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Abstract: We study the single electron model of a semi-infinite graphene sheet inter-
faced with the vacuum and terminated along a zigzag edge. The model is a Schroedinger
operator acting on L2(R2): Hλedge = −� + λ2V�, with a potential V� given by a sum of

translates an atomic potential well, V0, of depth λ2, centered on a subset of the vertices
of a discrete honeycomb structure with a zigzag edge.We give a complete analysis of the
low-lying energy spectrum of Hλedge in the strong binding regime (λ large). In particular,

we prove scaled resolvent convergence of Hλedge acting on L2(R2), to the (appropri-
ately conjugated) resolvent of a limiting discrete tight-binding Hamiltonian acting in
l2(N0;C2). We also prove the existence of edge states: solutions of the eigenvalue prob-
lem for Hλedge which are localized transverse to the edge and pseudo-periodic plane-wave
like parallel to the edge. These edge states arise from a “flat-band” of eigenstates of the
tight-binding model.

1. Introduction

Tight binding models are discrete operators which are central to the modeling of spa-
tially periodic andmore general crystalline structures in condensedmatter physics. These
models apply when the the quantum state of the system is well-approximated by super-
positions of translates of highly-localized quantum states (orbitals) within deep atomic
potential wells centered at lattice sites [3]. An important example is the tight-binding
model of graphene, a planar honeycomb arrangement of carbon atoms with two atoms
per unit cell. The two-band tight-binding model yields an explicit approximation for its
lowest two dispersion surfaces, which touch conically at Dirac points over the vertices
of the Brillouin zone [69]. Such Dirac points are central to the remarkable electronic
properties of graphene [28,52,54,72] and its artificial (electronic, photonic, acoustic,
mechanical,…) analogues; see, for example, [8,40,46,51,59,66] and the survey [56].
The existence ofDirac points for generic honeycomb Schroedinger operators was proved
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in [25,26]; see also [6]. That the two-band tight-bindingmodel gives an accurate approx-
imation of the low-lying dispersion surfaces in the regime of strong binding was proved
in [27]; see also Sect. 1.3. Other results on Dirac points for Schroedinger operators on
R
2 may be found in [1,2,14,30,42], coupled oscillator models [47] and on quantum

graphs in [17,41].
Edge states are modes which are plane-wave like parallel to an interface and which

are localized transverse to the interface. In condensedmatter physics edge states describe
the phenomenon of electrical conduction along an interface. Two types of interfaces of
great physical interest are a sharp terminations of a bulk structure studied in this article
(see [15,29,49,50]) and domain wall / line-defects within the bulk (see [8,40,53,67]
and studied, for example, in [19,21,23,24,45]). The role of edge or surface modes in the
spectral theory of Schroedinger operators with potentials which model, for example, the
interface between a general periodic medium and a vacuum is studied in e.g. [13,39].

In this paper we study the low-lying energy spectrum (discrete and continuous spec-
trum) of a sharply terminated honeycomb structure, corresponding to a semi-infinite
sheet of graphene joined to the vacuum along a sharp interface. We prove convergence
of the operator resolvent to that of a discrete tight-binding model and construct the
continuous spectrum of edge states.

Edge states in honeycomb structures such as graphene are of particular interest as
foundational building blocks in the field topological insulators (TI). TI’s are materials
which are insulating in their bulk and are conducting along boundaries. This behavior
is robust against large localized perturbations. When graphene is subjected to a mag-
netic field, its edge currents become unidirectional and acquire such robustness. This
phenomenon has an explanation in terms of topological invariants associated with a
bulk Floquet-Bloch vector bundle, which takes on non-trivial values when time-reversal
symmetry are broken; see, for example, [18,33,37,38].

A key difference between the types of interfaces is that the sharply terminated
structure has no spectral gap, resulting in certain edge orientations supporting edge
states and others not. In contrast, the domain wall structures perturbations studied in
[19,21,23,24,45] have edge states which localize along arbitrary rational edges. For a
discussion of the roles played by edge orientation and the type of symmetry breaking in
the existence and robustness of edge states for domain wall / line-defects, see [21].

Specifically, for the tight-binding model, edge states exist at sharp terminations along
a zigzag edge for a subinterval of parallel quasi-momenta, k‖ ∈ [0, 2π) associated with
the direction of translation invariance parallel to the edge. They do not exist at the
sharp termination along an armchair edge; see, for example, [15,29,49,50] and Sect. 2.
Such results may be interpreted as consequences of the non-vanishing of the Berry–Zak
phase, Z(k‖), defined as the integral of the Berry connection over the one-dimensional
Brillouin zone associated with the type of edge [15,49]. This is a variant of the bulk-edge
correspondence, which we prove holds in the continuum for the strong binding regime.

1.1. Mathematical setup. In this paper we initiate a study of these phenomena in the
context of the underlying continuum equations of quantum physics, in particular the
single-electron model of bulk (infinite) graphene and its terminations. In particular, we
study Schroedinger operators on R

2 for a sharp termination of a honeycomb structure
along a zigzag edge.

We denote the equilateral triangular lattice in R
2 by.

� = Zv1 ⊕ Zv2 , (1.1)
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where v1 and v2 are given by

v1 =
⎛
⎝

√
3
2

1
2

⎞
⎠ , v2 =

⎛
⎝
0

1

⎞
⎠ . (1.2)

The dual lattice, �∗, is given by

�∗ = ZK1 ⊕ ZK2 , (1.3)

where K1 and K2 are given by

K1 = 2π

⎛
⎝

2
√
3

3

0

⎞
⎠ , K2 = 2π

⎛
⎝−

√
3
3

1

⎞
⎠ . (1.4)

Note that

Kl · vm = 2πδlm . (1.5)

To generate the honeycomb structure, we first fix base points in R
2:

vA = (0, 0), vB =
(
1/2, 1/(2

√
3)
)
. (1.6)

The honeycomb structure, H, is the union of the two interpenetrating sublattices

�A = vA +�, �B = vB +� : (1.7)

H = �A ∪ �B . (1.8)

Let V0(x) be an atomic potential well which may be considered, for the present dis-
cussion, to be real-valued, radially symmetric and compactly supported with supp V0 ⊂
Br0(0), the open disc of radius r0 about 0. We discuss more general and physically
reasonable conditions on V0 below in Sect. 3.

Our bulk Hamiltonian is the self-adjoint honeycomb Schroedinger operator:

Hλ
bulk

= −� + λ2V (x) acting on L2(R2), (1.9)

where V (x) is a superposition identical atomic potential wells, centered at the vertices
of H:

V (x) =
∑
v∈H

V0(x − v) , x ∈ R
2. (1.10)

The potential V (x) satisfies the conditions of a honeycomb lattice potential in the
sense of Definition 2.1 of [26]. For all but a discrete subset of values of λ, C (including
λ = 0), the operator Hλbulk has Dirac points at energy / quasi-momentum pairs, (EλD,K�),
where K�, varies over the vertices of the Brillouin zone [25,26].

Remark 1.1. The setCmay contain non-zero λ. Indeed, comparing our present results for
large λwith the results of [26], applied to small λ, one can construct examples where for
certain special non-zero value of λ, three dispersion surfaces touch at a high symmetry
quasi-momentum, but only two dispersion surfaces meet conically in a Dirac point for
neighboring values of λ.
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Fig. 1. a H: Bulk honeycomb structure consists of all vertices (circles, light and dark). b H�: Honeycomb
structure terminated along a zigzag edge consists of vertices indicated by dark circles; see (1.11). c D	 :
Indicated strip is a choice of fundamental cell for the cylinder 	 = R

2/Zv2. D	 = D−1 ∪ D0 ∪ D1 ∪
· · · ∪ Dn ∪ · · · . Sites: vnA, vnB in finite parallelograms Dn , n ≥ 0, are sites in H�. D−1 denotes the infinite
parallelogram containing no vertices of the terminated structure, H�

Moreover, for λ large (strong binding), the low-lying Floquet-Bloch dispersion sur-
faces of Hλ

bulk
, when rescaled, are uniformly approximated by the dispersion surfaces of

the two-band tight-binding model [27].
Consider now a “half-plane” of vertices H� ⊂ H, whose extreme points trace out a

zigzag pattern:

H� ≡ {vA + N0v1 ⊕ Zv2} ∪ {vB + N0v1 ⊕ Zv2}, N0 = {0, 1, 2, . . . }.
(1.11)

The set H� is invariant with respect to translations by v2 and is the subset of sites in H

to the right of an infinite zigzag edge; see Fig. 1.
The set of zigzag edge (boundary) sites, also translation invariant by v2, is given by:

{vA + Zv2} ∪ {vB + Zv2}.
We define the potential

V�(x) =
∑
v∈H�

V0(x − v) , x ∈ R
2. (1.12)

The self-adjoint operator

Hλ
edge

= −� + λ2V�(x)

models a half-plane of graphene interfaced with the vacuum along a zigzag edge. Note
the translation invariance: V�(x + v2) = V�(x) for all x ∈ R

2.

Author's personal copy



Sharply Terminated Honeycomb Structures

Let (Eλ0 , p
λ
0 (x)), with pλ0 > 0 and L2-normalized, denote the ground state eigenpair

of the atomic Hamiltonian

Hλatom = −� + λ2V0(x).

Let ρλ denote the hopping coefficient, given by:

ρλ =
∫
|y|<r0

pλ
0
(y)λ2 |V0(y)| pλ0 (y− e) dy , (1.13)

where e is any vector from one lattice site inH to a nearest neighbor inH, e.g. vB − vA.
The potential V0(y) and ground state pλ

0
(y) are localized around y = 0, while pλ0 (y−e),

is localized at any nearest neighbor site e ∈ H. Recall that supp V0 is contained in the
set where |x| < r0. For λ large ρλ is exponentially small (see (3.3)) [27].

The key accomplishments of this paper are the following:

(1) Theorem 1.2 (Scaled resolvent convergence): We prove for λ ≥ λ� sufficiently large
(the strong binding regime), that the re-centered and scaled resolvent,

(
(Hλ

edge
− Eλ0 )/ρλ − z I

)−1
,

has a universal limit (in the uniform operator norm) described by a discrete (tight-
binding) Hamiltonian, defined on a truncated honeycomb structure, H. The band
structure of this limiting operator is displayed in Fig. 2.

(2) Theorem 1.3 (Zigzag edge states): We construct a continuum of edge state modes.
These are eigenstates of Hλedge, which are plane-wave like parallel to and localized
transverse to the zigzag edge. Upon appropriate λ-dependent rescaling, these edge-
states are close to (and converge as λ tends to infinity to) the flat band of zero energy
edge states of the tight-binding model; see Fig. 2.

(3) Resolvent kernel bounds on arbitrary discrete sets: The methods of this article go
considerably beyond those our previous article on the strong binding regime [27],
which established convergence to the (universal) two-band tight binding spectrum
for the bulk graphene-like structures. Since Theorems 1.2 and 1.3 involve con-
vergence of operators and eigenstates on an infinite cylinder (Fig. 1), we required

pointwise decay properties of the resolvent kernel Hλ
edge

for energies near Eλ0 . These
bounds are stated in Theorem 10.1. In Proposition 10.15 we establish these ker-
nel estimates for potentials which are a sum of atomic potentials centered on an
arbitrary discrete set of lattice sites � ⊂ R

2 (not necessarily translation invariant)
whose minimal pairwise distance is Mr0, where r0 is the radius of the support of V0
and M > 2 is some positive constant. We then specialize to a translation invariant
set to obtain Theorem 10.1. We believe the technique we have developed will be
quite broadly applicable.

We next introduce the edge state eigenvalue problem. Associated with the translation
invariance of−�+λ2V�(x) by v2 is a parallel quasi-momentum, denoted k‖ ∈ [0, 2π).
The condition that an edge state, �, is plane-wave like parallel to the zigzag edge is:

�(x + v2) = eik‖ �(x), x ∈ R
2 . (1.14)

We introduce the cylinder

	 = R
2/Zv2. (1.15)
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Fig. 2. Spectrum of tight-binding Hamiltonian H
TB

� (k‖), for 0 ≤ k‖ ≤ 2π , described in Theorem 2.2. This

spectrum contains a flat band of zero energy states; Hλ� (k‖) has an isolated simple 0-energy eigenstate for
2π/3 ≤ k‖ ≤ 4π/3. Shaded regions consist of essential spectrum. For sufficiently large λ, the low-lying part

of the spectrum of−� + λ2V� − Eλ0 , after rescaling by ρλ, is approximated by spectrum of the 2-band model

H
TB

� ; see Theorem 1.3

The space L2(	) consists of functions on R
2 which are square integrable over a the

strip D	 (fundamental cell) shown in Fig. 1, and which satisfy the periodic boundary
condition with respect to v2: φ(x + v2) = φ(x) for almost all x ∈ R

2.
We enforce the condition that (i)� is k‖-pseudo-periodic parallel to the zigzag edge,

(1.14), and (ii) decaying to zero transverse to the zigzag edge as x tends to infinity by
requiring

e−i
k‖
2πK2·x�(x) ∈ L2(	).

For such functions we write � ∈ L2
k‖(	) or just � ∈ L2

k‖ . We can now formulate the

k‖-Zigzag Edge State Eigenvalue Problem for Hλ
edge

= −� + V�(x):

Hλ
edge
�(x) ≡

(
−� + λ2V�(x)

)
�(x) = E �(x), x ∈ R

2, � ∈ L2
k‖(	).

(1.16)

Defining �(x) = ei
k‖
2πK2·xψ(x), we may formulate (1.16) equivalently as:

Hλ
edge
(k‖)ψ ≡

(
−
(
∇ + i

k‖
2π

K2

)2

+ λ2V�(x)

)
ψ(x) = E ψ(x), x ∈ R

2, ψ ∈ L2(	).

(1.17)
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We refer to non-trivial solutions of the eigenvalue problem (1.16) (equivalently (1.17))
as zigzag edge states.

Before stating our main results Theorems 1.2 and 1.3, we recall a key observation
used in [27] to obtain the low-lying dispersion surfaces (energies near the atomic ground
state energy, Eλ0 ) of the bulk honeycomb Schroedinger operator, Hλ

bulk
. That is, for λ

large, the k-pseudo-periodic Floquet-Bloch eigenmodes which are associated with the
two lowest spectral bands of Hλ

bulk
, acting in L2(R2), can be uniformly approximated

by appropriate linear combinations of the two k-pseudo-periodic functions: Pλk,I (x) =
eik·x pλk,I (x), I = A, B, with pλk,I (x) ∈ L2(R2/�). The functions pλk,I are constructed
as periodic weighted sums of translates of the atomic ground state over the sublattices:
�I = vI + �, I = A, B. Specifically, pλk,I (x) =

∑
v∈�I

e−ik·(x−v) pλ0 (x − v); see
Section 8 of [27].

In the present work, we approximate the low-lying spectral bands (E near Eλ0 ) of the
the L2

k‖-edge state eigenvalue problem (1.16), by L2
k‖ functions:

Pλk‖,I [n](x) = ei
k‖
2πK2·(x−vI ) pλI,k‖ [n](x), I = A, B, n ≥ 0. (1.18)

Here,

pλI,k‖ [n](x) ∈ L2(	), I = A, B, n ≥ 0, (1.19)

are constructed as k‖-dependent and periodized (infinite) sums of translates of the ground
state pλ0 (x) over the one-dimensional sublattices: vI + nv1 +Zv2 of�I , I = A, B and
n ≥ 0; see (1.7). The states pλI,k‖ [n](x) are introduced in Definition 4.1 in Sect. 4. For

λ sufficiently large, any F ∈ L2(	) has the expansion

F =
∑

I=A,B

∑
n≥0
α In pλI,k‖ [n](x) + F⊥, (1.20)

where {α In } ∈ l2(N0;C2) and F⊥ is L2(	)-orthogonal to the span of the functions
pλI,k‖ [n]; see Proposition 4.4. The tight-binding (discrete) edge Hamiltonian, HTB

� (k‖)
acting in l2(N0;C2), arises via translation and rescaling, of the operator whose matrix

elements are
〈
pλJ,k‖ [m], Hλedge(k‖)pλI,k‖ [n]

〉
L2
k‖
, for J, I = A, B andm, n ≥ 0. The tight-

binding model is studied in Sect. 2 and its band spectrum is displayed in Fig. 2.

1.2. Main results. The relation of Hλ
edge
(k‖) to the tight-binding Hamiltonian H

TB

� (k‖)
is given by the following result on scaled resolvent convergence. Let pλ0 , E

λ
0 denote

the ground state eigenpair of Hλatom = −� + λ2V0. We assume that the following two
conditions on the ground state energy and energy-gap:
(GS) Eλ0 ≤ −cgsλ2,
(EG) distance

(
Eλ0 , σ (Hatom)\{Eλ0 }

) ≥ cgap, where cgs, and cgap are positive constants
which are independent of λ for all λ sufficiently large; see also (3.4) (3.6).

Theorem 1.2 (Scaled resolvent convergence). Let C denote a compact subset of
C\σ(HTB

� (k‖)), the resolvent set of H
TB

� (k‖). There exist constants λ�, C� and c, which
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are independent of λ but which depend on C and conditions (GS) and (EG), such that
for all λ > λ� the following holds:
Let Jk‖ : L2(	) �→ l2(N0;C2) ⊕ span{pλI,k‖ [n]}⊥ be defined, via (1.20), by F �→
({α In [F]}, F⊥

)�
.

Then, uniformly in k‖ ∈ [0, 2π ], we have
∥∥∥
(
ρ−1
λ

(
Hλ

edge
(k‖)− Eλ0

)
− zId

)−1

− J ∗k‖
(
H

TB

� (k‖) − zId
)−1

Jk‖

∥∥∥
L2(	)→L2(	)

≤ C� e
−cλ. (1.21)

In preparation for our theorem on edge states, we introduce the functions:

ζ(k‖) = 1 + eik‖ , δgap(k‖) =
∣∣∣1− |ζ(k‖)|

∣∣∣ ≥ 0, δmax(k‖) = 1 + |ζ(k‖)|. (1.22)

We note that for k‖ ∈ [0, 2π ] that δgap(k‖) = 0 if and only if k‖ ∈ {2π/3, 4π/3}.
Theorem 1.3 (Zigzag Edge States). Assume that Eλ0 , the ground state energy of the
atomic Hamiltonian, Hλatom = −� + λ2V0, satisfies the conditions (GS) and (EG) on
the ground state energy and energy-gap, respectively. Let I denote an arbitrary compact
subinterval of quasi-momenta:

I ⊂⊂ (2π/3, 4π/3)\{π}. (1.23)

Thus, mink‖∈I δgap(k‖) > 0.
There exists λ� = λ�(I) > 0 sufficiently large, such that for all λ > λ� the following
holds:

(1) There is a mapping k‖ ∈ I �→ (Eλ(k‖), ψλk‖), from parallel quasimomenta k‖ to
simple eigenpairs of the family of the k‖-edge state eigenvalue problem (1.17):

Hλ
edge
(k‖)ψk‖ = Eλ(k‖) ψλk‖ , ψk‖ ∈ L2(	)

Eλ(k‖) = Eλ0 + ρλ �
λ(k‖), (1.24)

where
∣∣ �λ(k‖)

∣∣ � e−cλ with c > 0 independent of λ. Correspondingly, the

eigenvalue problem (1.16) is solved by the states �λk‖(x) = ei
k‖
2πK2·xψλk‖(x).

(2) The edge states ψλk‖ ∈ L2
k‖(	) are approximated to within O(e−cλ) error in L2(	)

as:

ψλk‖(x) =
∑
n≥0

αnA pλA,k‖ [n](x) +
∑
n≥0

αnB pλB,k‖ [n](x) + OL2(	)(e
−cλ), (1.25)

where c > 0 is independent of λ. Here, ψTB,bd
k‖ ≡ { (αnA, αnB

)� }n≥0 ∈ l2(N0;C2),

‖ψTB,bd
k‖ ‖

l2(N0;C2)
= 1 is a zero energy normalized eigenstate of the limiting tight-

binding edge Hamiltonian; H
TB

� (k‖) ψ
TB,bd
k‖ = 0. See Theorem 2.2 in Sect. 2.
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Remark 1.4 (Symmetry of edge state curves).

Let k‖ ∈ [0, π ]. If
(
Eλ(k‖),�λk‖(x)

)
is an eigenpair of the k‖-edge state eigenvalue

problem, then
(
Eλ(k‖),�λk‖(x)

)
is an eigenpair of the 2π − k‖ edge state eigenvalue

problem.

Remark 1.5 (Non-flatness of band).
The large λ edge states of eigenfrequencies, Eλ(k‖), in Theorem 1.3 arise from the

flat band of edge states, �(k‖) = 0 for 2π/3 < k‖ < 4π/3, of the tight-binding

Hamiltonian, H
TB

� (k‖). Although Eλ(k‖) has only exponentially small variation, we do

not expect Eλ(k‖) to be identically constant. Indeed, numerical simulations illustrate
the weak variation in k‖ [68]. This limiting flat band spectrum does not support wave-
packets which move along the edge; the group velocity of such wave-packets is zero.
However, since for finite λ (strong binding) the band is nearly flat and symmetric about
k‖ = π (Remark 1.4), we expect there to exist wave-packets, moving in either direction
along the edge, with very small group velocities.

Remark 1.6 (Regularity). We do not address the question of smoothness of k‖ ∈ I �→(
Eλ(k‖), ψλk‖

)
∈ R×L2(	) in the present article. We believe however that the methods

of [27] may be adapted to show that this mapping extends as an analytic mapping in a
complex neighborhood of I from which derivative bounds, e.g. on Eλ(k‖) (k‖ ∈ I) can
be derived via Cauchy estimates.

Remark 1.7 (Exponential decay). It is natural to conjecture that the error term in (1.25) is
exponentially small in a weighted L2 space that enforces exponential decay away from
the edge.

Remark 1.8. InTheorem2.2wefind:ψTB,bd
k‖ = √1− |ζ(k‖)|2

(
[−ζ(k‖)]n, 0

)�
. There-

fore, at leading order, �λk‖(x) is concentrated about the A-sublattice, �A:

�λk‖(x) =
√
1− |ζ(k‖)|2

∑
n≥0

[−ζ(k‖)]n PλA,k‖ [n](x) + OL2
k‖
(e−cλ). (1.26)

Remark 1.9. As noted in our discussion of the tight-binding model in Sect. 2
(Remark 2.3) the constraint of Theorem 1.3 on parallel quasimomenta: k‖ ∈
(2π/3, 4π/3) (|ζ(k‖)| < 1) corresponds to the non-vanishing of the Zak phase. This is
discussed further in Remark 2.3.

Remark 1.10. The tight binding model for an armchair edge, where the relevant Zak
phase vanishes for all k‖ ∈ [0, 2π ], does not support edge states; see [15,29,49,50]. A
proof is given in [29]. We believe that our techniques can be used to show, in the strong
binding regime for a sharp termination of the continuum bulk honeycomb structure along
an armchair edge, that there are no edge states in an energy range about Eλ0 .

1.3. Relation to previous work. Tight-binding limits arising from general distributions
of potential wells has been discussed in the book [16] aswell as [9,55]. There is extensive
related earlier work on the semiclassical limits and methods e.g. [10–12,34,35,48,63–
65]. The above works are based on detailed semiclassical (WKB) approximations for
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potential wells which are assumed to have non-degenerate local minima. In contrast, in
the present article our essential assumptions are only on the ground state energy (GS)
and spectral gap (EG) of the atomic Hamiltonian, Hλatom for large λ. The relation of
the continuum periodic Schroedinger operator with a magnetic field to tight-binding
models, such as the Harper model, is studied for example in [36].

We restricted attention in [27] to C∞ atomic potentials, V0. In fact the results hold
without essential modification for L∞(R2) potentials. In this paper we drop the assump-
tion on smoothness and require only that the atomic potential be in L∞(R2). (That
V0 ∈ L∞(R2) is sufficient is illustrated in Sect. 10.) We believe that further non-smooth
potentials of interest, e.g. potentials with Coulomb singularities, can be handled with-
out much extra difficulty. Examples of artificial graphene, in which experiments are
performed, are periodic honeycomb arrays of identical microfeatures, say small discs,
with one dielectric constant inside the discs and a second dielectric constant outside
the discs. Hence, compactly supported atomic potentials are a natural model; see, for
example, [8,40,46,51,56,59,66].

For smooth atomic potentials V0 with nondegenerate minima, the general semiclas-
sical works in [9,16,55] lead to an “interaction matrix”, which defines an operator. In
the case of periodic potentials, this can be used to compute relevant dispersion surfaces
modulo exponentially small errors. These works do not assert that Dirac points form;
indeed, much of the work is in the setting of a square lattice, which does not give rise
to Dirac points. However, we believe that these methods are powerful enough to deal
with Dirac points of honeycomb lattice potentials, when they are combined with the
consequences of special symmetry properties of the honeycomb. The essential require-
ment for the semiclassical analysis approach is that the atomic potential is smooth and
has a nondegenerate minimum. Another aspect of the general semiclassical work is that
atomic potentials are not assumed to be of compact support and the interaction matrix
(hopping coefficients) are obtained in terms of the Agmon metric. Finally, the consid-
eration of edge states and the spectrum for honeycombs with line defects is not within
the scope of [9,16,55].

Remark 1.11. A different class of line-defects of great interest in the study of topologi-
cally protected edge states is the class of domain walls. In our previous work, motivated
by [32,58,70], domain walls are realized by starting with two periodic structures at “
+∞ ” and “−∞ ”, with a common spectral gap and phase-shifted from one another, and
connecting them across a line-defect at which there is no phase-distortion. See the ana-
lytical work in 1D [20,22,25] and 2D [23,24,45] as well as theoretical and experimental
work on photonic realizations [43,44,57].

Remark 1.12. Quantum graphs [7] are another class of discrete models in condensed
matter, electromagnetic and other systems; see also, for example, [4,5,61]. An extensive
discussion of edge states for nanotube structures in the setting of quantum graphs is
given in [17,41]. It would be of interest to investigate a relation between the edge modes
of these models and continuum models.

1.4. Outline of the paper. We present a brief outline.

Section 2 discusses tight binding models; first, the tight binding model for bulk, and
then the tight binding model for a honeycomb structure terminated along a zigzag
edge.
Section 3 first introduces the atomic Hamiltonian Hλatom = −� + V0, where V0 is a
potential well whose support is in a sufficiently small disc about the origin, and such
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that V0 satisfies some basic general assumptions (PW1)− (PW4). The bulk honey-
comb structure is defined by Hλbulk = −� + λ2V , where V is the periodic potential
defined by summing translates of a potential, V0, over the honeycomb structure. Thus
V is periodic and consists of a potential well V0 centered at each site of the honey-
comb. Finally the edge Hamiltonian, Hedge = −� + λ2V�, which acts on L2(R2),
has potential V� which is identically equal to V on a half-space with a zigzag edge
and zero on the other side of this zigzag edge. (We shall also work with the translated
edge Hamiltonian Hλ� = Hedge−Eλ0 .) The edge state eigenvalue problem for parallel

quasi-momentum k‖ is then stated on L2(	), where	 is the infinite cylinder (1.15).
Section 4 introduces a natural basis for approximating the 2 lowest lying bands of Hλ�
for λ sufficiently large. This basis consists of functions, {pλI,k‖ [n](x) : I = A, B, n ≥
0} on	, which are pseudo-periodic (with respect to the direction parallel to the edge)
infinite sums of atomic orbitals.
Section 5 establishes energy estimates on Hλ� which imply invertibility of Hλ� on

XAB(k‖), the orthogonal complement of the orbital subspace: span{pλI,k‖ [n] : n ≥
0, I = A, B}. This implies that the resolvent of Hλ� is well-defined and bounded on
XAB(k‖).
Section 6 implements a Lyapunov-Schmidt / Feshbach-Schur / Schur complement
reduction strategy [31]. The spectral problem on L2(	) = span{pλI,k‖ [n] : n ≥
0, I = A, B} ⊕ XAB(k‖) is reduced, using the resolvent bounds on XAB(k‖), to an
equivalent problem on the space span{pλI,k‖ [n] : n ≥ 0, I = A, B}. This problem
depends nonlinearly on the eigenvalue parameter E = Eλ0 + ρλ� and is of the form
of an infinite algebraic system:

∑
I=A,B

∑
n≥0

Mλ,k‖
J I [m, n](�, k‖) α In = 0; J = A, B, m ≥ 0

for (�, α), where α = {α In }n≥0,I=A,B ∈ l2(N0;C2) are coordinates relative to the
basis {pλI,k‖ [n] : n ≥ 0, I = A, B}.
Section 7 summarizes the required properties of Mλ(�, k‖) acting in l2(N0;C2).
We write Mλ,k‖(�, k‖) = Mλ

lin(�, k‖) − Mλ
nlin(�, k‖), separating matrix ele-

ments contibutions which are linear in Hλ� (k‖) and those which are nonlinear in

Hλ� (k‖).WehaveMλ
lin(�, k‖) = ρλH

TB

� (k‖)+Ol2→l2(ρλe
−cλ) (Proposition7.1) and

Mλ
nlin(�, k‖) = Ol2→l2(ρλe

−cλ) (Proposition 7.2). These propositions are proved
in later sections.
Section 8 proves Theorem 1.3, the existence of edge states, bifurcating from the flat
band of eigenstates of H

TB

� , via our formulation of the eigenvalue in l2(N0;C2).
Section 9 proves Theorem 1.2, the convergence of a translation and scaling of the
resolvent of Hλ� (k‖) to that of H

TB

� (k‖).
Section 10 is the most technically involved and introduces techniques not present in
our earlier work. Theorem 10.1 is a pointwise estimate on the resolvent kernel of

Hλ� − z = Hλbulk − (Eλ0 + z), z small, when restricted to the orthogonal complement

of span{pλI,k‖ [n] : n ≥ 0, I = A, B}. These bounds are stated in Theorem 10.1.
We first, in Proposition 10.15, establish these kernel estimates for potentials which
are a sum of atomic potentials centered on an arbitrary discrete set of lattice sites
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� ⊂ R
2 (not necessarily translation invariant), whose minimal pairwise distance is

Mr0, where r0 is the radius of the support of V0 and M > 2 is some positive constant.
We then specialize to a translation invariant set to obtain Theorem 10.1.
Section 11 expands the linear matrix elements, Mλ

lin(�, k‖), in terms of H
TB

� (k‖)
and estimates the corrections, proving Proposition 7.1.
Section 12 estimates the nonlinear matrix elements,Mλ

nlin(�, k‖), proving Proposi-
tion 7.2.
Finally, there are two appendices. Appendix A introduces a technical tool used to
construct the resolvent of Hλ� onXλAB(k‖). Appendix 12.2 contains general results on
overlap integrals enabling expansion ofMλ

lin(�, k‖), forλ large, estimate corrections.

1.5. Notation.

(1) N = {1, 2, 3, . . . }, N0 = {0, 1, 2, 3, . . . }.
(2) When we write the expression gε = OX (γε) as ε→ ε0 ∈ R∪{∞}, we mean that

there exists C > 0, independent of ε, such that ‖gε‖X ≤ Cγε as ε→ ε0.
(3) We shall be concerned with the asymptotic behavior of many expressions,

a(λ), b(λ), . . . , in the regime where the parameter λ is taken to be sufficiently
large. The relation a(λ) � b(λ) means that there is a constant C , which can be
taken to be independent of λ, such that for all λ sufficiently large: a(λ) ≤ Cb(λ).

(4) � = Zv1⊕Zv2, the equilateral triangular lattice, is generated by the basis vectors
v1 and v2, displayed in (1.2).

(5) m�v = m1v1 + m2v2, where m = (m1,m2) ∈ Z
2.

(6) �∗ = ZK1 ⊕ ZK2, the dual lattice, spanned by the dual basis vectors K1 and
K2, displayed in (1.4). Note that K� · v�′ = 2πδ��′ .

(7) We remark that alternative bases for� and�∗ (used for example in [26,27]) are:

v1 = v1, v2 = v1 − v2

k1 = K1 +K2, k2 = −K2.

We have � = Zv1 ⊕ Zv2, �∗ = Zk1 ⊕ Zk2 and k� · v�′ = 2πδ��′ .
(8) H, Honeycomb structure; see (1.8).
(9) H�, Zigzag-truncated honeycomb structure; see (1.11).
(10) 	 = R

2/Zv2, the cylinder with D	 , a choice of fundamental cell for 	; see
Fig. 1.

(11) L2
k‖ = L2

k‖(	), functions f on R
2 such that f (x + v2) = eik‖ f (x) for almost all

x, and

‖ f ‖2
L2k‖

=
∫

D	

| f |2 <∞.

In particular, L2
k‖=0 = L2(	).

(12) H(ω) ≡ L2(R2; eγ |x−ω| dx), exponentially weighted L2 space.
(13) B(X) denotes the space of bounded linear operators on X .
(14) Gfree

λ (x, y) denotes the free Green’s function defined in (10.3).
(15) Gatom

λ (x, y) denotes the atomic Green’s function defined in (10.7).
(16) Hamiltonians: Hλatom = −�+λ2V0(x), the atomic Hamiltonian with ground state

energy Eλ0
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Hλ
bulk

= −�+λ2V (x) and Hλ
edge

= −�+λ2V�(x), denote bulk and edgeHamiltonians

acting in L2(R2)

Hλ� = Hλ
edge

− Eλ0 , the centered edge Hamiltonian, acting in L2
k‖

H̃λ� = (ρλ)−1 Hλ� , the scaled and centered edge Hamiltonian acting in L2
k‖

H
TB

� (k‖), the tight-binding edgeHamiltonian, acting in l2(N0;C2); seeDefinition 2.6.

