions we write ¢ € L%H () orjust ® € L%H. We can now formulate the
k-Zigzag Edge State Eigenvalue Problem for Heﬁge =—-A+Vi(x):

H: W(x) = (—A+A2Vﬁ(x)) V) = EV@®. xeR:  Well (%)
(1.16)

i
Defining ¥ (x) = ¢' 2%y (x), we may formulate (1.16) equivalently as:

2
dege(ku)w = <—(V+i§1ﬁz) +A2Vu(x)> Y(x)= EY(x), xeR?, ¢ elLl*(D).
(1.17)
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We refer to non-trivial solutions of the eigenvalue problem (1.16) (equivalently (1.17))
as zigzag edge states.

Before stating our main results Theorems 1.2 and 1.3, we recall a key observation
used in [27] to obtain the low-lying dispersion surfaces (energies near the atomic ground
state energy, Eé) of the bulk honeycomb Schroedinger operator, H b - That is, for A
large, the k-pseudo-periodic Floquet—Bloch eigenmodes which are associated with the
two lowest spectral bands of H b > acting in L%(R?), can be uniformly approximated
by appropriate linear combinations of the two k-pseudo-periodic functions: P)‘ (X)) =

’k"p])(‘ ;(X), I = A, B, with pk ;(X) € L?(R?/A). The functions pk ; are constructed
as periodic weighted sums of translates of the atomic ground state over the sublattices:
A = vi+ A, I = A, B. Specifically, pk,l(x) =Y ek (x= V)p (x — v); see
Section 8 of [27].

In the present work, we approximate the low-lying spectral bands (£ near E())‘) of the

the L,%H -edge state eigenvalue problem (1.16), by L,%“ functions:

VEA]

P Inl(x) = e ok Fa V) LIn®), I=A4,B, n>0 (1.18)
Here,
Prynlx) € LX), I=AB, nx0, (1.19)

are constructed as k) -dependent and periodized (infinite) sums of translates of the ground
state p())‘ (x) over the one-dimensional sublattices: v; + nv; +Zvr, of A;j, I = A, B and
n > 0; see (1.7). The states p%’ K [n](x) are introduced in Definition 4.1 in Sect. 4. For

A sufficiently large, any F € L?(X) has the expansion

Y D Pl ) + Fu (1.20)

I=A,Bn>0

where {a,ll} € 12(Ny; C?) and F, is LZ(Z)-orthogonal to the span of the functions
p;‘ K [n]; see Proposition 4.4. The tight-binding (discrete) edge Hamiltonian, HﬁT B (ki)
acting in 12(Ny; C?), arises via translation and rescaling, of the operator whose matrix
kD), [n]> for J,I = A, Bandm,n > 0. The tight-

ol
binding model is studied in Sect. 2 and its band spectrum is displayed in Fig. 2.

elements are < P} i, lm1, H dbe

1.2. Main results. The relation of H 2 (k) to the tight-binding Hamiltonian H]:T ’ (ky)
edge

is given by the following result on scaled resolvent convergence. Let p())‘, Eé denote
the ground state eigenpair of H = —A + 2V,. We assume that the following two
conditions on the ground state energy and energy-gap:

(GS) E} < —cgs)?,
(EG) distance (Ej, 0 (Haom)\{E{}) = cgap, Where cg5, and cgqp are positive constants
which are independent of A for all A sufficiently large; see also (3.4) (3.6).

Theorem 1.2 (Scaled resolvent convergence). Let C denote a compact subset of
(C\cr(HjT ’ (k|1)), the resolvent set of HjT ’ (ky). There exist constants M., C, and c, which
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are independent of A but which depend on C and conditions (GS) and (EG), such that
forall A > A, the following holds:
Let Jp, : L*(Z) +— I>(No; C?) @ span{pﬁkH [n1}* be defined, via (1.20), by F +>

(td [F1}, FL) .

Then, uniformly in kj € [0, 27], we have

| (o (00— 8) = 210)”

* -1 —ch
_ JkH(Ht k) — zld) Ty, < C,e (1.21)

L2()—L2(%)

In preparation for our theorem on edge states, we introduce the functions:
Elkp) =1+, Syap(hp) = [1 = eI 2 0, Sman(h) = 1+ [ K. (122)

We note that for kj € [0, 2] that 8gap (k) = 0 if and only if k| € {27/3, 47 /3}.

Theorem 1.3 (Zigzag Edge States). Assume that Eé, the ground state energy of the

atomic Hamiltonian, H}: . = —A + A*Vy, satisfies the conditions (GS) and (EG) on
the ground state energy and energy-gap, respectively. Let J denote an arbitrary compact
subinterval of quasi-momenta:

Jcc ()3, 4n/3\{7). (1.23)

Thus, minkneg dgap(ky) > 0.
There exists Ly = A(J) > O sufficiently large, such that for all .. > X, the following
holds:

(1) There is a mapping ky € J +— (E)‘(kH), 1//,?“), Sfrom parallel quasimomenta k| to
simple eigenpairs of the family of the k|-edge state eigenvalue problem (1.17):

kv = EXkp) Wi, vy € LA(E)

E*ky) = E§ + py Q(k)), (1.24)

edge

where ’Q)‘(k”) | < e~ with ¢ > 0 independent of A. Correspondingly, the

eigenvalue problem (1.16) is solved by the states \I/ (X) =¢ 2n L R "1//A (x).

(2) The edge states wkku € L,%H (X) are approximated to wzthm O(e=*) error in L*(X)
as:

Vi, ) = Z oy Pl 10 + Y ol py g [110) + Opazy (™). (1.25)

n>0
where ¢ > 0 is independent of A. Here, w,;r”B b — { (a;f, a%)—r In>0 € 12(Ny; C2),
= 1 is a zero energy normalized eigenstate of the limiting tight-

TB,bd
i
binding edge Hamiltonian; H (k”) 1//kTHB *d — 0. See Theorem 2.2 in Sect. 2.
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Remark 1.4 (Symmetry of edge state curves).
Let k) € [0, ]. If (E)‘(k”), \IJ,?H (x)) is an eigenpair of the k-edge state eigenvalue

problem, then (E)‘(ku), \I',?H (x)) is an eigenpair of the 2 — k) edge state eigenvalue
problem.

Remark 1.5 (Non-flatness of band).
The large A edge states of eigenfrequencies, E* (k), in Theorem 1.3 arise from the
flat band of edge states, Q(kj) = 0 for 27 /3 < k| < 4m/3, of the tight-binding

Hamiltonian, H; ’ (k). Although E*(k|) has only exponentially small variation, we do

not expect E*(k|) to be identically constant. Indeed, numerical simulations illustrate
the weak variation in k|| [68]. This limiting flat band spectrum does not support wave-
packets which move along the edge; the group velocity of such wave-packets is zero.
However, since for finite A (strong binding) the band is nearly flat and symmetric about
k| = 7 (Remark 1.4), we expect there to exist wave-packets, moving in either direction
along the edge, with very small group velocities.

Remark 1.6 (Regularity). We do not address the question of smoothness of k| € J —
(E » (kp), w,?H ) eRxL? (%) in the present article. We believe however that the methods

of [27] may be adapted to show that this mapping extends as an analytic mapping in a
complex neighborhood of J from which derivative bounds, e.g. on E*(k|) (kj € J) can
be derived via Cauchy estimates.

Remark 1.7 (Exponential decay). It is natural to conjecture that the error term in (1.25) is
exponentially small in a weighted L? space that enforces exponential decay away from
the edge.

.
Remark 1.8 Tn Theorem 2.2 we find: g1 *™ = /T - |§(k‘|)|2<[—§(k||)]", 0) . There-

fore, at leading order, \Il,?u (x) is concentrated about the A-sublattice, A 4:

W) = 1= 1Rk Y =2k Ph g, [n](x) + Oz (™).  (1.26)

n>0

Remark 1.9. As noted in our discussion of the tight-binding model in Sect. 2
(Remark 2.3) the constraint of Theorem 1.3 on parallel quasimomenta: k| €
(2m /3,47 /3) (¢ (k)| < 1) corresponds to the non-vanishing of the Zak phase. This is
discussed further in Remark 2.3.

Remark 1.10. The tight binding model for an armchair edge, where the relevant Zak
phase vanishes for all k| € [0, 27], does not support edge states; see [15,29,49,50]. A
proof is given in [29]. We believe that our techniques can be used to show, in the strong
binding regime for a sharp termination of the continuum bulk honeycomb structure along
an armchair edge, that there are no edge states in an energy range about E())‘.

1.3. Relation to previous work. Tight-binding limits arising from general distributions
of potential wells has been discussed in the book [16] as well as [9,55]. There is extensive
related earlier work on the semiclassical limits and methods e.g. [10-12,34,35,48,63—
65]. The above works are based on detailed semiclassical (WKB) approximations for
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potential wells which are assumed to have non-degenerate local minima. In contrast, in
the present article our essential assumptions are only on the ground state energy (GS)
and spectral gap (EG) of the atomic Hamiltonian, H}, . for large A. The relation of
the continuum periodic Schroedinger operator with a magnetic field to tight-binding
models, such as the Harper model, is studied for example in [36].

We restricted attention in [27] to C* atomic potentials, V. In fact the results hold
without essential modification for L (IR?) potentials. In this paper we drop the assump-
tion on smoothness and require only that the atomic potential be in L (R?). (That
Vo € L (R?) is sufficient is illustrated in Sect. 10.) We believe that further non-smooth
potentials of interest, e.g. potentials with Coulomb singularities, can be handled with-
out much extra difficulty. Examples of artificial graphene, in which experiments are
performed, are periodic honeycomb arrays of identical microfeatures, say small discs,
with one dielectric constant inside the discs and a second dielectric constant outside
the discs. Hence, compactly supported atomic potentials are a natural model; see, for
example, [8,40,46,51,56,59,66].

For smooth atomic potentials Vy with nondegenerate minima, the general semiclas-
sical works in [9,16,55] lead to an “interaction matrix”, which defines an operator. In
the case of periodic potentials, this can be used to compute relevant dispersion surfaces
modulo exponentially small errors. These works do not assert that Dirac points form;
indeed, much of the work is in the setting of a square lattice, which does not give rise
to Dirac points. However, we believe that these methods are powerful enough to deal
with Dirac points of honeycomb lattice potentials, when they are combined with the
consequences of special symmetry properties of the honeycomb. The essential require-
ment for the semiclassical analysis approach is that the atomic potential is smooth and
has a nondegenerate minimum. Another aspect of the general semiclassical work is that
atomic potentials are not assumed to be of compact support and the interaction matrix
(hopping coefficients) are obtained in terms of the Agmon metric. Finally, the consid-
eration of edge states and the spectrum for honeycombs with line defects is not within
the scope of [9,16,55].

Remark 1.11. A different class of line-defects of great interest in the study of topologi-
cally protected edge states is the class of domain walls. In our previous work, motivated
by [32,58,70], domain walls are realized by starting with two periodic structures at
+00 ” and “ —oo 7, with a common spectral gap and phase-shifted from one another, and
connecting them across a line-defect at which there is no phase-distortion. See the ana-
lytical work in 1D [20,22,25] and 2D [23,24,45] as well as theoretical and experimental
work on photonic realizations [43,44,57].

Remark 1.12. Quantum graphs [7] are another class of discrete models in condensed
matter, electromagnetic and other systems; see also, for example, [4,5,61]. An extensive
discussion of edge states for nanotube structures in the setting of quantum graphs is
given in [17,41]. It would be of interest to investigate a relation between the edge modes
of these models and continuum models.

1.4. Outline of the paper. We present a brief outline.

Section 2 discusses tight binding models; first, the tight binding model for bulk, and
then the tight binding model for a honeycomb structure terminated along a zigzag
edge.

Section 3 first introduces the atomic Hamiltonian HZ = = —A + Vo, where Vj is a

potential well whose support is in a sufficiently small disc about the origin, and such
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that Vj satisfies some basic general assumptions (P W) — (P Wy). The bulk honey-
comb structure is defined by Hé‘ulk = —A + 2V, where V is the periodic potential
defined by summing translates of a potential, Vj, over the honeycomb structure. Thus
V is periodic and consists of a potential well V{y centered at each site of the honey-
comb. Finally the edge Hamiltonian, Hegge = —A + A2 V¢, which acts on L*(R?),
has potential V;; which is identically equal to V on a half-space with a zigzag edge
and zero on the other side of this zigzag edge. (We shall also work with the translated
edge Hamiltonian HuA = Hedge — E 3.) The edge state eigenvalue problem for parallel

quasi-momentum k| is then stated on L2(X), where ¥ is the infinite cylinder (1.15).
Section 4 introduces a natural basis for approximating the 2 lowest lying bands of HﬁA
for A sufficiently large. This basis consists of functions, { p}, K [n]x): I =A,B,n>
0} on X, which are pseudo-periodic (with respect to the direction parallel to the edge)
infinite sums of atomic orbitals.

Section 5 establishes energy estimates on H/* which imply invertibility of HZ on

Xap k), the orthogonal complement of the orbital subspace: span{ p;" K [n] :n >

0, I = A, B}. This implies that the resolvent of ng is well-defined and bounded on
Xap k).

Section 6 implements a Lyapunov-Schmidt / Feshbach-Schur / Schur complement
reduction strategy [31]. The spectral problem on L*(X) = span{ p}ku [n] : n >
0,1 = A, B} ® X4p(ky) is reduced, using the resolvent bounds on X 4p(k||), to an
equivalent problem on the space span{ p}\’ ki [n] : n > 0,1 = A, B}. This problem
depends nonlinearly on the eigenvalue parameter £ = Eé + 0,2 and is of the form
of an infinite algebraic system:

S M monl(Qu k) el = 0; J=AB, m=0
I=A,Bn>0

for (2, o), where @ = {Ol,l,}nzo,1=A,B € 12(Np; C?) are coordinates relative to the
basis {p}k|| [n]:n>0,1 = A, B}.

Section 7 summarizes the required properties of M*(£2, ky) acting in 12(Ny; C?).
We write M*KI(, k) = Mﬁn(Q, k) — Mﬁhn(Q, ky), separating matrix ele-
ments contibutions which are linear in Hg\ (k) and those which are nonlinear in
HY (k). We have M (2, k) = puH, (ki) +Op_, 2(pre~*) (Proposition 7.1) and
Mﬁ]in (Q,k) = Op_,p2 (pre~") (Proposition 7.2). These propositions are proved
in later sections.

Section 8 proves Theorem 1.3, the existence of edge states, bifurcating from the flat
band of eigenstates of H. TB, via our formulation of the eigenvalue in / 2(Np; C?).
Section 9 proves Theorem 1.2, the convergence of a translation and scaling of the
resolvent of HZ (k|) to that of HﬁTB (k).

Section 10 is tﬁe most technically involved and introduces techniques not present in
our earlier work. Theorem 10.1 is a pointwise estimate on the resolvent kernel of

Hj’\ —z = H}, — (E} +2), z small, when restricted to the orthogonal complement
of span{p} K [n] : m = 0,1 = A, B}. These bounds are stated in Theorem 10.1.

We first, in Proposition 10.15, establish these kernel estimates for potentials which
are a sum of atomic potentials centered on an arbitrary discrete set of lattice sites



C. L. Fefferman, M. I. Weinstein

[ c R? (not necessarily translation invariant), whose minimal pairwise distance is
My, where rg is the radius of the support of Vy and M > 2 is some positive constant.
We then specialize to a translation invariant set to obtain Theorem 10.1.

Section 11 expands the linear matrix elements, ./\/l]’\in(Q, k), in terms of HnT ? (ky)
and estimates the corrections, proving Proposition 7.1.
Section 12 estimates the nonlinear matrix elements, M
tion 7.2.

Finally, there are two appendices. Appendix A introduces a technical tool used to
construct the resolvent of HmA on DC};‘ 5 (k). Appendix 12.2 contains general results on

A
nlin

(82, k), proving Proposi-

overlap integrals enabling expansion of Mﬁn (£2, k)|), for A large, estimate corrections.

1.5. Notation.

() N={1,2,3,...}, No={0,1,2,3,...}.

(2) When we write the expression g. = Ox(y.) as e — g9 € RU {oo}, we mean that
there exists C > 0, independent of &, such that ||g.||x < Cy. as & — &p.

(3) We shall be concerned with the asymptotic behavior of many expressions,
a()),b(}), ..., in the regime where the parameter A is taken to be sufficiently
large. The relation a(A) < b(L) means that there is a constant C, which can be
taken to be independent of A, such that for all A sufficiently large: a() < Cb(}).

(4) A = Zv16®7Zv,, the equilateral triangular lattice, is generated by the basis vectors
v and v, displayed in (1.2).

(5) mb = m;v| +mov,, wherem = (mj, mp) € Z2.

(6) A* = ZR| ® ZRK,, the dual lattice, spanned by the dual basis vectors & and
K, displayed in (1.4). Note that K¢ - vy = 2w 5.

(7) We remark that alternative bases for A and A* (used for example in [26,27]) are:

Vi =091, V2= -0
ki =R +R, k=-RK;.

We have A = Zv| @ Zvy, A* = ZK| ® ZKy and K¢ - vpr = 2 8¢p.
(8) H, Honeycomb structure; see (1.8).
(9) H, Zigzag-truncated honeycomb structure; see (1.11).
(10) ¥ = R2 /Zv3, the cylinder with ®y, a choice of fundamental cell for X; see
Fig. 1.
an L%” = L’%H (%), functions f on R? such that f(x + b,) = ¥l f(x) for almost all
X, and

IF12, = / |fI? < co.
l b

In particular, L,%HZO =L%*(D).

(12) H@ = L2(R?; eV =@l dx), exponentially weighted L?> space.

(13) B(X) denotes the space of bounded linear operators on X.

(14) Giree (x,y) denotes the free Green’s function defined in (10.3).

(15) Gi‘om (x,y) denotes the atomic Green’s function defined in (10.7).

(16) Hamiltonians: Héﬁom = —A +A2V(x), the atomic Hamiltonian with ground state
energy E})



Sharply Terminated Honeycomb Structures

H: = —A+)*V(x)and H ilge = —A+A2V4(x), denote bulk and edge Hamiltonians

acting in L%(R?)
H b=H! - Eé, the centered edge Hamiltonian, acting in L7
edge I
= (p;)~" HZ, the scaled and centered edge Hamiltonian acting in L? K

HﬁT i (kyp), the ti ght-bmdlng edge Hamiltonian, acting in / 2 (No; (Cz); see Definition 2.6.

2. Tight-Binding

Consider a tiling of the entire plane, R?, by parallelograms of the sort shown in Fig. 1.
Each parallelogram has exactly two points of H. This is a particular dimerization of H. We

assign the label (n1, n2) to the parallelogram which contains VX“ n2) _ VA+niv1+n0;
and Vg”’"z) = Vg +n10] + navy. To the sites v("1 ") and vg”"”) we assign complex

amplitudes ’ﬁ;: " and I/I’ﬁ v and form the tight bmding wave function:
A
w ’lpnl ﬂz
npny T WB :
"| 112

2.1 Hb o the tight-binding bulk Hamiltonian. The bulk tight binding Hamiltonian can
be represented with respect to the above dimerization. Starting with any dimerization
would give a unitarily equivalent operator on [?(Z?; C?). The nearest neighbor tight

binding bulk Hamiltonian, relative to the dimerization of H in Fig. 1 is:

] - (Hw)A _(xbgw YE L+ w,fnz) o
bulk nw'z_ (H:;(W)B ’uﬁA wA ‘ﬂA .

ny+l,ny ny.np+l ny.ny
ny.ny

where n1,ny € Z. The operator HTE is a bounded self- adjoint linear operator on

I2(Z?; C?) and was introduced in [69]. The spectrum of H consists of two spec-
tral bands which touch conically at Dirac points over the vertices of the Brillouin Zone, a
fundamental cell (regular hexagon centered at the origin) in the quasi-momentum plane,
Ri. The approximation and convergence as A increases of the low-lying dispersion sur-
faces and the resolvent Hﬁlk acting on L2 (R?) to those of HbTul]i’ acting on 12(7%; C?%)
was studied in [27].

2.2. Tight-binding Hamiltonian for the zigzag edge. Our goal in this section is to intro-
duce a tight-binding edge Hamiltonian which will act on functions ¥ € [*>(Ny x Z; C?)

defined on the vertices of H;. We shall do this by first expressing HbT Blk, as a direct inte-

gral over k|| of fiber operators Hb k(kH) acting on states which are “k)- pseudo-periodic”
with respect to one lattice direction and square-summable with respect to the other lattice

. . . . TB . . TB .
direction. The edge Hamiltonian H,  is then obtained from H,, (k) by appropriate
restriction to functions defined on H.
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Since the truncated structure Hl; and subset of edge vertices are invariant with respect
to translation by vy, we introduce k| € S! = R/277Z, the parallel quasi-momentum
associated with this translation invariance. For each k| € [0, 27 ], we refer to a state as
being k|-pseudo-periodic if:

Yy npst = €Yy n1 >0, ny € Z. (2.2)

Functions ¢ = {wnwlz} € [*(Z; C?) may be expressed via the discrete Fourier
transform as

2

Vo = @071 [T by ) iy, 03
0

as a superposition over states {e'"2k1 ¥, (k)} which are square-summable over 7 with
respect to n; and which satisfy (2.2).

Therefore, the tight binding bulk Hamiltonian Hbelk may be reduced to the k-
TB

dependent fiber (Bloch) Hamiltonians, Hbulk (k) - lz(Z; (Cz) — [2(Z: C?), defined
by
(o kpw] = Voo * (TreM) 9]
Ll I/f”/‘l+1 + (1+e*hn) 1//,1/41 ’
B <0 1) lﬁ,,Al,l . 0 1+ e i lﬂ,ﬁ . (0 0) w,ﬂﬂ
= O O wnB;,1 1 +e+ik” O wﬁ 1 O w’ﬁﬂ .

(2.4)

Finally, we define the tight-binding edge Hamiltonian, HﬁTB .Foryr = (Yo, Y1, ¥2,...) €
12(Np: C2), introduce the extension operator:

L P(No; ) — 12(Z; C?)
W=(..,0,0,0, %0, V1, V2, ...) € 1*(Z; C?.

The adjoint of ¢ is the restriction operator definedon¢ = (..., ¢_2, d—_1, o, ¢1, P2, ...) €
1>(Z; C?) by:

S (2, CY = 1PNy, C?)
Ko = (g0, ¢1, b2, ...) € 12(Nog; C?).

Definition 2.1. The tight-binding edge fiber operators, HtT ’ (k), and edge Hamiltonian
HtT B are given by

H, (k) =& Hoo (k) e s P(No; C) — P(No; €2 2.5)
and
TB ® TB 2 2
H," = / H," (k) dky = P(No x Z) — 12(No x 7). (2.6)
[0,27]
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2.3. Spectrum of HﬁTB (k). Define, for k| € [0, 2], the functions

ckp =1+eh (2.7
o ik, ik g

Sgp(h) = | min |1+e et = ‘1 12k ) 2.8)

Smax (k) = 1+ (¢ (k)] 2.9

Note 8gap(27/3) = B8gap(4m/3) = 0, Sgap(ky) > 0 otherwise in [0, 277], and that
¢ (k)| < 1 for ky € (27 /3,4m/3). We next prove that the spectrum of HﬁTB (ky) is
as displayed in Fig. 2. Let us enumerate the coordinates of the vector in 12(Ny; C%),

w={<%§)} by v= g v vt O
1//,, n>0

Theorem 2.2 (o' (H,  (k})), the spectrum of H,  (k}) in [>(No: C2)).
For each ky € [0,27], o (H, " (k})) = op(H, " (k1)) U oess(H,~ (K))).

(1) Point spectrum of HﬁTB (k-

- {0} ifky € 2m/3,47/3)
Gpt(Ht (k) =14{-1,0,1} ifky=m
] ifky € [0,2r]\Q2n/3,47/3) :

In particular,

HjT ® has a zero energy “flat-band” of eigenstates over the range 2w /3 < k| < 4m/3.

