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Abstract—Problems in scientific computing, such as distributing large sparse matrix operations, have analogous formulations as
hypergraph partitioning problems. A hypergraph is a generalization of a traditional graph wherein “hyperedges” may connect any
number of nodes. As a result, hypergraph partitioning is an NP-Hard problem to both solve or approximate. State-of-the-art algorithms
that solve this problem follow the multilevel paradigm, which begins by iteratively “coarsening” the input hypergraph to smaller problem
instances that share key structural features. Once identifying an approximate problem that is small enough to be solved directly, that
solution can be interpolated and refined to the original problem. While this strategy represents an excellent trade off between quality
and running time, it is sensitive to coarsening strategy. In this work we propose using graph embeddings of the initial hypergraph in
order to ensure that coarsened problem instances retrain key structural features. Our approach prioritizes coarsening within self-similar
regions within the input graph, and leads to significantly improved solution quality across a range of considered hypergraphs.
Reproducibility: All source code, plots and experimental data are available at https://sybrandt.com/2019/partition.

INTRODUCTION

1

YPERGRAPHS provide the formalism needed to solve
Hproblems consisting of interconnected item sets. Sim-
ilar to a traditional graph, the hypergraph has the added
generalization that “hyperedges” may connect any number
of nodes. Domains such as very-large-scale integration for
creating integrated circuits [1], machine learning [2], [3],
[4], parallel algorithms [5], combinatorial scientific comput-
ing [6], and social network analysis [7], [8] all contain sig-
nificant and challenging instances of hypergraph problems.
One important problem, Hypergraph partitioning, involves
dividing the nodes of a hypergraph among k similarly-sized
disjoint sets while reducing the number of hyperedges that
span multiple partitions. In the context of load balancing,
this is the problem of dividing logical threads (nodes) that
share data dependencies (hyperedges) among available ma-
chines (partitions) in order to balance the number of threads
per machine and minimize communication overhead. How-
ever, hypergraph partitioning is both NP-Hard to solve [9]
and approximate [10].

Therefore, state-of-the-art partitioners apply
heuristically-backed algorithms to overcome these inherent
computational limitations [11]. The most common and
effective technique is the multilevel paradigm [1], [12], [13],
[14], [15]. The multilevel paradigm is well known to be
successful beyond the (hyper)graph partitioning in such
areas as the cut-based problems on graphs [16] and machine
learning [17]. Multilevel partitioners consist of three phases,
referred to collectively as the V-Cycle: coarsening, the
initial solution, and uncoarsening. We depict these phases
in Figure 1. The overarching idea behind this technique
is to find a problem instance that shares key structural
features with the input hypergraph, but is small enough
to be partitioned directly. The initial solution to this small
analogous problem can then be gradually interpolated and
refined to apply to the input hypergraph.
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The small analogous problem is identified through an
iterative coarsening process consisting of many levels. At
each level, groups of similar nodes are identified, and
each is “contracted” into a single merged node at the next
more-coarse level. While grouping nodes, the goal is to
identify self-similar regions of the current hypergraph so
that the more coarse problem instances retain key struc-
tural features. Most commonly, these coarsening groups are
formed by pairing nodes due to a similarity measure [13],
[15] that heuristically or rigorously suggests to place both
nodes in the same partition. An n-level algorithm is one
that identifies only one pair of coarsening partners at each
level [18], while a log n-level algorithm pairs many nodes
each time [15]. Coarsening stops once identifying a suf-
ficiently small hypergraph based on some criterion that
indicates that this problem is possible to (almost) optimally
solve on given computational resources. The initial solution
can then be identified directly using the best available
algorithm. Now, the solution is uncoarsened back through the
levels in order to identify a solution to the original problem.
Uncoarsening consists of three sub-phases: expansion, inter-
polation, and refinement. Expansion undoes the coarsening
at a given level by “expanding” the current level’s coarsened
nodes with those contracted in the prior. Next, interpolation
assigns each expanded node the partition label assigned
to their corresponding coarse representation. Then, local
refinement cheaply updates the partition labels among the
expanded nodes in order to improve the overall solution
quality for the next level. This process is repeated from the
initial solution through all coarsening levels and back to
the original hypergraph, which final refinement solution is
accepted as the solution to the partitioning problem.

Because the strategy used to contract nodes determines
the coarsening at each level, the quality of the initial so-
lution, and the behavior of interpolation and refinement
during uncoarsening, we find that this single factor can
dramatically effect partitioning quality. Other works ex-
ploring coarsening strategies, such as relaxation-based [13]
or community-aware [19] coarsening, arrive with a similar
conclusion.
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1.1 Our Contribution

We propose embedding-based coarsening, a novel coarsening
strategy that leverages graph embeddings to prioritize the
contraction of self-similar regions of the input hypergraph
in order to retain global structural features. This approach
augments the existing strategy that contracts nodes based
on their co-participation in small hyperedges by adding an
embedding-based term that can break ties among similarly
ranked coarsening pairs. A toy example of this phenomena
is depicted in Figure 2, wherein three potential coarsening
pairs are equally ranked by the traditional scheme, but
embedding-based signals favor the pair that retains both
key clusters.

The field of graph embedding is evolving rapidly, and
the proposed embedding-based coarsening is designed to
be agnostic with respect to any particular technique, pro-
vided that similarities between nodes are encoded via the
dot product of embedding vectors. Specifically, our pro-
posed technique accepts a precomputed embedding as an
auxiliary input per-hypergraph, and we demonstrate that
a wide range of existing embedding techniques improve
partitioning performance similarly. Decoupling partitioning
from embedding enables embedding-based coarsening to
more easily benefit from future advances in machine learn-
ing techniques. In order to apply embedding techniques
designed for classical graphs, we need a classical represen-
tation of each input hypergraph. The star-expansion [20]
represents a hypergraph as an undirected bipartite graph
wherein hyperedges from the original structure form a new
layer of nodes. An edge between two nodes ¢ and j in
the bipartite structure indicates that node ¢ participated in
hyperedge j within the original structure. As opposed to
other classical representations like the clique-expansion, the
star-expansion retains all relevant hypergraph information,
and is scalable for large graphs [20]. Furthermore, existing
embedding techniques specifically designed for bipartite
graphs [21] apply to star-expanded graphs directly.