2. Tight-Binding

Consider a tiling of the entire plane, R2, by parallelograms of the sort shown in Fig. 1.
Eachparallelogramhas exactly twopoints ofH. This is a particulardimerizationofH.We
assign the label (n1, n2) to the parallelogramwhich contains v(n1,n2)A = vA+n1v1+n2v2

and v(n1,n2)B = vB + n1v1 + n2v2. To the sites v(n1,n2)A and v(n1,n2)B we assign complex
amplitudes ψ A

n1,n2
and ψ B

n1,n2
and form the tight binding wave function:

ψn1,n2
=
(
ψ A

n1,n2

ψ B
n1,n2

)
.

2.1. H
TB

bulk
, the tight-binding bulk Hamiltonian. The bulk tight binding Hamiltonian can

be represented with respect to the above dimerization. Starting with any dimerization
would give a unitarily equivalent operator on l2(Z2;C2). The nearest neighbor tight
binding bulk Hamiltonian, relative to the dimerization of H in Fig. 1 is:

[
H

TB

bulk
ψ
]
n1,n2

=

⎛
⎜⎜⎝

(
H

TB

bulk
ψ
)A
n1,n2(

H
TB

bulk
ψ
)B
n1,n2

⎞
⎟⎟⎠ =

(
ψ B

n1−1,n2
+ ψ B

n1,n2−1
+ ψ B

n1,n2

ψ A
n1+1,n2

+ ψ A
n1,n2+1

+ ψ A
n1,n2

)
(2.1)

where n1, n2 ∈ Z. The operator HTB
bulk

is a bounded self-adjoint linear operator on

l2(Z2;C2) and was introduced in [69]. The spectrum of H
TB

bulk
consists of two spec-

tral bands which touch conically at Dirac points over the vertices of the Brillouin zone, a
fundamental cell (regular hexagon centered at the origin) in the quasi-momentum plane,
R
2
k. The approximation and convergence as λ increases of the low-lying dispersion sur-

faces and the resolvent Hλ
bulk

acting on L2(R2) to those of HTB
bulk

acting on l2(Z2;C2)

was studied in [27].

2.2. Tight-binding Hamiltonian for the zigzag edge. Our goal in this section is to intro-
duce a tight-binding edge Hamiltonian which will act on functions ψ ∈ l2(N0×Z;C2)

defined on the vertices ofH�. We shall do this by first expressing H
TB

bulk, as a direct inte-

gral over k‖ of fiber operators H
TB

bulk(k‖) acting on states which are “k‖- pseudo-periodic”
with respect to one lattice direction and square-summable with respect to the other lattice
direction. The edge Hamiltonian H

TB

� is then obtained from H
TB

bulk(k‖) by appropriate
restriction to functions defined on H�.
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Since the truncated structureH� and subset of edge vertices are invariant with respect
to translation by v2, we introduce k‖ ∈ S1 = R/2πZ, the parallel quasi-momentum
associated with this translation invariance. For each k‖ ∈ [0, 2π ], we refer to a state as
being k‖-pseudo-periodic if:

ψn1,n2+1 = eik‖ψn1,n2 , n1 ≥ 0, n2 ∈ Z. (2.2)

Functions ψ = {ψn1,n2
} ∈ l2(Z;C2) may be expressed via the discrete Fourier

transform as

ψn1,n2
= (2π)−1

∫ 2π

0
ein2k‖ψn1

(k‖) dk‖, (2.3)

as a superposition over states {ein2k‖ψn1
(k‖)} which are square-summable over Z with

respect to n1 and which satisfy (2.2).
Therefore, the tight binding bulk Hamiltonian H

TB

bulk may be reduced to the k‖-
dependent fiber (Bloch) Hamiltonians, H

TB

bulk
(k‖) : l2(Z;C2) → l2(Z;C2), defined

by

[
H

TB

bulk
(k‖)ψ

]
n1

≡
(
ψ B

n1−1
+
(
1 + e−ik‖

)
ψ B

n1

ψ A
n1+1

+
(
1 + e+ik‖

)
ψ A

n1

)
,

=
(
0 1
0 0

)(ψ A
n1−1

ψ B
n1−1

)
+

(
0 1 + e−ik‖

1 + e+ik‖ 0

)(
ψ A

n1

ψ B
n1

)
+

(
0 0
1 0

)(ψ A
n1+1

ψ B
n1+1

)
.

(2.4)

Finally,wedefine the tight-binding edgeHamiltonian, HTB
� . Forψ = (ψ0, ψ1, ψ2, . . . ) ∈

l2(N0;C2), introduce the extension operator:

ι : l2(N0;C2)→ l2(Z;C2)

ιψ = (. . . , 0, 0, 0, ψ0, ψ1, ψ2, . . . ) ∈ l2(Z;C2).

Theadjoint of ι is the restrictionoperator definedonφ = (. . . , φ−2, φ−1, φ0, φ1, φ2, . . . ) ∈
l2(Z;C2) by:

ι∗ : l2(Z;C2)→ l2(N0;C2) ,

ι∗φ = (φ0, φ1, φ2, . . . ) ∈ l2(N0;C2).

Definition 2.1. The tight-binding edge fiber operators, H
TB

� (k‖), and edge Hamiltonian

HTB
� are given by

H
TB

� (k‖) = ι∗ H
TB

bulk
(k‖) ι : l2(N0;C2)→ l2(N0;C2) (2.5)

and

H
TB

� =
∫ ⊕

[0,2π ]
H

TB

� (k‖) dk‖ : l2(N0 × Z)→ l2(N0 × Z). (2.6)
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2.3. Spectrum of H
TB

� (k‖). Define, for k‖ ∈ [0, 2π ], the functions
ζ(k‖) ≡ 1 + eik‖ , (2.7)

δgap(k‖) ≡ min
k⊥∈[0,2π ]

∣∣∣1 + eik‖ + eik⊥
∣∣∣ =

∣∣∣ 1− |ζ(k‖)|
∣∣∣, (2.8)

δmax(k‖) ≡ 1 + |ζ(k‖)|. (2.9)

Note δgap(2π/3) = δgap(4π/3) = 0, δgap(k‖) > 0 otherwise in [0, 2π ], and that

|ζ(k‖)| < 1 for k‖ ∈ (2π/3, 4π/3). We next prove that the spectrum of H
TB

� (k‖) is
as displayed in Fig. 2. Let us enumerate the coordinates of the vector in l2(N0;C2),

ψ =
{(
ψ A
n
ψ B
n

)}
n≥0, by ψ = (ψ A

0 , ψ
B
0 , ψ

A
1 , ψ

B
1 , . . . )

�.

Theorem 2.2 (σ(H
TB

� (k‖)), the spectrum of H
TB

� (k‖) in l2(N0;C2)).

For each k‖ ∈ [0, 2π ], σ(HTB

� (k‖)) = σpt(H
TB

� (k‖)) ∪ σess(H
TB

� (k‖)).

(1) Point spectrum of H
TB

� (k‖):

σpt(H
TB

� (k‖)) =

⎧⎪⎨
⎪⎩

{0} if k‖ ∈ (2π/3, 4π/3)
{−1, 0, 1} if k‖ = π
∅ if k‖ ∈ [0, 2π ]\(2π/3, 4π/3) :

In particular,

H
TB

� has a zero energy “flat-band” of eigenstates over the range 2π/3 < k‖ < 4π/3.

For k‖ ∈ (2π/3, 4π/3)\{π} the point spectrum, consists of a simple eigenvalue at

E = 0. The corresponding normalized 0-energy eigenstate,ψTB,bd =
{
ψ

TB,bd
n

}
n≥0,

is given by

ψTB,bd
n (k‖) =

√
1− |ζ(k‖)|2

((−ζ(k‖)
)n

0

)
, n ≥ 0. (2.10)

For k‖ = π , E = 0 is a simple eigenvalue with corresponding normalized 0-energy
eigenstate given by:

ψTB,bd
0

(π) =
(
1
0

)
, ψTB,bd

n
(π) =

(
0
0

)
, n ≥ 1. (2.11)

The eigenvalues E = +1 and E = −1 have infinite multiplicity and are therefore in
both the point and essential spectra. Their corresponding eigenspaces are:

kernel(H
TB

� (π)− I d) =
{ 1√

2

(
ê2 j+1 + ê2 j+2

) : j = 0, 1, 2, . . .
}
,

kernel(H
TB

� (π) + I d) =
{ 1√

2

(
ê2 j+1 − ê2 j+2

) : j = 0, 1, 2, . . .
}
.

Here, êl denotes the element ψ = (ψ A
0 , ψ

B
0 , ψ

A
1 , ψ

B
1 , . . . )

� ∈ l2(N0;C2) defined
as follows: For j ≥ 0, ê2 j+1 = ψ such that ψ B

j = 1 and all other entries equal to

zero, and ê2 j+2 = ψ such that ψ A
j+1 = 1 and all other entries equal to zero.
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(2) Essential spectrum of H
TB

� (k‖):

σess(H
TB

� (k‖)) =
{{

z ∈ R : δgap(k‖) ≤ |z| ≤ δmax(k‖)
}
, k‖ ∈ [0, 2π ]\{π}

∅, k‖ = π.
(2.12)

(3) Resolvent expansion:
(a) Let k‖ ∈ (2π/3, 4π/3)\{π}. Then, for z ∈ C\σess(HTB

� (k‖)) and z �= 0 we have

(
H

TB

� (k‖)− z I
)−1

f

= 1

z

〈
ψTB,bd(k‖), f

〉
l2(N0;C2)

ψTB,bd(k‖) + Greg(z; k‖) f . (2.13)

Here, z �→ Greg(z; k‖) is an analytic mapping from C\σess(HTB

� (k‖)) to the space of
bounded linear operators on l2(N0;C2). If (z, k‖) varies over a compact set ϒ ⊂⊂
R× [0, 2π ] for which distance

(
z, σess

(
H

TB

� (k‖)
))

≥ b > 0, where b is a positive

constant depending on ϒ , then ‖Greg(z; k‖)‖B(l2(N0;C2)) < B(b) <∞.

(b) Let k‖ = π . Then,
(
H

TB

� (k‖)− z I
)−1

f has an expression analogous to (2.13) with

poles at z = 0, z = +1 and z = −1.
(c) Let k‖ ∈ [0, 2π ]\(2π/3, 4π/3). Then, for z ∈ C\σess(HTB

� (k‖)) we have
(
H

TB

� (k‖)− z I
)−1

f = Greg(z; k‖) f, (2.14)

where z �→ Greg(z; k‖) is as in part (a).
(4) For k‖ ∈ (2π/3, 4π/3), the equation H

TB

� (k‖)ψ = f , where f ∈ l2(N0;C2), is

solvable for ψ ∈ l2(N0;C2) if and only if
〈
ψTB,bd(k‖), f

〉
l2(N0;C2)

= 0.

Remark 2.3. We remark on the connection between the condition k‖ ∈ (2π/3, 4π/3)
(equivalently |ζ(k‖)| < 1) and the non-vanishing of a winding number, known as the

Zak phase. For fixed k‖, consider the normalized bulk Floquet-Blochmodes of H
TB

bulk
(k‖);

see (2.4). There are two families of eigenpairs:
(
μ±(k‖),U±

n1(k⊥; k‖)
)
, where

μ±(k‖) = ±|ζ(k‖) + eik⊥|, (ζ(k‖) = 1 + eik‖),

U±
n1(k⊥; k‖) = eik⊥n1ξ±(k⊥; k‖), ξ±(k⊥; k‖) = 1√

2

(
1

± j (k⊥)

)
,

j (eik⊥) = ζ(k‖) + eik⊥

|ζ(k‖) + eik⊥| , j (z) j (z) = 1.

For either family of modes (say +), we consider the Berry connection defined
by A(k⊥; k‖) ≡ 〈

ξ(k⊥; k‖), 1i ∂k⊥ξ(k⊥; k‖)
〉
and the Zak phase by Z(k‖) ≡∫ 2π

0 A(k⊥; k‖) dk⊥. We have

Z(k‖) = −i
∫ 2π

0
j (eik⊥; k‖) ∂

∂k⊥
j (eik⊥; k‖) dk⊥
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= −i
∫
|w|=1

j (w; k‖) ∂w j (w; k‖) dw

= −i
∫
|w|=1

∂w j (w; k‖)
j (w; k‖) dw

= 2π ×Winding number of w ∈ S1 �→ j (w; k‖) ∈ C.

If |ζ(k‖)| < 1, then Z(k‖) = 2π and if |ζ(k‖)| > 1, then Z(k‖) = 0. This is an exam-
ple of the bulk-edge correspondence (see, for example, [15,29,49]) and Theorem 1.3
establishes its validity in the strong-binding regime.

Proof of Theorem 2.2. Fix k‖ ∈ [0, 2π) and set ζ = ζ(k‖) = 1 + eik‖ . We study the

operator H
TB

� (k‖) in the Hilbert space l2(N0;C2). An energy z is in the point spectrum

of H
TB

� (k‖) if there exists ψ �= 0, ψ ∈ l2(N0;C2) such that H
TB

� (k‖)ψ = zψ . Written
out componentwise, the eigenvalue problem is:

ψ B
n−1 + ζ

∗ψ B
n = zψ A

n , n ≥ 0, (2.15)

ψ A
n+1 + ζψ

A
n = zψ B

n , n ≥ 0, (2.16)

and ψn =
(
ψ A
n
ψ B
n

)
=
(
0
0

)
for all n ≤ −1.

We begin by showing that for k‖ ∈ (2π/3, 4π/3), we have that 0 ∈ σpt(HTB

� (k‖)) and
that for k‖ ∈ [0, 2π ]\(2π/3, 4π/3), z = 0 is not in the point spectrum. Set E = 0 and
observe that Eqs. (2.15) and (2.16) become decoupled first order difference equations:
ψ A
n+1 = (−ζ )ψ A

n , n ≥ 0 and ψ B
n−1 = (−ζ ∗)ψ B

n , n ≥ 0.
The equation for ψ A has the solution: ψ A

n = (−ζ )nψ A
0 , n ≥ 0, where ψ A

0 can be set
arbitrarily. If k‖ ∈ (2π/3, 4π/3), then |ζ(k‖)| < 1 and hence ψ A

n → 0 exponentially as
n →∞. Turning to ψ B , let us first assume that k‖ �= π so that ζ(k‖) �= 0. In this case,
ψ B
n = (−ζ ∗)−1ψ B

n−1 n ≥ 0. Since ψ B−1 = 0, we have ψ B
n = 0 for all n ≥ 0. If k‖ = π

then we have from (2.15) that ψ B
n−1 = 0 for all n ≥ 0.

Now suppose k‖ ∈ [0, 2π ]\(2π/3, 4π/3). Then, the above discussion also implies
that if ψ ∈ l2(N0;C2) solves the eigenvalue equation with z = 0, then ψ ≡ 0.

We conclude:
E = 0 is a point eigenvalue of H

TB

� (k‖) acting in l2(N0;C2) if and only if k‖ ∈
(2π/3, 4π/3). For k‖ ∈ (2π/3, 4π/3)\{π}, the l2(N0;C2)- normalized eigenstate is
given by:

ψTB,bd
n (k‖) =

√
1− |ζ(k‖)|2

((−ζ(k‖)
)n

0

)
, n ≥ 0 (2.17)

ζ(k‖) ≡ 1 + eik‖ . (2.18)

For k‖ = π (ζ(k‖) = 0), the eigenstate is given by the expression:

ψTB,bd
0

(π) =
(
1
0

)
, ψTB,bd

n
(π) =

(
0
0

)
, n ≥ 1 , (2.19)

and is supported strictly at the edge. Furthermore, the spectrum of H
TB

� (π) is the set
{−1, 0,+1}.More precisely, 0 is a simple eigenvalue and ±1 are eigenvalues of infinite
multiplicity and consequently lie in the point and essential spectra.
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We now assume that z is complex and z �= 0, and study the inverse of H
TB

� (k‖)− z I

on l2(N0;C2).
Written out componentwise, the system (H

TB

� (k‖) − z I )ψ = f , where f ∈
l2(N0;C2) is:

ψ B
n−1 + ζ

∗ψ B
n = zψ A

n + f An , n ≥ 0 (2.20)

ψ A
n+1 + ζψ

A
n = zψ B

n + f Bn , n ≥ 0, (2.21)

ψn =
(
ψ A
n
ψ B
n

)
=
(
0
0

)
, fn =

(
f An
f Bn

)
=
(
0
0

)
, for all n ≤ −1 (2.22)

and |ψn| → 0 as n →∞. (2.23)

We focus on the case k‖ ∈ [0, 2π ]\{π}, so that ζ(k‖) = 1 + eik‖ �= 0.

Remark 2.4. For k‖ = π , the system (2.20), (2.21), (2.22) is of the form (H
TB

� (π) −
z)ψ = f , where ψ = (ψ A

0 , ψ
B
0 , ψ

A
1 , ψ

B
1 , . . . )

�, f = ( f A0 , f
B
0 , f

A
1 , f

B
1 , . . . )

� and

H
TB

� (π) is a block-diagonal matrix consisting of a 1 × 1 block, 0 in the (1, 1) entry,

followed by an infinite sequence of identical 2 × 2 blocks, each equal to σ1 =
(
0 1
1 0

)
,

filling out the diagonal. The statements in Theorem 2.2 on the spectrum of H
TB

� (π) and

the mapping z �→ (H
TB

� (π)− z)−1 are easily verified.

For k‖ �= π , we next rewrite (2.20), (2.21) as a first order recursion. Consider (2.20)
with n replaced by n + 1:

ψ B
n + ζ ∗ψ B

n+1 = zψ A
n+1 + f An+1, n ≥ −1. (2.24)

For n = −1, Eq. (2.24) implies the boundary condition at site n = 0:

ζ ∗ψ B
0 − zψ A

0 = f A0 . (2.25)

For n ≥ 0, we use ζ �= 0 and (2.21) in (2.24) and obtain:

ψ B
n+1 =

(
− ζ
ζ ∗

)
z ψ A

n +
z2 − 1

ζ ∗
ψ B
n +

z

ζ ∗
f Bn +

1

ζ ∗
f An+1, n ≥ 0. (2.26)

Summarizing, we have that the system: (2.20), (2.21) and (2.22) is equivalent to the

first order system (2.21), (2.26) for ψn =
(
ψ A
n
ψ B
n

)
, n ≥ 0, with the boundary condition

(2.25) at n = 0. We write this more compactly as:

ψn+1 = M(z, ζ ) ψn + Fn(z, ζ ), n ≥ 0, (2.27)
(−z
ζ ∗
)�

ψ0 ≡
(−z
ζ ∗
)� (

ψ A
0
ψ B
0

)
= f A0 , (2.28)

|ψm | → 0, m →∞, (2.29)

where

M(z, ζ ) =
( −ζ z

− ζ
ζ ∗ z

z2−1
ζ ∗

)
, (2.30)
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Fn(z, ζ ; f ) =
(

f Bn
z
ζ ∗ f

B
n + 1

ζ ∗ f
A
n+1

)
, n ≥ 0. (2.31)

We next solve (2.27), (2.28) by diagonalizing the matrix M(z, ζ ).
The eigenvalues λ of M(z, ζ ) are solutions of the quadratic equation

ζ ∗λ2 +
(
1 + |ζ |2 − z2

)
λ + ζ = 0, (2.32)

whose solutions are:

λ1(z, ζ ) =
− (1 + |ζ |2 − z2

)
+
√(

1 + |ζ |2 − z2
)2 − 4|ζ |2

2ζ ∗
(2.33)

λ2(z, ζ ) =
− (1 + |ζ |2 − z2

)−
√(

1 + |ζ |2 − z2
)2 − 4|ζ |2

2ζ ∗
. (2.34)

When convenient, we suppress the dependence of λ1 and λ2 on ζ and E and occasionally
write λ j or λ j (z). These expressions depend on k‖ through ζ(k‖) = 1 + eik‖ .
Note that |λ1 λ2| = | det M(z, ζ )| = |ζ/ζ ∗| = 1 and hence M(z, ζ ) may have at most
one eigenvalue strictly inside the unit circle in C.

Recall the definitions: δgap(k‖) ≡
∣∣∣1− |ζ(k‖)|

∣∣∣ and δmax(k‖) ≡ 1 + |ζ(k‖)|.
Remark 2.5. We shall see just below that for fixed k‖ �= 2π/3, π or 4π/3: if (a) |z| <
δgap(k‖) or (b) |z| > δmax(k‖) then the discriminant in (2.33), (2.34), (1+|ζ(k‖)|2−z2)2−
4|ζ(k‖)|2, is strictly positive and uniformly bounded away from zero. Therefore, in each
of these cases the expressions in (2.33), (2.34) define single-valued functions λ1(z, ζ )
and λ2(z, ζ ). This property continues to hold for k‖ ∈ I1 ⊂⊂ [0, 2π ]\{2π/3, π, 4π/3}
and either (a′) |�z| < δgap(k‖) and |�z| < η(I1) or (b′) |�z| > δmax(k‖) and |�z| <
η(I1), for some η(I1) > 0 chosen sufficiently small. In the case where z is real and
δgap(k‖) ≤ |z| ≤ δmax(k‖) the discriminant is nonpositive and we do not distinguish
between the roots of (2.32); they comprise a two element set on the unit circle in C.

Lemma 2.6. Assume 0 < |ζ(k‖)| �= 1, i.e. k‖ �= 2π/3, π or 4π/3. Then, the following
hold:

(1) Let z ∈ R and assume that either

|z| < δgap(k‖) or |z| > δmax(k‖). (2.35)

Then, M
(
z, ζ(k‖)

)
has one eigenvalue inside the unit circle and one eigenvalue

outside the unit circle.
(2) Let λ1(z) and λ2(z) denote be the expressions for the eigenvalues of M

(
z, ζ(k‖)

)
displayed in (2.33), (2.34).
(i) If z ∈ R and |z| < δgap(k‖), then |λ1(z; k‖)| < 1 < |λ2(z; k‖)|.
(ii) If z ∈ R and |z| > δmax(k‖), then |λ2(z; k‖)| < 1 < |λ1(z; k‖)|.
(iii) If z ∈ R and δgap(k‖) ≤ |z| ≤ δmax(k‖), then Eq. (2.32) has two roots, λ, satisfying

|λ| = 1.

Author's personal copy



C. L. Fefferman, M. I. Weinstein

(3) Let I1 denote a compact subset of [0, 2π ]\{2π/3, π, 4π/3}. There exists a constant
η > 0, which depends on I1, such that for all k‖ ∈ I1 the following hold:

(a) If z is in the complex open neighborhood

O0(k‖) : |�z| < δgap(k‖) and |�z| < η(I1), (2.36)

then (2.35) holds. Moreover, λ1(z, ζ ) and λ2(z, ζ ) satisfy the strict inequalities of (2.i),
and their magnitudes are uniformly bounded away from 1, provided z remains in a
compact subset of O0(k‖).
(b) If z is in the complex open neighborhood

O+(k‖) : |�z| > δmax(k‖) and |�z| < η(I1), (2.37)

then (2.35) holds and moreover λ1(z, ζ ) and λ2(z, ζ ) satisfy the inequalities of (2.ii) and
their magnitudes are uniformly bounded away from 1, provided z remains in a compact
subset of O+(k‖).

Proof of Lemma 2.6. Part 3 of the Lemma follows from parts (1) and (2) and the expres-
sions (2.33), (2.34) for λ1(z; k‖), and λ2(z; k‖). We now proceed with the proof of
assertions (1) and (2), which assume z ∈ R.

We consider the two cases delineated by the sign of the discriminant:
Case 1

(
1 + |ζ |2 − z2

)2 − 4|ζ |2 > 0 and Case 2:
(
1 + |ζ |2 − z2

)2 − 4|ζ |2 ≤ 0.

Case 1: In this case,
∣∣∣1 + |ζ |2 − z2

∣∣∣ > 2|ζ |. There are two subcases:
(1a) 1 + |ζ |2 − z2 > 2|ζ | and (1b) z2 − 1− |ζ |2 > 2|ζ |.
In subcase (1a), we have z2 < (1−|ζ |)2 and therefore |z| < δgap(k‖) = |1−|ζ ||, where
δgap(k‖) > 0 since k‖ �= 2π/3, 4π/3. In this subcase we also have: −(1 + |ζ |2 − z2) <
−2|ζ | < 0. Therefore,

0 > (2ζ ∗)λ1 = −
(
1 + |ζ |2 − z2

)
+
√(

1 + |ζ |2 − z2
)2 − 4|ζ |2

> −
(
1 + |ζ |2 − z2

)
−
√(

1 + |ζ |2 − z2
)2 − 4|ζ |2 = (2ζ ∗)λ2.

Let λ1 = r1/(2ζ ∗) and λ2 = r2/(2ζ ∗). Therefore, |r1| = |(2ζ ∗)λ1| < |(2ζ ∗)λ2| = |r2|.
Therefore, |λ1|/|λ2| = |r1|/|r2| < 1. Since |λ1| |λ2| = 1,

in subcase (1a), we have |z| < δgap(k‖), and |λ1(z)| < 1 < |λ2(z)|. (2.38)

In subcase (1b) we have |z| > 1 + |ζ(k‖)| = δmax(k‖). Hence, 1 + |ζ |2− z2 < 1 + |ζ |2−
(1 + |ζ |)2 = −2|ζ | < 0 since k‖ �= π . Therefore,

in subcase (1b), we have |z| > δmax(k‖) and |λ2(z)| < 1 < |λ1(z)|. (2.39)

Case 2 Here we have δgap(k‖) ≤ |z| ≤ δmax(k‖). In this case, λ1 = (a + ib)/(2ζ ∗)
and λ2 = (a − ib)/(2ζ ∗) , where a and b are real. Therefore, |λ1|/|λ2| = 1 and hence
|λ1| = |λ2| implying that

in case (2), we have δgap(k‖) ≤ |z| ≤ δmax(k‖) and |λ1(z)| = |λ2(z)| = 1. (2.40)

We note the assertions (2.38), (2.39) and (2.40), hold for any k‖ /∈ {2π/3, π, 4π/3}.
The proof of Lemma 2.6 is now complete.
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We continue now with the proof of Theorem 2.2. Assume that k‖ ∈ [0, 2π ]\
{2π/3, π, 4π/3}, and hence 0 < |ζ(k‖)| �= 1, so that Lemma 2.6 applies. Corre-
sponding to the eigenvalues, λ1(z) and λ2(z) of M(z, ζ ) we can take the corresponding
eigenvectors to be of the form:

ξ1(z) =
(

z
ζ + λ1

)
, ξ2(z) =

(
z

ζ + λ2

)
. (2.41)

Due to the hypothesized constraints on k‖, in particular that k‖ �= 2π/3, 4π/3, we
have ζ �= 0. For small z we find the following asymptotic expansions for λ j (z, ζ ),
which are valid uniformly in k‖ varying over any prescribed compact subset, I1, of
[0, 2π ]\{2π/3, π, 4π/3}:

k‖ ∈ I1 ⊂⊂ (2π/3, 4π/3)\{π} (hence, 0 < |ζ(k‖)| < 1)

�⇒
{
λ1 = λ1(z, ζ ) = −ζ +O(|z|2)
λ2 = λ2(z, ζ ) = −(ζ ∗)−1 + O(|z|2) (2.42)

and

k‖ ∈ I1 ⊂⊂ [0, 2π ]\[2π/3, 4π/3] (equivalently, |ζ(k‖)| > 1)

�⇒
{
λ1 = λ1(z, ζ ) = −(ζ ∗)−1 +O(|z|2)
λ2 = λ2(z, ζ ) = −ζ + O(|z|2). (2.43)

The resolvent (H
TB

� (k‖)− z I )−1 on l2(N0;C2) Let us now restrict k‖ to vary over the
set (2π/3, 4π/3)\{π}, and assume 0 < |z| < δgap(k‖); and construct the resolvent of

H
TB

� (k‖) by solving (2.27), (2.28). The construction of the resolvent for |z| > δmax(k‖)
for all k‖ ∈ [0, 2π ] and all z such that |z| < δgap(k‖), where k‖ ∈ [0, 2π ]\(2π/3, 4π/3)
can be carried out similarly (see remarks below).

For k‖ ∈ (2π/3, 4π/3)\{π}, the expansions (2.42) are valid and we have

ζ + λ1 = O(|z|2), ζ + λ2 = ζ − 1

ζ ∗
+ O(|z|2),

and we have by (2.41) that the eigenvectors satisfy

1

z
ξ1(z) =

(
1
0

)
+ O

C2
(|z|), ξ2(z) =

(
ζ − 1

ζ ∗

)(
0
1

)
+ O

C2
(|z|) (2.44)

for all z small. Hence,
{1
z
ξ1(z), ξ2(z)

}
is a basis of C2 for 0 < |z| < δgap(k‖) and k‖ ∈ (2π/3, 4π/3)\{π}

which does not degenerate in the limit z → 0. Indeed, by (2.41) for z �= 0 this set is
linearly independent if and only if λ1 �= λ2. However, for 0 < |z| < δgap(k‖) we have
|λ1| < 1 < |λ2|.

To solve (2.27), (2.28) we next express Fn = Fn(z, ζ ; f ) in the non-degenerate basis
(2.44). We shall, when convenient, suppress the dependence of Fn on ζ and f :

Fn( f ; z, ζ ) =
(

f Bn
z
ζ ∗ f

B
n + 1

ζ ∗ f
A
n+1

)
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= F (1)n ( f ; z, ζ ) 1
z
ξ1(z) + F (2)n ( f ; E, ζ ) ξ2(z). (2.45)

We also seek a solution as an expansion in the basis (2.44):

ψn = ψ(1)n
1

z
ξ1(z) + ψ(2)n ξ2(z), (2.46)

where ψ(1)n = ψ(1)n (z) and ψ
(2)
n = ψ(2)n (z) are to be determined. Then, we obtain the

two decoupled first order difference equations:

ψ
(1)
n+1 = λ1(z)ψ

(1)
n + F (1)n (z), n ≥ 0, (2.47)

ψ
(2)
n+1 = λ2(z)ψ

(2)
n + F (2)n (z), n ≥ 0, (2.48)

with boundary condition (2.28) to be expressed in terms of ψ( j)0 , and F ( j)0 , j = 1, 2:

1

z

(−z
ζ ∗
)�

ξ1(z) ψ
(1)
0 +

(−z
ζ ∗
)�

ξ2(z) ψ
(2)
0 = f A0 . (2.49)

We now proceed to solve the decoupled system (2.47), (2.48) and then impose
the boundary condition (2.49). Recall our assumption that 0 < |ζ | < 1, i.e.
k‖ ∈ (2π/3, 4π/3)\{π} and therefore for z real and |z| < δgap(k‖), we have that
|λ1(z)| < 1 < |λ2(z)|. In this case, the most general solution of (2.47), which decays
as n → +∞ is:

ψ(1)n (z) =
n−1∑
j=0

(λ1(z))
n−1− j F (1)j (z) + μ (λ1(z))

n (2.50)

where μ is an arbitrary constant to be determined and F (1)j ( f ; z, ζ ), F (2)j ( f ; z, ζ ) are
defined by (2.45).

Furthermore, the most general solution of (2.48) which decays as n → +∞ is:

ψ(2)n (z) = −
∞∑
j=n

(λ2(z))
n− j−1 F (2)j (z). (2.51)

Finally, we now turn to the boundary condition (2.49). Using (2.50) and (2.51) for
n = 0 in (2.49) we find:

μ
1

z

(−z
ζ ∗
)�

ξ1(z) −
(−z
ζ ∗
)�

ξ2(z)
∞∑
j=0

(λ2(z))
− j−1 F (2)j (z, ζ ; f ) = f A0 .

(2.52)

By (2.32), the quadratic equation for the roots λ j , we find:

(−z
ζ ∗
)�

ξ j (z) =
(−z
ζ ∗
)� (

z
ζ + λ j (z)

)
= −ζ + λ j (z)

λ j (z)
, j = 1, 2. (2.53)
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Claim:Assume z �= 0 and z ∈ R. If λ(z) is any root of (2.32), then ζ+λ(z)
λ(z) �= 0. It follows

from this claim and (2.53) that the coefficient of μ in (2.52) is non-zero and hence

if z �= 0 we can solve (2.49) for μ = μ(z, ζ ; f ).
To prove the above Claim we first note that λ �= 0. Indeed, if λ = 0 then (2.32) would
then imply ζ = 1 + eik‖ = 0; this contradicts our assumption that k‖ �= π . Thus,
λ(z) �= 0. Furthermore, we claim that ζ + λ(z) �= 0. Again, using (2.32) we have that if
ζ + λ = 0 then ζ z2 = 0. This contradicts the assumptions that z �= 0 and ζ �= 0.

It follows from this discussion that for z �= 0 and k‖ �= π :

μ( f ; z, ζ ) = − z λ1(z)

ζ + λ1(z)

[
f A0 − ζ + λ2(z)

λ2(z)

∞∑
j=0

(λ2(z))
− j−1 F (2)j ( f ; z, ζ )

]
.