For ky € 2 /3, 4m /3)\{m} the point spectrum, consists of a simple eigenvalue at
E = 0. The corresponding normalized 0-energy eigenstate, y15-b4 = {w,,T B’bd}

s
n>0

For ky = m, E = 0 s a simple eigenvalue with corresponding normalized 0-energy
eigenstate given by:

YTBbd () = (é) YTBb () — (8) n>1. (2.11)

The eigenvalues E = +1 and E = —1 have infinite multiplicity and are therefore in
both the point and essential spectra. Their corresponding eigenspaces are:

is given by

TB 1 A N .
Kemel (H, " (7) = 1d) = | — (E2js1 +&02) 1 j =0,1.2,.... |,

V2
kernel(H, (x) + Id) = { L (o —e202) 1 = 0,1,2 }
# = \/§ 2j+1 2j+2) ) =U, L, 4,00
Here, €; denotes the element ¥ = (Y&, &, v, wE,..)T € I’(No; C?) defined

as follows: For j > 0, é2j+1 = Y such that lﬂf = 1 and all other entries equal to

zero, and €. = V¥ such that 1//1‘.:1 = 1 and all other entries equal to zero.
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. TB
(2) Essential spectrum of H, (k-

Gess (H, (k))) = {{ z€ R@i Saap(k)) < |z| < Smax (k|) ] I]:H € [0, 271\ {r}
: | =

(2.12)

(3) Resolvent expansion:
(a) Let ky € (210/3, 47/3)\{r). Then, for z € C\oess(H,  (k|)) and z # 0 we have

-1
(H:ITB(kH)_ZI> f
1
= (UM 1) M)+ Sk @13)

12(Ng:C2)
Here, 7 > Greg(2; k) is an analytic mapping from (C\aeSS(HtTB (k|)) to the space of
bounded linear operators on 1>(Ny; C?). If (z, ky) varies over a compact set T CC
R x [0, 27r] for which distance (z, Oess <HﬁTB (kH))) > b > 0, where b is a positive

constant depending on Y, then || Greg(2; k) || < B(b) < oc.

B(2(Ny:C2))
-1
(b) Let k) = 7. Then, (HnTB (ky) — zI) f has an expression analogous to (2.13) with
polesatz =0,z =+1 and z = —1.
(c) Let ky € [0, 2w1\(277/3, 470 /3). Then, for 7z € C\oess(H. " (k|)) we have
I # I

B -1
("G =2) " f = Sueglzi k) . 2.14)

where z — Greg(z; ky) is as in part (a).
(4) For ky € (2r/3,47/3), the equation H, (k)¢ = f, where f € I*(No: C), is
solvable for y € [*>(No; C?) if and only if(wTB’bd(kH), f) =0.

12(Np:C?)
Remark 2.3. We remark on the connection between the condition ky € (27 /3, 47 /3)
(equivalently [¢ (k)| < 1) and the non-vanishing of a winding number, known as the
Zak phase. For fixed k|, consider the normalized bulk Floquet-Bloch modes of HbTu ?k (kp);
see (2.4). There are two families of eigenpairs: (1= (k)), U,ﬁ (ky; ky)), where

wEk) = £letkp) +e™ ), @) = 1+ 5,
i 1
Upi i k) = M85k k. £5 Gk = (ijékﬁ) ’
¢ (kyp) + etkL

.o ik — i ,
HE) = ek + b

J@)j@) =1
For either family of modes (say +), we consider the Berry connection defined

by Ak k) = (E(kL;k”), }fakg(kl;k”)) and the Zak phase by Z(kj) =
[27 A(ky; ky) dky . We have

27‘['— 9 )
k) = —i f J (e k) —— j(e™ s ky) dk
0 ok
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—i/ J(w; ky) 9y j (ws k) dw
lwl=1

. / 0w J (w; ky)
= —i ——dw
wi=1 Jw; ky)

= 27 x Winding number of w € st Jw; k) e C.

If ¢ (k)| < 1, then Z(kj) = 27 and if |{ (k)| > 1, then Z (k) = 0. This is an exam-
ple of the bulk-edge correspondence (see, for example, [15,29,49]) and Theorem 1.3
establishes its validity in the strong-binding regime.

Proof of Theorem 2.2. Fix kj € [0,27) and set ¢ = ¢(kj) = 1 + eI, We study the
operator HtT ’ (k) in the Hilbert space I2(No; C?). An energy z is in the point spectrum

of HtTB (kyp) if there exists ¥ # 0, ¥ € I>(Np; C?) such that HﬁTB (k¥ = zy. Written
out componentwise, the eigenvalue problem is:

v vyl =yt on=>0, (2.15)
YA et = 2w =0, (2.16)

A
and Y, = (1’&”) = (g) foralln < —1.

We begin by showing that for ky € (277/3, 47/3), we have that 0 € oy (H, ~ (ky)) and
that for kj € [0, 2n]\(27/3, 47/3), z = 0 is not in the point spectrum. Set £ = 0 and
observe that Egs. (2.15) and (2.16) become decoupled first order difference equations:
Vi = GOV n=0and v, = (=997, n > 0.

The equation for 4 has the solution: Iﬂ,f =(—¢ )"1//(‘)4, n > 0, where 1/’64 can be set
arbitrarily. If ky € (27/3, 4m/3), then |{ (k)| < 1 and hence 1//,;4 — 0 exponentially as
n — oo. Turning to ¥ B, let us first assume that ky # m so that £ (k) # 0. In this case,
B = (=7 'yB | n>0.Since Y8 =0, we have Y =0 foralln > 0.If k) = 7
then we have from (2.15) that 2 | = 0 forall n > 0.

Now suppose k| € [0, 2w ]\ (27 /3, 47 /3). Then, the above discussion also implies
that if Y € IZ(NO; (C2) solves the eigenvalue equation with z = 0, then ¢ = 0.

‘We conclude: 5

E = 0 is a point eigenvalue of H, (ky) acting in 12(No; C?) if and only ifky €
(2r/3,4m/3). For k| € (2 /3, 4w /3)\{n}, the 12(No; C?)- normalized eigenstate is

given by:
PPy = (1= (e kpI? ((_gg{'))n» n=0 (2.17)

ckp = 1+, (2.18)

For ky = (¢ (k) = 0), the eigenstate is given by the expression:
1 0
¥, ) = (O> v, P ) = (0> nzl, (2.19)

and is supported strictly at the edge. Furthermore, the spectrum of HﬁT ’ () is the set
{—1, 0, +1}. More precisely, 0 is a simple eigenvalue and £1 are eigenvalues of infinite
multiplicity and consequently lie in the point and essential spectra.
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We now assume that z is complex and z 7# 0, and study the inverse of HﬁT ? (kp)—z1
on I?(No; C?).

Written out componentwise, the system (HﬁT ? (ky) —z DYy = f, where f €
12(Ng: C?) is:

Yl vyl =yt + £ =0 (2.20)

Y vt =zwf + fE on >0, 2.21)
A A

Yn = <I//23> = <8) s o= <fZB> = (8) , foralln < —1 (2.22)

and |Y,| > 0 asn — oo. (2.23)

We focus on the case k| € [0, 27]\{r}, so that ¢ (k) = 1+ eI # 0.

Remark 2.4. For kj = 7, the system (2.20), (2.21), (2.22) is of the form (H, (1) —
DY = f,where y = (g vl yt vE DT f = P E A B )T and

HI:T ’ (,r) is a block-diagonal matrix consisting of a 1 x 1 block, 0 in the (1, 1) entry,

10

filling out the diagonal. The statements in Theorem 2.2 on the spectrum of H]:T ’ (r) and

followed by an infinite sequence of identical 2 x 2 blocks, each equal to o7 = <0 1),

the mapping z — (HﬁT ’ () — z)~ ! are easily verified.

For k| # 7, we next rewrite (2.20), (2.21) as a first order recursion. Consider (2.20)
with n replaced by n + 1:

YL+ =2y + S n= —1 (2.24)
For n = —1, Eq. (2.24) implies the boundary condition at site n = 0:
Sy = g = S (2.25)

Forn > 0, we use ¢ # 0 and (2.21) in (2.24) and obtain:

2
yE = (—i) ey 4l

whB ;—*an sl us00 226

c* c* n §_* n+ls
Summarizing, we have that the system: (2.20), (2.21) and (2.22) is equivalent to the
first order system (2.21), (2.26) for ¥, = (5’2), n > 0, with the boundary condition
(2.25) at n = 0. We write this more compactlynas:
Unet = M(2,8) Y + Fu(2,8), n =20, (2.27)
T T
(%) w=(2) ()=
[Yml — 0, m — oo, (2.29)
where

M@z ¢) = ( _ﬁz zzz_1> : (2.30)
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fB
Fﬂaafﬁ=<if3f1 A>,nzo. (231)
¢ Jn

7* Jn+1

We next solve (2.27), (2.28) by diagonalizing the matrix M (z, ¢).
The eigenvalues A of M (z, ¢) are solutions of the quadratic equation

32+ (1416 =22) 2 + ¢ =0, (232)

whose solutions are:

— (141 = @)+ (L4 10 = 22) — aie 2

Mz, 0) = 2 (2.33)
— (14157 = 22) = (14 18P — 22)° — 4¢P
r(z,6) = ( ) \/2(4“* ) ) (2.34)

When convenient, we suppress the dependence of A and A; on ¢ and E and occasionally
write A ; or A (z). These expressions depend on k through ¢ (k) = 1 + €I,

Note that |} Ao| = |det M(z,¢)| = |£/¢*| = 1 and hence M (z, £) may have at most
one eigenvalue strictly inside the unit circle in C.

Recall the definitions: 8gqp (k) = )1 — |{(k‘|)|) and Sumax (k) = 1+ (£ (k).

Remark 2.5. We shall see just below that for fixed k| # 27/3, 7 or 4 /3: if (a) |z] <
Soap(ky) or (b) |z] > Smax (k) then the discriminantin (2.33), (2.34), (1+]¢ (k) |> —2z%)>—
41z (k) |2, is strictly positive and uniformly bounded away from zero. Therefore, in each
of these cases the expressions in (2.33), (2.34) define single-valued functions 11 (z, ¢)
and A2 (z, ¢). This property continues to hold for ky € J; CC [0, 27 \{2n/3, 7, 47 /3}
and either (a') [Mz| < 8gap(ky) and |Jz| < n(Jy) or (b') [Rz| > Smax (k) and |Jz| <
n(Jp), for some n(J;) > O chosen sufficiently small. In the case where z is real and
Sgap(k)) < |z| < Omax(k)) the discriminant is nonpositive and we do not distinguish
between the roots of (2.32); they comprise a two element set on the unit circle in C.

Lemma 2.6. Assume 0 < [£(ky)| # 1, i.e. ky # 2m/3, w or 4w /3. Then, the following
hold:

(1) Let z € R and assume that either
2] < 8gap (k) o7 |2 > Smax (k). (2.35)

Then, M (z, ¢(ky)) has one eigenvalue inside the unit circle and one eigenvalue
outside the unit circle.
(2) Let A1 (2) and Ay(z2) denote be the expressions for the eigenvalues of M (z, ;(kH))

displayed in (2.33), (2.34).

(i) If z € Rand |z| < 8gap(ky)), then |Ai(z; k)| < 1 < [Aa(z; k)l

(ii) If z € R and |z| > dmax (k)), then |A2(z; k)| < 1 < |[A1(z; k)l

(iii) If z € Rand 8gap (k) < |z| < Smax (k) then Eq. (2.32) has two roots, A, satisfying

Al = 1.
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(3) Let 31 denote a compact subset of [0, 2 |\{27 /3, 7w, 4 /3}. There exists a constant
n > 0, which depends on Jy, such that for all k| € J; the following hold:
(a) If z is in the complex open neighborhood

Oo(k”) . |‘RZ| < Sgap(k”) and |3Z| < n(jl), (2.36)

then (2.35) holds. Moreover, A (z, §) and Ay (z, ) satisfy the strict inequalities of (2.i),
and their magnitudes are uniformly bounded away from 1, provided z remains in a
compact subset of Og (k).

(b) If z is in the complex open neighborhood

O.(kp) : 1Rzl > Smax(ky) and [3z] < n(d), (2.37)

then (2.35) holds and moreover A1 (z, ¢) and 2 (z, ¢) satisfy the inequalities of (2.ii) and
their magnitudes are uniformly bounded away from 1, provided z remains in a compact
subset of O, (k).

Proof of Lemma 2.6. Part 3 of the Lemma follows from parts (1) and (2) and the expres-
sions (2.33), (2.34) for A1(z; ky), and Ax(z; k). We now proceed with the proof of
assertions (1) and (2), which assume z € R.

We consider the two cases delineated by the sign of the discriminant:

Case 1 (1+¢2 —z2)° —4]¢2 > 0 and Case 2: (1+ 7|2 — z2)° — 4|z 2 < 0.

Case 1: In this case, ‘1 +1C]2 - zz‘ > 2|¢|. There are two subcases:

(la) 1+ [¢)> = 22 > 2|¢|and (1b) 22 — 1 — |¢]> > 2[¢].

In subcase (1a), we have z2 < (1 — |¢|)? and therefore |z| < dgap(ky) = |1 —[¢]], where

8gap (k) > 0 since ky # 27 /3, 47 /3. In this subcase we also have: —(1 + 1> =22 <
—2|¢| < 0. Therefore,

0> Q0 = — (1+|§|2 —z2)+\/(1+|;|2 — 22 — 4l

>—O+MV_£)_JO+MP—HV—4MP=QNML

Let Ay = r1/(2¢*) and Ay = r2/(2¢™*). Therefore, || = [(2¢*)A1] < |(2C*)A2| = |r2].
Therefore, |A1]/|A2| = |r1|/Ir2] < 1. Since [Aq| [A2] =1,

in subcase (1a), we have |z| < dgap(k|), and |A1(2)] < 1 < [A2(2)]. (2.38)

In subcase (1b) we have |z| > 1+ ¢ (k)| = Smax(k)). Hence, 1+ 1P =22 < 1+C)2—
(1+1¢)? = —2|¢| < O since k| # 7. Therefore,

in subcase (1b), we have |z| > Smax (k) and [A2(2)] < 1 < [A1(2)]. (2.39)

Case 2 Here we have Sgap (k) < |2] < Smax(k)). In this case, Ay = (a +ib)/(2(%)
and Ay = (a — ib)/(2¢*) , where a and b are real. Therefore, |A1|/|A2] = 1 and hence
[A1] = |A2| implying that

in case (2), we have 8gap (k) < |z| < dmax(ky) and |11 (2)| = [A2(2)] = 1. (2.40)

We note the assertions (2.38), (2.39) and (2.40), hold for any k| ¢ {27/3, 7, 47 /3}.
The proof of Lemma 2.6 is now complete.
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We continue now with the proof of Theorem 2.2. Assume that kj € [0, 2]\
{27 /3, w, 4 /3}, and hence O < |¢(k|)| # 1, so that Lemma 2.6 applies. Corre-
sponding to the eigenvalues, A1(z) and A2(z) of M(z, ¢) we can take the corresponding
eigenvectors to be of the form:

£1(2) = (g fM)’ £2(2) = (z sz). (2.41)

Due to the hypothesized constraints on kj, in particular that k # 27 /3, 47 /3, we
have ¢ # 0. For small z we find the following asymptotic expansions for A;(z, ¢),
which are valid uniformly in k|| varying over any prescribed compact subset, Jj, of
[0, 27 \{27 /3, =, 47 /3}:

ky el cC 2n/3,4n/3)\{m}  (hence, 0 < [¢(k))| < 1)

M=z 8) = =L +O(Iz])

2.42

{Az =@ ) == + O(1zP) 24
and
kyeJi cC[0,2n\[2/3,4m/3]  (equivalently, | (k)| > 1)

M=z 0) = - +0zP)

2.43
{)‘2 =2(2,0) = —¢ + O(Iz). 24

The resolvent (HﬁTB (k) —z D! on I2(Ny; C?) Let us now restrict k) to vary over the
set (27 /3, 4m/3)\{rr}, and assume O < |z| < Jgap(k)); and construct the resolvent of
HmT ? (k) by solving (2.27), (2.28). The construction of the resolvent for |z] > Smax (k)
forall k| € [0, 2] and all z such that |z| < gap(k)), where k) € [0, 271\ (27r/3, 47r/3)
can be carried out similarly (see remarks below).

For k € (2m /3, 47 /3)\{m}, the expansions (2.42) are valid and we have

1
= 032D, (+r=¢— =t Oz,

and we have by (2.41) that the eigenvectors satisfy

1 1
~610) = (é) + 0,0, 8@ = (; - §—> (?) YO, Q44)

for all z small. Hence,
1
{—51 (2), 52(2)} is a basis of C? for 0 < |z| < 8gap(k)) and ky € 2mr/3, 47 /3)\ {7}
z

which does not degenerate in the limit z — 0. Indeed, by (2.41) for z # O this set is
linearly independent if and only if A1 # ;. However, for 0 < |z] < Jgap(k)) we have
A1l <1 <Al

To solve (2.27), (2.28) we next express F,, = F,(z, ¢; f) in the non-degenerate basis
(2.44). We shall, when convenient, suppress the dependence of F;, on ¢ and f:

B

. B I
Fu(fi2,8) = (c%f,f + %*fnﬁl)
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=F"(f12,0) - sl(z) + FP(f E, 0) &(2). (2.45)

We also seek a solution as an expansion in the basis (2.44):
1
Un = — 61 + v, £, (2.46)

where lli(l) lp,gl)(z) and 1//(2) w,?) (z) are to be determined. Then, we obtain the
two decoupled first order difference equations:

Ve = @+ FV@. n=0, (2.47)
v = m@v®+FP@), n=0, (2.48)

with boundary condition (2.28) to be expressed in terms of w(j ), and Féj ), j=12:

1 _
Z( j*) £() v + ( gi) 5@ v = 1 (2.49)

We now proceed to solve the decoupled system (2.47), (2.48) and then impose
the boundary condition (2.49). Recall our assumption that 0 < [¢] < 1, ie.
ky € 2m/3,4w/3)\{m} and therefore for z real and |z| < Jgap(k)), we have that
[A1(2)] < 1 < |A2(2)|. In this case, the most general solution of (2.47), which decays
asn — +00 is:

n—1

V@ =" @) V@) + e u@)" (2.50)

Jj=0
where p is an arbitrary constant to be determined and F;l)( fiz,0), F ;2)( fiz,¢) are

defined by (2.45).
Furthermore, the most general solution of (2.48) which decays as n — +00 is:

YR @ ==Y 02" FP ). 2.51)

j=n

Finally, we now turn to the boundary condition (2.49). Using (2.50) and (2.51) for
n = 01in (2.49) we find:

1 _ T . T 00 )
uz< Ci) £1(2) — ( g) 8 Y @) FP@ o =
j=0
(2.52)

By (2.32), the quadratic equation for the roots A ;, we find:

T T
-z o[-z z _ S+ r@
( {*> £i(z) = < ;*) (“A]_(Z)) = —Aj(z) , j=1,2. (253)



Sharply Terminated Honeycomb Structures

Claim: Assume z # 0 and z € R. If A(z) is any root of (2.32), then %Z()Z) # 0. It follows

from this claim and (2.53) that the coefficient of w in (2.52) is non-zero and hence
if z 7 0 we can solve (2.49) for u© = u(z, ¢; f).

To prove the above Claim we first note that . 7% 0. Indeed, if . = 0 then (2.32) would
then imply ¢ = 1 + ¢/fl = 0; this contradicts our assumption that ky # m. Thus,
A(z) # 0. Furthermore, we claim that ¢ + A(z) # 0. Again, using (2.32) we have that if
¢+ =0then ¢ z2 = 0. This contradicts the assumptions that z # 0 and ¢ # 0.

It follows from this discussion that for z # 0 and k| # 7:

w(fiz,¢) =— 2@ [ A C+M()

e L+h@) Sl @,
§+)"I(Z) 0 kZ(Z) ]XZ:O O‘-Z(Z)) F] (f, Z, é‘) ]

(2.54)

Therefore if 0 < [z|] < 8gap(ky) and ky € (27/3,4m/3)\{m}, we can solve for

w = u(z, ¢; f). We obtain for any f € 1>(Np; C?), the unique solution of (2.27), (2.28)
and (2.29)

v = {¥n}a>0, with i, tending to zero as n — oo, is given by

n—1
. 1
o= | 2 @Oy BV 0 4 i 8 ) i@ o) | 8@ o)
j=0

— 1> @) FP (20 | 80, n=0, (2.55)

j=n

where u = wu(z, ¢; f) is obtained from (2.52). By (2.45), we may express F;l) and F;z)
as

F;I) =a1(2,0) [} + «a(z,0) [,
FP =iz, 0) [F + Bz o) f1h, (2.56)

where the coefficients are bounded and smooth over the ranges of z and k| under con-
sideration.
Next, introduce the discrete vector-valued kernel, depending on parameters « and B:

ar(z, 0" LEG ), 0<j<n—1
K, j;a, p) = (2.57)
—Br(z, " E(z,0), n<j<oo.

Then, we have

Yo=Y K, jrer, B + D Kin, ji o, B) f1

j=0 j=0
1
+ u(fi2,8) Mz 0)" E& (z, ), (2.58)

where i (f; z, ¢) is given by the linear functional of f, displayed in (2.54).
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Proposition 2.7. LetJ| denote a compact subset of 27w /3, 4w /3)\{m} andlet n(J;) > 0,
denote the constant appearing in part (3) of Lemma 2.6.

(1) There is a constant, C, depending on J| such that for all complex energies, z €
Oo(kD\{O} ( see (2.36) ), the resolvent operator:

—1

fePMoC) s v ={Wbizo = (H, k) —2) f (259

given by the expression in (2.58), defines a bounded linear operator on lz(No; Cz)
with

| (" —2)" s

1
12(No; C2) = CE I 2 vos 2y » (2.60)

where the constant, C, is independent of depends on the compact set J.
—1
(2) The mapping 7 +— (HnTB (ky) — z) is meromorphic for z varying in the open set

Oo(ky) into B(1>(No; C?)), the space of bounded linear operators on 1>(Ng; C?),
with only pole at z = 0. For z € O (k|)\{0} we have

B -1
(Hﬁ (ku)—zl) f
1
= (u™Ms) M)+ Sk S Q6D

12(Np:C?)
where z — SGieo (25 k) is an analytic map from O (k) to B(I2(Ny; C?)).
(3) HuTB kpy = f € 12(No; C?) has a solution in the space 1*(No; C?) if and only if
(W™, £) =0.

12(Np:C2)

Proof of Proposition 2.7. We fix J1 CC (2n/3,4r/3)\{r} and take E € Oo(k”)\{O}
To bound the resolvent we estimate the expression in {¥,},>0 displayed in (2.58) in
I>(No; C?).

We begin with an estimate of the latter termin (2.58): w(f; z, ¢) (A1(z, ¢))" %él(z, Z).
From the expression for p in (2.54) and the definition of F ;2) in (2.45) (recall F ;1)

and F ;2) are coordinates of F; € C2, also given in (2.45)) with respect to the basis

(1612, @)D, wehavethat (£ 2, )1 S IS L0 r2l = (11 + 171 ) =
Ci(z, O) 1 f l2ny:c2y» Where Ci(z, ¢) is a finite constant which depends on z and ¢ in
the ranges specified above. The constant C1(z, ¢) is bounded for z bounded away from
z = 0and k| € J1. As we shall see below, for k| € 71, there is pole of order one as
E — 0.

Therefore, applying Young’s inequality to the first two terms in (2.58) we obtain:

1l g, = (€20 + QU@ ) I gy o

where

C(K, 2. 6) = max supZ K, j, o, B+ supZ 1K, J ety BN+ (2:62)

r=1,2
n>0 n 0
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and we recall from (2.56) that «, and S, are smooth and bounded functions of z and ¢.
Estimating the first sum in (2.62), we have for r = 1, 2:

[e’e) n—1 00
D 1K@, oo BN S e @ O1Y @ O + 1B O Y Iz,
j=0 j=0 j=n

S e (@ O = M@ OD T+ 18-z Ol (halz, Ol = DL

(2.63)

The bound (2.63) holds, for » = 1, 2 and any fixed z € O¢(k})\{0}, uniform in k € Jj.
The second sum in (2.62) is bounded similarly. Therefore, we have for all k| € J; and

-1
any z € Og(k)), the resolvent operator: f > (H;B (k) — z) f (see (2.59)) is a

bounded linear operator on / 2(Np; C2).

The next step in the proof of Proposition 2.7 requires us to consider the resolvent for
small complex z in Qg (k;)\{0}.

-1
2.4. The resolvent (HﬁT ’ k) —z1 ) for z near zero energy. Since there is a simple

zero energy eigenstate for each k| € (27/3, 47 /3), we expect a simple pole of the resol-
vent at z = 0. We now make this explicit by expanding the resolvent in a neighborhood
of z = 0for kj € 2n/3, 4m/3).