Given an input hypergraph and an embedding for each
node of the input structure, embedding-based coarsening
follows this outline at each coarsening level. First, each
node is assigned a score equal to the highest dot product
between its embedding and each of its neighbors. Nodes
are visited in decreasing order by score. A visited node is
matched from among its neighbors based on the product of
their classical edge-wise score, and the dot product of each
node’s embedding. After matching nodes, based on whether
we are performing n- or log n-level coarsening, mated nodes
are contracted. Newly coarsened nodes are assigned an
embedding equal to the average embedding of all initial
embeddings contained within the coarse representation.

We implement our proposed coarsening strategy in both
KaHyPar [18], which is a n-level partitioner with state-of-
the-art solution quality, as well as Zoltan [15], which is a par-
allel log n-level partitioner with high quality and state-of-
the-art speed. Furthermore, we compare the effect of various
different embedding techniques, including Node2Vec [22],
Metapath2Vec++ [23], and FOBE/HOBE [21], which were
designed specifically for bipartite graphs. We additionally
compare the effect of each embedding-based coarsening
strategy with hMetis [24], Zoltan [15], PaToH [25], KaHy-
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Fig. 1: A standard V-cycle, consisting of coarsening, and
initial partition, and uncoarsening.
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Fig. 2: Typical heavy-edge coarsening results in three possi-
ble contractions of equal weight. Embedding-based coarsen-
ing breaks the tie for the pair that preserves global structure
— a cluster of weight 3 and of weight 2.

Par (with community-based coarsening [19]), and KaHyPar
Flow (with both community-based coarsening and flow-
based refinement [26])!. We compare performance of each
partitioner across 96 hypergraph from the SuiteSparse Ma-
trix Collection [27]. For each graph, we compute one em-
bedding using each of the proposed techniques to serve as
an auxiliary input across all trial. We compare quality across
both the “cut” and “connectivity” objectives as well as for
partition counts from 2 to 128 for each partitioner. For each
combination of experimental parameters we run 20 trials
in order to compare the variance and establish significance
with respect to different random seeds. Overall, we produce
over 500,000 individual trials.

We find that embedding-based coarsening has a signifi-
cant improvement over the state of the art that is especially
pronounced for smaller partition counts (< 32). In some
cases, this leads to a solution quality that is improved by
as much as 400%. Because embedding-based coarsening
replaces the traditionally random visit order with one that
prioritizes self-similar regions of the hypergraph, we also
observe an improvement in the standard deviation of qual-
ity. All experimental code, data, visualization scripts, and a
database of all experimental results, including all hyperpa-
rameters per-trial, can be found at: https://sybrandt.com/
2019/partition. A longer-form version of this work can be
found online?.

1. Neither hMetis nor PaToH provide source code. Instead, we can
only use pre-compiled binaries for comparison purposes.
2. https:/ /arxiv.org/abs/1909.04016
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2 NOTATION AND PRELIMINARY CONCEPTS

A hypergraph H = (V,E) consists of nodes v € V and
hyperedges ¢ € FE. As opposed to a traditional graph,
each hyperedge may contain any non-empty subset of V.
The hypergraph partitioning problem is to divide V' into
k disjoint subsets of similar size while minimizing a given
objective function. Two common objectives considered here
are “cut” and “connectivity.” Cut measures the number of
hyperedges spanning more than one partition. If A(e) is
the number of partitions spanned by edge e, then the cut
objective is defined as: |e € E, such that A\(e) > 1.

The “connectivity” objective, also commonly referred to
as “k — 1,” penalizes each edge by the number of spanned
partitions, namely, > . (A(e) — 1). In the case of k& = 2,
this is equivalent to cut.

Weights. Although we consider unweighted input hyper-
graphs (all nodes and hyperedges count the same towards
their corresponding objectives and constraints), the multi-
level paradigm introduces weights to intermediate level hy-
pergraphs. Each node and hyperedge has a corresponding
weight (w, and w,) equal to one for the input hypergraph.
During coarsening, if two nodes v; and v; are contracted
into a new coarse node v/, then w,, = w,, + w,,; . This new
node v’ will also be added to all edges originally containing
either v; or v;, before removing those original nodes from
the resulting coarse hypergraph. If during the coarsening
two edges will contain the same subset of nodes (e; = e3),
they will be replaced with a new edge ¢’ containing the
same nodes but with added weights: we = we, + we,.
When solving for cut and connectivity for intermediate sub-
problems during the multilevel strategy, we introduce these
weights into the objective:

> we 1

e€E,\(e)>1

weighted cut =

weighted connectivity = Z()\(e) — Dwe 2

eck

One issue during coarsening is the potential for indi-

vidual nodes to accumulate a disproportionate amount of
weight. When this occurs, balanced partitioning can become
impossible at the coarsest level, especially if one node’s
weight exceeds |V|/k. In order to avoid this negative ef-
fect, multilevel partitioners enforce a weight tolerance w(T),
which is parameterized by the user. No coarsening partners
may be contracted if their resulting coarse node would
exceed this limit.
Imbalance Constraint. It is important to balance the number
of nodes in the resulting partitions. Therefore, partitioners
include an optimization constraint to determine how un-
even the resulting partitions are allowed to be. For each
partition V; C V, given a predefined imbalance tolerance
«, this constraint is defined as:

Y we < (1+a) ﬁ > wvw ®)

v’ eV; veV

Embeddings. We use the function € : V' — R" to denote a
pre-trained embedding. Conceptually, this is a lookup table
that assigns a node in the input hypergraph to a real-valued
n-dimensional vector. In our experiments we select n = 100.