(2.54)

Therefore if 0 < |z| < δgap(k‖) and k‖ ∈ (2π/3, 4π/3)\{π}, we can solve for
μ = μ(z, ζ ; f ). We obtain for any f ∈ l2(N0;C2), the unique solution of (2.27), (2.28)
and (2.29)

ψ = {ψn}n≥0, with ψn tending to zero as n →∞, is given by

ψn =
⎡
⎣

n−1∑
j=0

(λ1(z, ζ ))
n−1− j F (1)j ( f ; z, ζ ) + μ(z, ζ ; f ) (λ1(z, ζ ))n

⎤
⎦ 1

z
ξ1(z, ζ )

−
⎡
⎣

∞∑
j=n

(λ2(z, ζ ))
n− j−1 F (2)j ( f ; z, ζ )

⎤
⎦ ξ2(z, ζ ), n ≥ 0 , (2.55)

whereμ = μ(z, ζ ; f ) is obtained from (2.52). By (2.45), we may express F (1)j and F (2)j
as

F (1)j = α1(z, ζ ) f Bj + α2(z, ζ ) f Aj+1,

F (2)j = β1(z, ζ ) f Bj + β2(z, ζ ) f Aj+1, (2.56)

where the coefficients are bounded and smooth over the ranges of z and k‖ under con-
sideration.

Next, introduce the discrete vector-valued kernel, depending on parameters α and β:

K(n, j;α, β) =

⎧⎪⎨
⎪⎩

α λ1(z, ζ )n−1− j 1
z ξ1(z, ζ ) , 0 ≤ j ≤ n − 1

−β λ2(z, ζ )n−1− j ξ2(z, ζ ) , n ≤ j <∞.
(2.57)

Then, we have

ψn =
∞∑
j=0

K(n, j;α1, β1) f Bj +
∞∑
j=0

K(n, j;α2, β2) f Aj+1

+ μ( f ; z, ζ ) (λ1(z, ζ ))n 1

E
ξ1(z, ζ ), (2.58)

where μ( f ; z, ζ ) is given by the linear functional of f , displayed in (2.54).
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Proposition 2.7. Let I1 denote a compact subset of (2π/3, 4π/3)\{π} and let η(I1) > 0,
denote the constant appearing in part (3) of Lemma 2.6.

(1) There is a constant, C, depending on I1 such that for all complex energies, z ∈
O0(k‖)\{0} ( see (2.36) ), the resolvent operator:

f ∈ l2(N0;C2) �→ ψ = {ψn}n≥0 ≡
(
H

TB

� (k‖)− z
)−1

f, (2.59)

given by the expression in (2.58), defines a bounded linear operator on l2(N0;C2)

with
∥∥∥
(
H

TB

� (k‖)− z
)−1

f
∥∥∥
l2(N0;C2)

≤ C
1

|z| ‖ f ‖l2(N0;C2) , (2.60)

where the constant, C, is independent of depends on the compact set I1.

(2) The mapping z �→
(
H

TB

� (k‖)− z
)−1

is meromorphic for z varying in the open set

O0(k‖) into B(l2(N0;C2)), the space of bounded linear operators on l2(N0;C2),
with only pole at z = 0. For z ∈ O0(k‖)\{0} we have

(
H

TB

� (k‖)− z I
)−1

f

= 1

z

〈
ψTB,bd(k‖), f

〉
l2(N0;C2)

ψTB,bd(k‖) + Greg(z; k‖) f, (2.61)

where z �→ Greg(z; k‖) is an analytic map from O0(k‖) to B(l2(N0;C2)).

(3) H
TB

� (k‖)ψ = f ∈ l2(N0;C2) has a solution in the space l2(N0;C2) if and only if〈
ψTB,bd(k‖), f

〉
l2(N0;C2)

= 0.

Proof of Proposition 2.7. We fix I1 ⊂⊂ (2π/3, 4π/3)\{π} and take E ∈ O0(k‖)\{0}.
To bound the resolvent we estimate the expression in {ψn}n≥0 displayed in (2.58) in
l2(N0;C2).

Webeginwith an estimate of the latter term in (2.58):μ( f ; z, ζ ) (λ1(z, ζ ))n 1
z ξ1(z, ζ ).

From the expression for μ in (2.54) and the definition of F (2)j in (2.45) (recall F (1)j

and F (2)j are coordinates of Fj ∈ C
2, also given in (2.45)) with respect to the basis

{ 1z ξ1(z), ξ2(z)}),wehave that |μ( f ; z, ζ )| � | f A0 |+
∑∞

j=0 |λ2|− j−1
(
| f Bj | + | f Aj+1|

)
≤

C1(z, ζ ) ‖ f ‖l2(N0;C2), where C1(z, ζ ) is a finite constant which depends on z and ζ in
the ranges specified above. The constant C1(z, ζ ) is bounded for z bounded away from
z = 0 and k‖ ∈ J1. As we shall see below, for k‖ ∈ J1, there is pole of order one as
E → 0.

Therefore, applying Young’s inequality to the first two terms in (2.58) we obtain:

‖ψ‖
l2(N0;C2)

≤
(
C(K, z, ζ ) + C1(z, ζ )

)
‖ f ‖

l2(N0;C2)
,

where

C(K, z, ζ ) = max
r=1,2

(
sup
n≥0

∞∑
j=0

|K(n, j, αr , βr )| + sup
j≥0

∞∑
n=0

|K(n, j, αr , βr )|
)
, (2.62)
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and we recall from (2.56) that αr and βr are smooth and bounded functions of z and ζ .
Estimating the first sum in (2.62), we have for r = 1, 2:

∞∑
j=0

|K(n, j, αr , βr )| � |αr (z, ζ )|
n−1∑
j=0

|λ1(z, ζ )|n−1− j + |βr (z, ζ )|
∞∑
j=n

|λ2(z, ζ )|n−1− j

� |αr (z, ζ )| (1− |λ1(z, ζ )|)−1 + |βr (z, ζ )| (|λ2(z, ζ )| − 1)−1.

(2.63)

The bound (2.63) holds, for r = 1, 2 and any fixed z ∈ O0(k‖)\{0}, uniform in k‖ ∈ I1.
The second sum in (2.62) is bounded similarly. Therefore, we have for all k‖ ∈ I1 and

any z ∈ O0(k‖), the resolvent operator: f �→
(
H

TB

� (k‖)− z
)−1

f (see (2.59)) is a

bounded linear operator on l2(N0;C2).

The next step in the proof of Proposition 2.7 requires us to consider the resolvent for
small complex z in O0(k‖)\{0}.

2.4. The resolvent
(
H

TB

� (k‖)− z I
)−1

for z near zero energy. Since there is a simple

zero energy eigenstate for each k‖ ∈ (2π/3, 4π/3), we expect a simple pole of the resol-
vent at z = 0. We now make this explicit by expanding the resolvent in a neighborhood
of z = 0 for k‖ ∈ (2π/3, 4π/3).

In order to work with the above detailed calculations, we restrict our discussion to
the case where k‖ �= π (ζ �= 0). Consider first the relation (2.52), which determined the
free parameter μ = μ( f ; z, ζ ). We shall simplify (2.52) using the following expansions
which hold for |z| small:

(−z
ζ ∗
)� 1

z
ξ1(z) =

(−z
ζ ∗
)� 1

z

(
z

ζ + λ1(z)

)
= −1

z

ζ + λ1(z)

λ1(z)
= z

|ζ |2 − 1
+O(|z|3)

(2.64)
(−z
ζ ∗
)�

ξ2(z) =
(−z
ζ ∗
)� (

z
ζ + λ2(z)

)
= −ζ + λ2(z)

λ2(z)
= |ζ |2 − 1 + O(|z|2).

(2.65)

We also have from (2.45) that

Fn( f ; z, ζ ) =
(

f Bn
z
ζ ∗ f

B
n + 1

ζ ∗ f
A
n+1

)

= f Bn
1

z
ξ1(z) + f An+1

1

ζ ∗
·
(
ζ − 1

ζ ∗

)−1

ξ2(z) + O (|z| [ | fn| + | fn+1| ]) .

Therefore, for |z| small

F (1)n ( f ; z, ζ ) = f Bn + O (|z| [ | fn| + | fn+1| ]) ,
F (2)n ( f ; z, ζ ) = 1

|ζ |2 − 1
f An+1 + O (|z| [ | fn| + | fn+1| ]) . (2.66)
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Substitution of the expansions (2.64), (2.65) and (2.66) into (2.52), we obtain:

z

|ζ |2 − 1
μ − (|ζ |2 − 1)

∞∑
j=0

(
− 1

ζ ∗

)−( j+1) 1

|ζ |2 − 1
f Aj+1

+ O (|z| ‖ f ‖l2(N0;C2)

)
+ O (|z| |μ|) = f A0 . (2.67)

Hence,

z

|ζ |2 − 1
μ = f A0 +

∞∑
j=0

(
− 1

ζ ∗

)−( j+1)
f Aj+1 + O (|z| ‖ f ‖l2(N0;C2)

)

=
∞∑
j=0

(−ζ ∗) j f Aj + O (|z| ‖ f ‖l2(N0;C2)

)
. (2.68)

Recall that we have assumed k‖ ∈ I1 ⊂⊂ (2π/3, 4π/3)\{π} (thus |ζ(k‖)|2 − 1 �=
0) and z ∈ O0(k‖)\{0}. Solving (2.68) for μ( f ; z, ζ ) and using the expression for

{ ψTB,bd
j (k‖) } j≥0, the zero energy eigenstate of H

TB

� in (2.17), we obtain:

μ(z, ζ ; f ) = 1

z

√
1− |ζ |2

∞∑
j=0

ψ
TB,bd
j (k‖) f Aj + O (‖ f ‖l2(N0;C2)

)

= 1

z

√
1− |ζ |2

〈
ψTB,bd(k‖), f

〉
l2(N0;C2)

+ O (‖ f ‖l2(N0;C2)

)
. (2.69)

The error bound in (2.69) is uniform in k‖ ∈ I1\{π} and bounds an expression which
is analytic in z ∈ O0(k‖)\{0}. From the previous discussion we conclude the following.
Fix any k‖ ∈ I1 ⊂⊂ (2π/3, 4π/3)\{π}. Let O0(k‖) denote the open neighborhood in C
defined in (2.36). Then, for all z in O0(k‖), the mapping

z ∈ O0(k‖) �→
(
H

TB

� (k‖)− z I
)−1

is meromorphic with values in l2(N0;C2)

with only one pole, located at z = 0. Moreover, for z ∈ O0(k‖)\{0} we have
(
H

TB

� (k‖)− z I
)−1

f

= 1

z

〈
ψTB,bd(k‖), f

〉
l2(N0;C2)

ψTB,bd(k‖) + Greg(z; k‖) f, (2.70)

where z �→ Greg(z; k‖) is an analytic map from O0(k‖) to B(l2(N0;C2)). Thus we have
proved part (3a) of Theorem 2.2, except for the case k‖ = π . We leave this as an exercise
for the reader.

Note that for all k‖ ∈ (2π/3, 4π/3), we have that

H
TB

� (k‖)ψ = f ∈ l2(N0;C2) is solvable in l2(N0;C2)

⇐⇒
〈
ψTB,bd(k‖), f

〉
l2(N0;C2)

= 0. (2.71)

Author's personal copy



Sharply Terminated Honeycomb Structures

Thus we have proved all assertions of Theorem 2.2 for k‖ ∈ I1 ( I1 arbitrary compact
subset of (2π/3, 4π/3), and all E in the open complex neighborhood O0(k‖), defined
in (2.36).

It remains to address the cases:

(A) k‖ ∈ [0, 2π ]\(2π/3, 4π/3) and z ∈ O0(k‖), defined in (2.36) and
(B) k‖ ∈ [0, 2π ] and z ∈ O+(k‖), defined in (2.37).

In case (A), Lemma 2.6 tells us that |λ1(z)| < 1 < |λ2(z)|. Hence, the construction of
the resolvent is as above, and gives the map f �→ ψ defined by (2.55). However now,
since z = 0 is not an eigenvalue, μ = μ( f ; z, ζ ) does not have a pole, as was the case
in for for k‖ ∈ (2π/3, 4π/3); see (2.54).
In case (B), Lemma 2.6 tells us that |λ2(z)| < 1 < |λ1(z)|. The construction of the
resolvent is analogouswith the roles of the eigenpairs: (λ1, ξ1) and (λ2, ξ2) interchanged.
Since inO+(k‖) |z| > |�z| > δmax(k‖) ≥ 1 and the only possible eigenvalue is at z = 0,
the analogue of the μ( f ; z, ζ )-term in (2.55) does not have a pole in this case as well.

Therefore, in both cases (A) and (B) the mapping z �→
(
H

TB

� − z I
)−1

is analytic with

values in B(l2(N0;C2)).
Finally, using part (2) of Lemma 2.6, one can check that H

TB

� (k‖) − z I is not
invertible for δgap(k‖) ≤ |z| ≤ δmax(k‖) since the eigenvalues of M(z, ζ ) satisfy:

|λ1(z, ζ )| = |λ2(z, ζ )| = 1. Such energies z comprise the essential spectrumof H
TB

� (k‖),
σess

(
H

TB

� (k‖)
)
. The details are left to the reader.

This completes the proof of Theorem 2.2. ��

3. Setup for the Continuum Problem; Zigzag Edge Hamiltonian and the Zigzag
Edge-State Eigenvalue Problem

In this section we begin our detailed formulation and discussion of the continuum edge
state eigenvalue problem. For this wemust first discuss the atomic, bulk and edge Hamil-
tonians: Hλatom, H

λ
bulk and Hλ� .

3.1. The atomic Hamiltonian and its ground state. We work with the class of “atomic
potential wells ” introduced in [27]. Fix a potential V0(x) on R

2 with the following
properties.

(PW1) −1 ≤ V0(x) ≤ 0, x ∈ R
2.

(PW2) supp V0 ⊂ {x ∈ R
2 : |x| < r0}, where r0 < rcr. Here, rcr is a universal constant

defined in [27] satisfying 0.33|e| ≤ rcr < 0.5|e|, and |e| = |vB − vA| = 1/
√
3

is the distance between one vertex in H and any nearest neighbor.
(PW3) V0(x) is invariant under a 2π/3 (120◦) rotation about the origin, x = 0.
(PW4) V0(x) is inversion-symmetric with respect to the origin; V0(−x) = V0(x).

Consider the self-adjoint “atomic” Hamiltonian: Hλatom = −� + λ2V0(x) acting in
L2(R2). Let pλ0 (x), E

λ
0 , respectively, be the ground state eigenfunction and its strictly

negative ground state eigenvalue:
(
−� + λ2V0(x) − Eλ0

)
pλ0 (x) = 0, pλ0 ∈ L2(R2), Eλ0 < 0. (3.1)
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This eigenpair is simple and, by the symmetries of V0(x), the ground state pλ0 (x) is
invariant under a π/3 (60◦) rotation about the origin. We may choose pλ0 (x) so that
pλ0 (x) > 0 for all x ∈ R

2 (see [60]) and
∫
R2 |pλ0 (x)|2 dx = 1.

Since V0 ∈ L∞(R2) and −�pλ0 = (E − λ2V0)pλ0 , it follows that pλ0 ∈ H2(R2).
Recall the hopping coefficient ρλ given by:

ρλ =
∫
|y|<r0

pλ
0
(y)λ2 |V0(y)| pλ0 (y− e) dy. (3.2)

By Proposition 4.1 of [27] we have, under hypotheses (PW1), . . . , (PW4) and prop-
erty (GS) (just below) on V0(x) the upper and lower bounds for large λ :

e−c−λ � ρλ � e−c+λ (3.3)

for some constants: 0 < c+ < c− which depend on V0 but not on λ.

Remark 3.1. The edge states we construct will have energies Eλ = Eλ0 + �λ, with
ρ−1
λ |�λ| � 1. In preparation for our later discussion, it is useful at this stage to introduce

a positive constant, ĉ, such that ĉ > c− (see (3.3)) and to observe that

|�λ| < e−ĉλ �⇒ ρ−1
λ |�λ| < e−(ĉ−c−)λ ↓ 0 as λ ↑ ∞.

In addition to hypotheses (PW1), . . . , (PW4) on V0(x), we assume the following
two spectral properties of Hλatom = −� + λ2V0 acting on L2(R2):

(GS) Ground state energy upper bound For λ large, Eλ0 , the ground state energy of
−� + λ2V0(x), satisfies the upper bound

Eλ0 ≤ −cgs λ
2. (3.4)

Here, cgs is a strictly positive constant depending on V0. A simple consequence of
the variational characterization of Eλ0 is the lower bound Eλ0 ≥ −‖V0‖L∞λ

2 = −λ2.
However, the upper bound (3.4) requires further restrictions on V0. Using the condition
(GS), we can show that pλ0 , satisfies the following pointwise bound:

|pλ0 (x)| ≤ C1

(
λ 1|x|<r0+δ0 + e−c1λ|x|

)
(3.5)

where supp(V0) ⊂ B(0, r0), δ0 > 0 is arbitrary, and C1 and c1 are constants that depend
on V0, r0 and δ0; see Corollary 15.5 of [27].

(EG) Energy gap property For λ > 0 sufficiently large, there exists cgap > 0, inde-
pendent of λ, such that if ψ ∈ H2(R2) and

〈
pλ0 , ψ

〉
L2(R2)

= 0, then

〈 (
−� + λ2V0 − Eλ0

)
ψ,ψ

〉
L2(R2)

≥ cgap ‖ψ‖2
L2(R2)

. (3.6)

In Section 4.1 of [27] we discuss examples of potentials for which−�+λ2V0 satisfies
(GS) and (EG). These include (i) V0 equal to a smooth potential well, which is of compact
support and having a single non-degenerate minimum, and (ii) V0 equal to a piecewise
constant cylindrical potential well, with value −1 inside a disc and 0 outside.
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3.2. Review of terminology and formulation. We conclude this section with a review of
some terminology and the formulation of the edge state eigenvalue problem. Consider
the relevant self-adjoint Hamiltonians.

(1) Continuum bulk Hamiltonian, Hλbulk:

Hλbulk ≡ −� + λ2V (x) acting on L2(R2). (3.7)

Here, V (x), the bulk periodic potential, is defined to be the sum of all translates of
atomic wells, V0(x−v), where v ranges overH: V (x) =∑v∈H V0(x−v); see (1.10).
The potential V (x) is a honeycomb lattice potential in the sense of Definition 2.1 of
[26]; V is real-valued, and with respect to an origin placed at the center of a regular
hexagon of the tiling of R2

x: V is inversion symmetric and rotationally invariant by
2π/3.

(2) Continuum zigzag edge Hamiltonian, Hλedge: The potential for a honeycomb structure
interfaced with the vacuum along a sharp interface with direction v2 ∈ � (parallel to
the zigzag edge) is obtained by summing translates of V0 over the truncated structure,
H�, defined in (1.11):

V�(x) =
∑
v∈H�

V0(x − v) . (3.8)

The Hamiltonian for the truncated structure is given by

Hλ
edge

≡ −� + λ2V�(x), acting on L2(R2) , (3.9)

and its centering at the ground state energy, Eλ0 , of H
λ
atom is denoted:

Hλ� ≡ −� + λ2V�(x)− Eλ0 acting on L2(R2). (3.10)

Since Hλ
edge

and Hλ� are invariant under the translation invariance: x �→ x + v2, these

operators act in L2
k‖(	), 	 = R

2/Zv2.

(3) The k‖-dependent Edge Hamiltonian, Hλ� (k‖), acting in L2(	) is given by:

Hλ� (k‖) ≡ −
(
∇ + i

k‖
2π

K2

)2

+ λ2V�(x) − Eλ0 . (3.11)

Finally we recall that the Zigzag Edge state Eigenvalue Problem is given by (1.16),
or equivalently, (1.17). With E = Eλ0 +�, we have:

(
Hλ� (k‖) − �

)
ψ = 0 , ψ ∈ L2

k‖ . (3.12)
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4. A Natural Subspace of L2
k‖

(�)

Define, for all n ≥ 01

vnA ≡ vA + nv1, vnB ≡ vB + nv1, (4.1)

where v0A = vA and v0B = vB . The cylinder 	 = R
2/Zv2 has fundamental domain

D	 ⊂ R
2, which may be expressed as the union of paralleograms:

D	 = ∪n≥0 Dn ∪ D−1 as in Fig. 1. (4.2)

Each parallelogram Dn with n ≥ 0 contains two atomic sites: vnA and vnB . The infinite
parallelogram, D−1, contains no atomic sites. A fundamental cell of the cylinder 	,
D	 , and its decomposition into parallelograms Dn , for n ≥ −1 is depicted in Fig. 1.
The zigzag sharp truncation ofHmay be expressed as a union over “vertical translates”
(translates with respect to v2) of sites withinD	 :

H� = ∪n2∈Z ∪n1≥0
{
vn1A + n2v2 , v

n1
B + n2v2

}
.

We next introduce approximate k‖-pseudo-periodic solutions of Hλ� � = 0 via k‖-
pseudo-periodization of the atomic ground state, pλ0 :

Definition 4.1. Fix k‖ ∈ [0, 2π ] and I = A, B. For each n ∈ N0 ≡ {0, 1, 2, . . . }, define

p
λ

k‖,I
[n](x) ≡

∑
m2∈Z

pλ
0
(x − vnI − m2v2) e

−i k‖2πK2·(x−vnI−m2v2)

= e−i
k‖
2πK2·(x−vI )

∑
m2∈Z

eik‖m2 pλ
0
(x − vnI − m2v2) (4.3)

and

Pλ
k‖,I

[n](x) ≡ ei
k‖
2πK2·(x−vI ) pλ

k‖,I
[n](x) =

∑
m2∈Z

eik‖m2 pλ
0
(x − vnI − m2v2). (4.4)

The function x �→ p
λ

k‖,I
[n](x) is defined on the cylinder 	, i.e. p

λ

k‖,I
[n](x + v2) =

p
λ

k‖,I
[n](x). To see this, replace x by x + v2 and redefine the summation index. Further-

more, we note that: Pλ
k‖,I

[n](x + v2) = eik‖ Pλ
k‖,I

[n](x).
The functions: pλ

k‖,I
[n], I = A, B, n ≥ 0, form a nearly orthonormal set in L2(	)

for large λ. In particular, we have:

Proposition 4.2 (Near orthonormality of {pλ
k‖,I

[n]}). Fix k‖ ∈ [0, 2π ] and λ > 0.

(1) For all n ∈ N0, we have pλ
k‖,I

[n] ∈ L2(	) and Pλ
k‖,I

[n] ∈ L2
k‖ .

Furthermore, there exist constants λ�, c > 0 such that for all λ ≥ λ�:
1 The labeling convention of A-points and B-sublattice points used in the present article differs from that

used in [27]. This has no effect on the results in this article or in [27].
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(2) For n ∈ N0, I = A, B
∣∣∣
〈
p
λ

k‖,I
[n], pλ

k‖,J
[n]
〉
L2(	)

− δI J

∣∣∣ � e−cλ , (4.5)

where δI J denotes the Kronecker delta symbol.
(3) For I = A, B, m, n ∈ N0 with m �= n and all λ > 0 sufficiently large:

∣∣∣
〈
pλ
k‖,I

[m], pλ
k‖,J

[n]
〉
L2(	)

∣∣∣ � e−cλ|m−n|. (4.6)

Assertions (4.5) and (4.6) hold as well with pλ
k‖,I

[m] replaced by Pλ
k‖,I

[m], defined in

(4.4), and with L2(	) replaced by L2
k‖(R

2). Here, λ� depends only on V .

This proposition follows from the normalization and decay properties of the atomic
ground state, pλ0 ; the details are omitted.

We conclude this section by showing that the functions pλ
k‖,I

[n], I = A, B, n ≥ 0,

are nearly annihilated by Hλ� (k‖).

Proposition 4.3. There exist positive constants λ� (large) and c > 0, such that for all
λ > λ� and all I = A, B and n ≥ 0:

∣∣∣ Hλ� (k‖)pλk‖,I [n](x)
∣∣∣ � e−c|x−nv1| e−cλ, x ∈ D	 (4.7)

∥∥∥Hλ� (k‖)pλk‖,I [n]
∥∥∥
L2(	)

� e−cλ. (4.8)

Proof of Proposition 4.3. We first note that (4.8) follows from (4.7) by integrating the
square of bound (4.7) over a fundamental domain (strip), D	 . Thus we focus on the

pointwise bound (4.7). The identity ∇x = ei
k‖
2πK2·x (∇ + i

k‖
2πK2)e−i

k‖
2πK2·x and (3.1)

imply that for arbitrary v̂ ∈ R
2:

(
−
(
∇ + i

k‖
2π

K2

)2

+ λ2V0(x − v̂) − Eλ0

)
e−i

k‖
2πK2·(x−v̂) pλ0 (x − v̂) = 0

(4.9)

we shall apply (4.9) for v̂ ∈ H�.
As a first step toward obtaining the bound (4.7) for Hλ� (k‖)pλk‖,I [n](x), we observe

that

for x ∈ D	, V�(x) =
∑

J=A,B

∑
n1≥0

V0(x − vJ − n1v1).

Therefore, for x ∈ D	 we have

Hλ� (k‖)pλk‖,I [n](x) =
∑
m2∈Z

Hλ� (k‖) e−i
k‖
2πK2·(x−vnI−m2v2) pλ0 (x − vnI − m2v2)

= Hλ� (k‖) e−i
k‖
2πK2·(x−vnI ) pλ0 (x − vnI )
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+
∑

m2∈Z\{0}

(
−
(
∇ + i

k‖
2π

K2

)2

− Eλ0

)
e−i

k‖
2πK2·(x−vnI−m2v2)

pλ0 (x − vnI − m2v2)

+
∑

m2∈Z\{0}
λ2V�(x) e−i

k‖
2πK2·(x−vnI−m2v2) pλ0 (x − vnI − m2v2).

In the second equality just above we have split off the m2 = 0 and m2 �= 0 con-
tributions. The first term of the m2 �= 0 contribution vanishes identically for x ∈ D	 .
Indeed, Eq. (4.9) for pλ0 implies that this term is a sum of terms, each containing a factor
λ2V0(x − vnI − m2v2) for some m2 ∈ Z\{0}. Each of these terms vanishes since the
constraint: m2 �= 0 implies they are all supported outside ofD	 . Therefore,

Hλ� (k‖)pλk‖,I [n](x) = Hλ� (k‖) e−i
k‖
2πK2·(x−vnI ) pλ0 (x − vnI )

+
∑

m2∈Z\{0}
λ2V�(x) e−i

k‖
2πK2·(x−vnI−m2v2) pλ0 (x − vnI − m2v2).

(4.10)

We may now use (4.9) with v̂ = vnI = vI + nv1 to simplify the first term on the right
hand side of the previous equation. For all x ∈ D	 with n ≥ 0 and I, J ∈ {A, B} with
I �= J , we obtain:

Hλ� (k‖)pλk‖,I [n](x) =

⎛
⎜⎜⎝ λ2

∑
n1≥0
n1 �=n

V0(x − vn1I )

⎞
⎟⎟⎠ e−i

k‖
2πK2·(x−vnI ) pλ0 (x − vnI )

+

⎛
⎝ λ2

∑
n1≥0

V0(x − vn1J )

⎞
⎠ e−i

k‖
2πK2·(x−vnI ) pλ0 (x − vnI )

+
∑

m2∈Z\{0}
λ2V�(x) e−i

k‖
2πK2·(x−vnI−m2v2) pλ0 (x − vnI − m2v2).

Thus,
∣∣∣ Hλ� (k‖)pλk‖,I [n](x)

∣∣∣

≤

⎛
⎜⎜⎝ λ2

∑
n1≥0
n1 �=n

|V0(x − vn1I )|

⎞
⎟⎟⎠ pλ0 (x − vnI ) +

⎛
⎝ λ2

∑
n1≥0

|V0(x − vn1J )|
⎞
⎠ pλ0 (x − vnI )

+
∑

m2∈Z\{0}
λ2|V�(x)| pλ0 (x − vnI − m2v2)

≡ T1(x; n) + T2(x; n) + T3(x; n). (4.11)

To bound the first term of (4.11), we note that for n1 �= n

|V0(x − vn1I )| pλ0 (x − vnI ) ≤ ‖V0‖∞ 1|x−v
n1
I |<r0 pλ0 (x − vnI )
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� 1|x−v
n1
I |<r0 e

−cλ|x−vnI |

� 1|x−v
n1
I |<r0 e

− c
2λ|x−vnI | e−c̃λ|n1−n|.

Summing over n1 ≥ 0 with n1 �= n we obtain T1(x; n) � e−c′λ e−c′′λ|x−vnI |. Very
similarly we obtain: T2(x; n) � e−c′λ e−c′′λ|x−vnI |. We finally consider T3(x; n). For
x ∈ D	 ,

T3(x; n) � λ2 ‖V0‖∞
∑

m2∈Z\{0}
e−cλ|x−vnI | e−cλ|m2| � e−c′λ e−c′′λ|x−vnI |.

This completes the proof of Proposition 4.3. ��

4.1. The subspace XλAB(k‖). We introduce the closed subspace of L2(	):

XλAB(k‖) = the orthogonal complement in

L2(	) of span
{
p
λ,I

k‖
[n] : I = A, B; n ≥ 0

}
. (4.12)

We shall sometimes suppress the dependence on λ and writeXAB(k‖). The space L2(	)

may be decomposed as the orthogonal sum of subspaces:

L2(	) = span
{
p
λ

k‖,I
[n] : I = A, B; n ≥ 0

}
⊕ XAB(k‖). (4.13)

We also introduce the orthogonal projection onto XAB(k‖):

�AB = �AB (k‖) : L2(	)→ XAB(k‖). (4.14)

Since the set
{
p
λ

k‖,I
[n] : I = A, B; n ≥ 0

}
is only nearly-orthonormal for λ large

(Proposition 4.2), we make use of the following:

Proposition 4.4. There exists λ� > 0 such that for all λ > λ� the following holds. Fix
k‖ ∈ [0, 2π ].
(1) Then, for F ∈ L2(	) we have that

F ≡ 0 ⇐⇒ �AB(k‖)F = 0 and
〈
pλ
k‖,I

[n], F
〉
L2(	)

= 0, n ≥ 0, I = A, B.

(2) Any ψ ∈ L2(	) may be expressed in the form:

ψ =
∑

J=A,B

∑
n≥0
α J
n pλ

k‖,J
[n] + ψ̃, (4.15)

where α = {(αA
n , α

B
n )

�}n≥0 ∈ l2(N0;C2) and �AB (k‖)ψ̃ = ψ̃ ∈ XλAB(k‖).

The proof is similar to that of Lemma 8.2 on page 31 of [27] and is omitted.
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5. Energy Estimates and the Resolvent

The followingproposition concerns the invertibility of�AB (k‖)
(
Hλ� (k‖)−�

)
�AB (k‖)

onXAB(k‖) for λ sufficiently large. This will facilitate reduction of the edge state eigen-
value problem, (1.16) or (1.17), to a problem on the linear space span

{
pλ
k‖,J

[n] : I =
A, B, n ≥ 0

}
; see (4.12). The proof uses arguments analogous to those in [27]. The

necessary modifications in the strategy are discussed at the end of this section.

Proposition 5.1. There exist constantsλ� > 0 (sufficiently large) and c′ > 0 (sufficiently
small), such that for all λ > λ�, k‖ ∈ [0, 2π ] and |�| ≤ c′ the following hold:

(1) For all ϕ ∈ XAB (k‖), the equation

�AB (k‖)
(
Hλ� (k‖)−�

)
ψ = ϕ , (5.1)

has a unique solution

ψ ≡ Kλ� (�, k‖)ϕ ∈ XAB ∩ H2(	).

Thus, Kλ� (�, k‖) is the inverse of�AB (k‖)
(
Hλ� (k‖)−�

)
�AB (k‖) or equivalently

�AB (k‖)
(
Hλ� (k‖)−�

)
acting on XAB .

(2) The mapping ϕ �→ Kλ� (�, k‖)ϕ is a bounded linear operator :

Kλ� (�, k‖) : XAB (k‖)→ H2(	) ∩ XAB (k‖). (5.2)

(3) We have the following operator norm bounds on Kλ� (�, k‖):
∥∥∥ Kλ� (�, k‖)

∥∥∥
XAB→XAB

� 1 (5.3)

λ−1
∥∥∥ ∇x Kλ� (�, k‖)

∥∥∥
XAB→XAB

� 1 (5.4)

∥∥∥ Kλ� (�, k‖)
∥∥∥
XAB→H2(	)∩XAB

≤ C(λ, k‖). (5.5)

(4) Furthermore, this mapping depends analytically on � ∈ C for |�| < c′, and for all
such �:

∥∥∥ ∂� Kλ� (�, k‖)
∥∥∥
XAB→XAB

� 1. (5.6)

(5) For real� ∈ (−c′, c′),Kλ� (�, k‖) is self-adjoint on the Hilbert spaceXAB, endowed

with the L2(	) inner product.

A key step to proving Proposition 5.1 is the following energy estimate on the space
XAB(k‖):

Author's personal copy



Sharply Terminated Honeycomb Structures

Proposition 5.2 (Energy Estimate). Fix k‖ ∈ [0, 2π ]. There exists λ� > 0, independent
of k‖, and a constant C� > 0 such that the following holds for all λ ≥ λ�. Let ψ ∈
XAB(k‖) ∩ H2(	). That is,

〈
pλ
k‖,J

[n], ψ
〉
L2(	)

= 0, n ≥ 0, J = A, B. (5.7)

Then,

‖ Hλ� (k‖)ψ ‖2
L2(	)

≥ c�
(
‖ψ‖2

L2(	)
+ λ−2 ‖∇ψ‖2

L2(	)

)
. (5.8)

The constant c� can be taken independent of k‖ but it does depend on properties of the
atomic potential, V0, in particular on the constants cgs and cgap; see (3.4) and (3.6).