In order to work with the above detailed calculations, we restrict our discussion to
the case where k| # 7 (¢ # 0). Consider first the relation (2.52), which determined the
free parameter © = w(f; z, ¢). We shall simplify (2.52) using the following expansions
which hold for |z| small:

T T
-z\ 1 _(—z\ 1 z o li+kk) 2 3
( §*> . £1(z) —( §*> - (C+M(Z)) =l Tho T Eod +0(Iz[")
(2.64)

T T
-z [z z R S 1C R S 2
( ;*) &(2) —< {*) (CH»Z(Z)) =TT [¢] 1+ O(z]9).

(2.65)

We also have from (2.45) that

fB
Fn(fvz’é‘):(Z " )
{_*an + gL* nf}l-l

1 1 1\!
=fr Zél(z) + [ = (C — g_*) &) + Ozl [l fal + 1 fustl D).

Therefore, for |z| small
FV(fiz.00= f2+ 0Uzl LIful + 1 fus1l D)

Ff)(f; 7,0) = |€_|2—_1 f,f:_] + Ozl [ ful + 1 fasrl D) (2.66)
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Substitution of the expansions (2.64), (2.65) and (2.66) into (2.52), we obtain:

- 1z =1) i 1 o ;f{“
=1 S\ =1

+ O (Izl 1 fle@igczy) + Ozl luh = f3. (2.67)
Hence,
z PR 1\
-1 M= i+ ) (‘;«) fi + Ozl 1 lpegc)
j=0
= Z (_g*)j f]A + O (Izl 1f l2qvg:c2)) - (2.68)
j=0

Recall that we have assumed k) € J; CC (2m/3, 4m/3)\{n} (thus |§‘(k”)|2 —1#
0) and z € Og(k)\{0}. Solving (2.68) for wu(f; z,¢) and using the expression for

{ wTB’bd(k ) } >0, the zero energy eigenstate of H.in (2.17), we obtain:
j 1) 1j= i
1 N TTEbd
n@ e H=-Vi-kP ) v £+ O (1 gy
j=0

1
= - VI= P (™M), f) + O(If lpggen) - (269

Z 12(NgiC2)

The error bound in (2.69) is uniform in k| € Jj\{7} and bounds an expression which
is analytic in z € Og(k))\{0}. From the previous discussion we conclude the following.
Fix any k) € J1 CC (27/3, 47 /3)\{m}. Let Og(k|) denote the open neighborhood in C
defined in (2.36). Then, for all z in O (k) ), the mapping

-1
z € Opk)) — (HuTB (ky) — zl) is meromorphic with values in 12(Np; C?)

with only one pole, located at z = 0. Moreover, for z € Og(k;)\{0} we have

B -1
(Hn (kn)—z1> f
1
= (U™ r) M)+ Sk @T0)

12(Ng:C2)

where z > Greg(z; k) is an analytic map from Op (k) to B(I2(Ny; C?)). Thus we have
proved part (3a) of Theorem 2.2, except for the case k| = 7. We leave this as an exercise
for the reader.

Note that for all k| € (27/3, 47r/3), we have that

H," (kv = f € (No; C?) is solvable in 1>(Np; C?)
— <wTB’bd(kH), f> —0. 2.71)

12(Ny;C2)



Sharply Terminated Honeycomb Structures

Thus we have proved all assertions of Theorem 2.2 for k| € J; (J; arbitrary compact
subset of (27r/3, 47 /3), and all E in the open complex neighborhood Og(k)), defined
in (2.36).

It remains to address the cases:

(A) ky €10,27\(27/3,4r/3) and z € Op(k)), defined in (2.36) and
(B) kj € [0,2n] and z € O4(k)), defined in (2.37).

In case (A), Lemma 2.6 tells us that [1;(z)| < 1 < |A2(z)|. Hence, the construction of
the resolvent is as above, and gives the map f +— ¥ defined by (2.55). However now,
since z = 0 is not an eigenvalue, u = w(f; z, ¢) does not have a pole, as was the case
in for for k| € (2r/3, 47 /3); see (2.54).

In case (B), Lemma 2.6 tells us that |A2(z)|] < 1 < |A1(z)|. The construction of the
resolvent is analogous with the roles of the eigenpairs: (A1, &1) and (A7, &) interchanged.
Since in O4 (k) |z] > |Nz] > Smax(k)) = 1 and the only possible eigenvalue is at z = 0,
the analogue of the w(f; z, ¢)-term in (2.55) does not have a pole in this case as well.

-1
Therefore, in both cases (A) and (B) the mapping z ( H; - zl ) is analytic with

values in B(1%(No; C?)).
Finally, using part (2) of Lemma 2.6, one can check that HﬁT ? (ky) — z I is not
invertible for 8gap(k)) =< |z| < Jmax(kj) since the eigenvalues of M (z, ¢) satisfy:

[M1(z, ¢)| = |M2(z, ¢)| = 1. Suchenergies z comprise the essential spectrum oijTB ki),

Oess (Ht;r ? (k| )). The details are left to the reader.
This completes the proof of Theorem 2.2. O

3. Setup for the Continuum Problem; Zigzag Edge Hamiltonian and the Zigzag
Edge-State Eigenvalue Problem

In this section we begin our detailed formulation and discussion of the continuum edge
state eigenvalue problem. For this we must first discuss the atomic, bulk and edge Hamil-

fans- H 2 2
tonians: Hyo,, Hy,, and Hf.

3.1. The atomic Hamiltonian and its ground state. We work with the class of “atomic
potential wells  introduced in [27]. Fix a potential Vo(x) on R? with the following
properties.

(PW)) —1 < Vp(x) <0, x € RZ.

(PW3) supp Vo C {x € R2 . |X| < ro}, where ro < rer. Here, r; is a universal constant
defined in [27] satisfying 0.33|e| < ror < 0.5]e|, and |e| = |vp — va| = 1/\/3
is the distance between one vertex in H and any nearest neighbor.

(PW3) Vo(x) is invariant under a 27 /3 (120°) rotation about the origin, x = 0.

(PW4) Vo(x) is inversion-symmetric with respect to the origin; Vp(—x) = Vp(x).

Consider the self-adjoint “atomic” Hamiltonian: H} = —A + A?Vj(x) acting in
L*(R?). Let pé (x), E%, respectively, be the ground state eigenfunction and its strictly

negative ground state eigenvalue:

(—A + A2Vo(x) — E} ) Ph(x) =0, pteL2(RY), E} <0. 3.1)
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This eigenpair is simple and, by the symmetries of Vj(x), the ground state pé (x) is
invariant under a /3 (60°) rotation about the origin. We may choose pé (x) so that
ph(x) > 0 for all x € R? (see [60]) and [y |pf(x)|* dx = 1.
Since Vo € L®(R?) and —Ap} = (E — x*Vp) p}, it follows that p} € H*(R?).
Recall the hopping coefficient p; given by:

P = /| | PYYA Vo) ps(y —e) dy. (3.2
Yi<ro

By Proposition 4.1 of [27] we have, under hypotheses (P Wy), ..., (P W4) and prop-
erty (GS) (just below) on Vj(x) the upper and lower bounds for large X :

et < S e (3.3)

for some constants: 0 < ¢y < c— which depend on V{y but not on A.

Remark 3.1. The edge states we construct will have energies E* = Ej + Q*, with

05 "ot <« 1.In preparation for our later discussion, it is useful at this stage to introduce
a positive constant, ¢, such that ¢ > c¢_ (see (3.3)) and to observe that

Q4 <™ = pr QM <e @t L oash 1 oo,

In addition to hypotheses (PWy), ..., (PWa4) on Vy(x), we assume the following

two spectral properties of H == —A + A2V, acting on L?(R?):

(GS) Ground state energy upper bound For A large, Eé, the ground state energy of
—A + 22Vy(x), satisfies the upper bound

E} < —cg 22 (3.4)

Here, cg is a strictly positive constant depending on Vy. A simple consequence of
the variational characterization of E} is the lower bound E} > —||Voll, 2> = —A%
However, the upper bound (3.4) requires further restrictions on V. Using the condition
(GS), we can show that p())‘, satisfies the following pointwise bound:

PG = C1 (3 Ly, + €Y (3.5)

where supp(Vp) C B(0, r9), §o > 0is arbitrary, and C; and ¢ are constants that depend
on Vy, rg and §p; see Corollary 15.5 of [27].

(EG) Energy gap property For A > 0 sufficiently large, there exists cgyp > 0, inde-

pendent of A, such that if ¥ € HQ(RZ) and <p6‘, 1//) g = 0, then
L2(R2)
2 A 2
((ma+vo-E)vv) = calvl?, .. (3.6)

L2(R2)

In Section 4.1 of [27] we discuss examples of potentials for which — A +12Vj satisfies
(GS) and (EG). These include (i) Vj equal to a smooth potential well, which is of compact
support and having a single non-degenerate minimum, and (ii) Vy equal to a piecewise
constant cylindrical potential well, with value —1 inside a disc and O outside.
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3.2. Review of terminology and formulation. We conclude this section with a review of
some terminology and the formulation of the edge state eigenvalue problem. Consider
the relevant self-adjoint Hamiltonians.

ey

2)

3)

Continuum bulk Hamiltonian, Hg‘ulk:
Hiy = —A+2?V(x) actingon L*(R?). (3.7)

Here, V (x), the bulk periodic potential, is defined to be the sum of all translates of
atomic wells, Vo(x—v), where vranges over H: V(x) = )| iy Vo(x—v); see (1.10).
The potential V (x) is a honeycomb lattice potential in the sense of Definition 2.1 of
[26]; V is real-valued, and with respect to an origin placed at the center of a regular
hexagon of the tiling of Rf‘: V is inversion symmetric and rotationally invariant by
2 /3.

Continuum zigzag edge Hamiltonian, H, :d oot The potential for a honeycomb structure
interfaced with the vacuum along a sharp interface with direction v, € A (parallel to
the zigzag edge) is obtained by summing translates of Vi over the truncated structure,
H, defined in (1.11):

Vi) = > Vox—v). (3.8)

veH:

The Hamiltonian for the truncated structure is given by

H:ige =-—-A+ )\ZVn x), acting on L*(R?), 3.9
and its centering at the ground state energy, E())‘, of H}  is denoted:
H:f‘ =—-A+ )\ZVu(x) — E())‘ acting on LZ(RZ). (3.10)

Since H:(;ge and Hé\ are invariant under the translation invariance: X +> X + v, these
operators act in L%” (%), T =R?/Zv,.
The k|-dependent Edge Hamiltonian, HﬁA (k), acting in L2(2) is given by:

k 2
H (k) = —(V+i%ﬁ2) +22Vy(x) — E}. (3.11)

Finally we recall that the Zigzag Edge state Eigenvalue Problem is given by (1.16),

or equivalently, (1.17). With E = E} + Q, we have:

(Hrkp = @)v =0, yell. (3.12)
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4. A Natural Subspace of Li“ (%)

Define, for all n > 0!

Vi = va+no, Vi = vg+nvy, 4.1
where V% = v4 and V% = vp. The cylinder £ = R2 /Zv, has fundamental domain

Dy C R?, which may be expressed as the union of paralleograms:
Dy =Up>0 D, U D_; asinFig. 1. “4.2)

Each parallelogram ®©,, with n > 0 contains two atomic sites: v/, and v’;. The infinite
parallelogram, ®_1, contains no atomic sites. A fundamental cell of the cylinder X,
Dy, and its decomposition into parallelograms ©,,, for n > —1 is depicted in Fig. 1.
The zigzag sharp truncation of H may be expressed as a union over “vertical translates”
(translates with respect to v5) of sites within Oy :

n n
Hy = Unyez Uni>0 [ VA1 +no09 , VBl +7no0) }

We next introduce approximate k|-pseudo-periodic solutions of Hﬁ)‘\ll = 0 via k|-
pseudo-periodization of the atomic ground state, pé:

Definition 4.1. Fix kj € [0,27]and I = A, B.Foreachn € Ny = {0, 1, 2, ...}, define

p,, /1)

Z po (X _ V[ _mZUZ) e lznﬁz (x— V —ma07)

szZ
K| ,
etz ROV NI P (x — Vi — ) (4.3)
my€eZ
and
Pk*”,,[n](x) = R pp ,nlx®) = D e ph(x — V) —mapy). (4.4)
mo€Z

The function x +— p:”‘ 1[”](X) is defined on the cylinder %, i.e. p:H, ,[n](x + 1)) =
piﬂ s [n](x). To see this, replace x by x + v; and redefine the summation index. Further-
more, we note that: Pk)“‘_l [n](X + 1) = X Pk)“‘_l [n](x).

The functions: pz‘H ; [#], I = A, B, n > 0, form a nearly orthonormal set in LZ(E)

for large X. In particular, we have:

Proposition 4.2 (Near orthonormality of { pfr s [n]}). Fix ky € [0,27] and & > 0.
(1) For all n € Ny, we have p"u [n] € LX) and P)‘ n] e Lk”

Furthermore, there exist constants A, ¢ > 0 such that for all .. > A.:

! The labeling convention of A-points and B-sublattice points used in the present article differs from that
used in [27]. This has no effect on the results in this article or in [27].
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(2) Forn e Ng, I = A, B

R ) B e 4.5)

L2(%)

where 8, denotes the Kronecker delta symbol.
(3) For I = A, B, m,n € Ng withm # n and all » > 0 sufficiently large:

(o )| o

L2(x)
Assertions (4.5) and (4.6) hold as well with pl’}" ,m] replaced by Pk’}_ ,[m], defined in
(4.4), and with L* (%) replaced by L’%H (R2). Here, A, depends only on V.

This proposition follows from the normalization and decay properties of the atomic
ground state, pé; the details are omitted.

We conclude this section by showing that the functions p)‘ [n],I =A,B,n>0,
are nearly annihilated by H} (k).

Proposition 4.3. There exist positive constants A, (large) and ¢ > 0, such that for all
A>Aandalll = A, Bandn > 0:

A

| 2P ) | S el e xe Dy 47

| H2 et )|

A

e, (4.8)

LX(%)

Proof of Proposition 4.3. We first note that (4.8) follows from (4.7) by integrating the
square of bound (4.7) over a fundamental domain (strip), ®x. Thus We focus on the

pointwise bound (4.7). The identity Vyx = ¢’ 3k o (V+i 2" f)e” iok Rax and (3.1)
imply that for arbitrary v € R?:

k 2
(—<V+i2—'ﬁ2> + 22Vo(x —¥) — Eg) S Pox—%) =0
T
(4.9)

we shall apply (4.9) for v € H.
As a first step toward obtaining the bound (4.7) for H, A(k”) pku [n](x), we observe
that

forx € Oy, Vi(x) = Z Z Vo(x — vy —nioyp).

J=A,B n1>0
Therefore, for x € ®y we have

Hi keppy 10 = 3 0 Hy Gk e™ ROV ) (VY )

my€Z

= H(ky) e 2k R (V) Pox — V")
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ky ? ) i ay xevi—
+ —(V+i—R) - E 27 Ko (X=Vy =m202)
> (-(veigtm) - 5o
my€Z\{0)

PoX — VI — mpu))

il n
+ Y APV(x) e R Yimmv) bk v — many).

my€Z\{0}
In the second equality just above we have split off the m>, = 0 and m> # 0 con-

tributions. The first term of the m> # 0 contribution vanishes identically for x € Dy.
Indeed, Eq. (4.9) for pé implies that this term is a sum of terms, each containing a factor
A2 Vo(x — v} — mavy) for some my € Z\{0}. Each of these terms vanishes since the
constraint: mo # 0 implies they are all supported outside of ® . Therefore,

_‘kl A —vy
Hé‘(k|\)p£“‘,,[n](x) = Hﬁ)\(kll) o~z B2 (x=V]) pé(x —v)
| n
+ Z )\,ZVj(X) e_lERZ‘(X—VI —mav2) p())‘(x _ V'; — mav9).
mpeZ\{0}
(4.10)

We may now use (4.9) with v = v} = v; +nv to simplify the first term on the right
hand side of the previous equation. For all x € ®x withn > 0 and I, J € {A, B} with
I # J, we obtain:

L
H Gpy (nl0) = | 22 3 Vox —vp') | 72 f207%) pix— v
n1=>0

ny#n

il n
+ | 22D Vox = v | e D phx — vp)
n1>0

il n
+ Y ABVa(x) e R OYimme) bl v — many).
my€Z\(0)

Thus,

| ko I |

< | 2> Vo=Vl | pox=vD) + [ 22D Vo =vhI | phx = v))

n1=>0 n;=>0
ni#n
+ Y 2Ve) ph(x — Vi — man)
myeZ\{0}
= Ti(x;n) + Th(x;n) + T3(x; n). “4.11)

To bound the first term of (4.11), we note that for ny # n

Vox = Vi)l pi(x = V]) = [IVolloo Lyt PG = V])
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—cA|x—V7|
1
~ 1|x—v71 |<ro €

[ n ~
< —5AIX=vy| ,—CcAlni—n]|
~ 1|X—V'Ill [<ro ¢ ¢ :

. . . A " vy
Summing over n; > 0 with n; # n we obtain T1(x;n) < e ¢* e=¢*X=Vil Very
. . . _ / _ i —_yh .
similarly we obtain: Th(x;n) < e ¢* e~¢ *X=Vil 'We finally consider T3(x; n). For
X € 33):,

/ /"
T3(X, n) 5 )\'2 ”VO”OO Z e—C}»|X—V7| e—CMmz\ S e—C}» e—C }»|X—V};|.
moeZ\{0}

This completes the proof of Proposition 4.3. O

4.1. The subspace X’ ; (k). We introduce the closed subspace of L?(X):

X% g (k) = the orthogonal complement in

L() of span{p;’"[n] I=AB:n> 0}. (4.12)

We shall sometimes suppress the dependence on A and write X 4 g (k). The space L2(%)
may be decomposed as the orthogonal sum of subspaces:

LA(3) = span{p:w[n] [=AB:n> 0} ® Xap k). (4.13)
We also introduce the orthogonal projection onto X4 g (k)):
M,, =,,(p): L*(2) — Xapk)). (4.14)

Since the set pzu ,n]: 1 =A,B; n=0¢is only nearly-orthonormal for 2 large
(Proposition 4.2), we make use of the following:

Proposition 4.4. There exists L, > 0 such that for all A > A, the following holds. Fix
k€10, 2m].

(1) Then, for F € LZ(E) we have that

F=0 < Tupk)F =0 and <p£‘”1[n],F> —0, n>0, 1=A,B.

L2(%)

(2) Any ¥ € L*(X) may be expressed in the form:

= > e pkH + 9, (4.15)

J=A,B n>0

where a = {(at, aB) V=0 € 12(No; C2) and T, (k)T = ¥ € X% 5 (k).

The proof is similar to that of Lemma 8.2 on page 31 of [27] and is omitted.
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5. Energy Estimates and the Resolvent

The following proposition concerns the invertibility of IT, , (k) ( Hé‘ (ky) — 2 ) I, , (k)
on X4 g (k) for A sufficiently large. This will facilitate reduction of the edge state eigen-

value problem, (1.16) or (1.17), to a problem on the linear space span[ pk*|| Jnl o I =

A,B, n > O}; see (4.12). The proof uses arguments analogous to those in [27]. The
necessary modifications in the strategy are discussed at the end of this section.

Proposition 5.1. There exist constants L, > 0 (sufficiently large) and ¢’ > 0 (sufficiently
small), such that for all & > A, k| € [0, 2] and |2| < ¢’ the following hold:

(1) Forall ¢ € X, (ky), the equation

Mk (HEep—2) v = ¢, (5.1)
has a unique solution

¥ = KL(Q. ke € X,, NH* ().

Thus, I3 (2, ky) is the inverse of T1,,, (k) ( H} (k) — @ ) 1, (k) or equivalently
m,, k) ( H ky) — 2 ) acting on X, .
(2) The mapping ¢ +— ICQ(Q, ky)¢ is a bounded linear operator :

K2 k) 2 X, (k) — HA(D) N X, (k). (5.2)

(3) We have the following operator norm bounds on KQ(Q, ky):

H Ki@kp| < (5.3)

AB7”LAB
| v i@k ‘x o= (5.4)
H K92, ky) H < COn kp. (5.5)

X p—HAE)NX 4B

(4) Furthermore, this mapping depends analytically on Q € C for || < ¢/, and for all
such Q:

| 9 KE@. 1) | <1. (5.6)

Xap~Xap

(5) Forreal 2 € (-, ¢'), ICQ(SZ, k) is self-adjoint on the Hilbert space X o, endowed
with the Lz(E) inner product.

A key step to proving Proposition 5.1 is the following energy estimate on the space
Xapky):
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Proposition 5.2 (Energy Estimate). Fix k| € [0, 27 ]. There exists L, > 0, independent
of ky, and a constant C, > 0 such that the following holds for all A > A,. Let y €
Xag (k) N H*(X). That is,

(pi‘”‘j[n], ¢>L2(E) =0, 1n>0, J=A,B. (5.7)

Then,

A 2 2 -2
|2y 12,z e (1012, + A2 IV0IE, ). (5.8)

The constant c, can be taken independent of k) but it does depend on properties of the
atomic potential, Vo, in particular on the constants cgs and cgap; see (3.4) and (3.6).

The proof of Proposition 5.1 follows the general structure of the proof of the energy
estimates in [27]. We now discuss the modifications in these arguments, which are
required to prove Propositions 5.2 and 5.1. We follow the discussion of Section 9 of [27]
with ¥ = R?/Zv; playing the role of R?/A, and with the approximate eigenfunctions
pj”_l[n] € L?(X) playing the role of pﬁl e L?>(R%*/A) in [27].

Forn > 0, let x’}, I = A, B denote the two atomic sites in ®,,, where n > 0. Recall
®y is the union, for n > —1, over all ®,,; see Fig. 1. In place of the partitions of unity
(9.11) in [27] on R?/A, we introduce here analogous partitions on X:

=05+ Y O, 1=06j+ > 67,

n>0 n>0
I=A,B I=A,B

where ®, 1 and ®,, 1 are supported near X7 . All the arguments in Sections 9.1 through 9.4
of [27] go through in the above setting, with minimal changes. This gives Proposition 5.2.

We seek to show that the inverse of IT,, (k) ( HﬁA (k) — 2 ) IT,;(ky), is a bounded
linear operator on I)Cﬁ » (ky), satisfying the bounds (5.3) and (5.4) and furthermore that
ICQ(Q, kj)) maps x}m (k) to H%(Z)N f)CﬁB (k) and satisfies the operator bound (5.5).

To adapt Section 9.5 of [27] to our setting requires an additional argument which
we now supply. Suppose we have IT4p(k)) [ an(k”) - Q1 ] Y = f, where ¥ €
L*(£) N X% (ky) and f € L*(Z). Then, for some {as,}, (I = A, B n > 0), in
12(Np; C?):

[He) = @1y = 1+ 3 amap} i, (59)

I1=A,B
n>0

where the right hand sum is convergent in L?(%) and the left hand side is interpreted as
a distribution on ¥. Taking the inner product in L>(X) of (5.9) with p:‘” ,[m], we find
that

Z An <p,:‘_,[m],p,:‘_,[n]> = éju,j[m], where

1=A,B
n>0

& ,lml = (HMkpp! Imly) = (p! Iml. f).  (5.10)
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We have

E,f”,,[m]‘2 < ‘ <Hj)‘(k|\)P,:‘J[m],l//> ‘2 + ‘ <p£‘HJ[m],f> ‘2 G.11)

and summing over J = A, B and m > 0 yields

2

& ml < X |[(maps v [

J=A,B J=A,B
m=>0 m=>0
2
+ Y ’ <p,§u,,[m],f) ‘ : (5.12)
J=A,B
m>0

In order to bound the second term on the right in (5.12), note that the near-orthonormality
of the set { piH ; [m]:J = A, B, m > 0} for A large (Proposition 4.2) implies the Bessel-

type inequality:

2 ’(”f",ﬂ’"]’fﬂz SN

J=A,B
m=>0

Consider next the first term on the right in (5.12). Thanks to the pointwise bound on
HZ (ky) p?”, ,[m](x) from Proposition 4.3, a Young-type inequality yields:

> | (HEwopl i v) \2 SR 4

23’
J=A,B
m>0

Again, by Proposition 4.2, we have

Yo lenPS Y 1E Im] P

J=A,B J=A,B
m=>0 m=>0
S e W) + C G (5.13)

And finally one more application of Proposition 4.2 gives

” Z a/)}uel[”] Plzml[”]‘

I=A,B
n>0

pe S Wl + Clf g - 614

The estimates (5.13) and (5.14) allow us to argue as in Section 9.5 of [27], using our
energy estimates, that the operator IC? (82, k), the inverse of I1, , (k) ( an (k) — )

IT,, (k;), is a bounded linear operator on xg 5 (k))), satisfying the bounds (5.3) and (5.4).