3

Note, higher-dimensional embeddings show no statistically
significant performance difference in our experiments.

3 BACKGROUND AND RELATED WORK

Multilevel Partitioning.

The multilevel paradigm is the state-of-the-art solution
strategy for hypergraph partitioning [11]—both improving
result quality [28] and runtime [29]. Multilevel algorithms
follow the V-cycle pattern, consisting of coarsening, an
initial solution, and uncoarsening. This approach is effective
because coarse hypergraphs are easier to solve yet they
retain global structural features of the original. Coarse hy-
pergraphs are created by iteratively merging multiple nodes
at the current “finer” level into single nodes at the “coarser”
level. Once sufficiently small, a partitioner can directly solve
the coarsest problem instance using an algorithm that would
normally be infeasible for large problems. Uncoarsening
then interpolates the initial solution through each coarse
level, performing local search at each level to refine the
solution, until a solution is presented for the initial problem
instance.

Usually, at each level of the coarsening process almost

all nodes have at least one merging partner, resulting in
log n levels. This is the approach used by Mondriaan [30],
hMetis2 [1], Zoltan [15], and PaToH [25]. However, KaHy-
Par [18] implements an n-level approach where at each level
only one pair of nodes is contracted.
Coarsening Strategies. A good coarsening strategy is one
that groups together nodes that will ultimately share the
same partition label, meaning that the coarser solution can
be interpolated to the finer solution without a loss of quality.
In practice, this loss of quality is to be expected, which
is why local refinement is common during uncoarsening.
However, if global structural features are not preserved,
the loss of quality during interpolation cannot be rectified
through the fast local refinement process. Therefore, the
choice of coarsening heuristic is paramount.

Most heuristics used to identify nodes for contraction
do so by scoring node pairs, and most partitioners, includ-
ing Mondriaan [30], hMetis2 [1] and Zoltan [15], measure
the edge-wise inner product, or some variation. The edge-
wise inner-product is the Euclidean inner product of the
weighted hyperedge incidence vectors [15]. Edge weights
are defined formally in Section 2. Specifically, if w, is the
weight of hyperedge e, then the edge-wise inner product of
nodes u and v is defined as:

> we

u,v€e€Er

Although this approach is simplistic, it is also very com-
putationally inexpensive and has provided a firm baseline.
As mentioned, many variations exist, such as absorption,
implemented in PaToH [25], and heavy edge, implemented
in hMetis2 [1], Parkway [31], and KaHyPar [19], as well as
a number of other normalization techniques, often based
on node or hyperedge degree. Heavy edge, which is of
particular interest due to its simple formulation and high
performance, simply normalizes hyperedge weight by the
expected degree of the resulting hyperedge following con-
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traction. If |e| is the number of nodes present in hyperedge
e, then this score is:

SE(Uﬂj) = Z e 1

u,v€eElr ‘€| -

One key limitation to the edge-wise score heuristics
is that each only considers local information around each
node. Therefore, global structural features can be collapsed
during coarsening. This work seeks to use graph embed-
dings to provide this global information, however prior
work has attempted to provide similar signals in alternate
ways. Shaydulin et al. introduce algebraic distance for hyper-
graphs, a relaxation-based similarity measure that extends
a similar approach from traditional graphs [32], [33]. This
measure treats nodes as entities in a mutually-reinforcing
environment, which enables this technique to apply a fast
relaxation-based approach to supply a coordinate per node.
Conceptually this acts as a one-dimensional embedding,
wherein two nodes receive a similar coordinate if their
neighborhoods are similar. This similarity measure is used
to quantify node similarities and assign weights to hyper-
edges.

Another approach to incorporate global information is
community-aware coarsening, which uses clustering infor-
mation to restrict matching between communities. This
approach, which is implemented in KaHyPar, makes the
assumption that nodes belonging to different clusters of
the input hypergraph should never be contracted. The pro-
posed clustering is performed by a fast global modularity-
maximizing algorithm, leveraging the connection between
partitioning and clustering. This modularity-based cluster-
ing, which groups star-expanded nodes within a bipartite
representation of a hypergraph, identifies communities are
internally dense and externally sparse [34], which is de-
sired for a good partitioning. We note, and discuss further
in Section 7, that the clusters found by this modularity-
maximizing approach are similar to the self-similar regions
within a graph embedding. However, in some scenarios
the hard restriction to never merge nodes across commu-
nities appears to be too strong. Instead, embedding-based
coarsening simply penalizes the contraction of nodes across
clusters, allowing more flexible decisions for nodes along
the periphery.

Refinement. While this work proposes a new coarsening
strategy, important work also explores the refinement stage
of uncoarsening, wherein each partitioner performs local
search in order to improve the interpolated coarser solution
on the finer level. The typical strategy is the node-moving
heuristic, wherein each expanded node at the newly refined
level is given the option of switching partition label. A ma-
jority of hypergraph partitioners use a variation of Fiduccia-
Mattheyses [35] or Kernighan-Lin [36] to perform these local
searches [1], [15], [25], [26], [30], [31]. Recently, Heuer et
al. introduced a flow-based refinement scheme for k-way
hypergraph partitioning [26], extending similar approaches
from graph partitioning [37]. This flow-based refinement,
which is implemented in KaHyPar, is considered as a tem-
perate case within our benchmark. As a result, we can
compare the performance of embedding-based coarsening
without flow-based regiment, and vice-versa.