The proof of Proposition 5.1 follows the general structure of the proof of the energy
estimates in [27]. We now discuss the modifications in these arguments, which are
required to prove Propositions 5.2 and 5.1. We follow the discussion of Section 9 of [27]
with 	 = R

2/Zv2 playing the role of R2/�, and with the approximate eigenfunctions
pλ
k‖,I

[n] ∈ L2(	) playing the role of pλ
k,I

∈ L2(R2/�) in [27] .

For n ≥ 0, let xnI , I = A, B denote the two atomic sites inDn , where n ≥ 0. Recall
D	 is the union, for n ≥ −1, over all Dn ; see Fig. 1. In place of the partitions of unity
(9.11) in [27] on R

2/�, we introduce here analogous partitions on 	:

1 =  2
0 +

∑
n≥0

I=A,B

 2
n,I , 1 =  ̃2

0 +
∑
n≥0

I=A,B

 ̃2
n,I

where n,I and  ̃n,I are supported near xnI . All the arguments in Sections 9.1 through 9.4
of [27] go through in the above setting, withminimal changes. This gives Proposition 5.2.

We seek to show that the inverse of �AB (k‖)
(
Hλ� (k‖)−�

)
�AB (k‖), is a bounded

linear operator on Xλ
AB
(k‖), satisfying the bounds (5.3) and (5.4) and furthermore that

Kλ� (�, k‖) maps Xλ
AB
(k‖) to H2(	) ∩ Xλ

AB
(k‖) and satisfies the operator bound (5.5).

To adapt Section 9.5 of [27] to our setting requires an additional argument which

we now supply. Suppose we have �AB(k‖)
[
Hλ� (k‖) − � I

]
ψ = f , where ψ ∈

L2(	) ∩ Xλ
AB
(k‖) and f ∈ L2(	). Then, for some {αI,n}, (I = A, B n ≥ 0), in

l2(N0;C2):
[
Hλ� (k‖) − � I

]
ψ = f +

∑
I=A,B
n≥0

αI,n pλ
k‖,I

[n] , (5.9)

where the right hand sum is convergent in L2(	) and the left hand side is interpreted as
a distribution on 	. Taking the inner product in L2(	) of (5.9) with pλ

k‖,J
[m], we find

that
∑

I=A,B
n≥0

αI,n

〈
pλ
k‖,J

[m], pλ
k‖,I

[n]
〉
= ξλ

k‖,J
[m], where

ξλ
k‖,J

[m] ≡
〈
Hλ� (k‖)pλk‖,J [m], ψ

〉
−
〈
pλ
k‖,J

[m], f
〉
. (5.10)
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We have
∣∣∣ξλ

k‖,J
[m]
∣∣∣2 �

∣∣∣
〈
Hλ� (k‖)pλk‖,J [m], ψ

〉 ∣∣∣2 +
∣∣∣
〈
pλ
k‖,J

[m], f
〉 ∣∣∣2 (5.11)

and summing over J = A, B and m ≥ 0 yields

∑
J=A,B
m≥0

∣∣∣ξλ
k‖,J

[m]
∣∣∣2 �

∑
J=A,B
m≥0

∣∣∣
〈
Hλ� (k‖)pλk‖,J [m], ψ

〉 ∣∣∣2

+
∑

J=A,B
m≥0

∣∣∣
〈
pλ
k‖,J

[m], f
〉 ∣∣∣2. (5.12)

In order to bound the second term on the right in (5.12), note that the near-orthonormality
of the set {pλ

k‖,J
[m] : J = A, B, m ≥ 0} for λ large (Proposition 4.2) implies the Bessel-

type inequality:

∑
J=A,B
m≥0

∣∣∣
〈
pλ
k‖,J

[m], f
〉 ∣∣∣2 � ‖ f ‖2L2(	)

.

Consider next the first term on the right in (5.12). Thanks to the pointwise bound on
Hλ� (k‖)pλk‖,J [m](x) from Proposition 4.3, a Young-type inequality yields:

∑
J=A,B
m≥0

∣∣∣
〈
Hλ� (k‖)pλk‖,J [m], ψ

〉 ∣∣∣2 � e−cλ ‖ψ‖2
L2(	)

.

Again, by Proposition 4.2, we have
∑

J=A,B
m≥0

|α Im |2 �
∑

J=A,B
m≥0

| ξλk‖,I [m] |2

� e−cλ ‖ψ‖2L2(	)
+ C ‖ f ‖2L2(	)

. (5.13)

And finally one more application of Proposition 4.2 gives
∥∥∥
∑

I=A,B
n≥0

αλk‖,I [n] pλk‖,I [n]
∥∥∥
L2(	)

� e−cλ ‖ψ‖L2(	) + C ‖ f ‖L2(	) . (5.14)

The estimates (5.13) and (5.14) allow us to argue as in Section 9.5 of [27], using our

energy estimates, that the operator Kλ� (�, k‖), the inverse of �AB (k‖)
(
Hλ� (k‖)−�

)

�AB (k‖), is a bounded linear operator onXλAB (k‖), satisfying the bounds (5.3) and (5.4).
To complete the proof of Proposition 5.1 must show that Kλ� (�, k‖) maps Xλ

AB
(k‖)

to H2(R2) ∩ Xλ
AB
(k‖). To bound ‖�ψ‖

L2(	)
, we use (5.9) to obtain an expression for

�ψ in terms of ψ and ∇ψ . Then, the energy estimate for ‖ψ‖
L2(	)

and ‖∇ψ‖
L2(	)

, and

the bound (5.14) imply that for λ sufficiently large, the L2(	) norm of each term in the
expression�ψ can be bounded by C(λ)×‖ f ‖

L2(	)
, where C(λ) denotes a λ-dependent

constant.
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6. Lyapunov–Schmidt/Feshbach–Schur/Schur Complement Reduction

The resolvent bounds of Proposition 5.1 ensure that on the subspace XAB (k‖), the
operator Hλ� (k‖) − � is invertible in a neighborhood of � = 0, i.e. the spectrum of

�AB (k‖)Hλ� (k‖)�AB (k‖) is bounded away fromzero, uniformly inλ$ 1. In this section,

we make use of this spectral separation to obtain a reduction of the L2
k‖ eigenvalue prob-

lem to a problem on the subspace of L2(	) given by: span
{
p
λ,I

k‖
[n] : I = A, B; n ≥ 0

}
.

Consider the eigenvalue problem:
(
−
(
∇ + i

k‖
2π

K2

)2

+ λ2V�(x)

)
ψ = Eψ, ψ ∈ H2(	). (6.1)

Let

E = Eλ0 +�. (6.2)

Recall the centered edge-Hamiltonian:

Hλ� (k‖) = −
(
∇ + i

k‖
2π

K2

)2

+ λ2V�(x)− Eλ0 ; (6.3)

see also (3.10). Then, the eigenvalue problem may be rewritten as:
(
Hλ� (k‖) − �

)
ψ = 0, ψ ∈ H2(	). (6.4)

By Proposition 4.4 any ψ ∈ H2(	) may be written in the form:

ψ =
∑

I=A,B

∑
n≥0
α In pλ

k‖,I
[n] + ψ̃, (6.5)

whereα = {(αA
n , α

B
n )

�}n≥0 ∈ l2(N0;C2) and�AB (k‖)ψ̃ = ψ̃ .Weadopt the convention

α In = 0, n ≤ −1, I = A, B.

Substitution of (6.5) into (6.4) yields:
∑

I=A,B

∑
n≥0
α In

(
Hλ� (k‖) − �

)
pλ
k‖,I

[n] + ( H�(k‖) − �
)
ψ̃ = 0. (6.6)

By part (1) of Proposition 4.4, the eigenvalue problem (6.4) is seen to be equivalent
to the system obtained by: (i) applying the orthogonal projection �AB (k‖) to (6.6):

�AB (k‖)
(
Hλ� (k‖) − �

)
ψ̃ +

∑
I=A,B

∑
n≥0
α In �AB (k‖)

(
Hλ� (k‖) − �

)
pλ
k‖,I

[n] = 0

(6.7)

and (ii) taking the inner product of (6.6) with the states: pλ
k‖,J

[m]; m ≥ 0, J = A, B:

〈
pλ
k‖,J

[m],
∑

I=A,B

∑
n≥0
α In

(
Hλ� (k‖) − �

)
pλ
k‖,I

[n]
〉
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+
〈(

Hλ� (k‖) − �
)
pλ
k‖,I

[m], ψ̃
〉
= 0 (6.8)

where m = 0, 1, 2, . . . .
Using Proposition 5.1 we solve (6.7) for ψ̃ as a function of α = (αA, αB)� ∈

l2(N0;C2):

ψ̃ = −
∑

I=A,B

∑
n≥0
α In Kλ� (�, k‖) �AB (k‖) Hλ� (k‖) pλk‖,I [n]. (6.9)

Here we have used that �AB (k‖) pλk‖,I [n] = 0. Substitution of (6.9) into (6.8) yields

∑
I=A,B

∑
n≥0

Mλ,k‖
J I (m, n)(�, k‖) α

I
n = 0; J = A, B, m ≥ 0 , (6.10)

where

Mλ
J I [m, n](�, k‖)
≡
〈
pλ
k‖,J

[m],
(
Hλ� (k‖) − �

)
pλ
k‖,I

[n]
〉
L2(	)

−
〈
Hλ� (k‖) pλk‖,J [m] , �AB (k‖) Kλ� (�, k‖) �AB (k‖) Hλ� (k‖) pλk‖,I [n]

〉
L2(	)

.

(6.11)

Remark 6.1. For fixed J = A or B and fixed m ≥ 0, the Eq. (6.10) expresses the
interaction of all atomic A- and B-sites within the cylinder,	, with the atomic site J in
cell m. In particular, the MJ A[m, n] are interaction coefficients between site J in Dm
and all sites vnA, n ≥ 0, and MJ B[m, n] are interaction coefficients between site J in
cell Dm and all sites vnB , n ≥ 0.

Due to their dependence on the Hamilitonian, Hλ� , we refer to the first term on the

right in (6.11) as the linear matrix elements,Mλ,lin [m, n](�, k‖) and second term on the

right in (6.11) as the non-linear matrix elements,Mλ,nl [m, n](�, k‖). Thus,

Mλ[m, n](�, k‖) ≡ Mλ,lin [m, n](�, k‖) − Mλ,nl [m, n](�, k‖). (6.12)

In the subsequent sections we compute highly accurate approximations to the linear
(Sect. 7) and non-linear (Sect. 12) matrix elements. This will enable us to recast and
solve (6.10) as a perturbation of a tight-binding model for λ sufficiently large (Sect. 8).

7. Matrix Elements Mλ,lin
J I [m, n](�, k‖) and Mλ,nl

J I [m, n](�, k‖)

In this sectionwe provide expansions of thematrix entries ofMλ,lin

J I
[m, n](�, k‖). Recall

that

Pλ
k‖,I

[n](x) ≡ ei
k‖
2πK2·(x−vI ) pλ

k‖,I
[n](x) =

∑
m2∈Z

eik‖m2 pλ0 (x − vnI − m2v2) ; (7.1)

(see also (4.4)) and that Hλ� = −� + λ2V�(x) − Eλ0 .
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In preparation for our expansions, introduce the nearest-neighbor hopping coeffi-
cient:

ρλ =
∫
Br0 (0)

pλ0 (y)λ
2 |V0(y)| pλ0 (y + e) dy

=
∫
R2

pλ0 (y)λ
2 |V0(y)| pλ0 (y + e) dy, (7.2)

where e = vB − vA. The latter equality holds since V0 has compact support in Br0
(0).

We further recall the bounds (3.3) :

e−c−λ � ρλ � e−c+λ (7.3)

for some constants c−, c+ > 0 and all λ > 0 sufficiently large; this was proved in [27].
The main results of this section (Propositions 7.1 and 7.2) are the following two

propositions which (i) isolate the dominant (nearest neighbor) behavior of the linear
matrix elements and provide estimates on the corrections, and (ii) estimate the nonlinear
matrix elements.

Proposition 7.1 (Expansion of linear matrix elements).
For all λ > λ� (sufficiently large), and all k‖ ∈ [0, 2π ], we have:

(1) For m ≥ 0,
〈
P
λ

k‖ ,B
[m], Hλ� P

λ

k‖ ,A
[m]
〉
L2(	)

=
〈
p
λ

k‖ ,B
[m], Hλ� (k‖)p

λ

k‖ ,A
[m]
〉
L2(	)

= −ρλ
(
1 + eik‖

)
+ O(e−cλ ρλ) ,

(7.4)
〈
P
λ

k‖ ,A
[m], Hλ� P

λ

k‖ ,B
[m]
〉
L2(	)

=
〈
Pλ
k‖ ,B

[m], Hλ� Pλ
k‖ ,A

[m]
〉
L2(	)

= −ρλ
(
1 + e−ik‖

)
+ O(e−cλ ρλ).

(7.5)

(2) For m ≥ 0,
〈
P
λ

k‖,B
[m], Hλ� P

λ

k‖,A
[m + 1]

〉
L2(	)

= −ρλ + O(e−cλ ρλ), (7.6)

and for m ≥ 1
〈
P
λ

k‖,A
[m], Hλ� P

λ

k‖,B
[m − 1]

〉
L2(	)

= −ρλ + O(e−cλ ρλ). (7.7)

(3)
〈
P
λ

k‖,B
[m], Hλ� P

λ

k‖,A
[n]
〉
L2(	)

= O
(
e−cλ|m−n| ρλ

)
, m, n ≥ 0, n �= m,m + 1 ,

(7.8)〈
P
λ

k‖,A
[m], Hλ� P

λ

k‖,B
[n]
〉
L2(	)

= O
(
e−cλ|m−n| ρλ

)
, m, n ≥ 0, n �= m,m − 1.

(7.9)

(4) For m, n ≥ 0 and I = A or B
〈
P
λ

k‖,I
[m], Hλ� P

λ

k‖,I
[n]
〉
L2(	)

= O
(

e−cλ e−cλ|m−n| ρλ
)
. (7.10)
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The implied constants in theO(·) estimates and the constants λ� and c are independent
of k‖.

We note, by part (4) of Proposition 5.1, that the function

� �→
〈
Hλ� (k‖)pλk‖,J [n] , �λAB (k‖) Kλ� (�, k‖) �λAB (k‖) Hλ� (k‖)pλk‖,I [m]

〉
L2(	)

is analytic for |�| < c′.

Proposition 7.2 (Estimation of nonlinear matrix element contributions). There exists
λ > λ� (sufficiently large), such that for all k‖ ∈ [0, 2π ] and |�| ≤ e−c′λ (c′, a
sufficiently small constant determined by V0) the following holds for j = 0, 1:
∣∣∣
〈
Hλ� (k‖)pλk‖,J [n] , �λAB (k‖) ∂ j�Kλ� (�, k‖) �λAB (k‖) Hλ� (k‖)pλk‖,I [m]

〉
L2(	)

∣∣∣
� ρλ e

−cλ e−c|n−m|. (7.11)

The implied constants in theO(·) estimates and the constants λ� and c are independent
of k‖.

Proposition 7.1 is proved in Sect. 11 and Proposition 7.2 in Sect. 12. The proof of
Proposition 7.2 requires detailed information on the resolvent, which we need to control
in weighted spaces. We obtain this control by constructing the resolvent kernel and
obtaining pointwise bounds for it. The construction is carried out in Sect. 10.

8. Existence of Zigzag Edge States in the Strong Binding Regime

In this section we apply Propositions 7.1 and 7.2 to rewrite the edge state eigenvalue
problem as a perturbation of the eigenvalue problem for the tight-binding limiting oper-
ator studied in Sect. 2. We then use this reformulation to construct zigzag edge states
for arbitrary λ > λ�, where λ� is fixed and sufficiently large.

Recall from (6.10), our reduction for k‖ ∈ J ⊂⊂ (2π/3, 4π/3) of the edge state
eigenvalue problem for Hλ� (k‖) to the discrete eigenvalue problem for {(αA

m, α
B
m)}m≥0

in l2(N0;C2):
∑

I=A,B

∑
n≥0

Mλ
J I (m, n)(�, k‖) α In = 0; J = A, B, m ≥ 0. (8.1)

Let’s cast (8.1) in a form in which the tight-binding operator H
TB

� (k‖) is made explicit.
First, (8.1) is equivalent to the following system for m ≥ 0:

∑
n≥0

Mλ
AA[m, n](�, k‖) αA

n +
∑
n≥0

Mλ
AB[m, n](�, k‖) αBn = 0 ,

∑
n≥0

Mλ
BA[m, n](�, k‖) αA

n +
∑
n≥0

Mλ
BB[m, n](�, k‖) αBn = 0. (8.2)

To isolate the dominant terms (see Propositions 7.1 and 7.2 ), we rearrange the expres-
sions and obtain for m ≥ 0:

Mλ
AB[m,m − 1](�, k‖) αBm−1 + Mλ

AB[m,m](�, k‖) αBm + Mλ
AA[m,m](�, k‖) αA

m
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= −
∑
n≥0

n �=m,m−1

Mλ
AB[m, n](�, k‖) αBn −

∑
n≥0
n �=m

Mλ
AA[m, n](�, k‖) αA

n

Mλ
BA[m,m](�, k‖) αA

m + Mλ
BA[m,m + 1](�, k‖) αA

m+1 + Mλ
BB[m,m](�, k‖) αBm

= −
∑
n≥0

n �=m,m+1

Mλ
BA[m, n](�, k‖) αA

n −
∑
n≥0
n �=m

Mλ
BB[m, n](�, k‖) αBn . (8.3)

Here, Mλ
J I [m, n] is given by (6.11), where we take Mλ

BA[m,m − 1] = 0 for m = 0.
The system (8.3) is equivalent to (8.1).

Our next stepwill be to express thematrix elements on the left hand side of (8.3), using
Proposition 4.2, Proposition 7.1 and Proposition 7.2. Since the leading order expressions
are proportional to ρλ, it is natural to introduce the rescaled energy:

� ≡ ρλ �̃. (8.4)

Recall our general upper and lower bounds on ρλ: e−c−λ � ρλ � e−c+λ (see (7.3) or
(3.3)) and let ĉ > c− > 0 denote the positive constant introduced in Remark 3.1. We
now constrain � to satisfy |�| < e−ĉλ. Then, |�̃| = |ρ−1

λ �| ≤ e−(ĉ−c−)λ < e−c′′λ,
where c′′ is a small positive constant, for any finite λ sufficiently large.

Using Proposition 4.2, Proposition 7.1 and Proposition 7.2 in (8.3) we obtain after
dividing by −ρλ:
( −1 +O(e−cλ)

)
αBm−1 +

(
−(1 + e−ik‖) +O(e−cλ)

)
αBm +

( −1 +O(e−cλ)
)
�̃ αA

m

=
∑
n≥0

n �=m,m−1

O(e−cλ e−c|m−n|) αBn +
∑
n≥0

O(e−cλ e−c|m−n|) αA
n , (8.5)

where αBm−1 = 0 for m = 0, and

(
−(1 + eik‖) +O(e−cλ)

)
αA
m +

( −1 +O(e−cλ)
)
αA
m+1 +

( −1 +O(e−cλ)
)
�̃ αBm

=
∑
n≥0

n �=m,m+1

O(e−cλ e−c|m−n|) αA
n +

∑
n≥0

O(e−cλ e−c|m−n|) αBn , (8.6)

where |�̃| < c′′.

Remark 8.1. By Proposition 5.1 (part 4) and Proposition 7.2, the expressions in (8.5),
(8.6) of the form O(g(λ)) are analytic functions of �̃ for �̃ varying in the open subset
of C: |�| < e−ĉλ. Moreover, these expressions are all uniformly bounded by g(λ) for
all �̃ such that |�̃| < c′′, a small positive constant.

We obtain, for m ≥ 0 and |�̃| < c′′:

− αBm−1 − (1 + e−ik‖) αBm − �̃ αA
m

=
∑
n≥0

O(e−cλ e−c|m−n|) αBn +
∑
n≥0

O(e−cλ e−c|m−n|) αA
n , (8.7)
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where αBm−1 = 0 for m = 0, and

− (1 + eik‖) αA
m − αA

m+1 − �̃ αBm

=
∑
n≥0

O(e−cλ e−c|m−n|) αBn +
∑
n≥0

O(e−cλ e−c|m−n|) αA
n . (8.8)

Again we remark, as in Remark 8.1, that in (8.7), (8.8) expressions of the formO(g(λ))
are analytic in �̃ and uniformly bounded by g(λ) for |�̃| < c′′.

The system (8.7), (8.8) is of the form:
[ (

H
TB

� (k‖) − �̃
)(
αA

αB

)]

m
=
[
P(λ; ρλ�̃)

(
αA

αB

) ]

m
, for m ≥ 0,

(8.9)

where H
TB

� (k‖) is the tight binding Hamiltonian for a zigzag termination of H, studied

in Sect. 2; see, in particular, (2.4), (2.5)2.

Furthermore, using that the mapping {γm}m≥0 �→
{∑

n≥0 e−c|m−n| γn
}
m≥0 is

bounded from l2(N0) to itself, we have that the mapping �̃ �→ P(λ; ρλ�̃) is an ana-
lytic mapping for |�̃| < c′′ with values in the space of bounded linear operators on
l2(N0;C2). We also have, for all |�̃| ≤ c′, (c′ < c′′):

‖ P(λ; ρλ�̃) ‖l2→l2 � e−cλ , (8.10)

where the implied constant is independent of �̃, but depends on c′. Recall that k‖ varies
in a compact subinterval of (2π/3, 4π/3), where δgap(k‖) =

∣∣∣1− |ζ(k‖)|
∣∣∣ =

∣∣∣1− |1 +
eik‖ |

∣∣∣ > 0. We will further restrict �̃ to satisfy |�̃| < c′ < δgap(k‖).
Our goal is to construct, for all λ sufficiently large, a solution of (8.9):

λ �→ �α(λ) = ( αA(λ), αB(λ) ) ∈ l2(N0;C2)

λ �→ �̃(λ), such that |�̃(λ)| � e−cλ ≤ c′. (8.11)

Given the mappings (8.11), Eqs. (6.5), (6.9) and the relation E = Eλ0 + ρλ�̃ define a

solution to the L2
k‖(	) edge state eigenvalue problem,�λk‖(x) = ei

k‖
2πK2·xψλk‖(x), where

ψλk‖(x) =
∑

I=A,B

∑
n≥0
α In (λ) p

λ
k‖,I

[n](x) + ψ̃[�α(λ)](x) ,

Eλ(k‖) = Eλ0 + ρλ�̃(λ; k‖), (8.12)

and the map �α �→ ψ̃[�α](x) is given in (6.9). We shall succeed in this construction for
k‖ ∈ I ⊂⊂ (2π/3, 4π/3) and λ > λ�(I) sufficiently large.

2 Actually, the operator which emerges in (8.7), (8.8) is −H
TB

� (k‖), minus one times the operator studied

in Sect. 2. However, since σ2H
TB

� (k‖)σ2 = −H
TB

� (k‖), the spectrum of H
TB

� (k‖) is symmetric about zero

energy and −H
TB

� (k‖) − zId has the same invertibility properties of H
TB

� (k‖) − zId. Hence, in this and the

following section we take H
TB

� (k‖) to denote the negative of the operator studied in Sect. 2.
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The first step in this construction is to note that as λ tends to infinity the system
(8.7), (8.8) formally reduces to the edge state eigenvalue problem for the tight-binding
Hamiltonian, H

TB

� (see (2.1), (2.4)) given by:

− αBm−1 − (1 + e−ik‖) αBm − �̃ αA
m = 0, m ≥ 0

− (1 + eik‖) αA
m − αA

m+1 − �̃ αBm = 0 , m ≥ 0 , with αB−1 = 0. (8.13)

By Theorem 2.2, if k‖ ∈ (2π/3, 4π/3) the system (8.13) has an isolated and simple

eigenvalue at �̃TB = 0 with corresponding vector �αTB = { αTB

m
}m≥0 ∈ l2(N0;C2) given

by:

α
TB

m
=
(
α

TB,A

α
TB,B

)

m

= γ�

(
(−1)m

(
1 + eik‖

)m
0

)
, for m ≥ 0 , (8.14)

where we take γ� =
√
1− |ζ(k‖)|2 �= 0 so that �αTB

has l2(N0;C2)-norm equal to one.
To prove that (8.9) has a solution in l2(N0,C

2) which for λ large is approximately
equal to �αTB

, we seek a solution of (8.9) of the form:

�α(λ) = �αTB
+ �β(λ) =

(
α

TB,A

α
TB,B

)
+

(
β A(λ)

βB(λ)

)
,

�̃ = �̃(λ) , where we take
〈
�αTB
, �β
〉
l2(N0;C2)

= 0. (8.15)

Introduce the orthogonal projection �
TB

0
: l2(N0;C2) →

(
span

{
�αTB
} )⊥

. Substi-

tuting (8.15) into (8.9) and projecting onto span{�αTB} and its orthogonal complement,
we obtain the equivalent system for �β and �̃:

(
H

TB

� (k‖)− �̃
) �β = �

TB

0
P(λ; ρλ�̃) �αTB

+ �
TB

0
P(λ; ρλ�̃) �β , (8.16)

�̃ +
〈
�αTB
,P(λ; ρλ�̃) �αTB

〉
+
〈
�αTB
,P(λ; ρλ�̃) �β

〉
= 0. (8.17)

Let R
TB
(�̃; k‖) denote the inverse of �

TB

0

(
H

TB

� (k‖)− �̃
)
�

TB

0
, which for |�̃| < c′

is well-defined as a bounded operator on the l2(N0;C2)-orthogonal complement of
span{�αTB

(k‖)}. Moreover, ‖RTB
(�̃; k‖)‖ � 1 for |�̃| < c′ < δ(k‖), by Theorem 2.2.

For λ sufficiently large we may solve (8.16) for �β[�̃; λ] ∈ Range �
TB

0
and obtain:

�β[�̃; λ] =
[
I − R

TB
(�̃; k‖)�TB

0
P(λ; ρλ�̃)

]−1
�

TB

0
P(λ; ρλ�̃) �αTB

≡ A(�̃; λ) �TB

0
P(λ; ρλ�̃) �αTB

. (8.18)

This follows by the bound ‖P(λ; ρλ�̃) ‖l2→l2 � e−cλ; see (8.10). Therefore, the con-
struction of �β(λ), �̃(λ) (see (8.11)) boils down to solving the following scalar nonlinear
equation for �̃ as a function of λ:

�̃ +
〈
�αTB
,P(λ; ρλ�̃) �αTB

〉
+
〈
�αTB
,P(λ; ρλ�̃) A(�̃; λ) �TB

0
P(λ; ρλ�̃) �αTB

〉
= 0.

(8.19)
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Using analyticity in �̃ and previous bounds, we may write (8.19) as

�̃ +
〈
�αTB
,P(λ; 0) �αTB

〉
+ G(�̃; λ) = 0. (8.20)

Here, G(�̃; λ) is analytic with |∂ j
�̃
G(�̃; λ)| � e−cλ ( j = 1, 2) for all �̃ in the complex

neighborhood of zero, |�̃| < c′. Since
∣∣∣
〈
�αTB
,P(λ; 0) �αTB

〉 ∣∣∣ ≤ e−cλ, for λ sufficiently

large, Eq. (8.20) may be solved for �̃(λ) by using a contraction mapping argument on
the disc: |�̃| ≤ 2Ce−cλ. Therefore, modulo Propositions 7.1 and 7.2 which are proved
in Sects. 10, 11 and 12 , we have proved our main result, Theorem 1.3.

9. Resolvent Convergence; Proof of Theorem 1.2

We study the scaled resolvent:
(
ρ−1
λ Hλ� − zId

)−1 =
(
ρ−1
λ

( −� + V� − Eλ0
) − zId

)−1

as an operator on L2(R2). We consider the scaled non-homogeneous equation
(
ρ−1
λ Hλ� (k‖)− zId

)
ψ = ϕ, ϕ ∈ L2(	), (9.1)

or equivalently
(
Hλ� (k‖)− ρλzId

)
ψ = ρλϕ, ϕ ∈ L2(	). (9.2)

We express ϕ as:

ϕ =
∑

J=A,B

∑
n≥0
β J
n pλ

k‖,J
[n] + ϕ̃ , �AB (k‖)ϕ̃ = ϕ̃ (9.3)

and seek a solution of (9.1) in the form

ψ =
∑

I=A,B

∑
n≥0
α In pλ

k‖,I
[n] + ψ̃, �AB (k‖)ψ̃ = ψ̃, (9.4)

where α = {(αA
n , α

B
n )

�}n≥0 ∈ l2(N0;C2) and ψ̃ = �AB (k‖)ψ̃ ∈ XλAB(k‖).
Substitution of (9.3) and (9.4) into (9.2) and projecting the resulting equation with

�AB (k‖) and I −�AB (k‖) (whose range is span{pλk‖,I [n] : I = A, B, n ≥ 0}), yields
the coupled system for α = {α In : n ≥ 0, I = A, B} ∈ l2(N0;C2) and ψ̃ ∈ XλAB(k‖):

�AB (k‖)
(
Hλ� (k‖)− ρλzId

)
ψ̃ = −

∑
I,n

α In �AB (k‖) Hλ� (k‖) pλk‖,I [n] + ρλϕ̃

(9.5)
∑
I,n

〈
pλ
k‖,J

[m],
(
Hλ� (k‖)− ρλz Id

)
pλ
k‖,I

[n]
〉
α In +

〈
Hλ� (k‖)pλk‖,J [m], ψ̃

〉

= ρλ
∑
I,n

〈
pλ
k‖,J

[m], pλ
k‖,I

[n]
〉
β I
n , for J = A, B and m ≥ 0, (9.6)
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where the sums
∑

I,n are over I = A, B and n ≥ 0.
We next use Proposition 5.1 to solve (9.5) for ψ̃ ∈ L2(	) and obtain:

ψ̃ = −
∑
I,n

α In Kλ� (ρλz, k‖)Hλ� (k‖)pλk‖,I [n] + ρλ Kλ� (ρλz, k‖)ϕ̃. (9.7)

Substitution of the expression in (9.7) for ψ̃ into the left hand side of (9.6) yields the
closed non-homogeneous system for α ∈ l2(N0;C2):
∑
I,n

Mλ
J I [m, n]α In = ρλ

[ ∑
I,n

〈
pλ
k‖,J

[m], pλ
k‖,I

[n]
〉
β I
n −

〈
Hλ� (k‖)pλk‖,J [m],K

λ
� (ρλz, k‖)ϕ̃

〉 ]
,

(9.8)

for each J = A, B andm ≥ 0. The matrix elementsMλ
J I [m, n] are displayed in (6.11).

As in our study of the edge state eigenvalue problem (Sect. 8) we expand theMλ
J I [m, n]

using Proposition 7.1 and obtain the following system, which is equivalent to (9.8)3 :
[ (

H
TB

� (k‖) − z Id − P(λ; ρλz)
)(
αA

αB

)]

m

= −

⎛
⎜⎜⎝

∑
I,n

〈
pλ
k‖,A

[m], pλ
k‖,I

[n] β I
n

〉

∑
I,n

〈
pλ
k‖,B

[m], pλ
k‖,I

[n] β I
n

〉

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

〈
Hλ� (k‖)pλk‖,A [m],K

λ
� (ρλz, k‖)ϕ̃

〉

〈
Hλ� (k‖)pλk‖,B [m],K

λ
� (ρλz, k‖)ϕ̃

〉

⎞
⎟⎟⎠ , m ≥ 0.

(9.9)

Recalling the bound ‖P(λ; ρλ�̃) ‖l2→l2 � e−cλ (see (8.10)), together with Proposi-
tion 4.2 and Proposition 4.3, we solve for αλ and find

αλ =
(
H

TB

� (k‖) − z Id
)−1

β + αλ1 , where

‖αλ1‖l2(N0;C2) � e−cλ
(
‖β‖

l2(N0;C2)
+ ‖�AB (k‖)ϕ‖L2(	)

)
. (9.10)

We therefore have that ψ =
(
ρ−1
λ Hλ� (k‖)− zId

)−1
ϕ ∈ L2(	) is given by:

(
ρ−1
λ Hλ� (k‖)− zId

)−1
ϕ =

∑
I,n

[ (
H

TB

� (k‖) − z Id
)−1

β + αλ1
]
pλ
k‖,I

[n]

+OL2(	)

(
e−cλ‖β‖

l2(N0;C2)
+ e−cλ‖�AB (k‖)ϕ‖L2(	)

)
;

(9.11)

see (9.3), (9.4).
Introduce Hλ�,k‖ , the restriction of Hλ� , to the space H2

k‖ . Since Hλ� commutes with

x �→ x + v2 it follows that Hλ�,k‖ maps the space H2
k‖ into L2

k‖ . Let PAB,k‖ denote the

projection of L2
k‖ onto the orthogonal complement of the subspace of L2

k‖ spanned by

3 As in Sect. 8 (see the footnote after (8.9)), based on the observation σ2H
TB

� (k‖)σ2 = −H
TB

� (k‖)) we let
H

TB

� (k‖) denote the negative of the operator studied in Sect. 2.
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the states: Pλ
k‖,I

[n] = ei
k‖
2π (x−vI ) pλ

k‖,I
[n] ∈ L2

k‖ , where I = A, B and n ≥ 0; see (4.4).