To complete the proof of Proposition 5.1 must show that /CQ(Q, k) maps I)Cﬁ » k)
to HX(R?) N XﬁB (k). To bound || Ay ||L2(>:)’ we use (5.9) to obtain an expression for
A in terms of ¢ and V. Then, the energy estimate for ||y ||L2(2) and ||V ||L2(2), and

the bound (5.14) imply that for A sufficiently large, the L2(%) norm of each term in the
expression A can be bounded by C(1) x || f|| 205 where C (1) denotes a A-dependent
constant.
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6. Lyapunov—Schmidt/Feshbach-Schur/Schur Complement Reduction

The resolvent bounds of Proposition 5.1 ensure that on the subspace X ,, (k|), the
operator Hﬁ)‘ (k) — €2 is invertible in a neighborhood of 2 = 0, i.e. the spectrum of

IT,, (kH)Hﬁ}‘ (kIT, , (k) is bounded away from zero, uniformly in A >> 1. In this section,
we make use of this spectral separation to obtain a reduction of the L%“ eigenvalue prob-

lem to a problem on the subspace of L?(X) given by: span{p:‘;l [n]: I =A,B; n> O].
Consider the eigenvalue problem:

X 2
(- <V+i2—”ﬁ2) +22Ve(x) ) v = Ev, ¥ e HX(Y). (6.1)
T
Let
E=E}+Q. (6.2)
Recall the centered edge-Hamiltonian:
A PR AL
Hj kp=—-(V +lgﬁ2 + A7 Vi (x) — Ej (6.3)
see also (3.10). Then, the eigenvalue problem may be rewritten as:
(Hkp - @)y =0, veH ), (6.4)
By Proposition 4.4 any i € H*(X) may be written in the form:
IS 7
vo= > Y af P 0l + ¥, (6.5)
I=A,B n>0

wherea = {(a,/}, a,f)T}nzo € I>(Np; C?)and n,, (kH)J = J.Weadopttheconvention
ai:O, n<-1, I =A,B.
Substitution of (6.5) into (6.4) yields:
S Yan (Hik) = @) pf )+ (He) — @) T = 0. (66)
I=A.B n>0

By part (1) of Proposition 4.4, the eigenvalue problem (6.4) is seen to be equivalent
to the system obtained by: (i) applying the orthogonal projection IT, , (k) to (6.6):

M) (HrGp) = @) F+ 3 Y e Myt (Hr) — @) pl =0

I=A.B n>0
(6.7)
and (ii) taking the inner product of (6.6) with the states: pi\u- p [m]; m>0, J=A, B:

<p,f_.,[m], ST e (HIIA(k”) - sz) pi‘l’l[n]>

I=A,B n>0



C. L. Fefferman, M. I. Weinstein

+{(Hrw) - §>pk)“|.1[m],$> =0 6.8)

wherem =0,1,2,....

Using Proposition 5.1 we solve (6.7) for 1]7 as a function of @ = (a4, a®)T €
12(Np; C?):
Vo= > Y ol KHQ. k) T, (k) H (k) pi‘uvl[n]. (6.9)
I=A,B n>0
Here we have used that IT, , (k) pi‘”ll [7] = 0. Substitution of (6.9) into (6.8) yields
S S Mm@ kel = 0; J=AB, m=0, (6.10)
I=A,B n>0
where
M Im, n1(2, ky)
—_ A A A
= (o i), (H2k) = 2) p,In])
L2(%)
= () Pl 1 T ) K2 K T ) HE G ] )
L2(%)
6.11)

Remark 6.1. For fixed / = A or B and fixed m > 0, the Eq. (6.10) expresses the
interaction of all atomic A- and B-sites within the cylinder, ¥, with the atomic site J in
cell m. In particular, the M j4[m, n] are interaction coefficients between site J in D,,
and all sites vy, n > 0, and M g[m, n] are interaction coefficients between site J in
cell ®,, and all sites vz, n > 0.

Due to their dependence on the Hamilitonian, H, * we refer to the first term on the

rightin (6.11) as the linear matrix elements, Mk’“n [m, n](£2, k) and second term on the
right in (6.11) as the non-linear matrix elements, M [m, n](2, k)). Thus,

M m ) Q. k) = Mm@ k) — M Im i@ k). (6.12)

In the subsequent sections we compute highly accurate approximations to the linear
(Sect. 7) and non-linear (Sect. 12) matrix elements. This will enable us to recast and
solve (6.10) as a perturbation of a tight-binding model for A sufficiently large (Sect. 8).

7. Matrix Elements M)}’I]i"[m, n](, k) and M)}’I"l[m, n](R, k)

In this section we provide expansions of the matrix entries of Mj’;in [m, n](2, k|). Recall
that
K a .
Pk}“l,l[n](x) = ol R (x—v1) p:”,[[n](x) = Z eikima p())‘(x V' —myvy) (1.1

szZ

(see also (4.4)) and that H} = —A +A*Vi(x) — Ej.
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In preparation for our expansions, introduce the nearest-neighbor hopping coeffi-
cient:

Py = / P Vo)l p(y +e) dy

B, (0)

= /R L PR VoWl po(y +e) dy, (72)

where e = vp — v4. The latter equality holds since V has compact support in B, (0).
‘We further recall the bounds (3.3) :

e S S et (7.3)

for some constants c_, ¢y > 0 and all A > O sufficiently large; this was proved in [27].

The main results of this section (Propositions 7.1 and 7.2) are the following two

propositions which (i) isolate the dominant (nearest neighbor) behavior of the linear

matrix elements and provide estimates on the corrections, and (ii) estimate the nonlinear
matrix elements.

Proposition 7.1 (Expansion of linear matrix elements).
For all & > A, (sufficiently large), and all kj € [0, 27], we have:

(1) Form > 0,

(Pk'””ﬂ[m],HmA P:;‘VA[m]> = <piu)k[m], Hg\(k”)piw[m]> = —p (1+eik|\> + O py).
L2(®) L2(s)
(7.4)
(P:"“A[m],HnA P ml) = (P;H_B[m], HE P, ml) = =y (1+e74) + O™ py).
L2(%) 12(x)
(7.5)
(2) Form > 0,
s A _
(B oom. 22 P+ 1) =t O ), (7.6)
L2(x)
and form > 1
A A _
(Pk”,A[m]’ Hn)L Pk”YB[m - 1]> , = —pPx + O(e cA pk). (7.7)
L2(%)
(3)
Px (m] H PA (] = O g=cHm—nl >0 +1
k”,Bm’ ft kH,An 5 - e Pr ), mn =2, n;ém,m s
L2(%)
(7.8)
* L p* — —cAlm—n)|
P iml Hy P (] = 0Ofe 0.), mn>=0, n#Emm-—1.
k.4 P
(7.9)
(4) Form,n>0and I = A or B
s A _ _ _
<P/(”J[m]’ H]:I)L Pk”,l[n]> — O( e C}Le cAlm—n)| PA) (710)

L2(x)
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The implied constants in the O(-) estimates and the constants A, and c are independent
of k.
We note, by part (4) of Proposition 5.1, that the function

Q> (Gl lnl . T, () KCH Q. ) T, ) HE Gl ) )LZ(Z)

is analytic for |Q2| < ¢’.

Proposition 7.2 (Estimation of nonlinear matrix element contributions). There exists
A > A, (sufficiently large), such that for all ky € [0,2m] and |2| < ¢’ (c, a
sufficiently small constant determined by Vy) the following holds for j = 0, 1:

‘ < H]j)h(kll)pl)c\”,J[n] ’ Hﬁg (kH) 8{2’(’?(9’ k”) Hib’(k”) Hg\(kl‘)plé\\’l[m] )LZ(Z) ‘
< py ek e clnmml, (7.11)

The implied constants in the O(-) estimates and the constants A, and ¢ are independent
Ofk”.

Proposition 7.1 is proved in Sect. 11 and Proposition 7.2 in Sect. 12. The proof of
Proposition 7.2 requires detailed information on the resolvent, which we need to control
in weighted spaces. We obtain this control by constructing the resolvent kernel and
obtaining pointwise bounds for it. The construction is carried out in Sect. 10.

8. Existence of Zigzag Edge States in the Strong Binding Regime

In this section we apply Propositions 7.1 and 7.2 to rewrite the edge state eigenvalue
problem as a perturbation of the eigenvalue problem for the tight-binding limiting oper-
ator studied in Sect. 2. We then use this reformulation to construct zigzag edge states
for arbitrary A > A, where X, is fixed and sufficiently large.

Recall from (6.10), our reduction for ky € J CC (2n/3, 4w /3) of the edge state
eigenvalue problem for Hﬁ)‘ (k) to the discrete eigenvalue problem for {(ot,ﬁ, a,lfl)}m >0

in I2(Np; C2):

DY Mm@ kpal =05 J=AB, m=>0. (8.1)
I1=A,B n>0

Let’s cast (8.1) in a form in which the tight-binding operator HmT ? (k) is made explicit.
First, (8.1) is equivalent to the following system for m > 0:

D Myl )@ k) et + Y MY pIm nl(Q kel =0,

n>0 n>0
D Mg alm n)(Qkp ot + Y Mglm. nl(Q. ke = 0. (82)
n>0 n>=0

To isolate the dominant terms (see Propositions 7.1 and 7.2 ), we rearrange the expres-
sions and obtain for m > 0:

Miglm,m — 1R, k) ol |+ Migim, mI(Q, k) aB + M Im, mI(Q, ky) a2

m
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Y Miglm ol k) af =Y MY Im 02, k) o
n>0 n>0
n#Em,m—1 n#m
M lm, mI(Q, ky) s + Mo lm,m+ 11(Q, k) oty + My plm, ml(2, k) o

D0 Miylm nl(Q,kp ot — > Miglm, n)(Q, k) . (8.3)

n>0 n>0
n#Em,m+1 n#m

Here, Mﬁ,[m, n] is given by (6.11), where we take M)l;A[m, m—1]=0form = 0.
The system (8.3) is equivalent to (8.1).

Our next step will be to express the matrix elements on the left hand side of (8.3), using
Proposition 4.2, Proposition 7.1 and Proposition 7.2. Since the leading order expressions
are proportional to py, it is natural to introduce the rescaled energy:

Q = p Q. (8.4)

Recall our general upper and lower bounds on p;: e ~* < p; < e “* (see (7.3) or
(3.3)) and let ¢ > ¢— > 0 denote the positive constant introduced in Remark 3.1. We
now constrain 2 to satisfy |Q2| < e~ Then, |§| = |p;1S2| < e(@=eh o p=c"2
where ¢” is a small positive constant, for any finite A sufficiently large.

Using Proposition 4.2, Proposition 7.1 and Proposition 7.2 in (8.3) we obtain after
dividing by —py:

(“1+0E™)) af | +( =0+ )+ 0™ ) af + (=1+0™)) G

= Y O e el + 3" Ot e ) o, (8.5)
n>0 n>0
n#Em,m—1
where ozrlzfl =0 form = 0, and

(—(1+eik“)+0(e_0)‘)) af + (—1+0@E ™M) al,, + (—1+0(™)) Qaf

= Z O(e* e—clm=nly ocf + Z O(e* e—clm=nly af , (8.6)
n>0 n>0
n#m,m+1

where |Q| < ¢”.

Remark 8.1. By Proposition 5.1 (part 4) and Proposition 7.2, the expressions in (8.5),
(8.6) of the form O(g())) are analytic functions of 2 for Q varying in the open subset
of C: |Q| < e_cA Moreover, these expressions are all uniformly bounded by g(A) for
all  such that || < ¢”, a small positive constant.

We obtain, for m > 0 and |Q| <"
B —+etyaB — Qo

_ Z O(e=C* g=clm=nly a,f + Z O(e=H e=clm=nly a’;\ , (8.7)

n=0 n>0
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B

where o, ; =0 for m =0, and

- (1+eik”)a$ — arﬁﬂ — ﬁaﬁ
=Y O e hal + Y O e et (88)
n>0 n>0

Again we remark, as in Remark 8.1, that in (8.7), (8.8) expressions of the form O(g (1))
are analytic in € and uniformly bounded by g() for |Q2| < ¢”.
The system (8.7), (8.8) is of the form:

TB ~ A - A
[(Hn (k) — 9)(33)] = [TP(?»; Pi.S2) (ZB” ., for m >0,

(8.9)

where H; ’ (ky) is the tight binding Hamiltonian for a zigzag termination of H, studied
in Sect. 2; see, in particular, (2.4), (2.5)2.

Furthermore, using that the mapping {yy}m=0 + EZPO e~clm=nl ] . is

>
bounded from lz(No) to 1tself we have that the mapping Q> PO pXQ) is an ana-
lytic mapplng for |S2| < ¢” with values in the space of bounded linear operators on

12(Np; C2). We also have, for all |2] < ¢, (¢/ < ¢):
| PO 028D e S e (8.10)
where the implied constant is independent of €2, but depends on ¢’. Recall that k) varies
in a compact subinterval of (277/3, 47 /3), where 8gqp (k) = ‘1 — |§(k”)|‘ = ‘1 — |1+
efi|| > 0. We will further restrict Qto satisfy |EZ| < ¢ < Bgaplky).
Our goal is to construct, for all A sufficiently large, a solution of (8.9):
L a) = (e, () e PNo; C)
A (1), suchthat Q)| < et < (. (8.11)
Given the mappings (8.11), Egs. (6.5), (6.9) and the relation E = EA + ,OASNZ define a
solution to the L%” (X) edge state eigenvalue problem, \Ilk” x)=¢' 2n L Ro- x'(ﬂkH (x), where

v = ) D e pp ) + PlaMIE)

I=A,B n>0
E*(ky) = E} + 0 Q00 k), (8.12)

and the map @ — @[&](x) is given in (6.9). We shall succeed in this construction for
kye€JcCcC (2rn/3,4m/3) and A > A, (J) sufficiently large.

TB
2 Actually, the operator which emerges in (8. 7) (8 8)is — tt (ky)s minus one times the operator studied
in Sect. 2. However since 02H (k||)02 = —H (k”) the spectrum of H (k”) is symmetric about zero
energy and _Htt (k”) — zId has the same invertibility properties of HI:I (k”) — zId. Hence, in this and the

TB
following section we take Hﬁ (k) to denote the negative of the operator studied in Sect. 2.
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The first step in this construction is to note that as A tends to infinity the system
(8.7), (8.8) formally reduces to the edge state eigenvalue problem for the tight-binding

Hamiltonian, H;B (see (2.1), (2.4)) given by:

—a,ﬁ_l — (l+e7ik”)aﬁ - fla,ﬁ =0 m=>0

—(+efyal — o, — ﬁanli =0, m>0, with «®, =0. (8.13)
By Theorem 2.2, if k| € (27/3,4m/3) the system (8.13) has an isolated and simple
eigenvalue at QT8 = 0 with corresponding vector a’ = {a;B Jm=0 € I?(Np; C?) given

by:
TB.4 _ym T
@ = <aTB.B> = Y <( D (BH ') ) for m >0, (8.14)
o
m

where we take y, = /1 — [ (k)|? # 0 so that @' has I2(Ny; C%)-norm equal to one.
To prove that (8.9) has a solution in /2(Ng, C?) which for A large is approximately
-TB .
equal to ¢ , we seek a solution of (8.9) of the form:

- _ TB.A A
+ B(A) = (ZTB.B) + (glggi;) )

~ ~ B =
S =80y, wh tak (* , > —o. 8.15
(A), where we take (@ , B i) ( )

QL

a(y) =

facti ™ 12N, 2 18]\t ;
Introduce the orthogonal projection IT~ : *(Np; C%) — ( span{ot } ) . Substi-
tuting (8.15) into (8.9) and projecting onto span{&TB} and its orthogonal complement,
we obtain the equivalent system for 8 and 2:
TB ~\ = TB ~_ _TB TB ~ -
(B )= 8)F = 1, P ;@ + 1) Po: @B, (816)
3+ <5{TB,‘P(A; 0,.80) aTB> + <&TB,T(A; 0,.50) B) = 0. (8.17)

TB

. » which for |Q| < ¢

Let R (S~2; k) denote the inverse of HZB (H;B (ky) — S~2) I1

is well-defined as a bounded operator on the /*>(Ng; C?)-orthogonal complement of
span{a@ ' (kj)}. Moreover, |R"" (&: k)|l < 1 for [ < ¢/ < 8(ky), by Theorem 2.2.
For A sufficiently large we may solve (8.16) for E [Q2:A] € Range HZB and obtain:

oo~ ~ ~ 71—1 ~
Bigua =1 - R°@ k) P0s ;@] NP0 p S a"
=A@ )T, PO D a . (8.18)

This follows by the bound || P(%; px 52) o S e~*; see (8.10). Therefore, the con-

struction of ,é (L), SNZ(A) (see (8.11)) boils down to solving the following scalar nonlinear
equation for 2 as a function of A:

3+ <&TB,:P(A; 0,.80) &TB> + <&TB,9>()\; 2.8 A 0) T PO 3. 8) &TB> — 0.
(8.19)
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Using analyticity in & and previous bounds, we may write (8.19) as
G+ (@ Pu0a") + 9@ = 0. (8.20)
Here, S(SNZ' A) is analytic with |8£9(§' M| <e (= 1,2) forall Q in the complex

neighborhood of zero, |§2| < . Since ) < PO 0) a > ‘ < e~ for A sufficiently

large, Eq. (8.20) may be solved for Q) by using a contraction mapping argument on
the disc: |Q| < 2Ce~“*. Therefore, modulo Propositions 7.1 and 7.2 which are proved
in Sects. 10, 11 and 12, we have proved our main result, Theorem 1.3.

9. Resolvent Convergence; Proof of Theorem 1.2

We study the scaled resolvent:

(ot = aa)" = (o (~awvem ) — o)

as an operator on L*(R?). We consider the scaled non-homogeneous equation

(p;IHQ(kH) —1d ) v =0, @eclX%), 9.1)
or equivalently
(HXkp = pald ) v = pp, g e LD 9.2)
We express ¢ as:
= X 2 AP, +d. T,GkE=7 9:3)
J=A,B n>0

and seek a solution of (9.1) in the form

> Yewpl,nl+ V. k)T =7 ©.4)

I=A,B n>0

where o = {(@, 8) },20 € 2(No; C2) and § = T1,,, (k) € X 5 (k).
Substitution of (9.3) and (9.4) into (9.2) and projecting the resulting equation with
I,,(ky) and I — IT,, (k) (whose range is span{pi‘uvl[n] 1 = A, B, n > 0}), yields

the coupled system for o« = {a,’l :n>0,1 =A, B} € >(No; C?) and {/7 € DCf‘L\B(k”):
M, o) ( HE ) = il ) T = = 37 o T (k) HE () p ) + oo

I.n
9.5)

S (ot i (2K = paz 1) pl )+ (HEGp? Il )

I,n

. Z(;;ku pZ‘”J[n]>ﬂ,{, forJ = A, Band m > 0, (9.6)
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where the sums ) |, are over / = A, B and n > 0.
We next use Proposition 5.1 to solve (9.5) for 1; € L?(X) and obtain:

Vo= =) o Kz k) HE R py (In] + pr K (prz. k. 9.7)
I,n

Substitution of the expression in (9.7) for 1Z into the left hand side of (9.6) yields the
closed non-homogeneous system for o € 12(Ny; C2):

>° Migmonla = o[ 3o (p7 Ul pl i) 8] — (HZ (Pl Im). Kk (onz. kD) |
In In

9.8)

foreach J = A, B and m > 0. The matrix elements Mﬁl[m, n] are displayed in (6.11).
As in our study of the edge state eigenvalue problem (Sect. 8) we expand the Mﬁ ;m, n]
using Proposition 7.1 and obtain the following system, which is equivalent to (9.8)3 :

A
[(HIBacH) —zld - P p2) ) (Zgﬂ

Sra(ph mdopf U 1)\ ((HEGDRE ) K oz k)
= — + , m>0.

Sra(ph ol gl 1)) \(HEGDpE Il K iz, k)
9.9

Recalling the bound || P(%; pkﬁ) leope < e~* (see (8.10)), together with Proposi-
tion 4.2 and Proposition 4.3, we solve for a* and find

A TB -1 A
ot = (Hﬁ ky) — zId) B + o, where

10y, S € H (1Bl o, + ITLas kel s, ). (9.10)

-1
We therefore have that ¢ = ( ,o;lHt)‘(kH) —zId ) ¢ e L3(D)is given by:

(o't —21a) o= 3" [ (B k) = z1a) B+ of |pl 1]
I,n
+O0p2(x) ( e_"*||;3||12(N0:C2) +e MM, (kn)wlle(D) ;
©.11)
see (9.3), (9.4).
Introduce Hﬁ i, the restriction of Hn)‘, to the space szu. Since Hﬁ)‘ commutes with
X — X + v it follows that Hn)‘k” maps the space Hk2” into L,%H. Let '-PAB,kH denote the

projection of L%” onto the orthogonal complement of the subspace of L,%“ spanned by

TB B
3 Asin Sect. 8 (see the footnote after (8.9)), based on the observation o Hﬁ (kj)oz = _Htt (ky)) we let

TB
H, (k||) denote the negative of the operator studied in Sect. 2.
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ol
the states: P/% ,n]l = ' 2 5=V pi

y 1[”] S L%H, where I = A, B and n > 0; see (4.4).

Therefore, for any F € L,%H:

F= Y [ (H w0 - zId>_l,3 + ol [P 1)

I,n

—cA —ch
+0p2x) (9 1B 22y + € NP ani FlI 5 ) .

]

(9.12)

—1 71
( Py HE — <1d )

Any F € L%” has the representation F = ZM oz,i[F]Pk)“I 1[”] + F|, where
{al[F1}1n € 1*(No; C?) and F1 € Range(Pap,). Define the map Jy, : L,{H -
I*(No: C?) @ Range(Pap ;) by:

Jo i F s (mé[F]}) _ (Hez o F) + 0 iEn, ) 9.13)
K F. L - :

We therefore have from (9.12) that

s -t (HTB(k) - zld)_l 0 e
(pk Hiy, —zId) - Iy g Joy = O, (@),
0 0 Ky

This completes the proof of Theorem 1.2. O

10. The Resolvent Kernel and Weighted Resolvent Bounds

It remains for us to prove Propositions 7.1 and 7.2 on the expansion and estimation
of matrix elements. The proof of Proposition 7.1 concerning the linear matrix elements
uses the energy estimates on the resolvent obtained in Sect. 5.

To prove Proposition 7.2 we require exponentially weighted estimates, which we
obtain by constructing the resolvent kernel and obtaining pointwise bounds on it. We
carry this out in the present section. In Sect. 11 we then give the proof of Proposition 7.1
and in Sect. 12 we prove Proposition 7.2.

In Sect. 5 we obtained energy estimates for ICQ (€2, k), the inverse of
I, () ( H (ky) — 2 ) I, k)
2
_ _ Ky 2 _ A
=T4B Vx+l2—ﬁ2 + A Vi (x) Ey —Q | Iasg,
"4

defined as a bounded operator from X 4 g (k) to X4 (k) N H2(X); see Proposition 5.1,
which holds for all || < ¢/, where ¢’ is a sufficiently small positive constant. We may
extend K? (€2, k) to an operator acting on all of L2(Y), not just X4 g (k|), by composing

it with IT, , (k))), i.e. we require ICQ(Q, kpy =0if I, , (kv = 0.
In this section we shall prove, under the more stringent restriction on : |2| < e~

for some ¢ > 0 and A > 1, that this operator derives from a kernel ICQ (x,y;: 2, k).
Specifically, we have

ch
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Theorem 10.1. There exist constants A, c > 0 such that for A > A,, |2 < e~* and
for each k| € [0, 27r] the following holds for the operator IC?L(SZ, ky), which is bounded

on L>(%):
(1) /CQ‘(Q, ky) arises from an integral kernel ICQ(X, Y @, ky):

K2R, kDLAIx) = Mg Ks(Q, ky) T [ £1(x)

- /}Q KE(x, y; Q. k) f(y) dy. (10.1)

(2) The integral kernel ICQ‘ (x,y; 2, k) satisfies the following bound: there exist positive
constants R, C1, Cy, independent of k| and 2, such that for all X,y € R?:

Kisy 0 [ = G [0+ [log ik =yl | ] 10,
+Cy e em M (10.2)
Theorem 10.1 is at the heart of the proof of Proposition 7.2, which provides bounds on
the nonlinear matrix elements of M* (€2, k). The remainder of this section is devoted to

the proof of Theorem 10.1. The construction and estimation ICI’} is based on a strategy, in
which we piece together localized atomic Green’s functions with appropriate corrections.