Additional Partitioning Strategies. There are a few coars-

4

ening and partitioning strategies that are not included in our
benchmark, but are worth additional discussion. Memetic
partitioning, also proposed for KaHyPar, uses the principles
of genetic algorithms to discover improved partitioning
solutions [12]. This approach creates high quality partitions
by iterating through different “generations” of solutions,
starting with an initial generation produced by KaHyPar
run multiple times with different seeds. From the initial
set, multiple combination operators “breed” new solutions
by combining some number of “parents” to form new
solutions. Each iteration is designed to improve the popu-
lation’s average connectivity metric. Combination operators
are specifically posed such that offspring solutions perform
at least as good as its corresponding parents. While this
approach is demonstrated to improve overall hypergraph
partitioning quality, it does so by adding a meta process
to the set of initial hypergraph solutions. We anticipate
that adding embedding-based coarsening as a method for
generating a high quality initial solution population may
be a complimentary way to improve the overall process.
Aggregative coarsening [38] uses ideas from algebraic multi-
grid. At each step of the coarsening process a set of seed
vertices is selected. Each seed then becomes a center of
an aggregate, with non-seeds assigned to seeds using dif-
ferent aggregation rules. An aggregate at finer level forms
a vertex at coarser level. Two aggregation rules, based on
inner product matching and stable matching were explored.
Our embedding-based coarsening can be used within the
aggregative coarsening to inform the aggregation rules.

3.1 Graph Embeddings

Our embedding-based coarsening accepts embeddings for
each node of the input hypergraph as an auxiliary input.
Rather than depend on a particular graph embedding tech-
nique, this work simply assumes that some measure of
global graph structure is encoded via the dot product of
embeddings, meaning that two nodes with a higher dot
product of embeddings will be more similar. In this manner,
new advances in graph embedding, or fine-tuned versions
of existing algorithms for particular graphs, can be intro-
duced into our proposed strategy. Importantly, this work
does not seek to establish any graph embedding technique
as inherently better for hypergraph partitioning. Instead,
we find that all considered embeddings greatly improve solution
quality.

Neural Graph Embedding. The Deepwalk graph embed-
ding [39], which applies the skip-gram model [40] to ran-
dom walks of nodes, marks the beginning of neural network
graph embeddings. The node2vec approach [22] modifies
Deepwalk to parameterize random walk behavior, allowing
walks to explore local regions or broad swaths of a graph.
In doing so, Grover et al. identify that node2vec graph em-
beddings can encode both homophilic and structural latent
features. Tsitsulin et al. generalize the formalism across a
range of random-walk based graph embedding techniques,
noting that community-based, role-based, and structural
features of nodes can all be encoded in a single unified
framework [41].

Bipartite Embeddings. Sybrandt et al. [21] explore a num-
ber of bipartite graph embedding techniques when present-
ing First- and Higher-Order Bipartite Embedding (FOBE
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and HOBE), including BiNE [42], and Metapath2Vec++ [23].
Due to the star expansion, bipartite embedding techniques
are likely among the best suited for hypergraphs. Therefore,
we select a subset of bipartite embedding methods that
performed the best in this prior work to explore here.
FOBE and HOBE. Because most readers will not be familiar
with FOBE and HOBE, and because we find these tech-
niques are often the most useful for embedding-based coars-
ening, we summarize these techniques here. Both methods
create a set of observations, which are used to train embed-
dings.

Formally, if G = (V, E) is a bipartite graph, I'(x) is the
neighborhood of node x, and u, v € V are nodes, then FOBE
assigns a sampled score for the u, v pair as follows:

1 T(uw)NT(v)#0
1 wek
0 otherwise

S(FOBE) (u7 U) _

These observations are fit by minimizing the following for
each observed w,v pair, where €(x) indicates the learned
embedding of node z:

LFOBE) (4 ) = 5 (e(u), e(v)) log ( ST, ”)) ,

o(e(u),e(v))
_ 1
T 1l4e

where o(x)

HOBE, in contrast, learns higher-ordered relationships
that are weighted using algebraic distance, the same un-
derlying technique used within relaxation-based coarsen-
ing [13], which places nodes on the unit interval such that
similar nodes receive similar coordinates. Formally, the al-
gebraic coordinate of node u is determined by this iterative
process:

> ai(v)[T(w)[~

. 1 ) vel(u)
a;1(u) = 2 a;(u) + S T(v)] !
vel(u)

where aj is randomly initialized, and the algebraic coor-
dinate for u is determined after a fixed number of steps
t. HOBE runs R = 10 random restarts and summarizes
the algebraid similarity between two nodes u and v in the
following way:

VR — d(u,v)

s(u,v) = ————=

VR
where d(u,v) = \l i (aﬁr)(u) - agr) (v))2

r=1

HOVE uses algebraic similarities to assign weights to
node pairs by identifying highly similar shared neighbors:
following manner:

a(u,v) Du)NT(v) #0
max a(u,x),
S(HOBE) (u,v) = < max z€l(v) w € F
’ max «(z,v)
zel(u)
0 otherwise
h = i
where a(u, v) xerg?ﬁ“(u) min (s(u, x), s(v,))

5

Embeddings are fit by minimizing the following loss for
each u, v pair:

- (HOBE) (u,0) = (S(HOBE) (u,v) — max(0, e(u)Te(v))>2

Combination Embeddings. To demonstrate the ability for
embedding-based coarsening to apply to any given embed-
dings, we explore the combination approach also presented
by Sybrandt et al. in [21]. This method learns a joint repre-
sentation for each node given multiple pre-trained embed-
dings. This technique does not rely on any random walk
strategy, and instead learns a unified embedding per-node
given the edge list as a set of embeddings per node. The
particular model combines a link-prediction objective with
an auto-encoding objective, and in doing so ensures that
the resulting joint embedding captures relevant structural
signals that are needed to reproduce both the edge list as
well as the input embeddings. This technique is very similar
to that presented by Wang et al. [43] in that it consists of
two connected auto encoders. The result of this method is
an embedding that merges the structural features present in
a range of embeddings while preserving any useful distinct
features from across the set. We direct the reader to [21] to
find the specifics of this approach.