Therefore, for any F ∈ L2
k‖ :

(
ρ−1
λ Hλ�,k‖ − zId

)−1
F =

∑
I,n

[ (
H

TB

� (k‖) − z Id
)−1

β + αλ1
]
Pλ
k‖,I

[n]

+OL2(	)

(
e−cλ‖β‖

l2(N0;C2)
+ e−cλ‖PAB,k‖F‖L2k‖

)
.

(9.12)

Any F ∈ L2
k‖ has the representation F = ∑

I,n α
I
n [F]Pλk‖,I [n] + F⊥, where

{α In [F]}I,n ∈ l2(N0;C2) and F⊥ ∈ Range(PAB,k‖). Define the map Jk‖ : L2
k‖ →

l2(N0;C2)⊕ Range(PAB,k‖) by:

Jk‖ : F �→
({α In [F]}

F⊥

)
=
({ 〈

Pλ
k‖,I

[n], F
〉
+ O(e−cλ‖F‖L2

k‖
)
}

F⊥

)
. (9.13)

We therefore have from (9.12) that

(
ρ−1
λ Hλ�,k‖ − zId

)−1 − J ∗k‖

((
H

TB

� (k‖) − z Id
)−1

0

0 0

)
Jk‖ = O

L2k‖→L2k‖
(e−cλ).

This completes the proof of Theorem 1.2. ��

10. The Resolvent Kernel and Weighted Resolvent Bounds

It remains for us to prove Propositions 7.1 and 7.2 on the expansion and estimation
of matrix elements. The proof of Proposition 7.1 concerning the linear matrix elements
uses the energy estimates on the resolvent obtained in Sect. 5.

To prove Proposition 7.2 we require exponentially weighted estimates, which we
obtain by constructing the resolvent kernel and obtaining pointwise bounds on it. We
carry this out in the present section. In Sect. 11 we then give the proof of Proposition 7.1
and in Sect. 12 we prove Proposition 7.2.

In Sect. 5 we obtained energy estimates for Kλ� (�, k‖), the inverse of

�AB (k‖)
(
Hλ� (k‖)−�

)
�AB (k‖)

= �AB

[
−
(
∇x + i

k‖
2π

K2

)2

+ λ2V�(x) − Eλ0 −�
]
�AB,

defined as a bounded operator from XAB(k‖) to XAB(k‖)∩ H2(	); see Proposition 5.1,
which holds for all |�| < c′, where c′ is a sufficiently small positive constant. We may
extendKλ� (�, k‖) to an operator acting on all of L2(	), not justXAB(k‖), by composing

it with �AB (k‖), i.e. we require Kλ� (�, k‖)ψ = 0 if �AB (k‖)ψ = 0.

In this section we shall prove, under the more stringent restriction on �: |�| ≤ e−cλ

for some c > 0 and λ $ 1, that this operator derives from a kernel Kλ� (x, y;�, k‖).
Specifically, we have
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Theorem 10.1. There exist constants λ�, c > 0 such that for λ ≥ λ�, |�| ≤ e−cλ and
for each k‖ ∈ [0, 2π ] the following holds for the operator Kλ� (�, k‖), which is bounded
on L2(	):

(1) Kλ� (�, k‖) arises from an integral kernel Kλ� (x, y;�, k‖):

Kλ� (�, k‖)[ f ](x) = �λAB K�(�, k‖) �λAB[ f ](x)
=
∫
D	

Kλ� (x, y;�, k‖) f (y) dy. (10.1)

(2) The integral kernelKλ� (x, y;�, k‖) satisfies the following bound: there exist positive
constants R,C1,C2, independent of k‖ and �, such that for all x, y ∈ R

2:

∣∣∣ Kλ� (x, y;�, k‖)
∣∣∣ ≤ C1

[
λ6 +

∣∣∣ log |x − y|
∣∣∣
]
1|x−y|≤R

+ C2 e
−cλ e−cλ|x−y|. (10.2)

Theorem 10.1 is at the heart of the proof of Proposition 7.2, which provides bounds on
the nonlinear matrix elements ofMλ(�, k‖). The remainder of this section is devoted to
the proof of Theorem 10.1. The construction and estimationKλ� is based on a strategy, in
whichwepiece together localized atomicGreen’s functionswith appropriate corrections.

10.1. The free Green’s function and bounds on the atomic ground state. Denote by
Gfree
λ (x) the fundamental solution of −�− Eλ0 :

(−�x − Eλ0
)
Gfree
λ (x) = δ(x), (10.3)

where δ(x) is the Dirac delta function. Here, Eλ0 denotes the ground state of Hλatom =
−� + λ2V0; see hypothesis (GS), (3.4). Note that Gfree

λ (x) = Gfree
(√

|Eλ0 | x
)
, where

Gfree(x) satisfies ( −�x + 1 ) Gfree(x) = δ(x), x ∈ R
2. Gfree(x) = K0(|x|) is the

modified Bessel function of order zero, which decays to zero exponentially as |x| → ∞
[71]. The following lemma summarizes important standard properties of Gfree

λ (x); see
[27,62]

Lemma 10.2. For x ∈ R
2,

(1) Gfree(x) = Gfree(|x|) is positive and strictly decreasing for |x| ≥ 0.
(2) There exist entire functions f and g and constants C1, c2, such that

Gfree(x) = f (|x|) log |x| + g(|x|) , (10.4)

where f (0) = −1/2π and |∂ js f (s)|, |∂ js g(s)| ≤ C1e−c2s , for j = 0, 1 and all
s ∈ [0,∞).

(3) Gfree(x) � |x|− 1
2 e−|x| for |x| large.
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The bounds on f (s) and g(s) are proved, for the case j = 0, in [62]. This proof can
be extended to a derivation of the bounds for j = 1. Alternatively, these bounds may
be deduced directly from the integral representation for Gfree(x) used in the proof of
Lemma 15.3 of [27].

We shall apply the following consequence of Lemma 10.2 and (3.4):
There exist c, c′ > 0, and for each R > 0, additional constants CR,C ′

R > 0, such that

0 < Gfree
λ (x) = Gfree

(√
|Eλ0 | x

)
≤ CR e−cλ|x| ( ∣∣∣ log(λ|x|)

∣∣∣ 1{λ|x|≤R} + 1
)
, x ∈ R

2.

(10.5)

|∇xG
free
λ (x)| ≤ C ′

Re
−c′λ|x|

(
1

λ|x| 1{λ|x|≤R} + 1

)
(10.6)

10.2. The atomicGreen’s function. In this sectionwe establish bounds (integral and then
pointwise) on the Green’s function associated with Hλatom− Eλ0 = −�+λ2V0(x)− Eλ0 .
Since Hλatom has a one dimensional kernel spanned by pλ0 (x), and a spectral gap (see
(3.6)), the operator Hλatom− Eλ0 is invertible on the orthogonal complement of span{pλ0 }.

We denote by Gatom
λ (x, y) the associated Green’s kernel, which solves

(
−�x + λ

2V0(x)− Eλ0

)
Gatom
λ (x, y) = δ(x − y) − pλ0 (x)p

λ
0 (y) (10.7)

and which satisfies
∫
R2

Gatom
λ (x, y) pλ0 (y) dy = 0, for all x ∈ R

2, (10.8)

Gatom
λ (x, y) = Gatom

λ (y, x) for x, y ∈ R
2 with x �= y. (10.9)

For fixed x, the function y �→ Gatom
λ (x, y) belongs to L2(R2

y), and we have for any
f ∈ L2(R2) that the function

u(x) =
∫
R2

Gatom
λ (x, y) f (y) dy (10.10)

solves
(
−� + λ2V0(x)− Eλ0

)
u(x) = f (x) − 〈

pλ0 , f
〉
L2(R)

pλ0 (x), (10.11)
〈
pλ0 , u

〉
L2(R2)

= 0 . (10.12)

10.2.1. L2 bounds on x �→ Gatom
λ (x, y) and y �→ Gatom

λ (x, y) By the spectral gap
hypothesis on Hλatom, (3.6), we have that u satisfies the bound:

‖u‖L2(R2) ≤ C ‖ f ‖L2(R2). (10.13)

We may next obtain pointwise bounds on u(x) in terms of ‖ f ‖L2(R2). In particular,
we claim that

|u(x)| ≤ C λ2 ‖ f ‖L2(R2). (10.14)
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We prove this as follows:

|u(x)| ≤ C
( ‖�u‖L2(B1(x)) + ‖u‖L2(B1(x))

)

≤ C

( ∥∥∥(Eλ0 − λ2V0)u + f − 〈
pλ0 , f

〉
pλ0

∥∥∥
L2(B1(x))

+ ‖u‖L2(B1(x))

)

≤ C λ2 ‖ f ‖L2(R2)

which implies the bound (10.14).
Therefore, by (10.10), for all f ∈ L2(R2):

∣∣∣
∫
R2

Gatom
λ (x, y) f (y) dy

∣∣∣ ≤ C λ2 ‖ f ‖L2(R2). (10.15)

Consequently,

( ∫
R2

|Gatom
λ (x, y)|2 dy

) 1
2 ≤ Cλ2, x ∈ R

2 (10.16)

and by symmetry of Gatom
λ

( ∫
R2

|Gatom
λ (x, y)|2 dx

) 1
2 ≤ Cλ2, y ∈ R

2. (10.17)

We now use these L2 bounds on Gatom
λ (x, y) to obtain pointwise bounds.

10.2.2. Pointwise bounds on Gatom
λ (x, y)

Recall that suppV0 ⊂ Br0(0).

Theorem 10.3 (Pointwise bounds on Gatom
λ (x, y)).

(1) For all R > 0, there exist λ0 = λ0(R) and positive constants c, CR and DR such
that for all λ > λ0:

∣∣∣ Gatom
λ (x, y) +

1

2π
log |x − y|

∣∣∣ ≤ CR λ
4 for |x − y| ≤ R. (10.18)

(2) There exist R > 10r0 and positive constants λ′, C and c, which depend on R but not
on λ, such that for all λ > λ′(R):

|Gatom
λ (x, y)| ≤ C e−cλ e−cλ|x−y|, |x − y| ≥ R. (10.19)

(3) Choose r j , j = 1, 2, 3, such that r0 < r1 < r2 < r3 <
1
10 R. Assume y ∈ Br1(0) and

x /∈ Br3(0). Then,

∣∣∣ Gatom
λ (x, y)

∣∣∣ � e−cλ e−cλ|x−y| , (10.20)

where the implied constants depend on r0, r1, r2 and r3.
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Proof of bound (10.18)
Fix y ∈ R

2. By (10.7) we have

−�xG
atom
λ (x, y) = δ(x − y) − pλ0 (x) p

λ
0 (y) +

(
Eλ0 − λ2V0(x)

)
Gatom
λ (x, y)

= �x

(
1

2π
log |x − y|

)
− pλ0 (x) p

λ
0 (y)

+
(
Eλ0 − λ2V0(x)

)
Gatom
λ (x, y). (10.21)

Hence,

−�x

[
Gatom
λ (x, y) +

1

2π
log |x − y|

]

= − pλ0 (x) p
λ
0 (y) +

(
Eλ0 − λ2V0(x)

)
Gatom
λ (x, y). (10.22)

Therefore, using that | f (x)| � ‖� f (z)‖L2(B1(x);dz) + ‖ f (z)‖L2(B1(x);dz) we have for
arbitrary fixed y ∈ R

2 and all x ∈ R
2 satisfying |x − y| ≤ R:

∣∣∣∣ Gatom
λ (x, y) +

1

2π
log |x − y|

∣∣∣∣
≤
∥∥∥− pλ0 (z) p

λ
0 (y) +

(
Eλ0 − λ2V0(z)

)
Gatom
λ (z, y)

∥∥∥
L2(B1(x);dz)

+

∥∥∥∥Gatom
λ (z, y) +

1

2π
log |z− y|

∥∥∥∥
L2(B1(x);dz)

. (10.23)

To continue this bound, we use that

|pλ0 (y)| � λ (see (3.5)), ‖pλ0‖L2 = 1, |Eλ0 − λ2V0(z)| � λ2,
‖Gatom

λ (z, y)‖L2(B1(x);dz) � λ2 and ‖ log |z− y| ‖L2(B1(x);dz) ≤ C ′
R . (10.24)

The bounds (10.24) follow since |Eλ0 | � λ2 (since ‖V0‖∞ < ∞) and by (3.5) and
(10.17). We obtain for any R > 0 that there exists CR <∞ such that

∣∣∣∣ Gatom
λ (x, y) +

1

2π
log |x − y|

∣∣∣∣ ≤ CR λ
4, for all |x − y| ≤ R, with x �= y.

(10.25)

Proof of bound (10.19) Recall that the support of V0 is contained in Br0(0). Assume
|x − y| > R, and choose constants:

r0 < r1 < r2 < r3 <
1

10
R. (10.26)

Thus, we require R > 10r0. Without any loss of generality, we assume |y| ≤ |x|.
Therefore, R < |x − y| ≤ |x| + |y| ≤ 2|x| and therefore

|x| ≥ 1

2
|x − y| > 1

2
R > r3. (10.27)
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Let  out =  out(x) denote a smooth function of r = |x|, defined for all x ∈ R
2, such

that 0 ≤  out(x) ≤ 1 and

 out(x) ≡
{
1, |x| ≥ r2
0, |x| ≤ r1.

(10.28)

We note that  out · V0 ≡ 0.
Using the defining equation for Gatom

λ , (10.7), we obtain:

( −�z − Eλ0
) [
 out(z) Gatom

λ (z, y)
]

=  out(z)
{ −pλ0 (z) p

λ
0 (y)

}
+  out(z) · δ(z− y)

− 2∇z out(z) · ∇zG
atom
λ (z, y) − ( �z out(z) ) Gatom

λ (z, y). (10.29)

We next use the Green’s function Gfree
λ (see (10.3)) to represent  out(x) Gatom

λ (x, y).
Multiplication of (10.29) by Gfree

λ (x − z) and integration with respect to z yields

 out(x) Gatom
λ (x, y) =

∫
R2

Gfree
λ (x − z)

( −�z − Eλ0
) [
 out(z) Gatom

λ (z, y)
]
dz

=  out(y)Gfree
λ (x − y) −

∫
R2

Gfree
λ (x − z)  out(z) pλ0 (z) dz pλ0 (y)

− 2
∫
R2

Gfree
λ (x − z) ∇z out(z) · ∇zG

atom
λ (z, y) dz

−
∫
R2

Gfree
λ (x − z) ( �z out(z) ) Gatom

λ (z, y) dz ,

which, since  out(x) = 1 for |x| > r2, we write as

Gatom
λ (x, y) =  out(y)Gfree

λ (x − y) + Term1(x, y) + Term2(x, y) + Term3(x, y).
(10.30)

Since |x − y| > R, by (10.5) we have
∣∣ out(y)Gfree

λ (x − y)
∣∣ � e−cλ|x−y|. We next

estimate the latter three terms in (10.30) individually.
Bound on Term1(x, y) of (10.30): Consider the integral

Term1(x, y) ≡ −
∫
R2

Gfree
λ (x − z)  out(z) pλ0 (z) dz pλ0 (y) . (10.31)

Due to the factor of  out(z) in the integrand of (10.31), only z such that |z| ≥ r1.
are relevant. On this set we have pλ0 (z) � e−c1λ e−cλ|z| by (3.5), for some constants
c1, c > 0. Furthermore, by (10.5), there exists c′ > 0 such that Gfree

λ (x − z) �
e−c′λ|x−z|

( ∣∣∣ log λ|x − z|
∣∣∣ 1{|x−z|≤1} + 1

)
.

Therefore, for some constant c̃ (smaller than the minimum of c1, c, c′) we have
∣∣∣Term1(x, y)

∣∣∣ � e−c̃λ
∫
|z|≥r1

e−c̃λ|x−z| ( ∣∣∣ log λ|x − z|
∣∣∣ 1{|x−z|≤1} + 1

)
e−c̃λ|z| dz pλ0 (y)

= e−c̃λ
∫
|z|≥r1

e−
c̃
2λ(|x−z|+|z|) e−

c̃
2λ(|x−z|+|z|)
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( ∣∣∣ log λ|x − z|
∣∣∣ 1{|x−z|≤1} + 1

)
dz pλ0 (y)

≤ e−c̃λ e−
c̃
2λ|x|

∫
|z|≥r1

e−
c̃
2λ(|x−z|+|z|)

( ∣∣∣ log λ|x − z|
∣∣∣ 1{|x−z|≤1} + 1

)
dz pλ0 (y)

� e−cλ e−cλ|x| pλ0 (y).

For |y| < r0 + δ0, with small δ0 > 0, we have pλ0 (y) � λ. For such y, |x| = |x−y+y| ≥
|x − y| − r0 − δ0 ≥ 1

2 |x − y| + R
2 − r0 − δ0 ≥ 1

2 |x − y|. Therefore, for |x − y| > R

and |y| < r0 + δ0 we have
∣∣∣Term1(x, y)

∣∣∣ � e−cλ e−cλ|x| pλ0 (y) � e−cλ e−cλ|x| λ �
e−c′λ e−c′λ|x−y|.

Therefore, for |y| ≥ r0 + δ0 and |x − y| > R, we have
∣∣∣Term1(x, y)

∣∣∣ �
e−cλ e−cλ|x| pλ0 (y) � e−cλ e−cλ(|x|+|y|) � e−c′λ e−c′λ|x−y|.
Bound on Term2(x, y) of (10.30): We first note that ∇z out(z) = 0 for |z| > r2. Since
|x| > 1

2 R > r2, the integrand of Term2(x, y) is supported away from z = x. Integration
by parts yields

Term2(x, y) = 2
∫
R2

∇z ·
[
Gfree
λ (x − z) ∇z out(z)

]
Gatom
λ (z, y) dz. (10.32)

We note this integration by parts can be justified even though there is a weak singularity
of the integrand at z = y, and we remark on this at the conclusion of the proof. Bounding
Term2(x, y) using the Cauchy-Schwarz inequality we obtain:

∣∣∣Term2(x, y)
∣∣∣ ≤ 2

( ∫
R2

∣∣∣∇z ·
[
Gfree
λ (x − z) ∇z out(z)

] ∣∣∣2 dz
) 1

2 ·
(∫

R2

∣∣∣Gatom
λ (z, y)

∣∣∣2 dz
) 1

2

.

The second factor is bounded by a constant times λ2 thanks to the L2 bound on Gatom
λ

given in (10.17). To bound the first factor note, due to the properties of  out(z), that
the support of the integrand is contained in: r1 ≤ |z| ≤ r2 and |x| ≥ r3. Therefore,
|x − z| ≥ | |x| − |z| | ≥ r3 − r2 > 0. Therefore, by (10.5) and (10.6), for all |x| ≥ r3:

∣∣∣ ∇z ·
[
Gfree
λ (x − z) ∇z out(z)

] ∣∣∣ � e−cλ|x−z| 1{r1≤|z|≤r2} � e−c′λ e−c′λ|x|.

It follows from(10.27) that

∣∣∣ Term2(x, y)
∣∣∣ � e−c′λ e−c′λ|x|

( ∫

|z|≤r2
|Gatom
λ (z, y)|2 dz

) 1
2

� e−c′λ e−c′λ|x| λ2 � e−cλ e−cλ|x−y|. (10.33)

The bound on Term3(x, y) is obtained in a manner similar to the bound on Term2(x, y),
but there is no need to integrate by parts.
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We conclude the proof of (10.19) by remarking on the technical point raised above
concerning the integration by parts leading to (10.32). Recall that

(
−�z + λ

2V0(z)
)
Gatom
λ (z, y) = δ(z− y) + Eλ0G

atom
λ (z, y)− pλ0 (z)p

λ
0 (y).

Recall also that pλ0 ∈ H2(R2), V0 is bounded, and z �→ Gatom
λ (z, y) ∈ L2(R2) for

fixed y; see (10.17). Therefore, for fixed y, we have that −�zGatom
λ (z, y) = δ(z −

y) plus an L2
loc error. Since −�zGfree

λ (z, y) = δ(z − y) plus an L2
loc error, we have

−�z
(
Gatom
λ (z, y)− Gfree

λ (z, y)
) ∈ L2

loc, and consequently Gatom
λ (z, y)− Gfree

λ (z, y) ∈
H2
loc. Hence,

Gatom
λ (z, y) = − 1

2π
log |z− y| + j (z, y) for z near y,

where z �→ j (z, y) ∈ H2
loc(R

2).
Thismakes it easy to justify the integration by parts. For example, replaceGatom

λ (z, y)
by − 1

2
1
2π log

[|z− y|2 + τ 2] + j (z, y), integrate by parts and pass to the limit τ → 0+.
This concludes the proof of (10.19). Since the proof of the bound (10.20) follows from
a very similar argument, we omit it. This completes the proof of Theorem 10.3. ��

10.3. Kernels. Our goal will be to construct the Green’s kernel for a Hamiltonian H
λ

� =
−� + V

λ

� (x) − Eλ0 , with potential V
λ

� defined via superposition involving translates of
the atomic potential, V0, centered at the sites of a discrete set �. The construction of this
Green’s function, G�λ (x, y)makes use of some technical tools developed in this section.

We work with integral operators of the form

f �→ Aλ[ f ](x) ≡
∫
R2

Aλ(x, y) f (y) dy. (10.34)

We shall use the notation Aλ f and Aλ[ f ] to denote such operators and occasionally
omit the λ dependence.

Definition 10.4 (Main Kernel). The function Aλ(x, y) : R2 ×R
2 → R is called a main

kernel if there exist positive constants R, c,C1,C2 and λ0 such that for all x, y ∈ R
2

with x �= y we have

|Aλ(x, y)| ≤ C1

[
λ4 +

∣∣∣ log |x − y|
∣∣∣
]
1|x−y|≤R + C2 e

−cλ e−cλ|x−y|

(10.35)

for all λ ≥ λ0.
By Theorem 10.3, the atomic Green’s function Gatom

λ (x, y) is a main kernel.

Definition 10.5 (Error Kernel). The function Eλ(x, y) : R2 × R
2 → R is called a error

kernel if there exist positive constants c,C and λ0 such that for all x, y ∈ R
2

|Eλ(x, y)| ≤ C e−cλ e−cλ|x−y| (10.36)

for all λ ≥ λ0.
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If A and B are operators with kernels given by A(x, y) and B(x, y), respectively, then
AB is defined to be the operator with kernel (AB)(x, y) given by

(AB)(x, y) ≡
∫
R2

A(x, z) B(z, y) dz (10.37)

Remark 10.6. If E(x, y) is an error kernel, then λp E(x, y) is an error kernel for any
p ≥ 0. To see this, replace the constant c in (10.36) by a slightly smaller positive
constant, c′.

Lemma 10.7. Let Kλ arise from a main kernel and Eλ arise from an error kernel. Then,

(1) The operator

Ẽλ = I − (I − Eλ)−1 =
∑
l≥1

E l
λ (10.38)

arises from an error kernel.
(2) The operators Eλ Kλ and Kλ Eλ arise from error kernels.
(3) The operator e−cλ K 2

λ , where c > 0, arises from an error kernel.

The proof of Lemma 10.7 is presented in Appendix A.

10.4. Green’s kernel for a set of atoms centered on points of a discrete set, �. Let �
denote a discrete subset of R2, which we refer to as a set of nuclei. The set � may be
finite or infinite. We assume that

inf{|v − w| : v,w ∈ �, v �= w } ≥ rmin > 2r0. (10.39)

At sites ω ∈ � we center identical atoms described by the atomic potential V0:

V
λ

� (x) =
∑
ω∈�

λ2 Vω(x), where Vω(x) ≡ V0(x − ω). (10.40)

Example 10.8. Some choices of � which are of interest to us are:

(1) � = H = �A ∪�B , the bulk honeycomb structure.
(2) � = �I , I = A, B, the A- and B-sublattices.
(3) � = H� = {vI + n1v1 + n2v2 : n1 ≥ 0, n2 ∈ Z }, the set of lattice points in a

zigzag- terminated honeycomb structure.

Our goalwill be to construct theGreen’s kernelG
λ

�(x, y) associatedwith the operator

H
λ

� = −� + V
λ

� (x) − Eλ0 , (10.41)

where Eλ0 is the ground state energy of Hλatom = −� + λ2V0; see (3.4).
Recall Gatom

λ which satisfies
(
−� + λ2V0(x) − Eλ0

)
Gatom
λ (x, y) = δ(x − y)− pλ0 (x) p

λ
0 (y),∫

R2
Gatom
λ (x, y)pλ0 (x) dx = 0,

Gatom
λ (x, y) = Gatom

λ (y, x).
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Recalling r j , j = 1, 2, 3 specified in (10.26), we further introduce r4 such that

0 < r0 < r1 < r2 < r3 < r4 <
1

2
rmin , (rmin > 2r0), (10.42)

where rmin is a lower bound for the minimum distance between points in �; see (10.39).
Introduce the smooth cutoff function  0(x) satisfying:
0 ≤  0 ≤ 1 on R2,  0(x) = 1 for x ∈ Br3(0), and  0(x) = 0 for x /∈ Br4(0).

For ω ∈ �, define  ω(x) =  0(x − ω). Finally, let
 free(x) ≡ 1 −

∑
ω∈�

 ω(x). (10.43)

Then, 0 ≤  free ≤ 1 on R
2;  free is smooth and supported away from �. In particular

for all ω ∈ �,  free = 0 in Br3(ω).
We write pλω(x) ≡ pλ0 (x − ω), where pλ0 (x) is the ground state of Hλatom = −� +

λ2V0(x). Thus, pλω(x) is the ground state of−�+λ2Vω(x).We also express the translated
atomic Green’s kernel as

Gatom
λ,ω (x, y) = Gatom

λ (x − ω, y− ω). (10.44)

For any f ∈ L2(R2) we may write:

f (x) =
∑
ω∈�

( ω f ) (x) + ( free f )(x) , (10.45)

and for each ω ∈ �, we have by (10.7)

 ω(x) f (x) =
(
−�x + λ

2Vω(x)− Eλ0

) ∫
R2

Gatom
λ,ω (x, y) (  ω(y) f (y) ) dy

+
〈
pλω, ω f

〉
L2(R2)

pλω(x) , (10.46)

and by (10.8)
∫
R2

pλω(x)
[ ∫

R2
Gatom
λ,ω (x, y) (  ω(y) f (y) ) dy

]
dx = 0. (10.47)

Next we express V
λ

� as:

V
λ

� (x) = λ2Vω(x) +
∑

ω′∈�\{ω}
λ2Vω′(x) ,

and therefore by (10.46)

 ω(x) f (x) =
(
−�x + V

λ

� (x)− Eλ0

) ∫
R2

Gatom
λ,ω (x, y) ω(y) · f (y) dy

−
∑

ω′∈�\{ω}
λ2Vω′(x)

∫
R2

Gatom
λ,ω (x, y) ω(y) · f (y) dy

+
〈
pλω, ω f

〉
L2(R2)

pλω(x). (10.48)
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Similarly,

 free(x) f (x) =
( −�x − Eλ0

) ∫
R2

Gfree
λ (x − y) ( free(y) f (y)) dy

=
(
−�x + V

λ

� (x) − Eλ0

) ∫
R2

Gfree
λ (x − y) free(y) · f (y) dy

− V
λ

� (x)
∫
R2

Gfree
λ (x − y) free(y) · f (y) dy. (10.49)

We note that V
λ

� (x) ≡ 0 on the support of  free.
Now summing (10.48) overω ∈ � and adding the result to (10.49), we have by(10.45)

the following:

f (x) =
(
−�x + V

λ

� (x) − Eλ0

)
·

∫
R2

[ ∑
ω∈�

Gatom
λ,ω (x, y) ω(y) + Gfree

λ (x − y) free(y)
]
· f (y) dy

−
∫
R2

⎡
⎢⎢⎣
∑
ω,ω′∈�
ω �=ω′

λ2 Vω′(x)G
atom
λ,ω (x, y)  ω(y)

+ V
λ

� (x)G
free
λ (x − y) free(y)

⎤
⎥⎥⎦ · f (y) dy

+
∑
ω∈�

〈
 ω pλω, f

〉
L2(R2)

pλω(x). (10.50)

Introduce the kernels K λ0 and Eλ0 :
K λ0 (x, y) ≡

∑
ω∈�

Gatom
λ,ω (x, y) ω(y) + Gfree

λ (x − y) free(y) (10.51)

Eλ0 (x, y) ≡
∑
ω,ω′∈�
ω �=ω′

λ2 Vω′(x)G
atom
λ,ω (x, y)  ω(y) + V

λ

� (x)G
free
λ (x − y) free(y).

(10.52)

Equation (10.50) is equivalent to

f (x) =
(
−�x + V

λ

� (x) − Eλ0

) ∫
R2

K λ0 (x, y) f (y) dy

+
∑
ω∈�

〈
 ω pλω, f

〉
L2(R2)

pλω(x) −
∫
R2

Eλ0 (x, y) f (y) dy (10.53)

and in any even more compact form:

f (x) =
(
−�x + V

λ

� (x) − Eλ0

)
K λ0 [ f ](x) − Eλ0 [ f ](x)

+
∑
ω∈�

〈
 ω pλω, f

〉
L2(R2)

pλω(x). (10.54)

Author's personal copy



Sharply Terminated Honeycomb Structures

Proposition 10.9. K λ0 (x, y) is a main kernel in the sense of Definition 10.4 and Eλ0 (x, y)
is an error kernel in the sense of (10.5).

Proof of Proposition 10.9. We first prove that K λ0 (x, y), displayed in (10.51), is a main
kernel. Note that for each y ∈ R

2 there is at most one ω = ωy ∈ � with y ∈ supp ω ⊂
{y : |y−ω| ≤ r4}. Therefore, for the first term in (10.51) we have by Theorem 10.3 the
bound
∣∣∣
∑
ω∈�

Gatom
λ,ω (x, y) ω(y)

∣∣∣ ≤
∣∣∣ Gatom

λ,ωy
(x, y)

∣∣∣

� C
[
λ4 + | log |x − y| |

]
1{|x−y|≤R} + e−cλ e−cλ|x−y|.

Furthermore by (10.5), the second term in (10.51) satisfies the bound
∣∣∣ Gfree

λ (x − y) free(y)
∣∣∣ ≤

∣∣∣ Gfree
λ (x − y)

∣∣∣
� C

[
λ4 + | log |x − y| |

]
1{|x−y|≤R} + e−cλ e−cλ|x−y|.

Adding the two previous bounds we conclude that K λ0 (x, y) is a main kernel.
We now prove that Eλ0 (x, y) given by (10.52) is an error kernel. Consider the sum in

(10.52). This sum is non-zero at (x, y) ∈ R
2×R

2, if there are distinct points ω′x, ωy ∈ �
with x ∈ supp Vω′x and y ∈ supp  ωy . The choice of points ω

′
x, ωy ∈ � is unique. We

have y ∈ Br4(ωy) and x /∈ Br4+δ1(ωy), where δ1 > 0. Therefore, part (3) of Theorem10.3
implies
∣∣∣
∑
ω,ω′∈�
ω �=ω′

λ2 Vω′(x)G
atom
λ,ω (x, y)  ω(y)

∣∣∣ ≤ λ2 |Vω′x(x)| |Gatom
λ,ωy
(x, y)|  ωy(y)

≤ λ2 e−cλ e−cλ|x−y| � e−c′λ e−c′λ|x−y|.

For the second term in (10.52), if x ∈ supp V� and y ∈ supp  free, then |x − y| ≥
r3 − r0 > 0. Therefore, Gfree

λ (x− y) � e−cλ|x−y| � e−c′λ e−c′λ|x−y|. It follows that for
some ω = ωx ∈ �:
∣∣∣ V λ

� (x)G
free
λ (x − y) free(y)

∣∣∣ � λ2
∣∣∣ Vωx(x)Gfree

λ (x − y)
∣∣∣ � e−cλ e−cλ|x−y|.

The latter two bounds imply that Eλ0 (x, y), defined in (10.52), is an error kernel. The
proof of Proposition 10.9 is now complete.

Remark 10.10. At this stage we wish to remark that if � is translation invariant by
some vector, then K λ0 and Eλ0 inherit this invariance. In particular, for � = H�, the
zigzag truncation of the honeycomb H, we have K λ0 (x + v2, y + v2) = K λ0 (x, y) and
Eλ0 (x + v2, y + v2) = Eλ0 (x, y).

Introduce the orthogonal subspaces X�:

X� ≡ span
{
pλω : ω ∈ �

}⊥ =
{
f ∈ L2(R2) : 〈pλω, f

〉
L2(R2)

= 0, ω ∈ �
}
,

(10.55)
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and the orthogonal projections:

�λ� : L2(R2)→ X�, �̃λ� = I −�λ� : L2(R2)→ span
{
pλω : ω ∈ �

}
.

(10.56)

We seek the integral kernel for the inverse of the operator�λ�
(
Hλ� − Eλ0 −�

)
�λ�

on X� .
The operator f �→ K λ0 f (see (10.51), (10.53)) defines an approximate inverse of

Hλ� − Eλ0 − � on the range of �λ� but we do not have that �λ�K
λ
0 [ f ] = K λ0 [ f ]. Our

next step is to correct K λ0 in order achieve the desired projection.
Recall that the set {pλω : ω ∈ � } is not orthonormal, but only nearly so; see

Proposition 4.2. The following lemma gives a representation for �̃λ� , defined in (10.56).