10.1. The free Green’s function and bounds on the atomic ground state. Denote by
Giree(x) the fundamental solution of —A — E())‘:

(—Ax — E}) G (x) = §(x), (10.3)

where §(x) is the Dirac delta function. Here, E}; denotes the ground state of Hp,,, =
—A + 22 Vp; see hypothesis (GS), (3.4). Note that GI'*¢(x) = Gfree ( JIE} x> where

Gree(x) satisfies (—Ax+1) G (x) = §(x), x € R% G™(x) = Ko(|x|) is the
modified Bessel function of order zero, which decays to zero exponentially as |x| — oo
[71]. The following lemma summarizes important standard properties of Giree (x); see
[27,62]

Lemma 10.2. For x € R?,
(1) G™¢(x) = G™°(|x|) is positive and strictly decreasing for |x| > 0.
(2) There exist entire functions f and g and constants C1, ca, such that

G (x) = f(xDlog x| + g(x]), (10.4)

where f(0) = —1/27n and |3&"f(s)|, |85/g(s)| < Cie ™, for j = 0,1 and all
s € [0, 00).
N 1
(3) G (x) < |x|72e X for |x| large.
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The bounds on f(s) and g(s) are proved, for the case j = 0, in [62]. This proof can
be extended to a derivation of the bounds for j = 1. Alternatively, these bounds may
be deduced directly from the integral representation for G™°(x) used in the proof of
Lemma 15.3 of [27].

We shall apply the following consequence of Lemma 10.2 and (3.4):

There exist ¢, ¢/ > 0, and for each R > 0, additional constants Cg, C ;e > 0, such that

0 < GI*e(x) = Giee (,/|E3|x> < Cp e M ( ‘10g(l|x|)‘ Ly + 1)  xeR2
(10.5)

_ 1
|V Gfree(x)l < C/ LMX‘ ( )\'|X| (MX\ER) + 1) (106)

10.2. The atomic Green’s function. Inthis section we establish bounds (integral and then

pointwise) on the Green’s function associated with H, atom Eé = —A+1Vy(x) —

Since H .. has a one dimensional kernel spanned by )2 +(x), and a spectral gap (see
(3.6)), the operator Hatom E(})‘ is invertible on the orthogonal complement of span{ p())‘}.

We denote by Gatom (x, y) the associated Green’s kernel, which solves

(—Ax 432 - B} ) GI"(x,y) = 86x—y) — pjeopsy)  (10.7)

and which satisfies

/ G{™(x,y) py(y) dy = 0, forallx € R?, (10.8)
R2
GIoM(x,y) = GIM(y x) forx, y € R? with x #y. (10.9)

For fixed x, the function y — G3°™(x,y) belongs to Lz(Rg), and we have for any
f € L*(R?) that the function

u(x) = /1;{2 GYO™(x,y) f(y) dy (10.10)

solves
( A+ 22V (x) — ) u® = f&) = (Ph i PE. (10.11)
(PG> u)p2pey = 0. (10.12)

10.2.1. L? bounds on X > Gi°™(x,y) and y — G{°™(x,y) By the spectral gap
hypothesis on H, (3.6), we have that u satisfies the bound:

lull 2@y < €I fll2@e) (10.13)

We may next obtain pointwise bounds on u(x) in terms of || f'||2r2). In particular,
we claim that

atom ’

u®)| < C A2 | fll2@)- (10.14)
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We prove this as follows:

el < € (18ull 2,000 + Il 228,00)
C(H<Eé =3V + £ = (pf. £)pi |
C 2 1 fll 22

which implies the bound (10.14).
Therefore, by (10.10), for all f € L*(R?):

IA

2B ||u”L2(B‘("))>

IA

| fR G y) fWdy | = € If e (10.15)

Consequently,

2
(/R2 |Gitom(x, y)|? dy) < CA%, xeR? (10.16)

and by symmetry of G§*°™

|Gatom (X )|2 dx 2
R2 * Y

We now use these L2 bounds on G4°™(x, y) to obtain pointwise bounds.

C)\?, yeR% (10.17)

IA

10.2.2. Pointwise bounds on G{°™(x, y)
Recall that suppVy C By, (0).

Theorem 10.3 (Pointwise bounds on G‘j\‘tom (X, ¥)).

(1) For all R > 0, there exist .y = Ao(R) and positive constants ¢, Cg and Dg such
that for all A > Ao:

1
Gi™(x,y) + - log|x —y| | < Cga* for x—y| < R. (10.18)

(2) There exist R > 10ry and positive constants )/, C and c, which depend on R but not
on A, such that for all .. > )\ (R):

IGEM(x,y)| < C et e x —y| > R. (10.19)

(3) Chooserj, j =1,2,3, suchthatrg <ry <ry <r3 < %R. Assume'y € By, (0) and
X ¢ B;(0). Then,

’Gi“"m(x,y)’ S et (10.20)

where the implied constants depend on rg, r1, o and r3.
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Proof of bound (10.18)
Fix y € R2. By (10.7) we have

_AxGitom(X, y)=8sx—y) — p())‘(x) p())‘(y) + (Eé _ AzVO(X))Gimm(x, v)
1
= Ax <Elog|x—y|> = P PG(Y)
+ (Ef = 2% ) G, y). (10.21)
Hence,
atom 1
—Ax | GiM(x,y) + ——log|x —y]|
21

= —Ps pby + (Ef — 2V ) GEmxy). (1022)

Therefore, using that | f(x)| < IAF @128, x):dz) + 1/ @ 128, (x):dz) We have for
arbitrary fixed y € R? and all x € R? satisfying [x — y| < R:

. 1
‘ Gi™(x,y) + 5 loglx —vl ’

= |- rb@ pbw + (EG - Vo ) Gimay)|

L2(B(x):dz)

N (10.23)

1
G¥M(z y) + —1 -
50(2,y) o oglz —y|

L2(B) (x):dz) '

To continue this bound, we use that
PG < & (see B5). IIpille =1, |Ef — 2 Vo(@)] S A%,
||Git0m(lv Y)||L2(B,(x);dz) S 2% and | log|z —y| ||L2(B|(x);dz) =< C;e- (10.24)

The bounds (10.24) follow since |Eé| < A2 (since |Volleo < 00) and by (3.5) and
(10.17). We obtain for any R > 0 that there exists Cg < oo such that
1
Gy™(x,y) + 2—10g Ix —y|| < Cr A% forall|x—y| <R, withx #y.
T
(10.25)

Proof of bound (10.19) Recall that the support of Vj is contained in B, (0). Assume
|x —y| > R, and choose constants:

1
ro<rp<rp<r3< ER' (10.26)

Thus, we require R > 10rg. Without any loss of generality, we assume |y| < |x|.
Therefore, R < |x —y| < |x| +|y| < 2|x]| and therefore

1 1
x| > §|X —-y| > ER > r3. (10.27)
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Let Ogyt = Oyt (x) denote a smooth function of r = |x|, defined for all x € R2, such
that 0 < Oy (x) < 1 and

L X|=nr
® = 10.28
out (X) !0, x| < r1. ( )
We note that ®qy - Vo = 0.
Using the defining equation for G5'°™, (10.7), we obtain:
(=Az — E§) [ Oou(@) G (z.y) |

= Oou(@ { —ph@ p5¥) } + Oou(2) -8 —y)

— 2V, O0u(2) - V,G3M (2, y) — (AOou(z)) G5 (z,y). (10.29)

We next use the Green’s function Ggfee (see (10.3)) to represent Oy (x) G (x, y).
Multiplication of (10.29) by Gf\“’e (x — z) and integration with respect to z yields

Oout(x) G (x. ) /R LG =2) (=As = 5 ) [ Oou@ G2 y) ] d2

Oou ()G (x —y) — /R  GI*(x —2) Oou(2) p(2) dz p(y)
-2 /R G (x=2) V,Ou(®) - V,G}*" (2. Y) dz

- /R i G (x — 7) (A,Oou(2)) GIM(z,y) dz,

which, since Oy (x) = 1 for |x| > ro, we write as

GI™(X,y) = Oou(y)Gy(x —y) + Termi(x,y) + Termy(x,y) + Termz(x, y).
(10.30)

Since |x — y| > R, by (10.5) we have |®0ut(y)G£ree(x - y)| < e Mx=yl We next
estimate the latter three terms in (10.30) individually.
Bound on Term (X, y) of (10.30): Consider the integral

Termy (x, y) = — fR G- 7) O ph@ dzphy) . (103D
Due to the factor of ®,(z) in the integrand of (10.31), only z such that |z| > rj.

are relevant. On this set we have p}(z) < e~“1* e=¢* by (3.5), for some constants
c1,c¢ > 0. Furthermore, by (10.5), there exists ¢’ > 0 such that Ggfee(x —1z) S

e—¢'Hx—l ( ’long - z|) 1y +1 )

Therefore, for some constant ¢ (smaller than the minimum of ¢, ¢, ¢’) we have
Termi (x,y) | < & / el (ftog = 7| 1y +1 ) € dz pi(y)
|z|>ry -

c 4 _ _c —
— e—ck / 6—2A(|x z|+|z|)e 5A(Ix—z|+|z])
|z|=ry
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( ‘ log A|x — z|‘ L o 1 ) dz p())‘(y)

< e*c}. 87%)\|x|\/ efgk(\xfz\ﬂzb
|z|=r1

( ‘ log|x — Z|‘ 1(\x—z|§]) +1 ) dz p();(Y)

S et e pl(y).

For |y| < ro+8p, with small §p > 0, we have p())‘(y) < A Forsuchy, x| = [x—y+y| >
X —y| —ro— 30 > %|x—y|+§—r0—8o > %lx—y|.Therefore,for|x—y| > R
and |y| < ro + 89 we have ‘Terml(x, y) ‘ < e e Al pé(y) < e emetxl ) <
e—c’k e—c’k|x—y|.

Therefore, for [y| > ro + o and |x — y| > R, we have |Term;(x,y) | <

efc)» e*CMX\ p())»(y) < efc)h e*())\,(‘XH"yD < ef"/)‘ e*c’)»IX*YL

Bound on Termy (X, y) of (10.30): We first note that V, 04, (z) = 0 for |z| > r». Since
x| > %R > rp, the integrand of Term; (X, y) is supported away from z = x. Integration
by parts yields

Terma(y) = 2 [ Ve[ GIx—2) V0@ | GIM 2.y da. (1032)
R2

We note this integration by parts can be justified even though there is a weak singularity
of the integrand at z = y, and we remark on this at the conclusion of the proof. Bounding
Termy(x, y) using the Cauchy-Schwarz inequality we obtain:

‘Termz(x,y)‘ <2 </
R2
1
(f ’Gi‘om(z, y)‘2 dz)2 )
R2

The second factor is bounded by a constant times A> thanks to the L bound on G';‘fom
given in (10.17). To bound the first factor note, due to the properties of ®qyy(z), that
the support of the integrand is contained in: r{ < |z| < rp and |x| > r3. Therefore,
|x —z| > | |x| — |z| | = r3 — r2 > 0. Therefore, by (10.5) and (10.6), for all [x| > r3:

\7% [ Gl;fee(x —2) Vz00u(2) :| ‘2 dz)é :

< efc’)» e*C/)»lx\

ri=lzl=r} ~

) V- [ Giree(x —2) V;O0u(2) ] ‘ N e Ml 1(

It follows from(10.27) that

1

2
‘ Termy (X, y) ‘ < e e (/ |GAo™ (7, y)|? dz)

|z|<rp

f/ e_C/)L e_C/Mxl )\’2 g e—C)\. e—C)»|X_Y|. (1033)

The bound on Term3 (X, y) is obtained in a manner similar to the bound on Term;(x, y),
but there is no need to integrate by parts.
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We conclude the proof of (10.19) by remarking on the technical point raised above
concerning the integration by parts leading to (10.32). Recall that

(—82+30(@) G @ y) = 8(z — ) + E{GL™™@.¥) - PPy ):

Recall also that p())‘ € H?*(R?), V; is bounded, and z — Gi“’m (z,y) € L*(R?) for
fixed y; see (10.17). Therefore, for fixed y, we have that —AZG';‘fom(z, y) = 8(z —
y) plus an leoc error. Since —Angfee(z, y) = 8(z —y) plus an leoc error, we have

—A, (Gi‘om (z,y) — Gir“(z, y)) € L? , and consequently Gy (z,y) — Gim(z, y) €

5 loc>
Hj; .. Hence,

1
GUoM (7, y) = ~5s log|z—y| + j(z,y) forzneary,

where z — j(z,y) € HI%C(RZ).

This makes it easy to justify the integration by parts. For example, replace G5'°™ (z, y)
by —%% log [lz —y>+ 1:2] + j(z,Yy), integrate by parts and pass to the limit T — 0*.
This concludes the proof of (10.19). Since the proof of the bound (10.20) follows from
a very similar argument, we omit it. This completes the proof of Theorem 10.3. O

10.3. Kernels. Our goal will be to construct the Green’s kernel for a Hamiltonian H " =

—A+ Vlf x) — Eé, with potential Vlf defined via superposition involving translates of

the atomic potential, Vp, centered at the sites of a discrete set I". The construction of this

Green’s function, G{ (x, y) makes use of some technical tools developed in this section.
We work with integral operators of the form

F e i = [ A foay. (1034)
R
We shall use the notation A, f and A,[f] to denote such operators and occasionally
omit the A dependence.

Definition 10.4 (Main Kernel). The function A; (x, y) : R? x R — R is called a main
kernel if there exist positive constants R, ¢, C1, C2 and A¢ such that for all X,y € R?
with X # y we have

A, (x, )| < Cy [A“ + ‘ log|x —y| H Iix—y|<r + Cp e XYl
(10.35)

forall A > Ag.

By Theorem 10.3, the atomic Green’s function Gi“)m (x,y) is a main kernel.

Definition 10.5 (Error Kernel). The function &, (x, y) : R? x R — R is called a error
kernel if there exist positive constants ¢, C and A¢ such that for all x,y € R2

1E.(x, )| < C e =Myl (10.36)

forall A > A.
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If A and B are operators with kernels given by A(x, y) and B(x, y), respectively, then
AB is defined to be the operator with kernel (AB)(x, y) given by

(AB)(x,Y) z/ A(X,z) B(z,y) dz (10.37)
R2

Remark 10.6. If £(x,y) is an error kernel, then A? £(x,y) is an error kernel for any
p > 0. To see this, replace the constant ¢ in (10.36) by a slightly smaller positive
constant, ¢’.

Lemma 10.7. Let K arise from a main kernel and &), arise from an error kernel. Then,
(1) The operator
G=1-U-&"=)>Y¢ (10.38)
>1

arises from an error kernel.
(2) The operators &), K, and K, &, arise from error kernels.
(3) The operator e=“* K )% where ¢ > 0, arises from an error kernel.

The proof of Lemma 10.7 is presented in Appendix A.

10.4. Green’s kernel for a set of atoms centered on points of a discrete set, I'. Let I’
denote a discrete subset of R?, which we refer to as a set of nuclei. The set I' may be
finite or infinite. We assume that

inf{lv—w| : v,weTl, v#W}>rpg > 2r. (10.39)

At sites w € T" we center identical atoms described by the atomic potential Vj:

Ve = Y A2 V(). where Vo(x) = Vo(x — o). (10.40)

wel’
Example 10.8. Some choices of I" which are of interest to us are:
(1) ' = H = A4 U Ap, the bulk honeycomb structure.
2)I' = A, I = A, B, the A- and B-sublattices.
BT =H; = {vi+niv; +n202 : n; >0, np € Z}, the set of lattice points in a
zigzag- terminated honeycomb structure.
Our goal will be to construct the Green’s kernel Gi\“ (x, y) associated with the operator

Hh = —A + Vi(x) — Eb . (10.41)

where E}, is the ground state energy of HJ . = —A + A2 Vy; see (3.4).
Recall G§*°™ which satisfies

(=& + 22V = B} ) GE"(x.y) = 8x —¥) = P9 P,

/R i GiM(x, y) pg(x) dx = 0,

Gitom (X, y) — Gitom (Y7 X)
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Recalling r;, j = 1, 2, 3 specified in (10.26), we further introduce r4 such that

O<ro<ri<rm<ry<ry< 5 F'min » (Fmin > 2r0), (10.42)

where rpip is a lower bound for the minimum distance between points in I'; see (10.39).
Introduce the smooth cutoff function ®¢(x) satisfying:
0<0®)<1lonR2 Oyx)=1forx e B,,(0), and ©¢(x) = 0 forx ¢ B,,(0).

For w € I', define ®,(x) = ®p(x — w). Finally, let

Ofee(X) = 1 = Y Oy (x). (10.43)

wel’

Then, 0 < Ofee < 1 0n R2; Ofree 1 smooth and supported away from I'. In particular
forall w € T', Ofree = 01in B, (w).
‘We write pw(x) = p; A(x — w), where )2 A(x) is the ground state of H, atom = —A+

12Vp(x). Thus, pw (x) is the ground state of — A+22V,(x). We also express the translated
atomic Green'’s kernel as

GIM(x,y) = Gi"(x—w,y —w). (10.44)
For any f € L?(R?) we may write:

f® =Y Ouf) X + Ofeef)(X) (10.45)

wel

and for each w € I', we have by (10.7)

O f(X) = (—Ax+32Vo(x) — Ej ) fR G (%, ¥) (Ou()f())dy
+ <pc):)’ ®wf>L2(R2) Pi)(x) ’ (1046)

and by (10.8)
/ Ply(x) [/ GEM(x,y) (O f(¥) dY} = 0. (10.47)
R2 R2

A
Next we express V. as:

A
VE(x) = A2V, (x) + § AV, (x),
o' eT\{w}

and therefore by (10.46)
O (x).f (x) = (—Ax+VF(x>—E3) /R GI (% )Ou () - f(¥) dy
- AV, (X)/ GLW (X, ¥)Ou(y) - f(y) dy

w el"\{a)}
+ <pa)’ wf)LZ(RZ) PCAU(X) (1048)
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Similarly,
Ofree (X) [ (X) = (_AX - Eé) /]1;2 Giree(x —Y) (Ofree(y) f(y)) dy

(~ac+ Vi - £) /R | GI(x = Y)Oreey)  £(¥) dy

Vi /R G~ )Oey) - F(3) dy. (10.49)

‘We note that Vlf (x) = 0 on the support of Ofee.

Now summing (10.48) over w € I" and adding the result to (10.49), we have by(10.45)
the following:

F0 = (=B + Ve - )
L[ arene.ns + 6= —yoww)] - fo)dy

wel

_/RZ Z A2V, (X)GON(X, y) On(y)
w,w' el

w#w'

+ Vh ()G (x — y)Oec(y) | - F(y) dy

+ Z a)pw’ LZ(RZ) P(),\)(X) (1050)

wel’

Introduce the kernels K 6‘ and 53:

Kjxy) = Y GIW(%, ¥)Ou(y) + GI°(x — ¥)Orree(y) (10.51)
wel
gxy= Y R Vy®GIME,Y) 0u(y) + Vi®GI®X — y)Ofree (y).
w,0' el
w;ﬁw/
(10.52)

Equation (10.50) is equivalent to

Fo = (=ax + Vi@ - Ef) /R K§(x.y) () dy

+ ) (O Pl [l P — fR &) f(y) dy (10.53)

wel

and in any even more compact form:
fo = (=Ax+ Ve = B} ) KALAIO = 110

+ ) {Ow Pl fliome PLX. (10.54)

wel’
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Proposition 10.9. K ())‘ (X, y) is a main kernel in the sense of Definition 10.4 and 56‘ (x,y)
is an error kernel in the sense of (10.5).

Proof of Proposition 10.9. We first prove that K 6‘ (x,y), displayed in (10.51), is a main
kernel. Note that for each y € R? there is at most one @ = wy € I"withy € supp ®,, C
{y : |y — | < ra}. Therefore, for the first term in (10.51) we have by Theorem 10.3 the
bound

| Y e xne.w | = |Gy |
well

—cA e—cklx—yl_

5C[k4+|log|x—y||]1( +e

[x—y|<R}

Furthermore by (10.5), the second term in (10.51) satisfies the bound

(X~ YOrey) | = | GI*x — )|

< C[A4 + | log|x —y| |] Ly + € ooy,

Adding the two previous bounds we conclude that K& (x,y) is a main kernel.
We now prove that 53 (x,y) given by (10.52) is an error kernel. Consider the sum in

(10.52). This sum is non-zero at (X, y) € R2 x R?, if there are distinct points w;, wy €T
with x € supp V,; andy € supp ©,, . The choice of points wy, wy € I' is unique. We
havey € B, (wy) andx ¢ B,4s, (wy), where 81 > 0. Therefore, part (3) of Theorem 10.3
implies

\ > PV GID X, Y) Ou) | < A7 [Va (0] 1G5 (%, ¥)| Oy (¥)
w,w' el
w#w'

< )\2 efc)h efck\xfy\ < efc’)h efc’)h|x7y|'
For the second term in (10.52), if x € supp Vr and y € supp Ofee, then |x — y| >

r3 —ro > 0. Therefore, Gg\ree(x —y) S e Yl < pdh e~ Mx=¥1 1t follows that for
some w = wyx € I':

VEGGEE(x = 1)Oree(¥) | S 32| Vo MG (x —y) | 5 ¢ &7 M,
The latter two bounds imply that 5& (x,y), defined in (10.52), is an error kernel. The
proof of Proposition 10.9 is now complete.

Remark 10.10. At this stage we wish to remark that if I" is translation invariant by
some vector, then Ké‘ and 53 inherit this invariance. In particular, for I' = H, the

zigzag truncation of the honeycomb H, we have Ké X+02,y+0) = Kg (x,y) and
Er(x+ 02,y +12) =X, y).

Introduce the orthogonal subspaces Xr:

Xr = span{p(’}):a)eF}Lz{feLz(Rz):<pi‘),f> =0,a)€F},

(10.55)

L2(R2)
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and the orthogonal projections:

l'[l)i - L*(R?) — Xr, ﬁl’\wzl—l'[l)i :L2(R2)—>span{pi‘):a}eF}.
(10.56)

SCVe seek the integral kernel for the inverse of the operator I} ( Hj — E} — Q) I}
on Ar.

The operator f +— Ké f (see (10.51), (10.53)) defines an approximate inverse of
H? — Eé —  on the range of Hl)i but we do not have that H%Ké‘[f] = Ké‘[f]. Our
next step is to correct K 6\ in order achieve the desired projection.

Recall that the set { pj) : o € T' } is not orthonormal, but only nearly so; see
Proposition 4.2. The following lemma gives a representation for 1%, defined in (10.56).

Lemma 10.11. ﬁl& =1-— l'Il)i, the orthogonal projection of L*(R?) onto span{pf;
w € T'}, is given by

Mhgl) = > M2?(pk.g) ph(x). (10.57)
w,wé[‘

where M®-® satisfies the estimate

‘ Mwsé\) . 3&6) ‘ < efc)\ efc)\, |C?)*CU‘. (1058)

~

Proof of Lemma 10.11. If we define ﬁl&[g] by (10.57), then for all g € L?(R?)