Deep Learning Graph Embedding. In addition to the above
techniques, which are generally fast, scalable, and parallel
sizable, there are another set of deep-learning embedding
techniques that apply larger models to the problem of graph
embedding. One popular technique, the graph convolu-
tional network [44], constructs a neural network in the same
structure as the input graph, and embeddings are derived by
a “message-passing” function that distributes node features
among neighborhoods. Another technique by Cao et al.
learns deep representation by first constructing a large co-
occurrence matrix from a process of “random-surfing” fol-
lowing by deep auto encoders [45]. A similar auto-encoder-
based approach is presented by Wang et al. [43], wherein
a pair of deep auto-encoders both encode nodes indepen-
dently, as well as ensure that similar nodes are assigned
similar embedding. While these deep-learning techniques
do achieve high quality results for relatively small graphs,
these techniques are less scalable than the previously dis-
cussed class of algorithms, due to their larger model struc-
ture and the accompanying need for more graph samples.
While these techniques could certainly improve the quality
of embedding-based coarsening for some hypergraphs, we
designed our proposed technique to be independent of any
particular embedding, and evaluated our technique over a
large collection of hypergraphs and scenarios. As a result,
the analysis of deep-learning graph embedding techniques
was infeasible for this work.

4 EMBEDDING-BASED COARSENING

Embedding-based coarsening begins with a user-supplied
hypergraph as well as an embedding of each node. For
instance, we use the star-expansion [20] of the hypergraph
in order to apply a range of embedding techniques de-
signed for classical graphs. During coarsening, nodes are
visited in an order determined by the embeddings of each
node’s neighborhood. When visited, an unmatched node
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is paired with whichever neighbor maximizes a combined
measure of edge-wise inner product as well as embedding
dot product. After identifying matches, paired nodes are
contracted into new coarse nodes, which are assigned an
embedding equal the average of all the initial embeddings it
represents. Because embedding-based coarsening preserves
more global structural features than other methods, the
initial partitioning solution is more applicable to the large-
scale graph, resulting in higher partitioning quality. We
implement embedding-based coarsening in both Zoltan [15]
and KaHyPar [18], and explore a range of embedding
techniques, including node2vec [22], MetaPath2Vec++ [23],
FOBE and HOBE [21], as well as merged embeddings from
among this set.

Node Visit Order. We begin matching nodes in an order
that tries to prioritize self-similar regions of the input hy-
pergraph. Specifically, a node is a good candidate for being
contracted at the current level if it shares a hyperedge with
a partner that has a very similar embedding. This indicates
that both nodes share many global structural features that
would be preserved in their coarsened replacement. How-
ever, it is also important to reduce the weight of the resulting
coarse nodes. While we also apply more explicit weight-
based limitations below, maintaining the balance of coarse
node weights begins with adding a weight normalization
to this embedding-based similarity score. Otherwise, very
dense regions of the network will be contracted into ex-
tremely imbalanced and heavy nodes before the rest of the
hypergraph, which can eventually invalidate the imbalance
constraint. Note that Section 2 contains more thorough
definitions for the embedding function € and node weight
w, as well as the rest of the notation used in this section.
Using these concepts, we can order nodes based on how
similar each is to its closest neighbor. Specifically, we order
each node u with respect to the following;:

e(u)Te(v)

max ———— (4)
VET (u),u#v  Wey Wy

So(u) =

Scoring Contraction Partners. When visiting node v at a
given level of coarsening, we must select a neighbor v with
which it will contract into a new coarse node in the follow-
ing level. To do so, we assign a score to each neighbor of
u, and select the node with the highest score to match with.
We assign scores based on a combination of the KaHyPar
“heavy edge” scoring function [19], as summarized in Sec-
tion 3, as well as the dot product of embeddings. The heavy
edge scoring function increases the score of hyperedges with
fewer nodes. In real-world applications, this can correspond
to “niche” communities that tend to carry more meaning
for those involved. We additionally penalize this score by
the node’s weights in order to reduce the imbalance of the
resulting coarse nodes. Specifically, we assign a score to
neighboring nodes u and v during the matching process
equal to:

S.(u,v) = (6(“)“(”))

Wy Wy

We
2 i) ©

eel(u)NI'(v)

Note that in order for a node pair to receive a high S,

score, they must both share low-participation hyperedges
as well as global structural embedding-based features. This
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way, embedding-based coarsening allows us to break ties
between multiple nodes that all co-occur in similar intersec-
tions of similarly weighted hyperedges, which has the effect
of breaking ties, as depicted in Figure 2. Additionally, this
measure provides a sorting criteria who’s relative values
is more important than its absolute value. For this reason
we observe a significant benefit by not normalizing the dot
product value. While some embedding techniques encode
node similarity through cosine similarity, which normalizes
the dot products between nodes, others do not. In these
cases, the relative magnitudes of embedding dot products
is a valuable signal for determining coarsening partners.
Imbalance Constraint. As previously stated, it is also impor-
tant to ensure that the weight of coarsened nodes remains
reasonably balanced so that no coarse node becomes so
“heavy” that the overall partitioning becomes imbalanced.
To address this, we only match nodes that will produce
coarse nodes below a given weight tolerance. We accept the
weight tolerance w(?) to be a hyperparameter determined
by the partitioner. Then, when matching nodes v and v, we
disqualify any pair such that w,, + w, > w(™).
Embeddings. Embedding-based coarsening accepts any
pretrained embedding (€) to score potential coarsening
partners. We assume that this function places each node
of the initial hypergraph into a fixed-dimensional space.
Because graph embedding is computationally expensive,
we interpolate coarse node embeddings from the initial set.
This interpolation consists of the average of all initial node
embeddings present in the coarsened node. For instance, if
the coarse node u has weight w,,, then that number of nodes
from the input hypergraph have been accumulated into
u. These initial nodes, v, ...,v,, each have embeddings
that were supplied in the initial hypergraph embedding.
Therefore, we define €(u) to be the following in the case
where u is a coarse node that does not appear in the initial
embedding:

e(u) = — i e(v;) (6)
i=0

Runtime Impacts. Embedding-based coarsening comes
with two runtime increases that are not present in the fast
edge-wise coarsening that is typically used by KaHyPar and
Zoltan. Firstly, one must perform a graph embedding to
learn €. Secondly, at each level of coarsening, we sort V' in
accordance to embedding-based signals. Graph embedding,
in general, is an expensive machine learning operation,
requiring significant time and memory to sample a graph
and learn embeddings for each node. However, because the
proposed embedding-based coarsening algorithm is inde-
pendent of any particular embedding technique, the specific
resources and time needed to produce a graph embedding
are subject to change. There are a few broad patterns that
most embedding methods follow. Graph embeddings are
learned from a set of samples. These samples can be the
edges of the graph itself [46], observations determined
based on first- or second-order relationships [21], [47], or
random-walks of the graph [22], [23], [39]. In each case,
the observation capturing process is linear with respect
to the size of the graph. Additionally, these observations
can often be collected in parallel. Next, the observations
are formulated into batches for a neural network to learn
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embeddings. Each observation is viewed once-per-epoch,
and effects the learned weights of a gain model. Therefore,
the complexity of training is equal to the size of the graph
times the complexity of performing back-propagation of
a particular model. Embeddings can also be paralleled,
both by GPU acceleration, as well as through multi-node
computation [48]. While the embedding process overall is
certainly expensive, the coarsening algorithm proposed in
this work only requires one embedding of the input graph
as a prepossessing step. This may not be feasible for applica-
tions that must partition thousands of midsize hypergraphs
daily, but is likely worth it for any application the relies
more on the quality of the resulting partition.

The second difference in runtime comes from the sorting
used to prioritize coarsening partners during each step of
the proposed algorithm. At each iteration, we visit each
node to find its most-similar neighbor in terms of node em-
bedding, and then order nodes by this measure. In contrast,
classical coarsening randomly orders nodes before identi-
fying partners. While this process introduces the overhead
of sorting, we find that removing randomness to prioritize
self-similar hypergraph regions can significantly improve
partitioning quality while decreasing the quality variance.
This may save time overall, as practitioners could reduce
the number of random restarts needed to find a high-quality
partition. The entire embedding-based coarsening algorithm
is outlined in Procedure 1.

Procedure 1 Embedding-based Coarsening.

Output: Produces a set of (u,v) pairs to be contracted in
the next level of coarsening.
1: M, + 0 Vu € V {M is the matching array.}
2: Sort u € V in decreasing order by Sp (u). {Eq. (4)}
3: foru € V do
4:  if M,, = () then

5: p < 0 {p will be matched with w.}

6: s <= —oo {s is the score associated with p.}

7: forv € T'(u) do

8: if v # wand M, =0 and w, + w, < w™) then
9: t < Sec(u,v) {Eq. (5)}
10: if t > s then
11: st p+v
12: if p # 0 then
13: M, < u, M, + p {Match u and p.}

14: Contract nodes according to M.

5 CONSIDERED IMPLEMENTATIONS

We implement our algorithm in both KaHyPar [18], the n-
level partitioner, as well as Zoltan [15], the log n-level parti-
tioner. These two partitioners are considered as other alter-
natives such as PaToH [25] and hMetis [24] do not provide
open source implementations. In each, embedding-based
coarsening consists of only a few hundred lines of code,
demonstrating that both partitioners are easily expandable
for new coarsening algorithms. For ease of development, we
use singletons to manage the state of the embedding, and
overwrite functions related to scoring neighboring nodes
during the coarsening process. We additionally implement
a partitioner independent prepossessing step to convert a
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hypergraph into a star-expanded classical graph in order to
apply existing graph embedding techniques. The output of
these graph embeddings is supplied as an auxiliary input to
the singleton embedding manager. Overall, this separation
of embedding and partitioning allows easy experimentation
and adaptation with respect to new and constantly changing
embedding techniques.

An additional implementation note is necessary for man-
aging embedding behavior during the recursive bisection
process of Zoltan, which identifies larger numbers of par-
titions by iteratively solving the 2-partition problem on
iterative halves of the input hypergraph. Simply put, node
indices during the recursive bisection process are remapped
to start at zero for each recursive partitioning call, which
requires the embedding singleton to access the logic of
this routine. KaHyPar, in contrast, solves the k-partitioning
problem directly at the point of initial solution, and does
not perform recursive bisection, and therefore does not
require extra engineering. While important for any wishing
to implement embedding-based coarsening in the context of
recursive bisection, this technical detail does not modify the
overall behavior of the proposed algorithm.

6 EXPERIMENTAL DESIGN

We implement embedding-based coarsening in both KaHy-
Par [18] and Zoltan [15], and compare the result quality
against KaHyPar with community-based coarsening [19],
KaHyPar with community-based coarsening and flow-
based refinement [26], Zoltan with standard coarsening [15],
PaToH [25], and hMetis [24]. For both KaHyPar and Zoltan
with embedding-based coarsening, we compare embed-
dings produced by Node2Vec [22], Metapath2Vec++ [23],
FOBE and HOBE [21], as well as a combined FOBE+HOBE
embedding, and a combined Node2Vec, Metapath2Vec++,
FOBE, and HOBE embedding. The combinations are trained
using the semi-supervised joint embedding technique also
presented in [21], which merges retrained embeddings
through a combination of auto-encoding and link-predictive
objectives. For the sake of comparison, we choose 100-
dimensional embeddings for all cases and for all hyper-
graphs. We selected the FOBE and HOBE combination as
this produces a high quality embedding in prior work [21].
We then wanted to explore a new combination with the
whole range of considered embeddings. Additionally, when
comparing performance of embedding-based coarsening
within KaHyPar, we compare both with and without flow-
based refinement. Overall, we explore 18 different parti-
tioning settings with embedding-based coarsening, and five
different partitioners with traditional coarsening strategies.