Lemma 10.11. �̃λ� = I − �λ� , the orthogonal projection of L2(R2) onto span{pλω :
ω ∈ � }, is given by

�̃λ�[g](x) =
∑

ω, ˆω∈�
Mω,ω̂

〈
pλ
ω̂
, g
〉
pλω(x) , (10.57)

where Mω,ω̂ satisfies the estimate
∣∣∣ Mω,ω̂ − δω,ω̂

∣∣∣ � e−cλ e−cλ |ω̂−ω|. (10.58)

Proof of Lemma 10.11. If we define �̃λ�[g] by (10.57), then for all g ∈ L2(R2)

〈
pλω′ , g

〉 = 〈pλω′ , �̃λ�[g]
〉 =

∑

ω, ˆω∈�
Mω,ω̂

〈
pλ
ω̂
, g
〉 〈

pλω′, p
λ
ω

〉

=
∑

ω, ˆω∈�

( ∑
ω∈�

〈
pλω′ , p

λ
ω

〉
Mω,ω̂

) 〈
pλ
ω̂
, g
〉
. (10.59)

Therefore, �̃λ� is as required provided:
∑
ω∈�

〈
pλω′, p

λ
ω

〉
Mω,ω̂ = δω′ω̂ .

We claim that if ω′, ω ∈ � are distinct, then
∣∣ 〈pλω′ , pλω

〉 ∣∣ � e−c′λ|ω−ω′| e−c′λ. (10.60)

Indeed, if ω �= ω′
∣∣ 〈pλω′ , pλω

〉 ∣∣ ≤
∫
Br4 (ω)

pλω′(x) p
λ
ω(x) dx +

∫
Br4 (ω

′)
pλω′(x) p

λ
ω(x) dx

+
∫

R2\Br4 (ω)∪Br4 (ω′)
pλω′(x) p

λ
ω(x) dx

≤
∫
Br4 (ω)

[
e−cλ|x−ω′| ] ·

[
λ2
]
dx +

∫
Br4 (ω

′)

[
λ2
]
·
[
e−cλ|x−ω| ] dx
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+
∫

R2\Br4 (ω)∪Br4 (ω′)
e−cλ|x−ω| · e−cλ|x−ω′| dx � e−c′λ|ω−ω′| e−c′λ.

Since also pλω(x) = pλ0 (x − ω) is normalized in L2(R2), we have

∣∣∣ 〈pλω′ , pλω
〉 − δω,ω′

∣∣∣ � e−cλ e−cλ|ω−ω′|. (10.61)

Let P = ( 〈
pλ
ω′ , p

λ
ω

〉 )
ω,ω′∈�

and for any ν ∈ R
2, |ν| = 1, let D =(

ec̄λν·ω δω,ω′
)
ω,ω′∈�

, with c̄ smaller than the constant c appearing in (10.61). Then,

D P D−1 =
(
ec̄λν·(ω−ω′)

〈
pλ
ω′, p

λ
ω

〉 )
ω,ω′∈�

= ( p̃ω,ω′) with

∣∣∣ p̃ω,ω′ − δω,ω′
∣∣∣ � e−c′λ|ω−ω′| e−c′λ

by (10.61). Hence, D P−1 D−1 = (
DPD−1

)−1
has an (ω, ω′)-entry that differs from

δω,ω′ by at most e−c̃λ. That is,
∣∣∣
[
ec̄λν·(ω−ω′) Mω,ω′

]
− δω,ω′

∣∣∣ � e−cλ and hence

∣∣∣ ec̄λν·(ω−ω′)
[
Mω,ω′ − δω,ω′

] ∣∣∣ � e−cλ

for all ω, , ω′ ∈ � and all unit vectors ν ∈ R
2. Optimizing over ν gives

∣∣∣ Mω,ω′ − δω,ω′
∣∣∣ � e−cλ e−c̄λ|ω−ω′|.

This completes the proof of Lemma 10.11. ��
By (10.54), after subtracting and adding �̃λ� K λ0 , we have

f (x) =
(
−�x + V

λ

� (x) − Eλ0

) [
K λ0 [ f ](x) −

(
�̃λ� K λ0

) [ f ]
]

+
(
−�x + V

λ

� (x) − Eλ0

) (
�̃λ� K λ0

) [ f ]
− Eλ0 [ f ](x) +

∑
ω∈�

〈
 ω pλω, f

〉
L2(R2)

pλω(x). (10.62)

Here, we have arranged for the expression within the square brackets in (10.62):

K λ1 [ f ] ≡ K λ0 [ f ] −
(
�̃λ� K λ0

) [ f ], (10.63)

to be orthogonal to the translated atomic ground states pλω, for all ω ∈ �. Our next task
is to show that the remaining terms in (10.62) comprise an error kernel.

Proposition 10.12. The operators �̃λ� K λ0 and
(
−�x + V

λ

� (x) − Eλ0

) (
�̃λ� K λ0

)
derive from error kernels in the sense of Definition 10.5.
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Proof of Proposition 10.12. By (10.57)

(
�̃λ�K

λ
0

) [ f ](x) =
∑

ω, ˆω∈�
Mω,ω̂

〈
pλω , K

λ
0 [ f ]

〉
pλ
ω̂
(x)

=
∑

ω, ˆω∈�
Mω,ω̂

∫
R2

pλω(y)
∫
R2

K λ0 (y, z) f (z) dz dy pλ
ω̂
(x)

=
∑

ω, ˆω∈�
Mω,ω̂

∫
R2

[ ∫
R2

pλω(y) K
λ
0 (y, z) dy pλ

ω̂
(x)
]
f (z) dz

=
∫
R2

⎡
⎣ ∑

ω, ˆω∈�
Mω,ω̂

∫
R2

pλω(y) K
λ
0 (y, z) dy pλ

ω̂
(x)

⎤
⎦ f (z) dz. (10.64)

Thus,

(
�̃λ�K

λ
0

)
(x, z) =

∫
R2

⎡
⎣ ∑

ω, ˆω∈�
Mω,ω̂ pλ

ω̂
(x) pλω(y)

⎤
⎦ K λ0 (y, z) dy ,

where K λ0 is given by (10.51):

K λ0 (y, z) ≡
∑
ω′∈�

Gatom
λ,ω′ (y, z) ω′(z) + Gfree

λ (y− z) free(z). (10.65)

Now decompose
(
�̃λ�K

λ
0

)
(x, z) has follows:

(
�̃λ�K

λ
0

)
(x, z) =

∫
R2

⎡
⎢⎢⎣
∑
ω,ω̂∈�
ω �=ω̂

Mω,ω̂ pλ
ω̂
(x) pλω(y)

⎤
⎥⎥⎦ K λ0 (y, z) dy

+
∫
R2

[∑
ω∈�

Mω,ω pλω(x) p
λ
ω(y)

]
K λ0 (y, z) dy

≡ (
�̃λ�K

λ
0

)
1 (x, z) +

(
�̃λ�K

λ
0

)
2 (x, z). (10.66)

We prove that each term in (10.66) is an error kernel, i.e.
∣∣∣ ( �̃λ�K λ0

)
j (x, z)

∣∣∣ �
e−cλ e−cλ|x−z| for j = 1, 2. For ω �= ω̂ we have by (10.58) that

|Mω,ω̂| � e−c′λ|ω−ω̂| e−c′λ.

We may therefore write:

| Mω,ω̂ pλ
ω̂
(x) pλω(y) | ≤ e−c′λ|ω−ω̂| e−c̃λ pλ

ω̂
(x) · e−c̃λ pλω(y). (10.67)

Next, using (3.5) we bound e−c̃λ pλ
ω̂
(x) and e−c̃λ pλω(y) as follows:

e−c̃λ pλ
ω̂
(x) �

(
e−c′λ1{|x−ω̂|≤r1} + e−c′λe−cλ|x−ω̂| )
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�
(
e−

c′
2 λ e

− c′
2r1
λ|x−ω̂|1{|x−ω̂|≤r1} + e−c′λe−cλ|x−ω̂|

)
. (10.68)

Therefore, e−c̃λ pλ
ω̂
(x) � e−cλe−cλ|x−ω̂| and similarly e−c̃λ pλω(y) � e−cλe−cλ|y−ω|.

Substituting these bounds into (10.67), we obtain for some c > 0

| Mω,ω̂ pλ
ω̂
(x) pλω(y) | � e−cλ e−cλ|ω−ω̂| e−cλ|x−ω̂| e−cλ|y−ω|

� e−cλ e−
c
2λ|x−y| × e−

c
2λ|ω−ω̂| e−

c
2λ|x−ω̂| e−

c
2λ|y−ω| ,

since |x− y| ≤ |x− ω̂|+ |ω− ω̂|+ |y−ω|. Therefore, for some c′ which is independent
of λ:

∑

ω, ˆω∈�
ω �=ω̂

| Mω,ω̂ pλ
ω̂
(x) pλω(y) | � e−c′λ e−c′λ|x−y|

and therefore
∑
ω, ˆω∈�
ω �=ω̂

Mω,ω̂ pλ
ω̂
(x) pλω(y) is therefore an error kernel. And since K

λ
0 is

a main kernel we have, by the expression for
(
�̃λ�K

λ
0

)
1 (x, z) in (10.66), and by part 2

of Lemma 10.7, that
(
�̃λ�K

λ
0

)
1 (x, z) is an error kernel.

We next prove that
(
�̃λ�K

λ
0

)
2 (x, z), defined in (10.66) is an error kernel. Using

(10.65) we have

(
�̃λ�K

λ
0

)
2 (x, z) ≡

∑
ω∈�

Mω,ω pλω(x)
∫
R2

pλω(y) K
λ
0 (y, z) dy

=
∑
ω∈�

Mω,ω pλω(x)
∫
R2

pλω(y)

⎡
⎣ ∑
ω′∈�\{ω}

Gatom
λ,ω′ (y, z) ω′(z)

⎤
⎦ dy

+
∑
ω∈�

Mω,ω pλω(x)
∫
R2

pλω(y) G
free
λ (y− z) free(z) dy

≡ (
�̃λ�K

λ
0

)
2a (x, z) +

(
�̃λ�K

λ
0

)
2b (x, z). (10.69)

Note the absence of theω′ = ω term in the inner sum just above since the atomic Green’s
function, Gatom

λ,ω′ , projects onto the orthogonal complement of the function pλ
ω′ .

We prove that the kernels
(
�̃λ�K

λ
0

)
2a (x, z) and

(
�̃λ�K

λ
0

)
2b (x, z), defined in (10.69)

are both bounded in absolute value by e−cλ e−cλ|x−z|. We first recall the following
relations and definitions:

Gatom
λ,ω (y, z) = Gatom

λ (x − ω, y− ω),(
Hλatom − Eλ0

)
Gatom
λ (x, y) = δ(x − y) − pλ0 (x) p

λ
0 (y)

 0(x) ≡
{
1, |x| ≤ r3
0, |x| ≥ r4

, and

 ω(x) =  (x − ω), for ω ∈ �, and  free(x) = 1−
∑
ω∈�

 ω(x).
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Estimation of
(
�̃λ�K

λ
0

)
2a (x, z); see (10.69): Suppose first that |z − ω′| ≥ r4, for all

ω′ ∈ �\{ω}. Then, z is outside the support of  ω′(z) for all ω′ ∈ �\{ω}. and we have:(
�̃λ�K

λ
0

)
2a (x, z) ≡ 0.

Suppose now that z is such that |z − ω′| ≤ r4 for some ω′ = ω′z ∈ �\{ω}. There-
fore, the bracketed expression in the definition of

(
�̃λ�K

λ
0

)
2a (see (10.69)) is given by:

[· · · ] (y, z) = Gatom
λ,ω′z
(y, z) ω′z(z). Therefore, for |z− ω′z| ≤ r4, we have

∫
pλω(y) [· · · ] (y, z) dy =

∫
pλω(y) G

atom
λ,ω′z (y, z) ω′z(z) dy

≤
∫
|y−ω|≤r1

pλω(y) G
atom
λ,ω′z (y, z) dy

+
∫
|y−ω|≥r1

pλω(y) G
atom
λ,ω′z (y, z) dy. (10.70)

We bound the latter two integrals individually by using the pointwise bounds on pλω(y) =
pλ0 (y−ω)given in (3.5) and the pointwise bounds onGatom

λ,ω′z
(y, z) = Gatom

λ (y−ω′z, z−ω′z)
of Theorem 10.3.

With |z−ω′z| ≤ r4, we first consider the integral over the set |y−ω| ≤ r1. For such y,
we have by (3.5): |pλω(y)| � λ2. Furthermore, note that |y−ω′z| ≥ |ω−ω′z|− |y−ω| ≥
rmin − r1 > r4; see(10.42). Because |y − ω′z| > rmin − r1, while |z − ω′z| < r4, it
follows from (10.20) (part 3 of Theorem 10.3) that |Gatom

λ,ω′z
(y, z)| � e−cλe−cλ|y−z|. The

first integral in (10.70) therefore satisfies
∫
|y−ω|≤r1

pλω(y) G
atom
λ,ω′z (y, z) dy � λ2

∫
|y−ω|≤r1

e−cλe−cλ|y−z| dy � e−cλe−cλ|z−ω|.

Next, with |z− ω′z| ≤ r4, we consider the integral over the set |y− ω| ≥ r1. On this
set, we have |pλω(y)| � e−c′λe−c′λ|y−ω| and, by the bounds of Theorem 10.3:
∫
|y−ω|≥r1

pλω(y) G
atom
λ,ω′z (y, z) dy

�
∫
|y−ω|≥r1

e−c′λe−c′λ|y−ω| [ (c0 |log |z− y|| + λ4
)
1|y−z|≤R + e−cλ e−cλ|z−y| ] dy

� e−c̃λe−c̃λ|z−ω| .

Therefore, the integral expression in the definition of
(
�̃λ�K

λ
0

)
2a (x, z) satisfies the

bound:
∫

pλω(y) [· · · ] (y, z) dy =
∫

pλω(y) G
atom
λ,ω′z (y, z) ω′z (z) dy � e−c̃λe−c̃λ|z−ω|

= e−c̃λ e−
1
2 c̃λ|z−ω| e−

1
2 c̃λ|z−ω|.

We next multiply this estimate by pλω(x) and once again use the pointwise bound (3.5):

pλω(x)
∫

pλω(y) [· · · ] (y, z) dy

�
(
λ2 1|x−ω|≤R + e−cλe−cλ|x−ω| ) e−c̃λ e−

1
2 c̃λ|z−ω| e−

1
2 c̃λ|z−ω|
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� e−cλe−cλ|x−z| e−
1
2 c̃λ|z−ω|.

Finally, we multiply the previous bound by Mω,ω = 1 +O(e−cλ) (see (10.58)) and sum
over all ω ∈ � to obtain:

(
�̃λ�K

λ
0

)
2a (x, z) =

∑
ω∈�

pλω(x)
∫

pλω(y) [· · · ] (y, z) dy

�
(
1 +O(e−cλ)

)
e−cλ e−cλ|x−z| ∑

ω∈�
e−

1
2 c̃λ|z−ω| � e−cλe−cλ|x−z|.

Therefore, the contribution to
(
�̃λ�K

λ
0

)
2 (x, z) from

(
�̃λ�K

λ
0

)
2a (x, z) is an error kernel.

Estimation of
(
�̃λ�K

λ
0

)
2b (x, z); see (10.69): From the expression (10.69) we need only

consider z ∈ supp( free), that is z bounded away from the all sites ω ∈ �; in particular,
|z− ω| ≥ r3 for all ω ∈ �. By (3.5) and (10.5):

pλω(y)G
free
λ (y− z)  free(z)

�
(
λ21|y−ω|≤r1 + e−cλe−cλ|y−ω|) · e−cλ|y−z| ·

(
1 +

∣∣∣ log λ|y− z|
∣∣∣
)
 free(z)

�
(
e−c′λ|y−z| 1|y−ω|≤r1 + e−cλ|y−z| e−cλ|y−ω| 1|y−ω|≥r1

)
·
(
1 +

∣∣∣ log λ|y− z|
∣∣∣
)
 free(z).

Integrating over R2 with respect to y, we find that
∫

R2

pλω(y)G
free
λ (y− z)  free(z) dy � e−cλ|z−ω|  free(z).

Now multiply this bound by Mω,ω pλω(x) and apply the pointwise bound for pλω(x),
implied by (3.5), and the expansion Mω,ω = 1 +O(e−cλ) of (10.58), to obtain

Mω,ω pλω(x)
∫

R2

pλω(y)G
free
λ (y− z)  free(z) dy

�
(
λ21|x−ω|≤r1e−

1
4 cλ|z−ω| e−

1
4 cλ|z−ω| + e−cλe−cλ|x−ω|e−

1
2 cλ|z−ω|

)
 free(z) e−

1
2 cλ|z−ω|

�
(
1|x−ω|≤r1 e−c̃λ|x−ω| e−c̃λ|z−ω| + e−cλe−cλ|x−ω|e−

1
2 cλ|z−ω|

)
 free(z) e−

1
2 cλ|z−ω|

� e−c′λ|x−z|  free(z) e−
1
2 cλ|z−ω|.

Summing over ω ∈ � and using that on the support of free(z), z is uniformly bounded
away from �, we have that

∑
ω∈�

Mω,ω pλω(x)
∫

R2

pλω(y)G
free
λ (y− z)  free(z) dy � e−cλ e−cλ|x−z|.

Hence, the contribution to
(
�̃λ�K

λ
0

)
2 (x, z) of

(
�̃λ�K

λ
0

)
2b (x, z) is also an error ker-

nel. Therefore,
(
�̃λ�K

λ
0

)
2 (x, z) is an error kernel, and since we have already verfied

that
(
�̃λ�K

λ
0

)
1 (x, z) is an error kernel, we conclude that

(
�̃λ�K

λ
0

)
(x, z) is an error

kernel. Furthermore, it is straightforward to show by arguments similar to those above
that H

λ

�

(
�̃λ�K

λ
0

)
(x, z) is an error kernel, where H

λ

� is defined in (10.41). Indeed,

we just replace pλω(x) by H
λ

� p
λ
ω(x) in the previous discussion. Note that H

λ

� p
λ
ω(x) =
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λ2
∑
ω′∈�\{ω} V0(x − ω′)pλ0 (x − ω) and therefore |H λ

� p
λ
ω(x)| � λ2‖V0‖L∞ pλω(x).

Hence, the estimates lose at worst one power of λ2, which can be absorbed by our
exponentials e−cλ. This completes the proof of Proposition 10.12. ��

From (10.62), Proposition 10.9 and Proposition 10.12 we have

f (x) =
(
−�x + V

λ

� (x) − Eλ0

)
K λ1 [ f ](x)

+
∑
ω∈�

〈
 ω pλω, f

〉
L2(R2)

pλω(x) + Eλ1 [ f ](x) , (10.71)

where

K λ1 ≡ K λ0 − �̃λ� K λ0 = �λ� K λ0 is a main kernel , (10.72)〈
pλω, K

λ
1 [ f ]

〉 = 0, for all ω ∈ �, (10.73)

and

Eλ1 = −Eλ0 +
(
−�x + V

λ

� (x) − Eλ0

) (
�̃λ� K λ0

) = −Eλ0 + H
λ

�

(
�̃λ� K λ0

)

(10.74)

is derived from an error kernel.
Now let |�| < e−ĉλ, where ĉ is a constant that was introduced in Remark 3.1, and

thus (ρλ)−1|�| ≤ e−(ĉ−c−)λ → 0, as λ→∞. Then, from (10.71) we have

f (x) =
(
−�x + V

λ

� (x) − Eλ0 − �
)

K λ1 [ f ](x)
+
∑
ω∈�

〈
 ω pλω, f

〉
L2(R2)

pλω(x) +
( Eλ1 + �K λ1

) [ f ](x) (10.75)

and hence
(
I − (Eλ1 +�K λ1 )

)
f (x) =

(
−�x + V

λ

� (x) − Eλ0 − �
)

K λ1 [ f ](x)
+
∑
ω∈�

〈
 ω pλω, f

〉
L2(R2)

pλω(x). (10.76)

For λ large, the operator Eλ1 + �K λ1 has small norm as a bounded opera-
tor on L2(R2). Hence, I − (Eλ1 + �K λ1

)
is invertible. Applying (10.75) to f̃ =(

I − (Eλ1 +�K λ1 )
)−1

f yields

f (x) =
(
−�x + V

λ

� (x) − Eλ0 − �
) (

K λ1
(
I − (Eλ1 +�K λ1 )

)−1
)
[ f ](x)

+
∑
ω∈�

〈
 ω pλω, f̃

〉
L2(R2)

pλω(x). (10.77)

From (10.77) we see that for all f ∈ L2(R2) and |�| � e−ĉλ

(
−�x + V

λ

� (x) − Eλ0 − �
) (

K λ1
(
I − (Eλ1 +�K λ1 )

)−1
)

f = f

modulo the span of {pλω : ω ∈ �}. (10.78)

Here, K λ1 , defined in (10.63), is derived from a main kernel, Eλ1 is derived from an error
kernel.

Author's personal copy



Sharply Terminated Honeycomb Structures

Proposition 10.13. For λ sufficiently large and � such that |�| � e−ĉλ,

K λ2 ≡ K λ1
(
I − (Eλ1 +�K λ1 )

)−1 ≡ K λ1 + Eλ2 . (10.79)

Here, K λ1 is derived from a main kernel, Eλ2 from an error kernel and therefore K λ2 is
derived from a main kernel. Moreover, for all f ∈ L2(R2):

(
−�x + V

λ

� (x) − Eλ0 − �
)

K λ2 f = f,

modulo the span of {pλω : ω ∈ �} , (10.80)

K λ2 [ f ] ⊥ span
{
pλω : ω ∈ �

}
. (10.81)

Proof of Proposition 10.13. Set A = � K λ1 + Eλ1 , where λ is taken sufficiently large.
First note that by Lemma 10.7 that the operator A2 is derived from an error kernel. As
an operator on L2(R2)we have (I − A)−1 = (I + A)

(
I − A2

)−1 = (I + A) (I + A1),
where A1 is an error kernel, again byLemma10.7. Therefore, (I−A)−1 = I + A + A2 =
I + � K λ1 + A3, where A j ( j = 2, 3) arise from error kernels. Another application of
Lemma 10.7 completes the proof that Eλ2 is derived from an error kernel. That (10.80),
(10.81) hold follows from (10.78) and (10.73). ��

Recall the subspace X� , the orthogonal complement of span
{
pλω : ω ∈ �

}
:

X� ≡ span
{
pλω : ω ∈ �

}⊥ =
{
f ∈ L2(R2) : 〈pλω, f

〉
L2(R2)

= 0, ω ∈ �
}
,

(10.82)

and the orthogonal projections: �λ� : L2(R2) → X� and �̃λ� : L2(R2) → span
{
pλω :

ω ∈ �
}
; see (10.55). We now write

K λ2 = K λ3 + Eλ3
where

K λ3 ≡ K λ2�
λ
�, and Eλ3 ≡ K λ2 �̃

λ
�. (10.83)

Note that

K λ3 [ f ] = 0 in L2(R2) if f ∈ span{pλω : ω ∈ �} ,
and by Proposition 10.13:

(
−�x + V

λ

� (x) − Eλ0 − �
)
Eλ3 ∈ span

{
pλω : ω ∈ �

}
. (10.84)

Hence, for all f ∈ L2(R2):
(
−�x + V

λ

� (x) − Eλ0 − �
)

K λ3 f = f modulo the span of {pλω : ω ∈ �}.
We therefore have
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Proposition 10.14. Let |�| ≤ e−cλ with λ chosen sufficiently large. Then, the operator
�λ�(H

λ
� − Eλ0 − �) = �λ�

(−� + V λ� − Eλ0 −�
)
is invertible on X� , the orthogonal

complement of span
{
pλω : ω ∈ �

}
. Its inverse is given by K λ3

∣∣∣
X�

and we write

Kλ�(�)
∣∣∣
X�

≡ K λ3

∣∣∣
X�

: X� → X�.

The following proposition characterizes the operator kernel we seek:

Proposition 10.15. Let |�| � e−ĉλ with λ chosen sufficiently large. Then, Kλ�(�)
defined in Proposition 10.14 satisfies the following properties:

(1)

Kλ�(�)[ f ] = 0 in L2(R2) if f ∈ span{pλω : ω ∈ �}. (10.85)

(2)

Kλ�(�)[ f ] ⊥ span
{
pλω : ω ∈ �

}
in L2(R2). (10.86)

(3)

�λ�
(−� + V λ� − Eλ0 −�

)Kλ�(�)[ f ] = f, modulo X�. (10.87)

(4) The operator Kλ�(�) is derived from a kernel:

Kλ�(�)[ f ](x) =
∫
R2

Kλ�(x, y;�) f (y) dy for all f ∈ L2(R2), where (10.88)

∣∣ Kλ�(x, y;�)
∣∣ ≤ C

[
| log |x − y| | + λ6

]
1|x−y|≤C + e−cλ e−cλ|x−y|

for all x, y ∈ R
2. (10.89)

The only assertion in Proposition 10.15 that requires proof is part (4). Recall that
Kλ�(�) = K λ3 = K λ2�

λ
� = K λ2 − K λ2 �̃

λ
� . Since K λ2 is derived from a main kernel, it

suffices to study the kernel of K λ2 �̃
λ
� . We begin with a bound on the kernel of �̃λ� , which

we derive using Lemma 10.11. The kernel of �̃λ� , K
λ
�̃
(x, y), is given by (see (10.57)):

K λ
�̃
(x, y) =

∑
ω,ω′

Mω,ω′ pλω(x)p
λ
ω(y), (10.90)

and we have

�̃λ�[g](x) =
∫
R2

K λ
�̃
(x, y)g(y) dy. (10.91)

Our goal is to bound

Kλ�(x, y;�) = K λ2 (x, y) −
(
K λ2 ◦ K λ

�̃

)
(x, y)

= K λ2 (x, y) −
∫
R2

K λ2 (x, z) K
λ
�̃
(z, y)dy. (10.92)
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Note that

K λ
�̃
(x, y) =

∑
ω

pλω(x)p
λ
ω(y) +

∑
ω,ω′

[
Mω,ω′ − δω,ω′

]
pλω(x)p

λ
ω(y). (10.93)

Recall from (10.58) that
∣∣∣Mω,ω′ − δω,ω′

∣∣∣ � e−cλe−cλ|ω−ω′|. Also, from the pointwise

bounds, (3.5), on pλ0 we have:

|pω(x)| � λ1|x−ω|≤R + e−cλ|x−ω|, |pω′(y)| � λ1|y−ω|≤R + e−cλ|y−ω′|,

which it follows that
∣∣∣
∑
ω

pλω(x)p
λ
ω(y)

∣∣∣ � λ21|y−ω|≤2R + e−c′|x−y|,
∣∣∣
∑
ω,ω′

[
Mω,ω′ − δω,ω′

]
pλω(x)p

λ
ω′(y)

∣∣∣ � e−c′λ
[
1|x−y|≤2R + e−c′λ|x−y| ] .

Substitution into (10.93), we obtain
∣∣∣K λ
�̃
(x, y)

∣∣∣ � 1|x−y|≤2R λ2 + e−c′λ|x−y|. (10.94)

Now since K2(x, y;�) is a main kernel we have

|K2(x, y;�)| �
[
λ4 +

∣∣∣ log |x − y|
∣∣∣
]
1|x−y|≤R + e−cλ e−cλ|x−y|. (10.95)

Inserting the bounds (10.94) and (10.95) into (10.92) we find that Kλ�(x, y;�) satisfies
the bound:

|K�(x, y;�)| �
[
λ6 +

∣∣∣ log |x − y|
∣∣∣
]
1|x−y|≤3R + e−cλ e−cλ|x−y|. (10.96)

The proof is complete of Proposition 10.15 is complete.

10.5. Kλ�(�) for the case where �, the set of nuclei, is translation invariant. We now
suppose that our discrete set of nuclei, �, is translation invariant by a vector v2 ∈ R

2.
Of course, we have in mind, � = H�, the zigzag truncation of H; see (1.11). But our
argumentswould apply to other rational truncations ofH, for example along an armchair
edge. For the particular choice � = H�, we have V�(x) = V�(x) and

Hλ� = Hλ� ≡ −� + λ2V�(x)− Eλ0 .

As commented upon in Remark 10.10, all our constructions of integral operators
and kernels respect that translation invariance. Thus, at each stage our integral kernels
A(x, y) satisfy: A(x + v2, y + v2) = A(x, y). It follows that

Kλ�(x + v2, y + v2) = Kλ�(x, y) for all x, y ∈ R
2. (10.97)
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10.5.1. Kλ� as a bounded operator acting on L2
k‖(	) Let� be invariant under translation

by v2. We recall the setting discussed earlier. Associated with this translation invariance
is a parallel quasi-momentum, k‖ ∈ [0, 2π). We define the cylinder 	 = R

2/Rv2 and
let D	 denote a fundamental domain for 	. The space L2(	) consists of functions
f such that f (x + v2) = f (x) for almost all x ∈ R

2 and such that ‖ f ‖L2(	) ≡(∫
D	

| f (x)|2dx
) 1

2
< ∞. The space L2

k‖(	) consists of functions f such that g(x) ≡
f (x)e−i

k‖
2πK2·x satisfies g(x + v2) = g(x) almost everywhere in x and g ∈ L2(	).

We now show that Kλ� also gives rise to a bounded operator L2
k‖(	). For any f ∈

L2
k‖(	), we define

Kλ�[ f ](x) =
∫
R2

Kλ�(x, y) f (y) dy. (10.98)

Similarly, �λ� may be defined on L2
k‖(	) using Lemma 10.11.

By our bounds onKλ�(x, y),Kλ�[ f ] is well-defined for all f ∈ L2
k‖(	). Using (10.97)

and our assumption that f (x+v2) = eik‖ f (x) almost everywhere, we obtain by change
of variables:

Kλ�[ f ](x + v2) =
∫
R2

Kλ�(x + v2, y) f (y) dy =
∫
R2

Kλ�(x + v2, y + v2) f (y + v2) dy

=
∫
R2

Kλ�(x, y) f (y + v2) dy = eik‖
∫
R2

Kλ�(x, y) f (y) dy

= eik‖ Kλ�[ f ](x). (10.99)

Hence, e−i
K2 ·x
2π k‖ Kλ�[ f ](x) is a function defined on the cylinder	. Similarly, one shows

easily that �λ� maps L2(	) into itself. Furthermore, we have

(
�λ�

(
Hλ� − E0

D −�
)
�λ�

)
◦ Kλ� f = �λ� f , Kλ� f ∈ L2

k‖(	) (10.100)

thanks to Proposition 10.15. That e−i
K2 ·x
2π k‖ Kλ� f ∈ L2(	) is a consequence of the

kernel bounds on Kλ�(x, y) and Young’s inequality. Therefore, we have

Proposition 10.16. Let |�| ≤ e−ĉλ with λ chosen sufficiently large. Let the discrete
set � be invariant under translation by the vector v2. Then, the kernel Kλ�(�)(x, y),
defined in Proposition 10.15 and (10.98), gives rise to a bounded operator on L2

k‖(	).
Furthermore, the operator

Kλ�(�, k‖) ≡ e−i
K2 ·x
2π k‖ Kλ�(�) ei

K2 ·x
2π k‖ (10.101)

is a bounded operator on L2(	).
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10.5.2. The operator Kλ�(�, k‖) acting on periodized sums Let � be invariant under
translates by integer multiples of v2. We are interested inKλ�(�, k‖) : L2(	)→ L2(	)

(see (10.101)) applied to a sum over all v2-integer-translates of

pλ
k‖,ω
(x) = ei

k‖
2πK2·(x−ω) p0(x − ω). (10.102)

For ω ∈ �, let [ω] denote the equivalence class of all translates of ω by integer
multiples of v2. The set of such equivalence classes is

�	 ≡ {[ω] : ω ∈ �}. (10.103)

For any [ω] ∈ �	 we set

pλ
k‖,[ω]

(x) ≡
∑
m∈Z

pλ
k‖,ω
(x + mv2). (10.104)

Our estimates on pλω ∈ L2(R2) imply that pλ
k‖,[ω]

∈ L2(	), and by our discussion of the

previous subsection Kλ�[pλk‖,[ω] ] ∈ L2(	). Furthermore, we have

Proposition 10.17. Let |�| ≤ e−ĉλ with λ chosen sufficiently large.

(1) Kλ�(�, k‖)[ f ] = 0 in L2(	) for all f ∈ span{pλ
k‖,[ω]

: ω ∈ �}.
(2) For all ω ∈ � and f ∈ L2(	), we have

〈
Kλ�(�, k‖)[ f ], pλk‖,[ω]

〉
L2(	)

= 0.

Proof of claim (1) of Proposition 10.17. We claim in fact for any ω ∈ �, and for any
x ∈ R

2, we have Kλ�(�, k‖)[pλk‖,[ω] ](x) = 0. Indeed,

Kλ�(�, k‖)[pλ[k‖,ω] ](x) =
∫
R2

Kλ�(�, k‖)(x, y)
∑
m∈Z

pλ
k‖,ω−mv2

(y) dy

= lim
N→∞

∫
R2

Kλ�(�, k‖)(x, y)
∑
|m|≤N

pλ
k‖,ω−mv2

(y) dy

= lim
N→∞

∑
|m|≤N

∫
R2

Kλ�(�, k‖)(x, y)pλk‖,ω−mv2
(y) dy

= lim
N→∞

∑
|m|≤N

Kλ�(�, k‖)[pλk‖,ω−mv2
](x) = 0,

by property (10.85) of Proposition 10.15. These formal manipulations are easily justified
thanks to our estimates on Kλ�(�, k‖)(x, y) and pλω(x). This completes the proof of the
first claim of Proposition 10.17. ��
Proof of claim (2) of Proposition 10.17. Let ω ∈ � and f ∈ L2(	). Then,
〈
Kλ�(�, k‖)[ f ], pλk‖,[ω]

〉
L2(	)

=
∫
x∈D	

∑
m∈Z

pλ
k‖,ω
(x + mv2) ·

∫
y∈R2

Kλ�(�, k‖)(x, y) f (y) dy dx
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=
∑
m∈Z

∫
x∈D	

pλ
k‖,ω
(x + mv2) ·

∫
y∈R2

Kλ�(�, k‖)(x, y) f (y) dy dx

=
∑
m∈Z

∫
x∈D	

pλ
k‖,ω
(x + mv2) ·

∫
y∈R2

Kλ�(�, k‖)(x + mv2, y + mv2) f (y + mv2) dy dx.