(Pl g) ={ply Titlel) = D" M (p}. ) (Pl Pls)

w,wél"

> ( > Pl Pl M“’) (pE.g).  (10.59)

w,wel’ wel’

Therefore, ﬁfi is as required provided:

A A b _
Z <pw” pw) M®? = 8y -
wel’
We claim that if ', w € T are distinct, then

(Pl ph) | S e Mol emeh, (10.60)

Indeed, if w # o’

(Pl P} | < f Pl (%) pl(x) dx + / P (%) pl(x) dx
B,, () B, (@)
+ / pi‘),(x) p(’\o(x) dx
RZ\B,4 (@UBy @)
=

>/;3r4 " [e—ck\x—w'\ ] . [}LZ ] ax + /BM » [}LZ ] . I:e—ck\x—w\ ]dx
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_ _ _ —n ! — '
+/ e cAlx wl_e cAlx wldXS e [aNI] w\e c)\‘

RZ\B,4 (@)UBy (@)

Since also p(’})(x) = p())‘ (x — ) is normalized in L*(R?), we have

‘ (Do Ph) = v | S e F e Mo, (10.61)
Let P = ((p();,, pi;) )w,w’el" and for any v € R2 |v| = 1, let D =
(e 840 ) = with ¢ smaller than the constant ¢ appearing in (10.61). Then,
w,w €
DPD = (gEM'(w—w’) (p(f),,pﬁ))) = (Pw.w) With
w,0'el’
ﬁw,w’ . Sw,w” 5 e—c’klm—w’l e—c’k
by (10.61). Hence, D P! D=1 = (DPD™! )‘1 has an (w, o’)-entry that differs from
8.0 Dy at most e~*. That is, ‘ [ea‘”'(‘”_“’/) Mo ] — S0 ‘ < e~ and hence

‘eEAw(w—w’) [Mw,w’ _ Sw,w/iH < e—ck

~

for all w, , @' € I and all unit vectors v € R?. Optimizing over v gives

= /
< ,—CA e—cklw—wl.

/
w,w
‘M —Spw | Se

This completes the proof of Lemma 10.11. O

By (10.54), after subtracting and adding ﬁ%‘ K&, we have

fo = (=ax + Voo — E5 ) | Kb — (TiF &) 111 ]
+ (—AX + V) — Eg) (Tix K2) /]

— LA + Y (Ouw Pl fiamey Pio®): (10.62)

wel

Here, we have arranged for the expression within the square brackets in (10.62):
KIf1 = KL - (TF K§) Lf1. (10.63)

to be orthogonal to the translated atomic ground states p?, for all w € I'. Our next task
is to show that the remaining terms in (10.62) comprise an error kernel.

Proposition 10.12. The operators T1%: K} and (—AX + VFA (x) — E())‘) (ﬁ% K})

derive from error kernels in the sense of Definition 10.5.
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Proof of Proposition 10.12. By (10.57)

(OFEY) A1 = Y M22(plk. KGIF1) phx)

w,weF

_ Z Ma),z?)/ pcku(y)/ Ké(y,z)f(z)dzdypg(X)
R2 R?

w,wel’

- Z M‘”‘“f [/ﬂ; PE@y) Ké(y,Z)dypg(X)}f(z)dz

wwe

= / > me? / Po) K (v, 2) dy ph(x) | f@ dz.  (10.64)
R2 R2

w,wel’

Thus,

(Fiikd) xo2) = fR | X met ki | Kindy,

w,wel’

where K())‘ is given by (10.51):

Ky(y,2) = Z GLUN(y, 2)Oy (2) + GI(Y — 2)Ofrec (2). (10.65)

w'el

Now decompose ( ﬁl& K())‘) (x, z) has follows:

(ThKD) (x.2) = /R 1Y MRk i) | Kim dy

w,0el’
W#D
/ [Z M pl(x) pi(y)} K§(y, ) dy
wel’
= (M}K)), x2) + (TI}K]), (x.2). (10.66)

We prove that each term in (10.66) is an error kernel, i.e. ‘ ( ﬁl’lKé)j (x, z)‘
e~ ¢ X~ for j = 1,2. For w # & we have by (10.58) that

|Ma),c?)| 5 e*()/)\.‘a)*é‘l\)l ¢ A
We may therefore write:
| MP® pkx) ph(y) | < e Mo = ph(x) - e pl(y). (10.67)

Next, using (3.5) we bound e —€A A % (x) and e —eA ph - (y) as follows:

—c)L )L(X) < ( /)Ll{|xfd)|§r]} +e—C/)ne—CMX—&A)|)
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_d ,L/)L —& Ly A
< <e L T w'). (10.68)

Therefore, e_&pg(x) < e e M0l and similarly e~ pk(y) < e CremMYel,
Substituting these bounds into (10.67), we obtain for some ¢ > 0

|Mw,w P?:)(X) P(}Z)(Y) | S g—cA e—cMw—wl e—cMX—w\ e—ckly—wl

C

_ _c _ _c A _c —® _¢< _
Se C)Le SAIX—yl X e 5Alw a)|e SAx—a| e SAly—ol ,

since |x —y| < |Xx — ®| + |w — @| + |y — w|. Therefore, for some ¢’ which is independent
of A:

Y IMPP pE) phy) | S e e Hx

w,wél"
WFD

and therefore > M®® pk(x) pl(y) is therefore an error kernel. And since K} is

w,wél‘
WFD -
a main kernel we have, by the expression for ( I} K}), (x, z) in (10.66), and by part 2
of Lemma 10.7, that ( ﬁf:K&)l (x, z) is an error kernel.

We next prove that ( ﬁl): Ké)2 (x, z), defined in (10.66) is an error kernel. Using

(10.65) we have

(k) = 3 o i [ b Ky dy

wel’

> MO phx) /R A Y G20 | dy

wel o' el\{w}

Y MO | P ) Gy — 2)Orree (2) dy
R2

wel’

= (M}KG),, x.2) + (TIEKY),, (x.2). (10.69)

Note the absence of the ' = w term in the inner sum just above since the atomic Green’s
function, Gi“;‘r}, projects onto the orthogonal complement of the function pi‘) .

We prove that the kernels ( ﬁl& K{),, (x.z) and ( ﬁ% K{),, (x. ), defined in (10.69)
are both bounded in absolute value by e~* ¢~“*X~% We first recall the following
relations and definitions:

Gy, z) =Gy (x —w,y — o),

(Hpiom — E ) GE™(x,y) = 8(x —y) — ph(x) pg(y)
1, x| <rs

Op(x) = 0. x| >rs’ and

O,(X) = O(X —w), forweTl, and Opee(x) = 1 — Z@w(x).

wel
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Estimation of ( I K’\)2 (x, z); see (10.69): Suppose first that |z — '| > ry, for all
o' € T'\{w}. Then, z is outside the support of O, (z) for all ' € I'\{w}. and we have:
(Ti:KY) 5y (%.2) = 0.

Suppose now that z is such that |z — o’| < r4 for some o' = w] € I'\{w}. There-
fore, the bracketed expression in the definition of ( - Ké‘) (see (10.69)) is given by:
[ 1(y,2) = Ga“’m(y, 2)0, (z). Therefore, for |z — )| < ra, we have

/ P [ 1(y.2) dy = f PL(Y) GL2(y, 2)O,, (@) dy
S/ Ph(y) G3lo(y.2) dy
ly—w|<r
+ /| ‘ Ph) Gy (v, 2) dy. (10.70)
Y—w|=r]

We bound the latter two integrals individually by using the pointwise bounds on P?L (y) =
p())‘ (y—w) givenin (3.5) and the pointwise bounds on Gi‘fzon} v, 2) = Gi°"(y—w}, z—w),)
of Theorem 10.3. ’

With |z— w;| < r4, we first consider the integral over the set |y —w| < ry. For suchy,
we have by (3.5): | p (y)| < A%. Furthermore, note that |y — )| > | — w,| — |y — | >
Fmin — 1 > ra; see(10.42). Because |y — w),| > rmin — 1, While |z — | < ry, it
follows from (10.20) (part 3 of Theorem 10.3) that |Gat°m (v, 2)| < e e ~chly-2] . The
first integral in (10.70) therefore satisfies

/ pw(y) Gatom(y’ Z) dy < )\2 f e—cke—ckly—zl dy S e—C}\,e—CMZ—w\.
ly—wl=<r

ly—wl|<r|

Next, with |z — w),| < r4, we consider the integral over the set |y — w| > r;. On this
set, we have | p2 (y)| < e=<*e~*V=l and, by the bounds of Theorem 10.3:

/ Ph(y) G (y. 2) dy
ly—w|>rq

S / efc/)he—c/)t|y—w| [<C0|10g|l—y|| + )»4> 1|y—z\§R + e*C}L efcszy\i| dy
[y—wl|=r

f/ e*C)»e*CMZ*M )

Therefore, the integral expression in the definition of (1:11& K{),, (x.2) satisfies the
bound:

[ rsw tawmdy = [ phw GER00,, @ dy £ e

—én e—%am-m e—%a,\|z—w|_

We next multiply this estimate by p’ (x) and once again use the pointwise bound (3.5):

) / P -1, 2) dy

2 —ch —cA|x— —ér —ténz—w| —iénjz—
5 (A 1|X7w|§R+eC€C‘X wl)ec e FCA|z w|e sCA|z—w|
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< Chpchlx—1l e—%éklz—wl

Finally, we multiply the previous bound by M®® = 1+ O(e~*") (see (10.58)) and sum
over all w € I'" to obtain:

(TIEKG),, (. 2) =D ph(x) f PA) [-1(y. 2) dy

wel’

~

Lay1z— _ _ _
< (1+O(€_CA)) e—ck e—CMX—Z\ Z e_szz | /S e c)Le cAlx z\_
wel

Therefore, the contribution to ( ﬁl& K 3)2 (x, z) from ( ﬁfi K 3)2‘1 (x, z) is an error kernel.

Estimation of ( TT: K{),, (. 2); see (10.69): From the expression (10.69) we need only
consider z € supp(®Ofree), that is z bounded away from the all sites w € T; in particular,
|z — w| > r3forallw € I'. By (3.5) and (10.5):

PEWGIE(y — 2) Ofree (2)
S ()‘21\y—w|§r1 + eicxeick‘y%()‘) cemcHya (1 + ‘IOgMy - Z|) ) Ofree (2)

S e T (Ve Y (S ‘logk|y—z|‘> Ofrec ().

~

Integrating over R? with respect to y, we find that

f p():)(y)Garee(y — Z) Ofee(2) dy ,S e~ crz=el Ofree(2).

Rr2

Now multiply this bound by M“*® p (x) and apply the pointwise bound for p’(x),
implied by (3.5), and the expansion M®® = 1 + O(e~*) of (10.58), to obtain

M& ph (%) / PEWGIE(Y — 2) Opree(2) dy
R2

_Laz— _1oaz— —ch —chlx— _Loz— _Log—
5 (Azllew\frle zchz—0| e zchlz—o| + e ME’ chlx wle schlz w\) ®free(z)e schz—w]
—&Ax—w| —EA|z— —ch —chlx—w| —Leilz— —Lenjz—
< <1|X—w|§r1 e CMx—0| =Chlz—0l | ,—ch ,—ChIX—0| ,—5chlz wl) Ofree (z) € 2° |z—w|
—c'Ax—z —Ledz—w
5 e =zl Ofree(z) 7 2 ! 3

Summing over w € I' and using that on the support of Oy (z), Z is uniformly bounded
away from I', we have that

Z M pi‘,(x) pi»)(y)GRree(y —2) Ofpee(z) dy S e h el

wel’ R2

Hence, the contribution to ( ﬁl& K{), (x,z) of ( ﬁl’lKé)zb (x, z) is also an error ker-
nel. Therefore, ( ﬁl’lK(’})z (x,z) is an error kernel, and since we have already verfied
that ( ﬁf:K&)l (x,z) is an error kernel, we conclude that ( ﬁ%K&) (x, z) is an error
kernel. Furthermore, it is straightforward to show by arguments similar to those above
that Hlf ( ﬁl&Ké‘) (x,z) is an error kernel, where Hlf is defined in (10.41). Indeed,

we just replace p?(x) by Hlf P (x) in the previous discussion. Note that Hlf phx) =
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s
AN ero) Vo — @) pli(x — @) and therefore |Hppl(x)| < A2 Voll o P (X).
Hence, the estimates lose at worst one power of A2, which can be absorbed by our
exponentials e ~“*. This completes the proof of Proposition 10.12. O

From (10.62), Proposition 10.9 and Proposition 10.12 we have
A
f@ = (= + Vi@ = B ) KA1

+ ) (Ou Pl fliagey P + EAX), (10.71)
wel’
where
K =K§ — ﬁlk— K} =T} K is a main kernel , (10.72)
(ph. K{1f1)=0, forallweT, (10.73)
and
& = =& + (~av+ Ve - By ) (T k) = —& + Hr (1T} K3)
(10.74)

is derived from an error kernel.
Now let [2| < e’ﬁ)‘, where ¢ is a constant that was introduced in Remark 3.1, and
thus (p3) Q2] < e~ €=¢)* 5 0, as & — oo. Then, from (10.71) we have

fo= (= + Vi@ - By - 2) KHAI®

+ Y O Pl Flage Po0 + (& + QK})Iflx (1075
wel’
and hence
(I — (€ +QK})) f(x) = <—AX +Vex) — Eb — Q) KNI
+ 2 (00 Pl flage) PO (10.76)
wel’

For ) large, the operator £ + QK7 has small norm as a bounded opera-
tor on L?(R?). Hence, I — (£} + QK?}) is invertible. Applying (10.75) to f =
(1— (& +QKk}))™" [ yields

fx) = (—AX + Vi) — Eb — Q) (Kf\(l - (5?+QK%))’1)[f](x)

D DY CHy >L2(R2) PhX). (10.77)

wel

From (10.77) we see that for all f € L2(R2) and || < ¢
A —1
<—AX+VF(X)—E6‘—Q) (K{\(I—(Ef\+QK1A)) )f:f
modulo the span of {pé} cwell. (10.78)

Here, K 1*, defined in (10.63), is derived from a main kernel, £ IA is derived from an error
kernel.
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Proposition 10.13. For A sufficiently large and Q such that |2| < e,

K} = K} (1 — (& +9Kk})) ' = K} + & (10.79)

Here, K f‘ is derived from a main kernel, S% from an error kernel and therefore K % is
derived from a main kernel. Moreover, for all f € L*(R?):

(—AX + Vix) — Eb — sz) K f = f.
modulo the span of {pi‘) wel}, (10.80)
KMf] L span{pi‘) ‘we F}. (10.81)

Proof of Proposition 10.13. Set A = Q K} + &}, where A is taken sufficiently large.
First note that by Lemma 10.7 that the operator A2 is derived from an error kernel. As
an operator on L?(R?) we have (I — A)~' = (I + A) (I — A2)‘1 =U+A) (I+A)),
where A is an error kernel, again by Lemma 10.7. Therefore, (I—A)_l =I1+A+A; =
I + QK f‘ + Ajz, where A; (j = 2, 3) arise from error kernels. Another application of

Lemma 10.7 completes the proof that 8% is derived from an error kernel. That (10.80),
(10.81) hold follows from (10.78) and (10.73). O

Recall the subspace Xr, the orthogonal complement of span{ ptiwel }:

Xr = span{pfuza)el”rzerLz(Rz):<p?U,f) =0,weF},

(10.82)

L2(R2)

and the orthogonal projections: I1% : L>(R?) — Xr and I1} : L2(R?) — span{pé) :
w € l"] ; see (10.55). We now write
K}y = K} + &
where
K} = K3T%, and & = K311} (10.83)
Note that
Ki[f1=0in L* (R} if f s ko
3 = pan{p, : w e},

and by Proposition 10.13:

(—AX + Vi) — Eb — sz)g; e span{pi‘):a)e r]. (10.84)
Hence, for all f € L2(R?):

(—AX + Vi) — Eb — Q) K}f = f modulothe spanof {p’:w e T}.

‘We therefore have
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Proposition 10.14. Let |Q2| < e=* with A chosen sufficiently large. Then, the operator
l_[)lh (le‘ — Eé - Q) = Hl& (—A + VIZ‘ — E(})‘ — Q) is invertible on Xr, the orthogonal

complement ofspan{pé) cwel } Its inverse is given by K% ‘ N and we write
r

A _ A
’CF(Q)‘xr = K

JCF: DCr — xl“.

The following proposition characterizes the operator kernel we seek:

Proposition 10.15. Let || < e~ with ) chosen sufficiently large. Then, lCl)i (2)
defined in Proposition 10.14 satisfies the following properties:

(1)
KEQ)[f1=0in L>(R?) if f € span{p’ : w eT}. (10.85)

(2)
KL QLf] L span{pi‘) ‘we r} in L2(R?). (10.86)

(3)
M} (—A+VE— Ef —Q)KHQ)[f] = f, modulo Xr. (10.87)

(4) The operator ICl)i (R2) is derived from a kernel:

KE@)If1x) = /RZ KEx,y: Q) f(y)dy forall f € L*(R?), where (10.88)

| ]C{:(X, y; Q) | < C[| log|x —y| | + k6] lix—yj<c + et g Cerx—yl
forall x,y € R?. (10.89)

The only assertion in Proposition 10.15 that requires proof is part (4). Recall that
ICl)i Q) = Kg‘ = K%Hf‘- = K%‘ — K%H{i Since K% is derived from a main kernel, it
suffices to study the kernel of K} T1%. We begin with a bound on the kernel of [T, which
we derive using Lemma 10.11. The kernel of I, K1)~_‘[ (x,y), is given by (see (10.57)):

Kixy) = > MY phx)phy). (10.90)

and we have
fiklglx) = /R KA Y8 dy. (10.91)
Our goal is to bound
Kk v ) = K3xy) — (Kb o KE) &y

= K}(x,y) — /R i K3 (x,z) K% (z. y)dy. (10.92)
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Note that

KExy) = Y pheoph) + 30 [M2 = b0 | pheopLw).  (1093)

w,w

Recall from (10.58) that ‘M‘”’“’, — Spw| S e Fem Mol Also, from the pointwise

bounds, (3.5), on pé we have:

—cAlx—o| —cAly—o'|
9 9

Po®)] S Mx—oj<r +e Po W] S My—wj<r +e

which it follows that

w

‘ > [M”"”' —Sw,wf] PL) Pl (y) ‘ < e [1|X*Y|SZR + MRyl ]
w,w’

Substitution into (10.93), we obtain
‘K%(x, y)‘ < Apyj<ar A2+ e MY (10.94)
Now since K> (X, y; €2) is a main kernel we have
Ka(x,y: Q)| < [x“ + ‘ log [x — y| H Ly yi<r + e e (10.95)

Inserting the bounds (10.94) and (10.95) into (10.92) we find that IC% (x,y; Q) satisfies
the bound:

Kraxoy @1 5 [0+ [ loglx =yl | | Tyoyizan + e =51 (10.96)

The proof is complete of Proposition 10.15 is complete.

10.5. ICI): (R2) for the case where T, the set of nuclei, is translation invariant. We now
suppose that our discrete set of nuclei, I', is translation invariant by a vector by € R?.
Of course, we have in mind, I' = Hj, the zigzag truncation of H; see (1.11). But our
arguments would apply to other rational truncations of H, for example along an armchair
edge. For the particular choice I' = H, we have Vr(x) = V:(x) and

H} = H} = —A+)3*Va(x) — E§.
As commented upon in Remark 10.10, all our constructions of integral operators
and kernels respect that translation invariance. Thus, at each stage our integral kernels

A(x,y) satisfy: A(X+ 02,y +03) = A(X,y). It follows that

Kl&(x+bg,y+02) = ’C)ﬁ(X, y) forall x,yeRz. (10.97)
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10.5.1. lCl& as a bounded operator acting on L,%H (X) LetI beinvariant under translation

by v;. We recall the setting discussed earlier. Associated with this translation invariance
is a parallel quasi-momentum, k € [0, 27). We define the cylinder ¥ = R?/Ru, and

let ®y denote a fundamental domain for . The space L>(X) consists of functions

f such that f(x + vy) = f(x) for almost all x € R? and such that Il =
1

(f@z |f(x)|2alx)7 < 00. The space L’%H (X) consists of functions f such that g(x) =

K . .
f(x)e_‘ﬂp‘z'X satisfies g(x + 1) = g(x) almost everywhere inx and g € L2(3).
We now show that IC]& also gives rise to a bounded operator Li” (X). For any f €

L,%” (X), we define

KiA0 = [ Khoy Fo)ay. (10.98)

Similarly, 1'[1): may be defined on L,%” (X) using Lemma 10.11.
By our bounds on ICI& x,y), ICI& [ f]is well-defined for all f € L,%” (X). Using (10.97)

and our assumption that f(x+13) = ¢’¥I f(x) almost everywhere, we obtain by change
of variables:

KELF1x +102) = /RZ Kix+v2,y) f(y)dy = /RZ K (x+02,y+02) f(y+02)dy

f Ki(x,y) f(y+02) dy = € / Kix,y) f(y) dy
R2 R2
= ™M R F1(x%). (10.99)

. R9yx
Hence, e™ ki ICI)L [ f1(x) is a function defined on the cylinder . Similarly, one shows
easily that Hl& maps L?(X) into itself. Furthermore, we have

(nl& (H%-Eg—sz)nl&) oKk f=Tkf. Khf eLl(Z) (10.100)

IR
thanks to Proposition 10.15. That Pl ICI& f € L*(X) is a consequence of the

kernel bounds on ICl)i (x,y) and Young’s inequality. Therefore, we have

Proposition 10.16. Let |Q2] < e~ % with A chosen sufficiently large. Let the discrete
set I be invariant under translation by the vector v,. Then, the kernel K%‘(Q)(X, y),

defined in Proposition 10.15 and (10.98), gives rise to a bounded operator on L%H (2).
Furthermore, the operator

. Ryx . Ryx
KE(Q. k) = e 20 KR (Q) o 25 M (10.101)

is a bounded operator on LZ(E).
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10.5.2. The operator K} (2, ky) acting on periodized sums Let T be invariant under

translates by integer multiples of v,. We are interested in ICIA— (2, k) : L2(2) —» LA(Y)
(see (10.101)) applied to a sum over all v,-integer-translates of

.
p':‘w(X) = om0 po(x — w). (10.102)

For w € T, let [w] denote the equivalence class of all translates of @ by integer
multiples of v,. The set of such equivalence classes is

Ay ={[w] :w €T}. (10.103)
For any [w] € Ay we set
pk” € =y pkH (X + mvy). (10.104)
mez

Our estimates on p € L%(R?) imply that p?H ol € L?(%), and by our discussion of the

previous subsection ICIA" [ pli‘” [wJ] € L2(X). Furthermore, we have

Proposition 10.17. Let |Q2] < e~ * with A chosen sufficiently large.
(1) Ki(Q, kL1 = 0in L2(Z) forall f € span{pz“"[ml cweTl)

(2) Forallw € T and f € L*(X), we have ( ICIA«(Q, kLS, p:”Y[w] >L2(E) =

Proof of claim (1) of Proposition 10.17. We claim in fact for any w € T, and for any
x € R?, we have K}(€2, kH)[p:“” ] = 0. Indeed,

K@ 17, 10 = [ @& T 1, ) dy

meZ

= hm / IC]"(Q k”)(x y) Z pkH w—mv) (y) y

Iml=N
:N]Enoo / ’CF(Q kD (x, y)pk‘ o mnz(Y) y
lm|<N
ngn Z ICF(Q kH)[pkHw muz]( )
|m|<N

by property (10.85) of Proposition 10.15. These formal manipulations are easily justified
thanks to our estimates on ICI): (2, k(x,y) and pi‘,(x). This completes the proof of the
first claim of Proposition 10.17. O

Proof of claim (2) of Proposition 10.17. Letw € I" and f € L*>(Z). Then,

(’C%(ka“)[f]’ p:\Hv[‘!’] >

L2(%)

=/ > w(X+mvz)"/ Kr(Q, k) (x, y) f(y) dy dx
xeDy 7 I yeR?2
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=Z/ pj_w(x+mn2>~/ K&, kp(x,y) f(y) dy dx
xeDy yeR?

meZ

=Y [ o e
XE’DE I

meZ

- ICE(2, k) (X + mva, y + mv2) f(y +mv2) dy dx.
ye

The latter equality holds by properties of ICI):(Q, k) and f under translation by v;.
Continuing, we have

<K1’\~(§2,k\|)[f]v pliLH_[qu >L2(2)

-y / P &) / KR, k(.Y F(y) dy’ dX
Dy+mvy I y' eR2

mez

f pl () K@, k(. y) f(y) dy dx
xeR? " yeR?

— lim P x) | KR, kp(x,y) f(y)dydx = 0

N—oo Jyer2 = I yI<N

by property (10.86) of Proposition 10.15. Again, the formal manipulations are easily
justified. This completes the proof of Proposition 10.17. 0O

10.6. Green’s kernel. We recall the cylinder © = R? /R, and the choice of fundamen-
tal domain ©y C R2, given as the union of finite parallelograms, ©,,, n > 0 together
with one unbounded parallelogram, ®_;, Dy = U,;>0D, U D_j; see (4.2). In each

finite parallelogram, ®©,, n > 0, are two lattice points of Hy: VX’) and Vgl). As our
discrete set we take I' = Hl, our potential V;;(x) and our Hamiltonian an acting on
Lg” ().