For each of the 23 total partitioner configurations, we ex-
plore 96 total hypergraphs. Eighty-six of these are supplied
by the SuiteSparse Matrix Collection [27]. These matrices
span a range of domains including social networks, power
grids, and linear systems. We interpret each matrix H as
the incidence matrix of a hypergraph. In doing so, we
consider each row to represent a node, each column to be
a hyperedge, and a nonzero value in H;; to indicate node j
participates in hyperedge 7. We additionally include ten syn-
thetic hypergraphs that were designed to test the robustness
of the coarsening process, extending a similar approach to
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generate potentially hard instances from graphs [49]. These
graphs are a mixture of graphs that are weakly connected
between each other, with less than 1% of edges connecting
different graphs in the mixture. In multilevel setting, this
can cause the coarsening process to incorrectly contract
edges between different graphs in the mixture, resulting in
uneven coarsening, overloaded refinement and worse qual-
ity of the final solution. This structure can be found in many
real-world graphs, including multi-mode networks [50] and
logistics multi-stage system networks [51]. We introduce
additional complexity by adding additional < 1% random
edges (denoted in the online appendix as “W/ Noise”). Full
graphs, as well as scripts used to generate them are available
in the online appendix. Summary statistics for each graph
are supplied in the appendix.

For each partitioner and hypergraph combination, we

explore both the “cut” and the “connectivity” objective,
which can influence the initial solution, as well as some
decisions during refinement across the considered bench-
mark®. Additionally, we explore a number of partitions
(k) for powers of 2 from 2 to 128. For each partitioner,
objective, and k-value combination, we run at least twenty
trials with different random seeds in order to explore the
stability of each scenario. Overall, we compute over 500,000
different experimental trials across our wide benchmark,
and for each trial we record all relevant hyperparameters
and quality results in a database download supplied in our
online appendix.
Metrics. In order to understand aggregate system perfor-
mance, we report a range of summary statistics for each pro-
posed method. We are primarily concerned with partition-
ing performance, as quantified by the value of the consid-
ered objective value at the end of the multilevel paradigm.
However, different hypergraphs have substantially different
optimal objective values. Therefore, we report improvement
statistics between two considered partitioners, with one
acting as a baseline for the consideration of the other. A
value greater than 1 indicates a reduction in the considered
partitioner when compared to the baseline across the same
hypergraphs.

Formally, if P is a partitioner configuration, including
algorithm, embedding method (if applicable), k, and ob-
jective function, and H is a hypergraph then let P(H) be
the resulting value of the objective function given H and
a new random seed. Then, let G be a summary statistic,
such as mean, min, max, or standard deviation. We apply
G over T trials of a given partitioner with the same input
and different random seeds. The improvement of P with
respect to baseline method Pgp for a single hypergraph is
determined to be:

G(Pp(H),...,Pp(H),)
G(P(H),...,P(H),)

I(P,Pg,G, H) = )
Note that the formulation above places the baseline
partitioner in the numerator because an “improvement” is
quantified as a decrease in objective value. Therefore, if the
proposed partitioner P produces consistently lower objective
values than Pg, then I will be a number greater than 1.

3. hMetis cannot optimize the “connectivity” objective, and is there-
fore omitted from that portion of the analysis.
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When comparing two partitioners across the entire
benchmark of hypergraphs D, we compute the macro-
summary. This means that we first apply the summary
statistic G to each hypergraph’s trials separately, before av-
eraging the results together. Formally, the macro-summary
is defined as:

1

I(P,PB,G): ﬁ

> I(P, Py, G, H) (8)

HeD

When making these comparisons, we select P and Pg
pairs such that both partitioners are optimizing the same
number of partitions using the same objective. Additionally,
we explore summary functions G including mean, min,
max, and standard deviation. While mean indicates average
quality, min and max indicate worse- and best-case perfor-
mance, while the standard deviation explores the variance
in the resulting partitioners with respect to the random seed.

7 RESULTS

We present a range of result summaries following the exper-
imental design discussed above. For a more in-depth look
at our results, we present additional data regarding each
hypergraph, and each trial in our online appendix.

To begin our analysis, we summarize the performance
improvement of each embedding-based coarsening imple-
mentation compared to its respective baseline. For in-
stance, we compare KaHyPar with embedding-based coars-
ening, using FOBE embeddings, against KaHyPar using
community-aware coarsening. We also compare KaHy-
Par with flow-based refinement, as well as Zoltan with
and without embedding-based coarsening. These results
are summarized using the macro-improvement statistic
7 (Eq. 8), and with the trial summary statistic G = mean.
Improvements as a percentage for both “cut” and “connec-
tivity” objectives for all considered numbers of partitions (k)
in Table 1.

The most striking result in this small collection of sum-
maries is the inverse relationship between improvement and
k. As the number of partitions increases, the advantage of
embedding-based coarsening decreases. This is due to the
manner that we create interpolated embeddings for coarse
nodes. As detailed in Section 4, when a newly coarsened
node is introduced at a new level of the coarsening pro-
cess, it is assigned an embedding equal to the average of
the initial embeddings it contains. This has the effect of
“smoothing” the embedding space at the coarse level. As
a result of this smoothing, only major variances between
nodes will be captured at the point of initial solution. For
instance, if a hypergraph structure has a set number of
key clusters, it is hard for embedding-based coarsening to
identify anything else at the coarsest level. Higher values of
k, larger than the number of identified clusters, therefore do
not benefit from this technique.

Future work looking creating more useful coarse node
representations is likely to address this problem. However,
simple solutions such as embedding coarse graph instances
has significant challenges. For instance, we find that small
problem instances result in poor embedding convergence
across all considered embedding techniques. Therefore we
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# Parts(k): 2 4 8 16 32 64 128

# Parts(k): 2 4 8 16 32 64 128

KaHyPar 8% 13% 10% 6% 4% 3% 1%
KaHyPar(flow) 9% 11% 4% 2% 3% 2% 0%
Zoltan 48% 28% 15% 14% 9% 5% 3%

(a) Average connectivity improvement.