The latter equality holds by properties of Kλ�(�, k‖) and f under translation by v2.
Continuing, we have

〈
Kλ�(�, k‖)[ f ], pλk‖,[ω]

〉
L2(	)

=
∑
m∈Z

∫
D	+mv2

pλ
k‖,ω
(x′)

∫
y′∈R2

Kλ�(�, k‖)(x′, y′) f (y′) dy′ dx′

=
∫
x∈R2

pλ
k‖,ω
(x)

∫
y∈R2

Kλ�(�, k‖)(x, y) f (y) dy dx

= lim
N→∞

∫
x∈R2

pλ
k‖,ω
(x)

∫
|y|≤N

Kλ�(�, k‖)(x, y) f (y) dy dx = 0

by property (10.86) of Proposition 10.15. Again, the formal manipulations are easily
justified. This completes the proof of Proposition 10.17. ��

10.6. Green’s kernel. We recall the cylinder	 = R
2/Rv2 and the choice of fundamen-

tal domain D	 ⊂ R
2, given as the union of finite parallelograms, Dn, n ≥ 0 together

with one unbounded parallelogram, D−1, D	 = ∪n≥0Dn ∪ D−1; see (4.2). In each
finite parallelogram, Dn, n ≥ 0, are two lattice points of H�: v

(n)
A and v(n)B . As our

discrete set we take � = H�, our potential V�(x) and our Hamiltonian Hλ� acting on

L2
k‖(	).

Next recall the subspace of L2(	) (see (4.12)):

XλAB(k‖) = orthogonal complement in L2(	) of span
{
pλ
k‖,I

[n] : n ≥ 0, I = A, B
}

with orthogonal projection:

�λ
AB
(k‖) : L2(	)→ XλAB(k‖).

By definition

pλ
k‖,[v(n)I ]

(x) = pλ
k‖,I

[n](x), I = A, B,

where pλ
k‖,I

[n] is defined in (4.3).

Recall that Kλ� (�, k‖), the inverse of �AB (k‖)
(
Hλ� (k‖)−�

)
�AB (k‖) ( equiva-

lently�AB (k‖)◦
(
Hλ� (k‖)−�

)
) acting on Xλ

AB
(k‖); see Proposition 5.1. By Proposi-

tions 10.15 and 10.16 this inverse is given by an integral operator

f �→ Kλ� (�, k‖)[ f ] ≡
∫
R2

Kλ� (x, y;�, k‖) f (y) dy , (10.105)
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with kernel

Kλ� (x, y;�, k‖) = e−i
K2 ·x
2π k‖ Kλ� (x, y,�) ei

K2 ·y
2π k‖ (10.106)

which satisfies the pointwise bounds:
∣∣∣ Kλ� (x, y;�, k‖)

∣∣∣ ≤ C
[
| log |x − y| | + λ6

]
1|x−y|≤C + e−cλ e−cλ|x−y|

for all x, y ∈ R
2. (10.107)

Now applying Proposition 10.17 we obtain:

Proposition 10.18. Let |�| ≤ e−ĉλ with λ chosen sufficiently large.

(1) Kλ� (�, k‖)[ f ] = 0 in L2(	) for all f ∈ span{pλ
k‖,I

[n] : I = A, B, n ≥ 0}.
(2) Assume f ∈ L2(	). Then, for all n ≥ 0 and I = A, B, we have

〈
Kλ� (�, k‖)[ f ], p

λ

k‖,I
[n]
〉
L2(	)

= 0.

(3) [Hλ(k‖)−�]Kλ� (�, k‖)[ f ] = f modulo span{pλ
k‖,I

[n] : I = A, B, n ≥ 0}.
A consequence of the forgoing discussion is:

Corollary 10.19. Let |�| ≤ e−ĉλ with λ chosen sufficiently large. The operator

Kλ� (�, k‖), the inverse of �λAB(k‖)
(
Hλ� (k‖)−�

)
�λAB(k‖), arises from a kernel

satisfying (10.105), (10.107). Kλ� (�, k‖) is a bounded linear operator on L2(	).

11. Expansion and Estimation of Linear Matrix Elements: Proof of
Proposition 7.1

Our first step in the proof of Proposition 7.1 is to expand the inner products:

〈
P
λ

k‖,I
[m], Hλ� P

λ

k‖,J
[n]
〉
L2(	)

=
〈
p
λ

k‖,I
[m], Hλ� (k‖) p

λ

k‖,J
[n]
〉
L2(	)

,

where m, n ∈ N0, in terms of overlap integrals of translates of the atomic potential, V0,
and the atomic ground state, pλ0 . We have, by the definition of the L2(	) inner product:

〈
P
λ

k‖,I
[m], Hλ� P

λ

k‖,J
[n]
〉
L2(	)

=
∫

D	

Pλ
k‖,I

[m](x) Hλ� P
λ

k‖,J
[n](x) dx.

We first simplify the integrand: Pλ
k‖,I

[m] Hλ� P
λ

k‖,J
[n]. We recall the definition of Hλ�

(see (1.16)) and introduce the notation:

J ′ = A if J = B and J ′ = B if J = A. (11.1)

For x ∈ D	 , the fundamental domain (see Fig. 1), we have for J = A, B:
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Hλ� P
λ

k‖,J [n](x) =
∑

m̃2∈Z
eim̃2k‖

·
⎡
⎣−� + λ2

∑
n1≥0

V0(x − v
n1
J ) + λ

2
∑
n1≥0

V0(x − v
n1
J ′ ) − Eλ0

⎤
⎦ pλ0 (x − vnJ − m̃2v2)

= λ2

⎡
⎢⎢⎢⎣
∑
n1≥0
n1 �=n

V0(x − v
n1
J ) +

∑
n1≥0

V0(x − v
n1
J ′ )

⎤
⎥⎥⎥⎦ ·

[ ∑

m̃2∈Z
eim̃2k‖ pλ0 (x − vnJ − m̃2v2)

]

+ λ2 V0(x − vnJ )
∑

m̃2∈Z\{0}
eim̃2k‖ pλ0 (x − vnJ − m̃2v2). (11.2)

To obtain (11.2) we use that (−�x + λ2V0(x) − Eλ0 )p
λ
0 (x) = 0 and therefore (−�x +

λ2V0(x − v)− Eλ0 )p
λ
0 (x − v) = 0 for all v ∈ H. From (11.2) we obtain:

Pλ
k‖,I [m](x) H

λ
� P

λ

k‖,J [n](x)

=
∑
m2∈Z

∑

m̃2∈Z
ei(m̃2−m2)k‖

· pλ0 (x − vmI − m2v2)

⎡
⎢⎢⎢⎣
∑
n1≥0
n1 �=n

λ2 V0(x − v
n1
J ) +

∑
n1≥0

λ2 V0(x − v
n1
J ′ )

⎤
⎥⎥⎥⎦ pλ0 (x − vnJ − m̃2v2)

+
∑
m2∈Z

∑

m̃2∈Z\{0}
ei(m̃2−m2)k‖ pλ0 (x − vmI − m2v2) λ

2 V0(x − vnJ ) p
λ
0 (x − vnJ − m̃2v2) ,

for all x ∈ D	 . Integrating the previous identity over D	 , we obtain:

〈
P
λ

k‖,I [m](x) , H
λ
� P

λ

k‖,J [n]
〉

L2(	)

=
∑

m2,m̃2∈Z

∑
n1≥0
n1 �=n

ei(m̃2−m2)k‖
∫

D	

pλ0 (x − vmI − m2v2) λ
2 V0(x − v

n1
J ) p

λ
0 (x − vnJ − m̃2v2) dx

+
∑

m2,m̃2∈Z

∑
n1≥0

ei(m̃2−m2)k‖
∫

D	

pλ0 (x − vmI − m2v2) λ
2 V0(x − v

n1
J ′ ) p

λ
0 (x − vnJ − m̃2v2) dx

+
∑
m2∈Z

∑

m̃2∈Z\{0}
ei(m̃2−m2)k‖

∫

D	

pλ0 (x − vmI − m2v2) λ
2 V0(x − vnJ ) p

λ
0 (x − vnJ − m̃2v2) dx

≡ SI J1 (m, n) + SI J2 (m, n) + SI J3 (m, n) , (11.3)

where the three expressions SI J1 (m, n), S
I J
2 (m, n), and S

I J
3 (m, n) denote the three sums

in (11.3). The dependence on λ and k‖ has been suppressed. We recall that in the expres-
sion for SI J2 (m, n), the index J ′ is defined in (11.1).

We now provide a general lemma, which will facilitate our determination of the
leading terms and estimation of the error terms in the above sums. In preparation for the
statement of this lemma we introduce some terminology.
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Definition 11.1. (1) For I1, J1 ∈ {A, B}, we write vI1 − vJ1 = σ(vB − vA) = σe,
where σ = 1 if I1 = B and J1 = A, and σ = −1 if I1 = A and J1 = B. We
therefore write:

σ(B, A) = +1, σ (A, B) = −1, and we define σ(I1, I1) = 0. (11.4)

(2) For σ = +1,−1, 0 we define Nb(σ ) = {r = (r1, r2) ∈ Z
2 : |σe + r�v| = |e|}.

Therefore Nb(+1) ≡ {(0, 0), (−1, 0), (0,−1)}, Nb(−1) ≡ {(0, 0), (1, 0), (0, 1)},
and Nb(0) ≡ ∅.
Note that if m = (m1,m2) ∈ Nb(σ ) with σ = ±1, then there exists l ∈ {0, 1, 2}

such that

σe + m1v1 + m2v2 = Rle (11.5)

where R denotes the 2× 2 rotation in R2 by 2π/3.

Lemma 11.2. For I1, J1, Ĩ1 ∈ {A, B}, m, n, n1 ≥ 0 and m2, m̃2 ∈ Z, consider the
overlap integral

I� ≡
∫

pλ0 (x − vm
I1 − m2v2) λ

2 |V0(x − v
n1
J1
)| pλ0 (x − vn

Ĩ1
− m̃2v2) dx. (11.6)

Recall the hopping coefficient defined by: ρλ =
∫
pλ0 (y) λ

2 |V0(y)| pλ0 (y− e) dy. Then
we have the bound

I� � e−cλ( |m−n1| + |m2| + |n−n1| + |m̃2| ) ρλ, (11.7)

except in the following cases of exceptional indices (m, n, n1,m2, m̃2):

(a) I1 = Ĩ1 = J1, m = n = n1 and m2 = m̃2 = 0. This case does not arise in the proof
of Proposition 7.1 so we say nothing further about it.

(b) Ĩ1 = J1, I1 �= J1, (m − n1,m2) ∈ Nb (σ (I1, J1)), n = n1 and m̃2 = 0,
in which case I� = ρλ.
(c) I1 = J1, Ĩ1 �= J1, (n − n1, m̃2) ∈ Nb

(
σ( Ĩ1, J1)

)
, m = n1 and m2 = 0,

in which case I� = ρλ.
Furthermore, if I1 �= J1, Ĩ1 �= J1, then for all m, n, n1,m2, m̃2:

I� � e−cλ e−cλ( |m−n1| + |m2| + |n−n1| + |m̃2| ) ρλ. (11.8)

Lemma11.2 is proved inAppendix 12.2. Itmakes repeated use of the following pointwise
decay estimates for the atomic ground state, pλ0 :

Lemma 11.3 (See Lemma 15.6 of [27]). There exists a constant c such that for y ∈
supp(V0) ⊂ Br0(0), i.e. |y| ≤ r0, we have:

pλ0 (y− n�v) � e−c|n|λ pλ0 (y), n ∈ Z
2, (11.9)

pλ0 (y− (σe + n�v)) � e−c|n|λ pλ0 (y− σe) , n /∈ Nb(σ ), σ = ±1, (11.10)

pλ0 (y− σe) � e−cλ pλ0 (y), σ = ±1, and (11.11)

pλ0 (y− n�v) � e−cλ|n| pλ0 (y− σe), n ∈ Z
2\{(0, 0)}. (11.12)
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Remark 11.4. In [27], Lemma 11.3 was proved for all r0 satisfying 0 < r0 < rcritical,
where 0.33|e| ≤ rcri tical < 0.5|e|, and |e| = |vB − vA| = 1/

√
3.

To prove Proposition 7.1, we now apply Lemma 11.2 to the expansion of the matrix

elements:
〈
P
λ

k‖,I
[m](x) , Hλ� P

λ

k‖,J
[n]
〉
L2(	)

, where I, J = A, B and m, n ∈ N0, for

large λ.

11.1. Expansion of the inner product
〈
P
λ

k‖,B
[m](x) , Hλ� P

λ

k‖,A
[n]
〉
L2(	)

. We consider

the summations SI Jj (m, n), j = 1, 2, 3 in order (see (11.3)) with I = B and J = A.

Estimation ofSBA
1 (m, n) The expression to be summed over m2, m̃2 ∈ Z and n1 ≥

0, n1 �= n is:

ei(m̃2−m2)k‖
∫
R2

pλ0 (x − vm
B − m2v2) λ

2 V0(x − v
n1
A )

pλ0 (x − vn
A − m̃2v2) dx. (11.13)

We apply Lemma 11.2 with I1 = B, J1 = A and Ĩ1 = A. All summands (11.13) of
SBA
1 (m, n), except for exceptional indices in case (b), defined by Ĩ1 = J1, I1 �= J1, are

bounded by e−cλ(|m−n1|+|m2|+|n−n1|+|m̃2|)ρλ. The exceptional indices are characterized
by the relations: (m − n1,m2) ∈ Nb(σ (B, A)) = Nb(+1), n = n1 and m̃2 = 0. Since
the sum in the definition of SBA

1 (m, n) is over n1 ≥ 0 with n1 �= n, there are no relevant
exceptional indices and we conclude for all m, n ≥ 0:

|SBA
1 (m, n)| � ρλ

∑
m2,m̃2∈Z

∑
n1≥0
n1 �=n

e−cλ( |m−n1| + |m2| + |n−n1| + |m̃2| )

� e−c′λ e−c′λ|m−n| ρλ , (11.14)

for some strictly positive constant c′.
Expansion ofSBA

2 (m, n) Since I = B, J = A and J ′ = B, the expression to be summed
over m2, m̃2 ∈ Z and n1 ≥ 0 is:

ei(m̃2−m2)k‖
∫
R2

pλ0 (x − vm
B − m2v2) λ

2 V0(x − v
n1
B ) p

λ
0 (x − vn

A − m̃2v2) dx.

(11.15)

We apply Lemma 11.2 with I1 = B, J1 = B and Ĩ1 = A. All summands (11.15) of
SBA
2 (m, n), except for exceptional indices in case (c), defined by I1 = J1 and Ĩ1 �= J1,

are bounded by e−cλ(|m−n1|+|m2|+|n−n1|+|m̃2|)ρλ. The exceptional indices are character-
ized by the relations: (n − n1, m̃2) ∈ Nb(σ ( Ĩ1, J1)) = Nb(σ (A, B)) = Nb(−1) =
{(0, 0), (1, 0), (0, 1)}, m = n1 and m2 = 0. We next simplify the expression (11.15) in
each of these three exceptional cases.
(n − n1, m̃2) = (0, 0), m = n1, m2 = 0 We have n1 = m = n and m2 = m̃2 = 0. For
this case, the expression in (11.15) is equal to −ρλ and contributes to SBA

2 (m,m).
(n − n1, m̃2) = (0, 1), m = n1, m2 = 0 We have n1 = n = m, m2 = 0 and m̃2 = 1.
For this case, the expression (11.15) is equal to−eik‖ ρλ and contributes to SBA

2 (m,m).
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(n − n1, m̃2) = (1, 0), m = n1, m2 = 0 We have n1 = m, n = m + 1, m2 = m̃2 = 0.
For this case, the expression in (11.15) is equal to−ρλ and contributes to SBA

2 (m,m+1).
We conclude from the above discussion of SBA

2 (m, n) that:

SBA
2 (m,m) = −

(
1 + eik‖

)
ρλ + O ( e−cλ ρλ

)
, (n = m) (11.16)

SBA
2 (m,m + 1) = −ρλ + O ( e−cλ ρλ

)
, (n = m + 1) (11.17)

SBA
2 (m, n) = O

(
e−cλ e−cλ|m−n| ρλ

)
, if n �= m,m + 1. (11.18)

The O(·) error terms are bounds on contributions to SBA
2 (m, n) arising from the sum-

mation over m2, m̃2 ∈ Z and n1 ≥ 0 of the bound e−cλ(|m−n1|+|m2|+|n−n1|+|m̃2|)ρλ for
non-exceptional indices (as in (11.14)).
Expansion ofSBA

3 (m, n) Since I = B and J = A, the expression to be summed over
m2 ∈ Z and m̃2 ∈ Z\{0} is:

ei(m̃2−m2)k‖
∫
R2

pλ0 (x − vm
B − m2v2) λ

2 V0(x − vn
A)

pλ0 (x − vn
A − m̃2v2) dx. (11.19)

We apply Lemma 11.2 with I1 = B, J1 = A, Ĩ1 = A and n1 = n. All summands
(11.19) of SBA

3 (m, n), except for exceptional indices in case (b), defined by I1 �= J1
and Ĩ1 = J1, are bounded by e−cλ(|m−n|+|m2|+|m̃2|)ρλ (n1 = n). Now exceptional indices
in case (b) of Lemma 11.2 are such that m̃2 = 0. However, in SBA

3 (m, n) we sum over
m̃2 �= 0. Hence, there are no relevant exceptional indices and therefore all expressions
(11.19) are bounded by e−cλ(|m−n|+|m2|+|m̃2|)ρλ. Summing overm2 ∈ Z and m̃2 ∈ Z\{0}
we obtain:

|SBA
3 (m, n)| � e−cλ e−cλ|m−n|, m, n ≥ 0. (11.20)

Putting together the expression (11.3) for the inner product〈
P
λ

k‖,B
[m](x) , Hλ� P

λ

k‖,A
[n]
〉
L2(	)

with the expansions and bounds in (11.14), (11.16),

(11.17), (11.18) and (11.20) we obtain:

〈
P
λ

k‖ ,B
[m](x) , Hλ� P

λ

k‖ ,A
[n]
〉
L2(	)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− (1 + eik‖
)
ρλ + O (e−cλ e−cλ|m−n| ρλ

)
, n = m

−ρλ + O (e−cλ e−cλ|m−n| ρλ
)
, n = m + 1

O (e−cλ e−cλ|m−n| ρλ
)
, n �= m,m + 1.

(11.21)

By self-adjointness,

〈
P
λ

k‖ ,A
[m](x) , Hλ� P

λ

k‖ ,B
[n]
〉
L2(	)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− (1 + e−ik‖
)
ρλ + O (e−cλ e−cλ|m−n| ρλ

)
, n = m

−ρλ + O (e−cλ e−cλ|m−n| ρλ
)
, n = m − 1

O (e−cλ e−cλ|m−n| ρλ
)
, n �= m,m − 1.

(11.22)
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Equations (11.22) and (11.21) imply assertions (1), (2) and (3) of Proposition 7.1.
Finally, we turn to the proof of part (4) of Proposition 7.1. By (11.3), we have for

I = A, B:
〈
P
λ

k‖,I
[m](x) , Hλ� P

λ

k‖,I
[n]
〉
L2(	)

= SI I1 (m, n) + SI I2 (m, n) + SI I3 (m, n).

We claim that |SI Ij (m, n)| � e−cλ e−cλ|m−n| for j = 1, 2, 3 and I = A, B. We consider
the case I = A. The case I = B is essentially the same.
Estimation of SAA

1 (m, n) The expression to be summed over m2, m̃2 ∈ Z for n1 ≥
0, n1 �= n is:

ei(m̃2−m2)k‖
∫
R2

pλ0 (x − vm
A − m2v2) λ

2 V0(x − v
n1
A )

pλ0 (x − vn
A − m̃2v2) dx. (11.23)

We apply Lemma 11.2 with I1 = A, J1 = A and Ĩ1 = A. All summands
in the expression for SAA

1 (m, n), except for exceptional indices are bounded by
e−cλ(|m−n1|+|m2|+|n−n1|+|m̃2|)ρλ. The only possible exceptional indices are of case (a)
in Lemma 11.2. This case requires n1 = n and since the summation in SAA

1 (m, n) is
over n1 ≥ 0 with n1 �= n, there are no relevant exceptional indices. We conclude for all
m, n ≥ 0:

|SAA
1 (m, n)| � ρλ

∑
m2,m̃2∈Z

∑
n1≥0
n1 �=n

e−cλ( |m−n1| + |m2| + |n−n1| + |m̃2| )

� e−c′λ e−c′λ|m−n| ρλ , (11.24)

for some strictly positive constant c′.
Estimation of SAA

2 (m, n) The expression to be summed over m2, m̃2 ∈ Z for n1 ≥ 0 is

ei(m̃2−m2)k‖
∫

pλ0 (x − vm
A − m2v2) λ

2 V0(x − v
n1
B ) p

λ
0 (x − vn

A − m̃2v2) dx.

Since I1 = A, J1 = B and Ĩ1 = A, we have that I1 �= J1 and Ĩ1 �= J1. Hence, the
bound (11.8) applies. Thus, all summands in the expression for SAA

2 (m, n) are bounded
by e−cλ e−cλ(|m−n1|+|m2|+|n−n1|+|m̃2|)ρλ. Summing over all relevant indices we have:

|SAA
2 (m, n)| � e−cλ

∑
m2,m̃2∈Z

∑
n1≥0

e−cλ(|m−n1|+|m2|+|n−n1|+|m̃2|) ρλ

� e−c′λ e−c′λ|m−n| ρλ , (11.25)

for some strictly positive constant c′.
Estimation of SAA

3 (m, n) The expression to be summed over m2 ∈ Z and m̃2 ∈ Z\{0}
for n ≥ 0 is

ei(m̃2−m2)k‖
∫

pλ0 (x − vm
A − m2v2) λ

2 V0(x − vn
A) p

λ
0 (x − vn

A − m̃2v2) dx.

Since I1 = J1 = Ĩ1 = A, the only possible exceptional case is case (a). How-
ever, note that m̃2 = 0 is omitted in the summation and hence there are no relevant
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exceptional cases. Thus, summands in the expression for SAA
3 (m, n) are bounded by

e−cλ(|m−n|+|m2||+|m̃2|)ρλ, and we have:

|SAA
3 (m, n)| �

∑
m2∈Z

∑
m̃2∈Z\{0}

e−cλ(|m−n|+|m2|+|m̃2|)ρλ � e−c′λ e−c′λ|m−n| ρλ,

(11.26)

for some strictly positive constant c′.
Finally, summing the bounds (11.24), (11.25) and (11.26) implies the bound (7.10).

This completes the proof of Proposition 7.1. ��

12. Estimation of the Nonlinear Matrix Elements; Proof of Proposition 7.2

Recall our decomposition of Mλ[m, n](�, k‖) into its linear and nonlinear contribu-
tions:

Mλ[m, n](�, k‖) = Mλ,l [m, n](�; k‖) − Mλ,nl [m, n](�; k‖) , (12.1)

where the latter nonlinear matrix elements are given by (see (6.11)):

Mλ,nl

J I [m, n](�; k‖)
≡
〈
Hλ� (k‖) pλk‖,J [m] , �AB (k‖) Kλ� (�, k‖) �AB (k‖) Hλ� (k‖) pλk‖,I [n]

〉
L2(	)

.

(12.2)

Here, we recall (from Sect. 4.1) �AB (k‖) denotes the projection onto

XAB(k‖) = the orthogonal complement in L2(	) of span
{
p
λ

k‖,I
[n] : I = A, B, n ≥ 0

}
,

and �AB (k‖) K�(�, k‖) �AB (k‖) : XAB (k‖) → XAB (k‖) is the inverse of �AB (k‖)(
−
(
∇x + i

k‖
2πK2

)2
+ V� − Eλ0 −�

)
�AB (k‖).

Furthermore, the operator�AB (k‖)K�(�, k‖)�AB (k‖) arises fromakernelK�(x, y,�, k‖);
seeCorollary 10.19.And finallywe recall the projection operator�λ� (see (10.82))which
projects onto the orthogonal complement of the set of atomic ground states, centered at
nuclei of the discrete set �,

X� ≡ span
{
pλω : ω ∈ �

}⊥

and �̃λ� = I −�λ�; see (10.82) and Proposition 10.15. In the following discussion we
shall be interested in the choice � = H�, the zigzag truncation of H. Finally, we recall
the notation: Fω(x) = F(x − ω).

Given F(x), a rapidly decaying function on R
2, define

F[ω](x) ≡
∑
n∈Z

F(x − ω + nv2) =
∑
n∈Z

Fω(x + nv2). (12.3)

The functions pλ
k‖,J

[m] in (12.2) are of this type andwe now seek to bound inner products

in L2(	) of the form (12.2).
For a small constant γ > 0 to be fixed, we introduce the weighted L2(R2)-spaces:

H(ω) ≡ L2
(
R
2; eγ |x−ω| dx

)
. (12.4)
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Proposition 12.1. Fix � = H�, which is translation-invariant by the vector v2 ∈ H. Let
[ω], [ω′] denote equivalence classes (see (10.103) with � = H�), and ω0 ∈ [ω] ∩D	
and ω′0 ∈ [ω′] ∩D	 .

(1) For any rapidly decaying functions F and G on R
2 we have

〈
F[ω] , �AB (k‖) Kλ� (�, k‖) �AB (k‖) G [ω′]

〉
L2(	)

=
∑
l∈Z

∫
x∈R2

Fω0 (x)
∫
y∈R2

Kλ� (x, y + lv2;�, k‖) Gω′0
(y) dy dx. (12.5)

(2) The expression in (12.5)may be bounded in exponentially weighted norms as follows:
∣∣∣
〈
F[ω] , �AB (k‖) Kλ� (�, k‖) �AB (k‖) G [ω′]

〉
L2(	)

∣∣∣

≤
[∑
l∈Z

‖Kλ,ω0,ω′0,l� (�, k‖)‖L2(R2)→L2(R2)

]
‖Fω0‖H(ω0) ‖Gω′0‖H(ω′0) (12.6)

where
(
Kλ,ω0,ω

′
0,l

� f
)
(x) =

∫
R2

e−
γ
2 |x−ω0| Kλ� (x, y + lv2) e

− γ2 |y−ω′0| f (y) dy. (12.7)

Note: The abovemaybe formulated for an arbitrary discrete set� satisfying inf{|ω−ω′| :
ω,ω′ ∈ � distinct } > r4, which is translation invariant by the vector v2.

Proof of Proposition 12.1. By Corollary 10.19 we have that the operator �AB (k‖)
K�(�, k‖) �AB arises from a kernel Kλ�(x, y;�, k‖). We have
〈
F[ω] , �AB (k‖) K�(�, k‖) �AB (k‖) G [ω′ ]

〉
L2(	)

=
∫

D	

F[ω] (x)
∫
y∈R2

Kλ� (x, y;�, k‖) G [ω′ ] (y) dy dx

=
∫

D	

∑
n∈Z

F(x − ω0 + nv2)

∫
y∈R2

Kλ� (x, y;�)
∑
n′∈Z

G(y− ω′0 + n′v2) dy dx

=
∑

n,n′∈Z

∫

D	

Fω0 (x + nv2)

∫
y∈R2

Kλ� (x, y;�, k‖) Gω′0 (y + nv2) dy dx

=[ x̃=x+nv2
ỹ=y+n′v2

] ∑
n,n′∈Z

∫

x̃∈D	+nv2

Fω0 (x̃)
∫
ỹ∈R2

Kλ� (x̃ − nv2, ỹ− n′v2;�, k‖) Gω′0 (ỹ) dỹ dx̃

= by equation (10.97)
∑

n,n′∈Z

∫

x̃∈D	+nv2

Fω0 (x̃)
∫
ỹ∈R2

Kλ� (x̃, ỹ + (n − n′)v2;�, k‖) Gω′0 (ỹ) dỹ dx̃

=
∑
n∈Z

∫

x̃∈D	+nv2

Fω0 (x̃)
∑
n′∈Z

∫
ỹ∈R2

Kλ� (x̃, ỹ + (n − n′)v2;�, k‖) Gω′0 (ỹ) dỹ dx̃

=
∫

x̃∈R2
Fω0 (x̃)

∫
ỹ∈R2

∑
l∈Z

Kλ� (x̃, ỹ + lv2;�, k‖) Gω′0 (ỹ) dỹ dx̃

=
∑
l∈Z

∫

x̃∈R2
Fω0 (x̃)

∫
ỹ∈R2

Kλ� (x̃, ỹ + lv2;�, k‖) Gω′0 (ỹ) dỹ dx̃.

This completes the proof of part (1) of Proposition 12.1. ��
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To prove part (2) of Proposition 12.1, we bound the expression in (12.5). Write

Kλ,ω0,ω
′
0,l

� for the operator:

(
Kλ,ω0,ω

′
0,l

� f
)
(x) =

∫
R2

e−
γ
2 |x−ω0| Kλ� (x, y + lv2) e

− γ2 |y−ω′0| f (y) dy. (12.8)

Then, by part (1) of Proposition 12.1, we have
∣∣∣
〈
F[ω] , �AB (k‖) Kλ� (�, k‖) �AB (k‖) G [ω′]

〉
L2(	)

∣∣∣

≤
∑
l∈Z

∣∣∣
∫
x∈R2

[
e
γ
2 |x−ω0| F(x − ω0)

]

∫
y∈R2

[
e−

γ
2 |x−ω0|Kλ� (x, y + lv2;�, k‖) e−

γ
2 |y−ω0|

] [
e−

γ
2 |y−ω′0| G

ω′0
(y)
]
dy dx

∣∣∣

≤
∑
l∈Z

‖Fω0‖H(ω0) ‖Kλ,ω0,ω
′
0,l

� ‖
L2(R2)→L2(R2)

‖Gω′0‖H(ω′0)

=
[∑
l∈Z

‖Kλ,ω0,ω′0,l� ‖
L2(R2)→L2(R2)

]
‖Fω0‖H(ω0) ‖Gω′0‖H(ω′0) .

This completes the proof of part (2) of Proposition 12.1. ��
We shall apply conclusion (2) of Proposition 12.1 with F[ω] = Hλ� pλk‖,J [n] and

G [ω′] = �λAB (k‖) Hλ� pλk‖,I [m], J, I ∈ {A, B}. Two more tasks remain in this section:

(1) Bound the sum of norms on the right hand side of (12.6) using our pointwise kernel
bounds, (10.107), on Kλ� (x, y;�, k‖), and

(2) Bound ‖Fω0‖H(ω0) and ‖Gω′0‖H(ω′0) , where Fω0 = Hλ� pλω0 and Gω′0 = Hλ� pλ
ω′0
.

This will enable us to bound the nonlinear contributions to matrixM[m, n](�, k‖),
displayed in (12.2), thereby proving Proposition 7.2.

The following two propositions will do the trick:

Proposition 12.2. Let ω0 and ω′0 be as in the statement of Proposition 12.1. There exist
constants λ1 > 0 and c > 0 such that for all λ ≥ λ1 and |�| ≤ e−cλ:

∑
l∈Z

‖Kλ;ω0,ω′0,l� (�, k‖)‖L2(R2)→L2(R2)
� λ10 e−c|ω0−ω′0|. (12.9)

Proposition 12.3. We have

‖ Hλ� pλω0‖H(ω0) ≤ e−cλ √ρλ and ‖ Hλ� pλ
ω′0
‖
H
(ω′0)

� e−cλ √ρλ.

The proofs of Propositions 12.2 and 12.3 are presented in the following two sub-
sections. We first apply them to conclude the proof of Proposition 7.2, which gives our
bound on nonlinear matrix elements.