Next recall the subspace of L2() (see (4.12)):

DCQB(k”) = orthogonal complement in Lz(Z) of span{pkkl"l[n] n>0,1=A, B}
with orthogonal projection:
(k) : L2(2) = X4 (k).
By definition

Pt (x) = p* [nlx), I=A,B,
k”,[v;n)] kH'I

where p,§” ,[n] is defined in (4.3).
Recall that K3(R2, ky), the inverse of T1,, (k) ( H} (k) — € ) M, , (k) ( equiva-
lently IT, , (k)0 ( Hﬁ)‘(ku) —Q ) ) acting on DCﬁB (k)); see Proposition 5.1. By Proposi-

tions 10.15 and 10.16 this inverse is given by an integral operator

[ KHQ kpLf] = /R KE(x, y; Q. k) f(y) dy (10.105)
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with kernel
. Ryx . R
KE(x, y: Q. k) = e Kk (x,y, Q) ¢ (10.106)

which satisfies the pointwise bounds:

KEoxy: 2.k | = C[1ogx =11 + 2% | 1oyjac + ¢k &7
forall x,y € R (10.107)

Now applying Proposition 10.17 we obtain:
Proposition 10.18. Ler |Q2] < e~ * with A chosen sufficiently large.
(1) KL(Q, kDLf1=0in L*(Z) forall f € span{pﬁn [nl:1=A B, n=>0}.
(2) Assume f € L2(E). Then, foralln > 0and I = A, B, we have

< K2, kpLf1, p,f”,,[”] >L2<z) =0

(3) [H*(ky) — Q]/cg(sz, kpLf1 = f modulo span{pk*w[n] :1=A,B, n>0l.
A consequence of the forgoing discussion is:

Corollary 10.19. Ler |Q2] < e~ with A chosen sufficiently large. The operator
ICQ‘(Q, k), the inverse of H,Aw(k\l) (Héx(k”) — SZ) H%B(k”), arises from a kernel
satisfying (10.105), (10.107). ICQ(Q, ky) is a bounded linear operator on L(D).

11. Expansion and Estimation of Linear Matrix Elements: Proof of
Proposition 7.1

Our first step in the proof of Proposition 7.1 is to expand the inner products:

(P’:\H-I [m], Hf% P/:H-J [n]) - <p1:|’1 bm], Hﬁ)»(ku) pZH*’ [n]> ’

L2(x) L2(%)
where m, n € Ny, in terms of overlap integrals of translates of the atomic potential, Vj,
and the atomic ground state, p())‘. We have, by the definition of the L?(X) inner product:

<P:”_,[m],H§ P:”J[n]> - / Pl i) H P,
Dy

L2(x)

‘J[n](x) dx.

We first simplify the integrand: P:H .

(see (1.16)) and introduce the notation:

[m] HﬁA P: [1n]. We recall the definition of HﬁA

J =AifJ=BandJ = Bif J = A. (11.1)

For x € Dy, the fundamental domain (see Fig. 1), we have for / = A, B:
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s
HE P )

Z ein'lzk”

lﬂzEZ

A=At Y Vo= 422 Y wx— o' - Eé} ph(x — 0" —iiy0))

n1>0 n1=0

23 o =0+ Y Vo — o' [ 3 2RI phx — o) —ﬂzznz)]

n1=>0 n1=>0 my€Z
ny#n
+ 2 Vo =) Y 2K phx— v —igny). (11.2)
i €7\ (0)

To obtain (11.2) we use that (—Ay + A2 Vo(X) — Eg)p())‘(x) = 0 and therefore (—Ayx +
A2Vo(x —v) — E})pl(x —v) = 0 forall v € H. From (11.2) we obtain:
NS

_ Z Z ol ma—ma)k|

mo€l my€els

A A ph
P [mlx) H} P
. MO0 HE

phx =0 —mawg) | 30 AP Vox—vlh)+ Y 22 Vo(x— 7)) | pix — vl —iizw2)
n1=0 n1=0

ny#n

)0 D TN ph— v —maw) 32 Vo(x = 0)) pi(x — vy —i2w2) .
mo€Z iy €Z\{0}

for all x € ®y. Integrating the previous identity over Dy, we obtain:

A A
< Py mo. H} Pyl >L2(E)

= Z Z ! U2 —m)ky / p())‘(x — o7 —myvy) 22 Vo(x — n'}l) p())‘(x — v} —ipvy) dx
mo,my€Z n1=0 D%
ny#n

i (1) —my )k n -
Y Y Lk / Phx — 0 —maw2) A% Vp(x — o')}) p(x — v} — igvy) dx
my,my€Z n1=0 Dy

+ YN tmmmky / Phx — 0" —maw2) 32 Vo(x — 0"h) ph(x — v") —iia07) dx
my€Z 1y eZ\{0} 5>

= s m,n) + S m,n) + 3 m,n) (11.3)

where the three expressions S 1’ T(m, n), Sél (m, n),and S3’ 7 (m, n) denote the three sums
in (11.3). The dependence on A and k|| has been suppressed. We recall that in the expres-
sion for S37 (m, n), the index J' is defined in (11.1).

We now provide a general lemma, which will facilitate our determination of the
leading terms and estimation of the error terms in the above sums. In preparation for the
statement of this lemma we introduce some terminology.
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Definition 11.1.(1) For I;, J1 € {A, B}, we write b;, — v, = o(bp — by) = oe,
where 0 = 1if Iy = Band J] = A,ando = —1if I; = A and J; = B. We
therefore write:

o(B,A) = +1, o(A, B) = —1, and wedefine o(I, ;) =0. (11.4)

(2) For 0 = +1,—1,0 we define Ny(o) = {r = (r;, ) € 72 . loe +ro| = |e|}.
Therefore Ny(+1) = {(0,0), (—1,0), (0, =1}, Np(—1) = {(0,0), (1,0), (0, D},
and Np(0) = 0.

Note that if m = (my, my) € Np(o) with ¢ = =*1, then there exists [ € {0, 1, 2}
such that

oe + mip| + movy = R'e (11.5)
where R denotes the 2 x 2 rotation in R? by 27 /3.

Lemma 11.2. For 1, Ji, il € {A,B}, m,n,n; > 0 and my, my € Z, consider the
overlap integral

5, = f P — 07— my) 32 [Vo(x — 0] ph(x — v —aby) dx. (11.6)

Recall the hopping coefficient defined by: p; = [ p())‘ (¥) A2 [Vo(y)l p())‘ (y —e) dy. Then
we have the bound

G, < =M m=ni| + mal + In—ni| + i)

N Pis (11.7)

except in the following cases of exceptional indices (m,n, ny, my, my):

(a) I) = il = Ji, m = n = ny and my = my = 0. This case does not arise in the proof
of Proposition 7.1 so we say nothing further about it.

(b) Iy = J1, Iy # Ji, (m —n1,ma) € Np, (o (I, 1)), n = ny and iy = 0,

in which case Jz = p;.

(c) I} = Jy, i] # Ji, (n —ny,mp) € Np (U(i], J])), m=nj andmy =0,

in which case Jz = p;.
Furthermore, if Iy # J1, i] # Ji, then for allm,n, ny, mo, my:

Iy < e~ g CAlIm=n1| + |m2| + [n—ny| + |2l ) Ox- (11.8)

Lemma 11.2is proved in Appendix 12.2. It makes repeated use of the following pointwise
decay estimates for the atomic ground state, p())‘:

Lemma 11.3 (See Lemma 15.6 of [27]). There exists a constant ¢ such that for'y €
supp(Vo) C B (0), i.e. |y| < ro, we have:

po(y —nv) S e pi(y), meZ? (11.9)
Py — (ce+nv) < e M ph(y —ge), n¢ Nyo), o ==+I, (11.10)
Poy —oe) < e pi(y), o =+1, and (11.11)

ph(y —nv) < el phiy — ge), n e Z2\{(0,0)}. (11.12)
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Remark 11.4. In [27], Lemma 11.3 was proved for all rq satisfying 0 < rg < rcritical»
where 0.33|e| < reritical < 0.5]e|, and |e| = |[vp — va| = 1/\/5.

To prove Proposition 7.1, we now apply Lemma 11.2 to the expansion of the matrix
elements: < P:” l[m](x) , Hﬁ)‘ PA [n] > ,where I,/ = A, B and m,n € Ny, for
5 E)

Ay L(

large A.

11.1. Expansion of the inner product < P:H B[m](x) , HﬁA P [n] > - We consider
. L

kH,A
the summations S]I.J(m, n), j =1,2,3 in order (see (11.3)) with / = B and J = A.
Estimation ofSFA(m, n) The expression to be summed over my,my € Z and n; >
0,n1 #nis:

ot (M2—m2)k| /2 PE(x — 0% —maw)) A% Vo(x — b))
R
Po(x — 0y — fi207) dx. (11.13)

We apply Lemma 11.2 with I; = B, J; = A and I; = A. All summands (11.13) of
SlB A(m, n), except for exceptional indices in case (b), defined by Iy = Jy, I} # Ji, are

bounded by e~c*(Im=nil+lmal+ln=nil+lm2]) 5, The exceptional indices are characterized
by the relations: (m — ny, my) € Np(o (B, A)) = Np(+1), n = ny and m, = 0. Since
the sum in the definition of SIB A (m, n) is over n1 > 0 with n| # n, there are no relevant
exceptional indices and we conclude for all m, n > 0:

|SlBA(m )| < pox Z Z e~ CAUIm=ni| + |ma| + In—ni| + 2| )

my,my€”Z n1>0

ni#n
< e h g Hmnl (11.14)

for some strictly positive constant ¢’
Expansion ofo A (m,n)Since I = B,J = Aand J' = B, the expression to be summed

over mp, my € Z and n; > 0 is:

et (2=m2)k| /2 PE(x — 0l — mawa) A% Vo(x — 0/ ph(x — v —riany) dx.
R
(11.15)

We apply Lemma 11.2 with I; = B, J; = B and I} = A. All summands (11.15) of
SfA(m, n), except for exceptional indices in case (c¢), defined by /1 = J; and I, #* J1,
are bounded by e~¢*(m—nil+mal+in=nil+lm2]) 5, The exceptional indices are character-
ized by the relations: (n — ny, mp) € Np(o(I1, J1)) = Np(o (A, B)) = Np(—1) =
{(0,0), (1,0), (0, D}, m = ny and my = 0. We next simplify the expression (11.15) in
each of these three exceptional cases.

(n—ny,my) =(0,0), m =ny, my =0Wehave ny = m = n and mp = m, = 0. For

this case, the expression in (11.15) is equal to —p; and contributes to SzBA (m,m).
(n—ny,my)=(0,1), m=n;, my=0Wehaveny =n =m,mp = 0and m, = 1.

For this case, the expression (11.15) is equal to —etki 0, and contributes to SfA(m, m).
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nm—ny,my)=(1,0), m=n;, my=0Wehaven, =m,n=m+1,my =my =0.
For this case, the expression in (11.15) is equal to —p, and contributes to Sf A(m, m+1).
‘We conclude from the above discussion of SfA(m, n) that:

SEA(m, m) = —(1+e”‘u)pA +0(e ™ p), (n=m) (11.16)
SEAm,m+1) = —pp + O(e*py ), (m=m+1) (11.17)
SBA(m, n) = (o(e*cA g—ckm=nl| pA) T — (11.18)

The O(-) error terms are bounds on contributions to SfA(m, n) arising from the sum-
mation over mo, s € Z and n; > 0 of the bound e~ ¢*(Im—nil+lmal+in—nil+lmal) 5. for
non-exceptional indices (as in (11.14)).

Expansion ofS3BA (m,n) Since I = B and J = A, the expression to be summed over
my € Z and my € Z\{0} is:

¢!k f | PG(x = 0 —myv2) 32 Vo(x — b))
R
Po(X — 0y — 1i202) dx. (11.19)

We apply Lemma 11.2 with I} = B, J| = A, il = A and n; = n. All summands
(11.19) of SfA(m, n), except for exceptional indices in case (b), defined by I1 # J;
and I} = Jy, are bounded by e~¢*(Im—nl+mal+ial) o, (n) = ). Now exceptional indices
in case (b) of Lemma 11.2 are such that 71, = 0. However, in SfA(m, n) we sum over
my # 0. Hence, there are no relevant exceptional indices and therefore all expressions
(11.19) are bounded by e~*(Im=nl+lmal+lm2D) 5, Summing over mo € Z and 7y € Z\{0}
we obtain:

|SBAm, n)| < e e MMl n > 0. (11.20)

Putting  together the expression (11.3) for the inner product

< P’ [m](x) , H* P [n] > with the expansions and bounds in (11.14), (11.16),
k.8 kAT )

(11.17), (11.18) and (11.20) we obtain:

- (l +eik|\) o+ O (e"')‘ e CHm=nl p;\) , n=m

IS A pt . —ch ,—cklm—n| =
(PLatmioo 12 P nl) ==+ O (e p) n=ml
o) (e—c)L e—Chlm=n| p)\) , n#m,m+1.
(11.21)

By self-adjointness,

— (1 +e_ik“) o+ O (e_d e=Chim—nl| p)h) ., n=m

(P imico . B2 P D]

-1 —ch y—chlm—n| e
k.8 )LZ(Z)_ i+ O e py), n=m-—1

O (e—ck e—cMmfnl /O)L) , n ;é m,m— 1.
(11.22)
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Equations (11.22) and (11.21) imply assertions (1), (2) and (3) of Proposition 7.1.
Finally, we turn to the proof of part (4) of Proposition 7.1. By (11.3), we have for
I =A,B:

<PA’T|J[’”](X),HQ P’ n] = S m,n) + S Gm,n) + $i(m, n).

ki >L2(E)
We claim that |S]’.’(m, n)| < e~ = CAlm=n| for j =1,2,3and I = A, B. We consider
the case / = A. The case I = B is essentially the same.
Estimation of SIAA (m, n) The expression to be summed over my, my € Z for n; >

0,n; #nis:

¢! ma—m2k| /2 Pox — 0" — myuy) 22 Vo(x — v}
R
Po(X — 0y — i1207) dx. (11.23)

We apply Lemma 11.2 with Iy = A, J] = A and I, = A. All summands
in the expression for Sf‘A(m,n), except for exceptional indices are bounded by
e~ CMIm=nil+mal+in=m+Ima2l) 5, The only possible exceptional indices are of case (a)
in Lemma 11.2. This case requires n; = n and since the summation in Sf‘A (m, n) is
over n; > 0 with ny # n, there are no relevant exceptional indices. We conclude for all
m,n > 0:

|SIAA(m, | < pa Z Z e~ A Im=ni| +|ma| + [n—ni| + |mal )

my,mr€eZ ni1>0

ny#n
< et ¢ Mm—n| Oi (11.24)

for some strictly positive constant ¢’
Estimation of S?A(m, n) The expression to be summed over my, ny € Z forny > 0 is

' (M2 —mk| / PEx — 0" —maw2) A2 Vo(x — v ph(x — v —riany) dx.

Since I} = A, J1 = B and il = A, we have that I # J; and fl # Ji. Hence, the
bound (11.8) applies. Thus, all summands in the expression for Sﬁm (m, n) are bounded
by e+ e=cAIm=nil+imal+in=nil+imal) 5, Summing over all relevant indices we have:

|S§4A(m,n)| 5 e—cA Z Z g—ck(\m—n1\+|n12\+\n—n1|+|rh2|) Ox

my,moeZ n1>0
! /
< e Ch g CHm=nl 4 (11.25)

for some strictly positive constant ¢’.
Estimation of Sg‘A(m, n) The expression to be summed over my € Z and m, € Z\{0}

forn > 0is

et (ha=mk| / Pox — 0" —maw2) A% Vo(x — 0%) pl(x — 0" —rita02) dx.

Since I; = J; = I} = A, the only possible exceptional case is case (a). How-
ever, note that m1p = 0 is omitted in the summation and hence there are no relevant
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exceptional cases. Thus, summands in the expression for S?A (m, n) are bounded by
efck(lmanlmz\\+\rﬁz|)pk, and we have:

|S§4A(m,n)| 5 Z Z e—ck(lm—nlﬂmz|+\n~12|)p)L 5 e—c’k e—c’k\m—nl o1,
maeZ myeZ\{0}
(11.26)

for some strictly positive constant ¢’.
Finally, summing the bounds (11.24), (11.25) and (11.26) implies the bound (7.10).
This completes the proof of Proposition 7.1. O

12. Estimation of the Nonlinear Matrix Elements; Proof of Proposition 7.2

Recall our decomposition of M*[m, nl(2, k) into its linear and nonlinear contribu-
tions:

MAm. 0. k) = Mmool Qi k) — M Im, n](Q k) (12.1)

where the latter nonlinear matrix elements are given by (see (6.11)):
A,nl
Mj[ [m, n](€2; k\l)

= ( HE: (k) pl U] Ty Ky K3 (92, k) Ty (Ky) HE (Ky) P?H,,[”]>L2(E) :

(12.2)
Here, we recall (from Sect. 4.1) I, , (k) denotes the projection onto

Xag(k)) = the orthogonal complement in LZ(E) of span{p:HJ [n] : I=A,B, n> 0} s

and HAB(kH) Ku(Q,kH) HAB(kH) . DCAB(k”) — DCAB(k”) is the inverse of HAB(k”)

2
(— (vx + ié‘—)'rﬁz) +V,— E} - Q> m,, (k).

Furthermore, the operator IT , , (k) ) K4 (2, k)T, , (k) arises from akernel Ky (X, y, 2, k);
see Corollary 10.19. And finally we recall the projection operator I'IIA— (see (10.82)) which
projects onto the orthogonal complement of the set of atomic ground states, centered at
nuclei of the discrete set I',

. 1
Xr = span{pw:a) € F}

and I:II& =1- Hl):; see (10.82) and Proposition 10.15. In the following discussion we
shall be interested in the choice I' = Hl, the zigzag truncation of H. Finally, we recall
the notation: F,(X) = F (X — w).

Given F(x), a rapidly decaying function on R2, define

F,(x) = Z F(X—w+nvy) = Z Fo(X +nv2). (12.3)
neZz neZz
The functions pi‘H ,m]in (12.2) are of this type and we now seek to bound inner products

in L2(X) of the form (12.2).
For a small constant y > 0 to be fixed, we introduce the weighted L?(R?)-spaces:

H@ = 12 (Rz; ool dx). (12.4)
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Proposition 12.1. Fix I' = Hy, which is translation-invariant by the vector v € H. Let
[w], [@'] denote equivalence classes (see (10.103) with T = H:), and vy € [w] N Dy
and wyy € [N Dx.

(1) For any rapidly decaying functions F and G on R? we have

( Fr - g ) K20k T, () G, >Lz<z>

= Z f FMO (x) / ICQ(X, y+1v2; Q, k) Gw, (y) dy dx. (12.5)
ez xeR? yeR2 0

(2) The expression in (12.5) may be bounded in exponentially weighted norms as follows:

(P« Tk K@) T ) Gy )|

A, w0, ), 1
< [Z Il (sz,ku)||L2<R2M2(Rz)] 1Fanllpgen 1Guyll,wp — (126)
leZ

where
(,Ck,woswévl ) - —Slx—wo| ~Sly—wp 7
. [)x = ¢ Ki(x,y+lvy)e fy)dy. (12.7)

Note: The above may be formulated for an arbitrary discrete set T satisfying inf {|w—c/| :
w, ' € T distinct } > rq, which is translation invariant by the vector v,.

Proof of Proposition 12.1. By Corollary 10.19 we have that the operator IT,, (k))
K4(S2, ky) T, arises from a kernel ICI& (x,y; 2, k). We have

< F[m] ’ HAB(kH) Kﬁ(g’ k”) HAR(k”) G[w’] >L2(E)

=/ F, () f Kix,y; Q. k) G, (y) dy dx
oy yeR?

f Z F(x — wp +nvy) / IC;‘(x,y; Q) Z G(y — oy +n'v2) dy dx
yeR2

D% nez n'eZ

> / Fwo(x+nnz)/R7 K2 (X, ¥; @, ky) Gy (y +n02) dy dx
yekks

nneZ ©Px
= 5xinos > / Foy®) | zicg(i—nnz,y—n/m;sz,k||)cw6(y)dydi
[5’=Y+”/02] nn'eZ Y XeDyinvy yeR
= by equation (10.97)
/ Fun®) [ IG5+ (002 Rk Gy (§) d§
non'eZ ¥ XeDynvy yeR?
=2/ Foy ®) 2/ KA, § + (1 — )23 Q. K)) Gy (§) d
neZ YXeDynvy ez, VIER?
:/ Fwo(f()/ Y KEE§+102;Q, k) Gy §) dY dX
%eR2 5IER2 leZ
= 2/ Fwo(i)/ KL, §+102; 2, k) Gy () d dX.
1€7 ¥ xeR2 yeR?

This completes the proof of part (1) of Proposition 12.1. 0O
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To prove part (2) of Proposition 12.1, we bound the expression in (12.5). Write

X0, ).
K, “0“" for the operator:

(lcﬁ"““”(’” f) (x) = / e~ Honl [ (x y  1vy) e BV £(y) dy. (12.8)
R2
Then, by part (1) of Proposition 12.1, we have

| For - M) KE@2 k) T, () Gy >Lz<z> |

< 2| [ [
- xeR2
leZ

/ [e_%‘x_wOIICé(x,y+lnz;Q,ku)e_%'y_‘“o'] [e—%'y“"é' G ,(y)]dde‘
yeR?2 0

A,wp,0,1
< Y g llggen 1K |2y 2ty 1Gaplly
leZ

A, wo,0,1
[Z 1<, ||L2(R2)_>L2(R2)] I Fe 1000 Gy Il wpy -
leZ

This completes the proof of part (2) of Proposition 12.1. O
We shall apply conclusion (2) of Proposition 12.1 with F,, = HﬁA p,)c‘u, sIn] and

G = (k) H} p,éuyl[m], J, I € {A, B}. Two more tasks remain in this section:
(1) Bound the sum of norms on the right hand side of (12.6) using our pointwise kernel
bounds, (10.107), on ICé(x, y; 2, k), and

(2) Bound || Fu |l (,,, and ||Gw(/)||j{ i’ where F,,, = H} p}, and Gy = H} 3,0.

This will enable us to bound the nonlinear contributions to matrix M|[m, n]($2, k),
displayed in (12.2), thereby proving Proposition 7.2.
The following two propositions will do the trick:

Proposition 12.2. Let wg and w;, be as in the statement of Proposition 12.1. There exist
constants A1 > 0 and ¢ > 0 such that for all ». > Ay and |2| < e Ch:
w0, w),1 10 —clwg—a
DI QD gy o, S A eIl (12.9)
leZ

Proposition 12.3. We have
A A —ch A oA —ch
I HE Pogllyopy = € or and LHE il (0 S e

The proofs of Propositions 12.2 and 12.3 are presented in the following two sub-
sections. We first apply them to conclude the proof of Proposition 7.2, which gives our
bound on nonlinear matrix elements.