Estimate (12.6) with Fω0 = Hλ� p
λ
ω0

and Gω′0 = Hλ� p
λ
ω′0

implies

∣∣∣
〈
Hλ� p

λ
k‖,J [n] , �λAB (k‖) K�(�, k‖) �λAB (k‖) Hλ� pλk‖,I [m]

〉
L2(	)

∣∣∣
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≤
[ ∑

l∈Z
‖Kλ;ω0,ω′0,l� ‖

L2(R2)→L2(R2)

]
· ‖Hλ� pλω0‖H(ω0) · ‖H

λ
� pλ

ω′0
‖
H
(ω′0)
. (12.10)

Now apply Propositions 12.2 and 12.3 to obtain
∣∣∣
〈
Hλ� pλk‖,J [n] , �λAB (k‖) K�(�, k‖) �λAB (k‖) Hλ� pλk‖,I [m]

〉
L2(	)

∣∣∣
� λ10 e−c|ω0−ω′0| · e−cλ √ρλ · e−cλ √ρλ
� ρλ e

−cλ e−c|ω0−ω′0|. (12.11)

We have proved Proposition 7.2 for the case j = 0. From this, the case j = 1
follows by analytic dependence of the inner product on �; see the remark just prior to
the statement of Proposition 7.2. This completes the proof of Proposition 7.2. ��

12.1. Proof of Proposition 12.2:. From the expression for the integral kernel, displayed
in (12.7), we have

‖Kλ,ω0,ω′0,l� ‖
L2(R2)→L2(R2)

≤ sup
x∈R2

∫
ỹ∈R2

e−
γ
2 |x−ω0| |Kλ� (x, ỹ + lv2)| e−

γ
2 |ỹ−ω′0| dỹ

+ sup
ỹ∈R2

∫
x∈R2

e−
γ
2 |x−ω0| |Kλ� (x, ỹ + lv2)| e−

γ
2 |ỹ−ω′0| dx

= sup
x∈R2

∫
ỹ∈R2

e−
γ
2 |x−ω0| |Kλ� (x, y)| e−

γ
2 |y−lv2−ω′0| dy

+ sup
ỹ∈R2

∫
x∈R2

e−
γ
2 |x−ω0| |Kλ� (x, y)| e−

γ
2 |y−lv2−ω′0| dx

= sup
x∈R2

Iλ(x; l) + sup
y∈R2

Jλ(y; l). (12.12)

Recall that the kernel Kλ� (x, y;�, k‖) satisfies the pointwise bound (10.107):
∣∣∣ Kλ� (x, y;�, k‖)

∣∣∣ ≤ C
[
| log |x − y| | + λ10

]
1|x−y|≤R + e−cλ e−cλ|x−y|

for all x, y ∈ R
2. (12.13)

The bounds on supx∈R2 Iλ(x; l) and supy∈R2 Jλ(y; l) are obtained very similarly. We
present the argument for supx∈R2 Iλ(x; l). To bound Iλ(x; l), we bound the dy integral
over R2 separately over the sets |x− y| ≤ R and |x− y| ≥ R. Call these parts: Iλ≤R

(x; l)
and Iλ≥R

(x; l).
First assume |x − y| ≤ R. By (12.13)

Iλ≤R
(x; l) ≤ e−

γ
2 |x−ω0|

∫
|x−y|≤R

|Kλ� (x, y;�, k‖)| e−
γ
2 |y−lv2−ω′0| dy

� e−
γ
2 |x−ω0|

∫
|x−y|≤R

[
| log |x − y| | + λ10

]
e−

γ
2 |y−lv2−ω′0|dy

� e−
γ
2 |x−ω0|

∫
|z|≤R

[
| log |z| | + λ10

]
e−

γ
2 |x−z−lv2−ω′0|dz
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� e−
γ
2 |x−ω0|

∫
0≤|z|<ρ

[
| log |z| | + λ10

]
e−

γ
2 |x−z−lv2−ω′0|dz

+ e−
γ
2 |x−ω0|

∫
ρ≤|z|≤R

[
| log |z| | + λ10

]
e−

γ
2 |x−z−lv2−ω′0|dz

� e−
γ
2 |x−ω0| e−c1|x−lv2−ω′0|

∫
0≤|z|≤ρ

[
| log |z| | + λ10

]
dz

+ e−
γ
2 |x−ω0|

[
Cρ,R + λ10

] ∫
ρ≤|z|≤R

e−
γ
2 |x−z−lv2−ω′0|dz.

The latter two terms are each � λ10 e−c2|ω0−ω′0| e−c3|l|. Therefore,

sup
x∈R2

Iλ≤R
(x; l) � λ10 e−c2|ω0−ω′0| e−c3|l|. (12.14)

A similar argument yields a bound of this type for supy∈R2 Jλ≤R
(y; l).

Next assume |x − y| ≥ R. By (12.13),

Iλ≥R
(x; l) � e−

γ
2 λ e−c|x−ω0|

∫
|x−y|≥R

e−cλ|x−y| e−
γ
2 |y−lv2−ω′0| dy.

Note that |x−ω0|+|y−lv2−ω′0| ≥ |(x−ω0)−(y−lv2−ω′0)| = |x−y−(ω0−ω′0)+lv2| ≥
c3
(|ω0 − ω′0| + |l|

)− |x − y|. Thus,

Iλ≥R
(x; l) � e−cλ

∫
|x−y|≥R

e−c4λ|x−y| dy e−c3|ω0−ω′0| e−c3|l| � e−cλ e−c3|ω0−ω′0| e−c3|l|.

(12.15)

The bounds (12.14) and (12.15) imply that

sup
x∈R2

Iλ(x; l) ≤ e−c3|ω0−ω′0| e−c3|l| λ10

and similarly

sup
y∈R2

Jλ(y; l) ≤ e−c3|ω0−ω′0| e−c3|l| λ10.

Therefore, by (12.12) it follows that ‖Kλ;ω0,ω′0,l� ‖
L2(R2)→L2(R2)

� e−c3|ω0−ω′0| e−c3|l| λ10.
Finally, summing over l ∈ Z we deduce (12.9). The proof of Proposition 12.2 is now
complete.

12.2. Proof of Proposition 12.3. We need to verify that there are constants γ, λ1 > 0,
such that for all ω ∈ H� and all λ ≥ λ1:
‖ Hλ� p

λ
ω ‖H(ω) ≡ ‖ e γ2 |x−ω| (−� + V λ� (x)− Eλ0 )p

λ
ω(x) ‖L2(R2x)

� e−cλ √ρλ ;
(12.16)

see (12.4) for the definition of the space H(ω), which depends on the parameter γ ,
which will be chosen positive and sufficiently small.
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Since (−� + λ2Vω(x))pλω(x) = Eλ0 p
λ
ω(x), it follows that

Hλ� p
λ
ω(x) ≡ (−� + V λ� (x)− Eλ0 )p

λ
ω(x) =

∑
ω′∈H�\{ω}

λ2V0(x − ω′)pλω(x).

By invariance of Hλ� under translation by v2, we may assume ω ∈ D	 . Thus, ω =
vI + nv1 for I = A or B and n ≥ 0. Fix I = A; the argument for I = B is similar.
Then, pλω(x) = pλ0 (x − vA − nv1). Recall, for I = A, B and n1, n2 ∈ Z: vn1,n2I =
vI + n1v1 + n2v2.

Therefore, using the definition of Hλ� and that Eλ0 , p
λ
0 (x − z) is the ground state

eigenpair of the atomic Hamiltonian with potential V0(x − z), centered at z, we have:

Hλ� pλω(x) =
∑

n1≥0, n2∈Z
λ2V0(x − vn1,n2B )pλ0 (x − vA − nv1)

+
∑

n1≥0,n2∈Z
(n1,n2) �=(n,0)

λ2V0(x − vn1,n2A )pλ0 (x − vA − nv1) .

For theH(ω) norm (ω = vI + nv1) we have

‖ Hλ� pλω ‖H(ω)
=
∥∥∥ e γ2 |x−ω| Hλ� pλω(x)

∥∥∥
L2(R2x)

≤ λ2
∑

n1≥0,n2∈Z

( ∫
eγ |x−(vA+nv1)| |V0(x − vn1,n2B )|2 |pλ0 (x − vA − nv1)|2 dx

) 1
2

+ λ2
∑

n1≥0,n2∈Z
(n1,n2)�=(n,0)

( ∫
eγ |x−(vA+nv1)| |V0(x − vn1,n2A )|2 |pλ0 (x − vA − nv1)|2 dx

) 1
2

≡
∑

n1≥0,n2∈Z
Aλn1,n2 +

∑
n1≥0,n2∈Z
(n1,n2)�=(n,0)

Bλn1,n2 . (12.17)

Consider Aλn1,n2 , for any fixed n1 ≥ 0 and n2 ∈ Z.

| Aλn1,n2 |2 = λ4
∫
|x−v

n1,n2
B |≤r0

eγ |x−(vA+nv1)| |V0(x − vn1,n2B )|2 |pλ0 (x − vA − nv1)|2 dx

= λ4
∫
|y|≤r0

eγ |y+v
n1,n2
B −vn,0A | |V0(y)|2

|pλ0 (y + vn1,n2B − vn,0A )|2 dy
= λ4

∫
|y|≤r0

eγ |y+vB−vA+(n1−n)v1+n2v2| |V0(y)|2 |pλ0 (y + vB − vA + (n1 − n)v1 + n2v2)|2 dy

= λ4
∫
|y|≤r0

eγ |y+e+(n1−n)v1+n2v2| |V0(y)|2 |pλ0 (y− [−e + (n − n1)v1 − n2v2]) |2 dy.

As in Sect. 11 we divide index pairs (n − n1,−n2) into those in the set Nb(−1) =
{(0, 0), (1, 0), (0, 1)} and those not in Nb(−1). Those in Nb(−1), “bad index pairs” ,
correspond to the cases: (i) (n1, n2) = (n− 1, 0) with n ≥ 1, (ii) (n1, n2) = (n, 0) with
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n ≥ 0 or (iii) (n1, n2) = (n,−1) with n ≥ 0. By the remark immediately following
Definition 11.1, we then have for some l = 0, 1 or 2

pλ0 (y− [−e + (n − n1)v1 − n2v2]) = pλ0 (y− [−Rle]),
where R is a 2π/3 rotation matrix. Therefore, by orthogonality of the matrix R and
symmetry assumptions on V0, we have:

| Aλn1,n2 |2 = λ4
∫
|y|≤r0

e2c|y−[−Rle]| |V0(y)|2 |pλ0 (y− [−Rle])|2 dy

= λ4
∫
|y|≤r0

e2c|R−ly+e| |V0(R−ly)|2 |pλ0 (R−ly + e)|2 dy

= λ4
∫
|z|≤r0

e2c|z+e| |V0(z)|2 |pλ0 (z + e)|2 dz.

Next, applying the bound (11.11) to one factor of pλ0 (z + e) yields

| Aλn1,n2 |2 � λ4 ‖V0‖∞
∫
|z|≤r0

e2c|z+e|−cλ |V0(z)| pλ0 (z) pλ0 (z + e) dz

� e−c′λρλ.

Next consider n1 ≥ 0 and n2 ∈ Z, for which (n − n1,−n2) /∈ Nbad(−1). By
Proposition 11.3, in particular (11.10), we have

pλ0 (y− [−e + (n − n1)v1 − n2v2]) � e−cλ(|n−n1|+|n2|) pλ0 (y + e). (12.18)

Therefore, for |y| ≤ r0, γ > 0 and sufficiently small, and λ sufficiently large:

eγ |y−[−e+(n−n1)v1−n2v2]| pλ0 (y− [−e + (n − n1)v1 − n2v2])
� eγ |y−[−e+(n−n1)v1−n2v2]| e−cλ(|n1−n|+|n2|) pλ0 (y + e)

� e−c′λ(|n1−n|+|n2|) pλ0 (y + e) � e−c′λ(|n1−n|+|n2|) pλ0 (y) , (12.19)

where the last inequality uses (11.11). Therefore, for good index pairs (n−n1,−n2)we
have

| Aλn1,n2 |2 � λ4 ‖V0‖∞ e−cλ(|n−n1|+|n2|)
∫

|V0(y)|pλ0 (y) pλ0 (y + e) dy

� e−cλ(|n−n1|+|n2|) ρλ.

Taking the square root and summing over good index pairs (n1, n2) we have:
∑
n1,n2

(n−n1,−n2) good

Aλn1,n2 � e−cλ √ρλ. (12.20)

Taken together with our bound on | Aλn1,n2 | for the three cases of bad indices, this
tells us that

∑
n1≥0,n2∈Z

Aλn1,n2 � e−cλ √ρλ. (12.21)
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The proof that
∑

n1≥0,n2∈Z
Bλn1,n2 � e−cλ √ρλ (12.22)

is similar, so this completes the proof of (12.3). ��
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Appendix A: Error and Main Kernels; Proof of Lemma 10.7

We prove that if E is an operator derived from an error kernel E(x, y) in the sense of
Definition 10.5, then Ẽ = I − (I − E)−1 is an operator derived from an error kernel
Ẽ(x, y).

A.1. Elementary integrals in 1d. Let f ∈ L1(R). We define f ∗0 = δ, the Dirac delta
function and f ∗1 = f . Let f ∗n denote the n-fold convolution of f with itself:

For f and g in L1(R),

( f + g )∗n =
n∑

k=0

(
n

k

)
f ∗k g∗(n−k). (A.1)

Let f (t) = ae−γ |t |, where a and γ are positive constants with γ > a. We may write

f (t) = f+(t) + f−(t), f+(t) = ae−γ t 1{t>0}, f−(t) = ae−γ |t | 1{t<0}.

Induction on k gives:

f ∗k+ (t) = ake−γ t t k−1

(k − 1)! 1{t>0} ≤ ae−γ t
∞∑
l=0

(at)l

l! 1{t>0} = ae−(γ−a)t1{t>0}, k ≥ 1 .

A similar bound holds for f−. Therefore, for all 0 < a < γ :

f ∗k+ (t) ≤ a e−(γ−a)t1{t>0} and f ∗k− (t) ≤ a e−(γ−a)|t |1{t<0}, k ≥ 1.

Therefore, for m ≥ 1, we have from (A.1) that

f ∗m(t) = ( f+ + f− )∗m (t) ≤ a2
m−1∑
k=1

(
m

k

) [
e−(γ−a)t1{t>0} � e−(γ−a)|t |1{t<0}

]
(t)

+ ae−(γ−a)t 1{t>0} + ae−(γ−a)|t | 1{t<0}. (A.2)
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The last two terms, which sum to ae−(γ−a)|t |, correspond to k = 0 and k = m in the
binomial formula. We calculate the convolution in (A.2). For t > 0,

[
e−(γ−a)|t |1{t>0} � e−(γ−a)|t |1{t<0}

]
(t)

=
∫ ∞

0
e−(γ−a)s e−(γ−a)|t−s|1{t−s<0} ds =

∫ ∞

t
e−2(γ−a)s e(γ−a)t ds = e−(γ−a)t

2(γ − a)
.

Similarly, if t < 0 then this convolution is e−(γ−a)|t |
2(γ−a) . Therefore,

[
e−(γ−a)|t |1{t>0} � e−(γ−a)|t |1{t<0}

]
(t) = e−(γ−a)|t |

2(γ − a)
, for all t ∈ R.

Substituting into (A.2) we have

f ∗m(t) =
(
ae−γ |t |

)∗m
(t) ≤ a2

e−(γ−a)|t |

2(γ − a)

m−1∑
k=1

(
m

k

)

+ ae−(γ−a)|t | ≤
[
a +

2m a2

2(γ − a)

]
e−(γ−a)|t |.

Therefore,

( a

4
e−γ |t |

)∗m
(t) ≤

[
4−m a +

2−m a2

2(γ − a)

]
e−(γ−a)|t | for m ≥ 1. (A.3)

A.2. Elementary integrals in n dimensions. For (x1, . . . , xn) ∈ R
n , let

K (x1, . . . , xn) = an

4n
e−γ (|x1|+···+|xn |) with 0 < a < γ.

We now apply (A.3) to the l-fold convolution of K (x1, . . . , xn):

K ∗l(x1, . . . , xn) ≡ K � K � · · · � K︸ ︷︷ ︸
l−times

(x1, . . . , xn)

≤ �n
j=1

{ [
4−l a +

2−l a2

2(γ − a)

]
e−(γ−a)|x j |

}

=
[
4−l a +

2−l a2

2(γ − a)

]n
e−(γ−a)(|x1|+···+|xn |). (A.4)

A.3. Proof of part (1) of Lemma 10.7. For x = (x1, . . . , xn) ∈ R
n we write |x|l1 to

denote |x1| + · · · + |xn|. Suppose that E(x, y) satisfies the bound:
|E(x, y)| ≤ (a/4)ne−γ |x−y|l1 , for all x, y ∈ R

n (A.5)

and gives rise to the integral operator:

( E f ) (x) =
∫
Rn

E(x, y) f (y) dy, (A.6)

Author's personal copy



C. L. Fefferman, M. I. Weinstein

then for all l ≥ 1 the lth power of the operator E : f �→ El [ f ], is given by

El [ f ](x) =
∫
Rn

El(x, y) f (y) dy ,

where by (A.4), El satisfies the bound

| El(x, y) | ≤
[
4−l a +

2−l a2

2(γ − a)

]n
e−(γ−a) |x−y|l1 .

If γ > 2a, then a2
2(γ−a) ≤ a

2 . Therefore, for l ≥ 1:

[
4−l a +

2−l a2

2(γ − a)

]
≤
[
4−l a + 2−l a

2

]
= 2−la

[
2−l + 2−1

]
≤ 2−la.

Hence,

| El(x, y) | ≤ 2−lnane−(γ−a) |x−y|l1 , l ≥ 1.

Let’s now apply these observations to E(x, y) = E(x, y), where E(x, y) is an error
kernel which by Definition 10.5 satisfies |E(x, y)| � e−cλ e−cλ|x−y| for x, y ∈ R

2;
here n = 2. Note that e−c′′λ|x−y|l1 ≤ e−cλ|x−y| ≤ e−c′λ|x−y|l1 . Therefore, |E(x, y)| �
e−cλ e−c′λ|x−y|l1 . It follows that E(x, y) satisfies the bound (A.5) with n = 2, (a/4)2 =
e−cλ and γ = c′λ. Therefore, the operator E l is given by a kernel El(x, y):

E l [ f ](x) =
∫
Rn

El(x, y) f (y) dy ,

where El satisfies the bound
|El(x, y) | ≤ 2−2l e−cλe−cλ|x−y|, l ≥ 1 (A.7)

for some c > 0, which is independent of l. Consequently, f �→ Ẽ f =(
I − (I − E)−1 ) f = ∑

l≥1 E l f is given by the kernel Ẽ(x, y) = ∑
l≥1 El(x, y),

which by (A.7) satisfies the bound |Ẽ(x, y)| � e−cλe−cλ|x−y|. Thus, Ẽ is an error kernel
and

Ẽ f (x) =
∫
R2

Ẽ(x, y) f (y) dy. (A.8)

The proof of part (1) of Lemma 10.7 is now complete.

A.3.1. Proof of part (2) of Lemma 10.7 We need to prove that if Eλ derives from an
error kernel and K λ from a main kernel, then K λEλ and EλK λ derive from error kernels
(KEλ)(x, y) and (EλK λ)(x, y). We begin with the following bounds on Eλ(x, z) and
K λ(z, y):

| Eλ(x, z) | � e−cλ e−cλ|x−z|

| K λ(z, y) | �
[
λ4 + | log |z− y| |

]
1{|z−y|≤R} + e−cλ e−cλ|z−y|.

Thus,

| (EλK λ)(x, y) |
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�
∫
|z−y|≤R

(
λ4 +

∣∣∣ log |z− y|
∣∣∣
)
e−cλ e−cλ|x−z| dz

+
∫
|z−y|≥R

e−cλ e−cλ|x−z| e−cλ|z−y|dz

� e−c′λ e−c′λ|x−y|.

Thus,
(EλK λ) (x, y) is an error kernel. A similar bound shows that

(
K λEλ) (x, y) is an

error kernel.

A.3.2. Proof of part (3) of Lemma 10.7 We show that if Kλ arises from a main kernel,
then e−cλK 2

λ arises from an error kernel. Since Kλ(x, y) is bounded by the sum of a

first term: ∼ (λ4 +
∣∣∣ log |x − y|

∣∣∣) 1|x−y|<R and a second term � e−cλ e−cλ|x−y| (an
error kernel), by part (2) we need only consider the contribution to e−cλ (K 2

λ)(x, z) =
e−cλ

∫
Kλ(x, y)Kλ(y, z)dy arising from the first term. The size of this contribution is

� λ8e−cλ1|x−z|<2R � e−c′λ 1|x−z|<2R . Hence,

e−cλ (K 2
λ)(x, z) � e−c′λ 1|x−z|<2R + e−cλ e−cλ|x−z| � e−c′′λ e−c′′λ|x−z|.

Hence, e−cλK 2
λ derives from an error kernel.

Appendix B: Overlap Integrals; Proof of Lemma 11.2

In this section we prove Lemma 11.2, which we restate here for convenience:
For I1, J1, Ĩ1 ∈ {A, B}, m, n, n1 ≥ 0 and m̃2 ∈ Z, consider the overlap integral

I� ≡
∫

pλ0 (x − vm
I1 − m2v2) λ

2 |V0(x − v
n1
J1
)| pλ0 (x − vn

Ĩ1
− m̃2v2) dx. (B.1)

Note that the overlap integral in (B.1), although taken over R2, has an integrand sup-
ported on the disc Br0(v

n1
J1
). Recall the hopping coefficient defined by:

ρλ =
∫

pλ0 (y) λ
2 |V0(y)| pλ0 (y− e) dy.

We also recall from Lemma 11.1 that for I, J ∈ {A, B}, we define σ(I, J ) so that:
vI − vJ = σ (vB − vA) ≡ σe. Thus, σ(A, B) = −1, σ(B, A) = 1, and σ(A, A) =
σ(B, B) = 0.
Further, for σ = +1,−1, 0 we define Nb(σ ) = {(r1, r1) : |σe + r1v1 + r2v2| = |e|}.
Hence, Nb(+1) ≡ {(0, 0), (−1, 0), (0,−1)}, Nb(−1) ≡ {(0, 0), (1, 0), (0, 1)}, and
Nb(0) ≡ ∅.
Lemma 11.2 asserts the bound:

I� � e−cλ( |m−n1| + |m2| + |n−n1| + |m̃2| ) ρλ, (B.2)

except in the following cases of exceptional indices (m, n, n1,m2, m̃2):

(a) I1 = Ĩ1 = J1, m = n = n1 and m2 = m̃2 = 0. This case does not arise in the
proof of Proposition 7.1, so we say nothing further about it.
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(b) Ĩ1 = J1, I1 �= J1, (m − n1,m2) ∈ Nb (σ (I1, J1)), n = n1 and m̃2 = 0,
in which case I� = ρλ.
(c) I1 = J1, Ĩ1 �= J1, (n − n1, m̃2) ∈ Nb

(
σ( Ĩ1, J1)

)
, m = n1 and m2 = 0,

in which case I� = ρλ.
Lemma 11.2 further asserts that if I1 �= J1, Ĩ1 �= J1, then

I� � e−cλ e−cλ( |m−n1| + |m2| + |n−n1| + |m̃2| ) ρλ. (B.3)

We shall occasionally use the notation:m�v = m1v1+m2v2, wherem = (m1,m2) ∈ Z
2.

To prove Lemma 11.2 we begin with a change of variables: y = x− v
n1
J1
. Therefore,

I� ≡
∫

pλ0 (y− [σ(I1, J1)e + (m − n1)v1 + m2v2]) λ2 |V0(y)|
pλ0 (y− [σ( Ĩ1, J1)e + (n − n1)v1 + m̃2v2]) dy. (B.4)

Thus, our task is to consider integrals of the form

I =
∫

pλ0 (y− [σe + r1v1 + r2v2]) λ2 |V0(y)| pλ0 (y− [σ̃e + r̃1v1 + r̃2v2]) dy. (B.5)

Lemma B.1. Consider the overlap integral (B.5), which depends on σ, σ̃ ∈ {0,+1,−1}
and r = (r1, r2), r̃ = (r̃1, r̃2) ∈ Z

2. The expression I satisfies the bound:

I(σ, r, σ̃ , r̃) � e−cλ(|r1|+|r2|+|r̃1|+|r̃2|) ρλ (B.6)

except in the following cases:

(α) σ = σ̃ = 0, r = 0, r̃ = 0.
This case does not arise in the proof of Proposition 7.1 so we say nothing further about
it.
(β) σ̃ = 0, σ �= 0, r ∈ Nb(σ ), r̃ = 0, in which case I = ρλ.
(γ ) σ̃ �= 0, σ = 0, r̃ ∈ Nb(σ̃ ), r = 0, in which case I = ρλ.

We shall also make use of

Lemma B.2. Suppose σ̃ �= 0 and σ �= 0. Then,

(1) If r ∈ Nb(σ ) and r̃ ∈ Nb(σ̃ ), then

I(σ, r, σ̃ , r̃) � e−cλ ρλ. (B.7)

(2) If r ∈ Nb(σ ) and r̃ /∈ Nb(σ̃ ), then

I(σ, r, σ̃ , r̃) � e−cλ e−cλ(|r̃1|+|r̃2|)ρλ. (B.8)

The analogous bound holds with r and r̃ interchanged.
(3) If r /∈ Nb(σ ) and r̃ /∈ Nb(σ̃ ) (and therefore r, r̃ �= (0, 0)), then

I(σ, r, σ̃ , r̃) � e−c′λ e−c′λ(|r1|+|r2|+|r̃1|+|r̃2|)ρλ. (B.9)

Note that Lemma 11.2 is an immediate consequence of Lemma B.1 and Lemma B.2
since I� = I(σ, r, σ̃ , r̃) (see (B.5)), for the choices: σ = σ(I1, J1), σ̃ = σ( Ĩ1, J1),
(r1, r2) = (m − n1,m2) and (r̃1, r̃2) = (n − n1, m̃2). Hence it suffices to prove
Lemma B.1 and Lemma B.2.
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B.1. Proof of Lemma B.1 and Lemma B.2:. We estimate the overlap integral (B.5) by
considering the two cases:

Case 1: σ̃ = 0 and Case 2: σ̃ �= 0, and a number of subcases within each.
Case 1 σ̃ = 0. In this case, for all y ∈ Br0(0), we have by (11.9):

pλ0 (y− σ̃e − r̃1v1 − r̃2v2) = pλ0 (y− r̃1v1 − r̃2v2) � e−cλ(|r̃1|+|r̃2|) pλ0 (y).
(B.10)

Thus,

I(σ, r, σ̃ , r̃) =
∫

pλ0 (y− [σe + r1v1 + r2v2]) λ2 |V0(y)| pλ0 (y− [r̃1v1 + r̃2v2]) dy

� e−cλ(|r̃1|+|r̃2|)
∫

pλ0 (y− [σe + r1v1 + r2v2]) λ2 |V0(y)| pλ0 (y) dy.
(B.11)

We next consider two subcases:

Subcase 1A: σ̃ = 0 and σ = 0 and Subcase 1B: σ̃ = 0 and σ �= 0

Subcase 1A σ̃ = 0 and σ = 0 For any (r1, r2) �= (0, 0), we have by (11.12)

pλ0 (y− σe − r1v1 − r2v2) = pλ0 (y− [r1v1 + r2v2])
� e−cλ(|r1|+|r2|) pλ0 (y− e). (B.12)

Therefore, in subcase 1A we have after substitution of (B.12) into (B.11), that

I(σ, r, σ̃ , r̃) � e−cλ(|r1|+|r2|+|r̃1|+|r̃2|) ρλ. (B.13)

Interchanging the roles of r and r̃ in the case where σ̃ = σ = 0, we also have that (B.13)
holds unless r̃ = 0. Hence when σ = σ̃ = 0, we have (B.13) unless r1 = r2 = r̃1 =
r̃2 = 0.
Subcase 1B σ̃ = 0 and σ �= 0: Then, by (11.10) we have

pλ0 (y− σe − r1v1 − r2v2) � e−cλ(|r1|+|r2|) pλ0 (y− σe) (B.14)

unless (r1, r2) ∈ Nb(σ ). Substituting (B.14) into (B.11), we obtain the bound (B.13)
unless (r1, r2) ∈ Nb(σ ).

Now consider the case where (r1, r2) ∈ Nb(σ ). Then, for some l ∈ {0, 1, 2} which
depends on σ , r1 and r2 we have: pλ0 (y − (σe + r1v1 + r2v2)) = pλ0 (y − σ R−le),
where l = 0, 1 or 2 and R is a 2π/3 rotation matrix. Substituting into (B.11), we
conclude that I(σ, r, σ̃ , r̃) � e−cλ(|r̃1|+|r̃2|)ρλ. Indeed, using symmetry we obtain for
(r1, r2) ∈ Nb(σ ):

I(σ, r, σ̃ , r̃) � e−cλ(|r̃1|+|r̃2|)
∫

pλ0 (y)λ
2|V0(y)|pλ0 (Rly− σe) dy

= e−cλ(|r̃1|+|r̃2|)
∫

pλ0 (R
ly)λ2|V0(Rly)|pλ0 (Rly− σe) dy

= e−cλ(|r̃1|+|r̃2|)
∫

pλ0 (z)λ
2|V0(z)|pλ0 (z− σe) dz = e−cλ(|r̃1|+|r̃2|) ρλ.

(B.15)
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Since |r1| + |r2| = 0 or 1 for (r1, r2) ∈ Nb(σ ), it follows that (B.13) holds (with
a smaller constant, also denoted c, than appearing on the right hand side of (B.15)),
unless r̃1 = r̃2 = 0. Therefore, if σ̃ = 0 and σ �= 0, the bound (B.13) holds provided
(r̃1, r̃2) �= (0, 0).

Now consider the case where σ̃ = 0, σ �= 0, (r1, r2) ∈ Nb(σ ) and (r̃1, r̃2) = (0, 0).
Then,

I(σ, r, σ̃ , r̃) =
∫

pλ0 (y− [σe + r1v1 + r2v2]) λ2 |V0(y)| pλ0 (y) dy

=
∫

pλ0 (y− [σ R−le]) λ2 |V0(y)| pλ0 (y) dy = ρλ,

where R is a 2π/3 rotation matrix and we have used the symmetry assumptions on V0.
Summarizing, for Case 1 we have proved:
Claim 1 σ̃ = 0, then (B.13) holds unless

(1) σ = 0 and r1 = r2 = r̃1 = r̃2 = 0, a case we address no further since it does not
arise in the proof of Proposition 7.1
or

(2) σ �= 0 and r̃1 = r̃2 = 0, (r1, r2) ∈ Nb(σ ), in which case I(σ, r, σ̃ , r̃) = ρλ.
Furthermore, because σ̃ and σ play symmetric roles as do r and r̃, we have
Claim 2 if σ = 0, then the bound (B.13) on I(σ, r, σ̃ , r̃) holds unless

(1) σ̃ = 0 and r1 = r2 = r̃1 = r̃2 = 0, a case we address no further since it does not
arise in the proof of Proposition 7.1

or
(2) σ̃ �= 0 and r1 = r2 = 0, (r̃1, r̃2) ∈ Nb(σ̃ ), in which case I(σ, r, σ̃ , r̃) = ρλ.

We now turn to bound on I(σ, r, σ̃ , r̃) in
Case 2 σ �= 0 and σ̃ �= 0
Case 2a r ∈ Nb(σ )and r̃ ∈ Nb(σ̃ ): We claim that

I(σ, r, σ̃ , r̃) � e−cλ ρλ for r ∈ Nb(σ ), r̃ ∈ Nb(σ̃ ). (B.16)

By (11.5), there exist l, l̃ ∈ {0, 1, 2} such that pλ0 (y − [σe + r�v]) = pλ0 (y − σ Rle) and

pλ0 (y− [σ̃e + r̃�v]) = pλ0 (y− σ̃ Rl̃e). Therefore,

I(σ, r, σ̃ , r̃) =
∫

pλ0 (y− σ Rle) λ2 |V0(y)| pλ0 (y− σ̃ Rl̃e) dy

� e−cλ
∫

pλ0 (y− σ Rle) λ2 |V0(y)| pλ0 (y) dy (by (11.11))

� e−cλ
∫

pλ0 (R
−ly− σe) λ2 |V0(R−ly)| pλ0 (R−ly) dy = e−cλ ρλ.

Case 2b r ∈ Nb(σ ) and r̃ /∈ Nb(σ̃ ): We claim that

I(σ, r, σ̃ , r̃) � e−cλ e−cλ|r̃| ρλ for r ∈ Nb(σ ), r̃ /∈ Nb(σ̃ ). (B.17)
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By (11.5) pλ0 (y−[σe+ r�v]) = pλ0 (y−σ Rle), and by (11.10) and (11.11) pλ0 (y−[σ̃e+
r̃�v]) � e−c|r̃|λ pλ0 (y − σe) � e−cλ e−c|r̃|λ pλ0 (y). These observations together with
symmetry imply:

I(σ, r, σ̃ , r̃) � e−cλ e−cλ|r̃|
∫

pλ0 (y− σ Rle) λ2 |V0(y)| pλ0 (y) dy = e−cλ e−cλ|r̃| ρλ.

This proves (B.17). Similarly, if r /∈ Nb(σ ) and r̃ ∈ Nb(σ̃ ) we have I(σ, r, σ̃ , r̃) �
e−cλ e−cλ|r| ρλ.
Case 2c r /∈ Nb(σ ) and r̃ /∈ Nb(σ̃ ): We claim that

I(σ, r, σ̃ , r̃) � e−cλ e−cλ(|r|+|r̃|) ρλ for r /∈ Nb(σ ), r̃ /∈ Nb(σ̃ ). (B.18)

By (11.10) and (11.11), pλ0 (y− [σ̃e + r̃�v]) � e−c|r̃|λ pλ0 (y− σ̃e) and pλ0 (y− [σe +
r�v]) � e−cλ e−cλ|r| pλ0 (y). Therefore,

I(σ, r, σ̃ , r̃) � e−c|r̃|λ e−cλ e−cλ|r|
∫

pλ0 (y− σ̃e)λ2|V0(y)|pλ0 (y) dy
= e−cλ e−cλ(|r|+|r̃|) ρλ .

The bounds (B.16), (B.17) and (B.18) imply Lemma B.2, and together with Claim 1
and Claim 2 above Lemma B.1 follows. This also completes the proof of Lemma 11.2.

��
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