Estimate (12.6) with F,,, = HZ p}; and Gy = Hjxpc’})é) implies

| H2ply gt T ) K@ k) TV, ) B pfy gl ) |
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Ay, wp,! A Aok
< [ > Ik, ||L2(R2H2(Rz)] HZ Pl oy WHE Pl (12:10)
leZ

Now apply Propositions 12.2 and 12.3 to obtain
| (2 pl ) T, ) KR, ) T, () HE o)

< 10 p—cloo—ay| | ,—ch m.e—ck Vo
< py e g cloo—apl, (12.11)

L2(%) ‘

We have proved Proposition 7.2 for the case j = 0. From this, the case j = 1
follows by analytic dependence of the inner product on €2; see the remark just prior to
the statement of Proposition 7.2. This completes the proof of Proposition 7.2. O

12.1. Proof of Proposition 12.2:. From the expression for the integral kernel, displayed
in (12.7), we have

A,wo, 0,1
<
”K:I ”LZ(RZ)»LZ(R% —

sup / e~ B0l |k (x, § +10)] e 2Vl gy
yeR2

xeR2

_Yix— - Y
+ sup / e~ 21Xl |ICé(x,y+ltJ2)|e 2=l gx
jeR2 JxeR?

sup / e Bl |k (x, y) | e~ BV IRl gy
yeR?

xeR2
+ sup / ¢~ Xl 1K (x, y)| e TIvIv—pl gy
yERZ xeR?2
= sup 7x;0) + sup J(y: D). (12.12)
xeR?2 yeR2

Recall that the kernel ICQ (X,y; 2, k) satisfies the pointwise bound (10.107):

’CQ(X, Y 2, k) ) < C[ [loglx —y| | + 2'° ] Lix_yj<g + e * e cMxyl
forall x,y € R% (12.13)

The bounds on supy g2 J*(x; /) and SUPycR? d*(y; 1) are obtained very similarly. We

present the argument for sup, g2 J*(x; ). To bound J*(x; 1), we bound the dy integral
over R? separately over the sets [x —y| < R and |x —y| > R. Call these parts: fJi‘R (x; 1)

and JiR x; ).
First assume |x —y| < R. By (12.13)

jiR x:1) < e—%\x—wO\ /ll l |IC§‘(X, ¥: Q, k)| e—%\y—luz—wg\ dy
- x—y|<R

< emshenl / [ 11ogIx = yI| + 210 | =2 b=Tvacblay
[x—y|=R

—Yix— —YIx—z— —w.
< e wO'f [ Hog [zl | + 210 | e=ahetea=otlgy
lz|<R
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—Yix— —_YIx—z— —w
< e ‘00'/ [|log|z||+klo]e Fix—2—I02-0f| 47
0<|z|<p

Y Y izt —a]
+ e 2lX ‘”"'/ [|10g|z||+)»10]e 7 [x—2=lv2—wgl gy
p=|z|<R

Y _ TN
S €_2|X w0|e cilx=lvy—awy| /

0<lz|=<p

[|10g|z| |+ ,\lo]dz

Vi Y ixez D —a)
+ e 2IX—ol [Cp,R + )»10] / e 2IXx=2=lva—wygl gy
p=|z|<R

—c3|l|

The latter two terms are each < 210 e~ 2leo—apl o . Therefore,

sup 4 (x; 1) S 110 emealooenl pmeslll, (12.14)
xeR2

A similar argument yields a bound of this type for supycp2 Hi <V D).
Next assume |x —y| > R. By (12.13), -

T o
jiR(X; l) 5 e 5 A e c|x—awo| / e cAlx—y| e 5ly—lv2—awyl dy
B x—y|>R

Note that [x—wo |[+|y—I02—w)| > [(X—wo) —(y—Iv2—w()| = [Xx—y—(wo—w()+v2| >
¢3 (Jwo — wp| +1]) — |x — y|. Thus,

jiR (x; 1) 5 e_C)‘/ e—c4)»|x—}’| dy e—c3|wo—w(’)\ e—ca\ll S e_C)‘ e—C3|a)0—a)6| e_c3l”.
- [x—y|=R
(12.15)

The bounds (12.14) and (12.15) imply that
sup TH(x; 1) < e~Sleo—apl g=eslll 310
xeR?

and similarly
sup JH(y; 1) < el gmeslll 10,
yeR?2

. A;wo,w’,l _ —w —eall 10
Therefore, by (12.12) it follows that [0, 5 0 50 See csloo—awpl g=cslll 310,

Finally, summing over [ € Z we deduce (12.9). The proof of Proposition 12.2 is now
complete.

12.2. Proof of Proposition 12.3. We need to verify that there are constants y, A1 > 0,
such that for all @ € H and all A > A;:

Yix— —
I HE P iy = 112X (A4 VE®) = EDPL®) N S € Vpn
(12.16)

see (12.4) for the definition of the space H®, which depends on the parameter y,
which will be chosen positive and sufficiently small.
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Since (—A + A%V, (x)) p(x) = E} pl(x), it follows that

HIph(x) = (A+V}(x) - Eppax) = Y PVox—o)phx).
o' eHg\{w}

By invariance of Hﬁ)‘ under translation by vy, we may assume w € ®yx. Thus, w =
vi+nvyfor I = Aor Bandn > 0. Fix I = A; the argument for / = B is similar.
Then, p}(x) = p{(x — va — nvy). Recall, for I = A, B and ny,ny € Z: v;"" =
Vi +nivy+navy.

Therefore, using the definition of Ht)‘ and that E())‘, p(’} (x — z) is the ground state
eigenpair of the atomic Hamiltonian with potential Vp(x — z), centered at z, we have:

HY pl(x) = Z A2Vo(x — ViR ") ph(x — v4 — noy)
n1>0, noeZ
) AV =V ph(x = va = noy).
nlzo,nzeZ

(n1,n2)#(n,0)

For the H® norm (@ = v; + nv|) we have

Ao Lix— AoA
I H pyy ”}((a)) = H ez IXx—wl HZ pl
L2R})
1
2
=iy (/eV'X—<VA+”“1>' [Vo(x — Vi) | p§(x — va — nop)[? dx>
n1>0,n€Z
1
3
+22 Yy /ey"‘ Aol Vo (x = V") P | pg(x — va — nop)|? dx)

n1>0,n€Z
(n1,12)#(1,0)

> A > B (12.17)

n1>0,n2€Z n1>0,n €%

(n1,n2)#(n,0)

Consider Anl n,» for any fixed ny > 0 and ny € Z.

2 4 —(va+no Vi 2 2
| A I =2 / Ly @Il Vg (= V) 2 | pf (x = va — nop) P dx
[x=v |=ro

ny.ny n,0
= / s VA v (y))?
lyl<ro

ni,ny n,0

1Py (y + V" — Vi) dy

= ! / errvnArOmmR el Vo (y) [ [ pG (¥ + VB = Va + (m1 = m)by +n302) [ dy
lyl=<ro

=4 / errertm=meirmealyo ()12 | pb (y — [—e + (n — n1)o| — nawa]) [* dy.
lyl<ro

As in Sect. 11 we divide index pairs (n — n1, —ny) into those in the set Np(—1) =
{(0,0), (1, 0), (0, 1)} and those not in Np(—1). Those in Np(—1), “bad index pairs” ,
correspond to the cases: (i) (n1,n2) = (n — 1, 0) withn > 1, (ii) (n1, ny) = (n, 0) with
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n > 0 or (iii) (n1,ny) = (n, —1) with n > 0. By the remark immediately following
Definition 11.1, we then have for some / =0, 1 or 2

Py (y — [—e+ (n — n)vy — na02]) = p)(y — [—R'e]),

where R is a 27 /3 rotation matrix. Therefore, by orthogonality of the matrix R and
symmetry assumptions on Vj, we have:

| Ay P =21 / PR [y ()P 1 pf(y — [ RleD)|? dy
lyl<ro
=t / ARl YRy 12 | ph(R 7y + @) dy
lyl<ro
=t / e Vo) | p(z +e)|* d.
|z[<ro
Next, applying the bound (11.11) to one factor of pé (z + e) yields

1AL 1 St IVollso / e1el=ck 1o (2)| pl(z) ph(z+e) dz

ni,ny
|z|<ro

N
Se P

Next consider n1 > 0 and ny € Z, for which (n — ny, —n3) ¢ Npag(—1). By
Proposition 11.3, in particular (11.10), we have

oy —[—e+ (n—npoy —navy]) S e Hlnmmiltinb phy pey. (12.18)
Therefore, for |y| < rg, ¥ > 0 and sufficiently small, and A sufficiently large:

erlrermnv=edl ph(y — [—e+ (n — n1)v1 — n2v2])

eV Y=[—et(n—npvi—n202ll  ,—chi(lni—nl+ln2[) pé(y +e)

e, (12.19)

where the last inequality uses (11.11). Therefore, for good index pairs (n —ny, —ny) we
have

—c'M(|ny—nl+In2)

S
<e

,c/)\(\n|fn|+|n2|)pé (y+e) < e

| AL, 1P S A Vol emcMInmmiinad / Vo)1 ps () po(y +e) dy

< e Hnmmtina

Taking the square root and summing over good index pairs (n1, n2) we have:

> A S e U (12.20)

ni,ny
(n—ny,—n2) good

A

Taken together with our bound on | A} .

tells us that

| for the three cases of bad indices, this

S Ay, S et (12.21)

n1>0,n€Z
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The proof that

Z B) ., S et /o (12.22)

n1=>0,nr€Z

is similar, so this completes the proof of (12.3). O
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Appendix A: Error and Main Kernels; Proof of Lemma 10.7

We prove that if £ is an operator derived from an error kernel £(x, y) in the sense of
Definition 10.5,then &€ =1 — (I = & )~ ! is an operator derived from an error kernel
EX,y).

A.l. Elementary integrals in 1d. Let f € L'(R). We define f** = 8, the Dirac delta
function and f*! = f.Let f*" denote the n-fold convolution of f with itself:
For f and g in L' (R),

n
n
+ *n — *k *(n—k) Al
(f+8)" =) <k> *e (A1)
k=0
Let f(t) = ae~ "V, where a and y are positive constants with y > a. We may write
fO = )+ [0, fol®) =ae Lymop,  fo() =ae " 1<),

Induction on & gives:

xk k _—yt ! —yt -~ (a[)l —(y—a)t
() = ae m >0y < ae Z T 10y = ae -0y, k>1.
! = !

A similar bound holds for f_. Therefore, forall0 < a < y:
S0 = ae " Myng and @0 sae Mgy k2 L

Therefore, for m > 1, we have from (A.1) that

m—1

[0 = (fo+ "0 < a> Y (’Z) [e_(y_a)tl{»()] * e—<y—“>"‘1[,<ol]<r>

k=1
+ ge” vt 10y + ae~ ol 1 <0y- (A.2)



Sharply Terminated Honeycomb Structures

The last two terms, which sum to ae~ ¥~ correspond to k = 0 and k = m in the
binomial formula. We calculate the convolution in (A.2). For ¢ > 0,

[efwfa)\t\l{po} x e~y o ] )

o) o) ef(yfa)t
_ / 8 NSy g = / o 2a)s -0t g ‘
0 t 2(y —a)
Similarly, if 7 < 0 then this convolution is . ((;—_a{:\)n . Therefore,
[e—(y—a)ltll{l>0} * e_(y_“)|’|1{,<o} ] ) = M’ forallt € R.
2(y —a)

Substituting into (A.2) we have

m —(y=a)lt] m—1
N —yltl 2 € m
o =(ae) 0 < a ) k; (k)

2
tae~ -l < [a 4 zm_“] ool
2y —a)

Therefore,

-m 2
(‘_l 4y )*m t) < [4"1 a z—a] eI form > 1. (A3)

+
4 2(y —a)
A.2. Elementary integrals in n dimensions. For (x1, ..., x,) € R", let
an
K(x1,...,x,) = I eV Ixil+al) with 0 < a < .

We now apply (A.3) to the [-fold convolution of K (x1, ..., x,):

K Gy, oo x) = K*xK %%« K(X1, ..., Xn)
[—times
-1 2
< { 4lge 29 | -y ]
- 2y —a)
_l 2 n
_ [4—1 0+ 2_“} o= (=) (1t ) (Ad)
2(y —a)

A.3. Proof of part (1) of Lemma 10.7. For x = (x1,...,x,) € R" we write |X|;1 to
denote |x1| + - - - + |x,|. Suppose that E (X, y) satisfies the bound:

IEx,y)| < (a/4)"e XY forall x,y € R (A.5)

and gives rise to the integral operator:

(Ef)x) = /Rn E(x,y) f(y) dy, (A.6)
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then for all / > 1 the I!" power of the operator E: f — E'[f], is given by

E'Lf1x) = / Eix.y) £ () dy.

R)‘I

where by (A.4), E; satisfies the bound

—] 2 Aqn
By | < |4 a+ 2| om0 kv
2(y —a)

If y > 2a, then #ia) < % Therefore, forl > 1:

271 2
[41 a+ 2(—“)] < [4*’ a+ 27! g] = 2704 [24 +2*‘] <27la.
Yy —a
Hence,
| Ei(x,y) | < 27"a"e =@ X¥ln >,

Let’s now apply these observations to E(X,y) = £(X,y), where £(x, y) is an error
kernel which by Definition 10.5 satisfies |E(x,y)| < e~ e=*¥=¥ for x,y € R?;

here n = 2. Note that ¢ ~¢ *x~¥I < e Myl < e~ Mx=yl1 Therefore, |E(x,y)| <
e~ e=¢MX=¥In Tt follows that £(x, y) satisfies the bound (A.5) with n = 2, (a/4)% =
e~ and y = ¢’A. Therefore, the operator £’ is given by a kernel & (x, y):

ENflx) = /R Caxy) f(ydy,

where & satisfies the bound
&%, y) | < 27He P M 1> (A7)

for some ¢ > 0, which is independent of /. Consequently, f > g f =
(I —q=8&7"! )f = D s E'f is given by the kernel £(x,y) = Y1 Six,y),
which by (A.7) satisfies the bound |E(x, y)| < e~ *e~“**=Y| Thus, £ is an error kernel
and

Ef(x) = fR Sy ) dy. (A8)
The proof of part (1) of Lemma 10.7 is now complete.

A.3.1. Proof of part (2) of Lemma 10.7 We need to prove that if £ derives from an
error kernel and K* from a main kernel, then K*&E* and £* K* derive from error kernels
(KEM(x, y) and (EMKM(x, y). We begin with the following bounds on EMx, z) and
K* (z,y):

| EX(x,2) | < e * e~ X
| K*(z,y) | < [)ﬁ‘ + |loglz —y] | ] Yjaey<r) + €~ e~eMEY,
Thus,
| (E* KM (x,y) |



Sharply Terminated Honeycomb Structures

< / (A4 + ‘ log |z — y|‘) R
lz—y|<R

+ / e—ck e—ck\x—z\ e—cklz—yldz
lz—y|=R

_, _, —
< e c)»e c'Alx y|.

~

Thus, (EAK)‘) (x,y) is an error kernel. A similar bound shows that (K)‘E)‘) (x,y) is an
error kernel.

A.3.2. Proof of part (3) of Lemma 10.7 We show that if K, arises from a main kernel,
then e~“*K f arises from an error kernel. Since K (x,y) is bounded by the sum of a

first term: ~ (A% + )log |x — y|‘) lx—y|<r and a second term < e~ “* e~ XYl (an

error kernel), by part (2) we need only consider the contribution to e~ (K f)(x, 7)) =
e~ [ K(x,¥)K;.(y, z)dy arising from the first term. The size of this contribution is
,S A86_0A1|xfz|<2R ,S e_C/A 1|xfz|<2R- Hence,

—cA 2 -’ —Cch —CA|X—2Z —c"n —c"Ax—2
e (K)(x,z) Se lix_gj<2r + e e M2 < e ¢ M=l

Hence, e * K )% derives from an error kernel.

Appendix B: Overlap Integrals; Proof of Lemma 11.2

In this section we prove Lemma 11.2, which we restate here for convenience:
For I, 1, 11 € {A, B}, m,n,ny > 0 and my € 7Z, consider the overlap integral

Jy = f p())‘(x — t:l'}1I — mo02) 22 [Vo(x — Ur};)| p()j(X — U’}l —myv2) dx. (B.1)

Note that the overlap integral in (B.1), although taken over R?, has an integrand sup-
ported on the disc By, (nzl' ). Recall the hopping coefficient defined by:

0. = /pé(y) A2 Vo)l ph(y — e) dy.

We also recall from Lemma 11.1 that for I, J € {A, B}, we define o (I, J) so that:
v;—v;y =0 (bg—vy) =o0ce Thus, c(A,B) = —1,0(B,A) =1,and o (A, A) =
o(B,B) =0.

Further, for o = +1, —1, 0 we define Np(o) = {(r1,r1) : loe+riv; + rpvo| = le|}.
Hence, Npy(+1) = {(0,0), (—1,0), (0, =D}, Np(—1) = {(0,0), (1, 0), (0, 1)}, and
Np(0) = 0.

Lemma 11.2 asserts the bound:

p < =AU Im=ni| +ma| + In—ni| + |mal ) Ois (B.2)

except in the following cases of exceptional indices (m, n, ny, my, ns):

(a) I = i1 = Ji,m =n = n; and my = my = 0. This case does not arise in the
proof of Proposition 7.1, so we say nothing further about it.
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(b) Iy =Ji, I # Jy, (m —ny,my) € Ny (o(I1, J1)), n = ny and sty = 0,
in which case J; = p;.

(© I =Ji, [1 # J1, (n = n1,1m2) € Ny (0(i1, 11)), m = nj and my =0,
in which case J; = py.

Lemma 11.2 further asserts that if I} # Jy, fl =% Ji, then
J: < e~ Ch g Im=ni| + |ma| + |n—ny| + |i2| ) Os. (B.3)

We shall occasionally use the notation: mo = m; v +myv,, wherem = (m, my) € Z2.
To prove Lemma 11.2 we begin with a change of variables: y = x — u’}: . Therefore,

9, = / Poy — [o(I1, Jy)e+ (m — ny)vy +maval) A% |Vo(y)|

POy — [o(Iy, J1)e+ (n — np)vy +1iz07]) dy. (B.4)

Thus, our task is to consider integrals of the form

= f Ph(v — loe+rivy +r202]) A2 [Vo)| pi(y — [Ge + 7101 +Fan2]) dy. (B.5)

Lemma B.1. Consider the overlap integral (B.5), which depends on o, € {0, +1, —1}
andr = (r1, ), ¥ = (71, 72) € Z2. The expression J satisfies the bound:

Jo,r,6,F) < e~ i+l +IA ]+ o1 (B.6)

except in the following cases:
(¢) o==0r=0,r=0.
This case does not arise in the proof of Proposition 7.1 so we say nothing further about
it.
(B) 6 =0,0 20, r € Np(0), ¥ =0, in which case J = p;.
(y) 6 #0,0 =0,F € Np(6), r =0, in which case J = p;.
We shall also make use of
Lemma B.2. Suppose 6 # 0 and o # 0. Then,

(1) Ifr € Np(o) andt € Np(o), then
Jo.r,6.F) S e p (B.7)

(2) Ifr € Np(o) and ¥t ¢ Np(G), then
Io,r,6,F) < e emMInRRD (B.8)

The analogous bound holds with r and ¥ interchanged.
(3)Ifr ¢ Np(o) andt ¢ Np(0) (and thereforer, ¥ # (0, 0)), then

Io,r,5,F) < e~ o= Mril+r2 |+ ‘+|;2|),0A- (B.9)

Note that Lemma 11.2 is an immediate consequence of Lemma B.1 and Lemma B.2
since Jy = J(o,r,0,T) (see (B.5)), for the choices: 0 = o(Iy, J1), 6 = oIy, J1),
(r1,r2) = (m — ny,mp) and (¥1,72) = (n — ny,my). Hence it suffices to prove
Lemma B.1 and Lemma B.2.
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B.1. Proof of Lemma B.1 and Lemma B.2:. We estimate the overlap integral (B.5) by
considering the two cases:

Case 1: ¢ = 0 and Case 2: ¢ # 0, and a number of subcases within each.
Case 16 = 0. Inthis case, forall y € B,,(0), we have by (11.9):

Py —Ge—Fiog —Favg) = pi(y —Fiog —Fang) S e HINMHIRD iy,
(B.10)
Thus,
J(o,r,5,F) = / Po(y — [oe+riog +r202]) A2 [Vo(y)| p(y — [F1o1 +202]) dy

S emeMinRD / po(y — [oe+riog +ra020) A% Vo) pi(y) dy.
(B.11)
‘We next consider two subcases:
Subcase 1A: 6 = 0 and 0 = 0 and Subcase 1B: ¢ =0and o # 0
Subcase 1A ¢ = 0and o = 0 For any (r, 2) # (0, 0), we have by (11.12)
Po(y —oe—rivy — ) = pi(y — [r10] +r202])

< gmerril+ira) p())»(y —e). (B.12)

Therefore, in subcase 1A we have after substitution of (B.12) into (B.11), that
I, r,6,F) < e~ CMrtlHr2l+F1 1+ ) Ox. (B.13)

Interchanging the roles of r and r in the case where ¢ = o = 0, we also have that (B.13)
holds unless ¥ = 0. Hence when o0 = 6 = 0, we have (B.13) unless rjy =, =7 =
r =0.

Subcase 1B ¢ = 0 and o # 0: Then, by (11.10) we have

p()j(y —oe—riv] —rvy) < e_C)‘(l”lez')p())‘(y —oe) (B.14)

unless (r1,r2) € Np(o). Substituting (B.14) into (B.11), we obtain the bound (B.13)
unless (r1, ) € Np(o).

Now consider the case where (71, r2) € Np(o). Then, for some [ € {0, 1, 2} which
depends on o, r| and r, we have: pé(y — (oe+riv; + o)) = pé(y — aR_le),
where [ = 0,1 or 2 and R is a 27/3 rotation matrix. Substituting into (B.11), we
conclude that J(o, r,5,F) < e‘”’\(‘F””FZ')pA. Indeed, using symmetry we obtain for
(r1,r2) € Np(o):

Io,1,5,) < e HARED / PEORIVo) P (Rly — oe) dy
= e cMIFil+IR2D f Ph(R'Y)A | Vo(R'y) | p(R'y — oe) dy

= e~ cr(r1l+R2)) /p())”(Z)K2|Vo(Z)|p(})‘(Z—0€) dz = e~ MUnl+RD Ox.
(B.15)
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Since |ri| + |r2] = 0 or 1 for (r;,r) € Np(o), it follows that (B.13) holds (with
a smaller constant, also denoted ¢, than appearing on the right hand side of (B.15)),
unless 7; = 7, = 0. Therefore, if & = 0 and o # 0, the bound (B.13) holds provided
(F1,72) # (0,0).

Now consider the case where 6 = 0, 0 # 0, (r1, r2) € Np(o) and (71, 2) = (0, 0).
Then,

Ioor, 6, F) = f Ph(y — o€+ 101 +r202]) 22 Vo] ph(y) dy

= / Py — [oR e A2 Vo)l pi(y) dy = ps,

where R is a 277/3 rotation matrix and we have used the symmetry assumptions on Vj.
Summarizing, for Case 1 we have proved:
Claim 1 6 = 0, then (B.13) holds unless

(1) o =0and r; = rp =7 = = 0, a case we address no further since it does not
arise in the proof of Proposition 7.1
or

2) 0 #0andry =71, =0, (r1,r2) € Np(0), in which case J(o, 1, 5,T) = p).

Furthermore, because 6 and o play symmetric roles as do r and r, we have
Claim 2 if 0 = 0, then the bound (B.13) on J(o, ¥, 6, T) holds unless

(1) 6 =0andry =ry =7 =7, =0, a case we address no further since it does not
arise in the proof of Proposition 7.1
or
2) 6 #0andry =rp =0, (r1, ) € Np(6), in which case J(o, 1, 5,T) = p).

We now turn to bound on J(o, r, &, F) in
Case2o0 #0and o #0
Case 2ar € Np(o)andr € Np(6): We claim that

Jo,r,6,F) < e p, for r € Ny(o), F e Np@5). (B.16)

By (11.5), there exist /, [ € {0, 1,2} such that p§(y — [oe +rb]) = p}(y — o R'e) and
pe(y — [6e+iv]) = p}(y — 6 R'e). Therefore,

I(o,r,6,F) = / Py — o R'e) 2% [Vo(y)| pl(y — G R'e) dy
< e f ph(y —oR'e) 2% Vo)l pi(y)dy  (by (11.11))
S e f py(R™'y —oe) 37 [Vo(R™y)| pj(RT'y) dy = ¢ pj.

Case 2br € Np(o) and t ¢ Np(6): We claim that

Jo,r,6,5) < e e M o for r e Ny(o), F¢ Np(5). (B.17)
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By (11.5) p}(y — [oe+rb]) = pi(y —o Re),and by (11.10) and (11.11) p}(y — [Ge+
o)) < e Mt pry — oe) < e= e IF* pl(y). These observations together with
symmetry imply:

o1, 6,F) S e e / po(y — o R'e) 22 [Voy)| py(y) dy = e e p,.
This proves (B.17). Similarly, if r ¢ Np(o) and ¥ € Np(5) we have J(o,r,5,F) <

e—ck e—cMr| O
Case 2cr ¢ Np(o) and t ¢ Njp(6): We claim that

Jo,r,6,5) < e P e M o for v ¢ Ny(o), F¢ Np(G). (B.18)

By (11.10) and (11.11), ph(y — [5e +F0]) < e~<F* pk(y — Ge) and pi(y — [oe +
ro]) < et e~ Ml pl(y). Therefore,

Jo,r,6,F) S e IFh gmck pmetlrl / Po(y — GeA Vo) Ips(y) dy

= o=k geMrHED [

The bounds (B.16), (B.17) and (B.18) imply Lemma B.2, and together with Claim 1
and Claim 2 above Lemma B.1 follows. This also completes the proof of Lemma 11.2.
0
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