KaHyPar 80/0 16% 90/0 1% 30/0 10/0 00/0
KaHyPar(flow) 10% 11% 3% 1% 1% 1% -1%
Zoltan 51% 45% 51% 41% 31% 14% 8%

(b) Average cut improvement.

TABLE 1: Improvement for each implementation of embedding-based coarsening when compared to its corresponding
baseline for both the cut and connectivity objectives. Results each use the FOBE embedding instance of embedding-based
coarsening. Performance numbers correspond to Z macro-summaries (Eq. 8) where G = mean.

observed in initial trials, re-embedding coarse graphs dra-
matically decreased result quality. Additionally, graph em-
beddings are computationally expensive, and performing
any non-constant number of embeddings is likely to be
infeasible for any real-world problem instance.

We continue our comparison of embedding-based coars-
ening across a range of baselines in Figure 3a. Here we
compare Zoltan with embedding-based coarsening, KaHy-
Par with embedding-based coarsening and flow-based re-
finement (the better performing KaHyPar implementation),
against all baseline methods. We additionally explore a
range of summary statistics G including mean, best-case
(min), worse-case (max), and standard deviation. To easily
compare all partitioners, we use KaHyPar with flow-based
refinement as the baseline (Pp) for all methods. Therefore,
KaHyPar with flow always scores a one, denoted by the
dashed line in each plot, and an improvement over this
baseline is indicated by a macro-improvement 7 greater
than one.

We observe a similar negative relationship between k
and improvement across the benchmark in Figure 3a as was
seen in Table 1. When considering the connectivity objective
for k values of 2 and 4, we interestingly observe that both
the KaHyPar and Zoltan implementations with embedding-
based coarsening outperform the baseline. This is especially
important for Zoltan, which greatly under performs the
baseline without our proposed coarsening. When looking
at best-base performance (G = max) we observe that the
negative trends with respect with £ is less pronounced for
KaHyPar and the connectivity objective. This trend demon-
strates the consistent ability of embedding-based coarsen-
ing to identify solutions that are of a higher quality than
any found by any considered baseline, and suggests that
practitioners willing to accept a quality-for-speed trade-off
can find substantial performance gains with our proposed
technique.

Examining the standard deviation results shown in Fig-
ure 3a, we observe that embedding-based coarsening greatly
improves the standard deviation of possible results for a
given hypergraph (shown where G = std). This decrease
in variance comes from the deterministic node-visit order,
which replaces a typically random ordering. As a result,
the standard deviation of KaHyPar with embedding-based
coarsening can be reduced by over an order-of-magnitude
in some cases. Because many applications run multiple
partitioning trials with various random seeds in order to
find a top-performing result [52], we find that this decrease
in variance enables these applications to run fewer trials
while retaining the same confidence in their performance.
Comparison  with

Community-aware  Coarsening,.

Embedding-based coarsening attempts to merge together
self-similar regions of the input hypergraph with respect to
the structural signals provided by node embeddings.
In contrast, community-aware coarsening restricts
the contraction of nodes that do not share a cluster
assignment in the original hypergraph. While these two
approaches are very similar, they both promote contractions
within self-similar regions of the original hypergraph,
we find that embedding-based coarsening is a more
flexible constraint. Embedding-based coarsening simply
penalizes nodes that do not share structural features,
but may still merge seemingly dissimilar neighbors if
no better options are found. Because of this relaxation,
we find that embedding-based coarsening outperforms
community-aware coarsening in a range of scenarios. This
behavior, which we first report in aggregate in Table 1,
is depicted in depth in the appendix. In this example,
each considered hypergraph is listed, and graph-wise
performance summaries I (Eq. 7) are depicted for each. The
specific properties of each graph are briefly summarized in
the appendix, with more information available online.

In the summary table, we demonstrate that for low
k-values, that embedding-based coarsening can improve
result quality over community-aware coarsening by around
10% for k = 2,4,8. When viewing the per-hypergraph
results, we see a more detailed picture. Some hypergraphs
with particularly useful structural features, such as then
hypergraph constructed from the enron email dataset, the
eu email dataset, or the difficult and noisy merged hy-
pergraphs, can find partitioning solutions with a connectivity
objective that is between one half and one fourth of the community-
aware baseline. For many other graphs this improvement is
a modest few percentage points, while other graphs are
relatively unchanged. For these graphs, we find that the
community-detection solution found by KaHyPar provides
nearly the same information as the selected graph embed-
ding, leading to no improvement. Only a small handful of
graphs are substantially worsened by this proposed tech-
nique when compared to the community-aware baseline.
For instance, Nemsemm?2, a sparse matrix corresponding to
a linear program, is partitioned almost three-times worse
using embedding-based coarsening. The incidence matrix of
this hypergraph is nearly block-diagonal, which results in
significant hyperedge-wise features that are not translated
into an embedding, as disjoint graph regions are often
embedded in overlapping spaces. In contrast, Nemswrld
is another linear-program sparse matrix published by the
same group, but is less block-diagonal and receives an
statistically significant average improvement of about 33%.

Comparison Across All Partitioners. We supply a large
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table in the appendix that depicts the average improvement
of each proposed embedding-based coarsening partitioner
configuration against each baseline for the connectivity ob-
jective. The numbers in each cell correspond to the macro-
summary Z using G = mean to summarize trials. For space
limitations, we only show this one large table, but online
we present similar tables for the cut objective, as well for
the min, max, and standard-deviation summarizes. In both
the in-print and online appendix we supply improvement
numbers per-point of comparison per-hypergraph. When
examining the included table, however, we see clear trends
that are replicated in each online table. All considered em-
beddings improve performance similarly, with FOBE and
HOBE performing marginally above the other methods in
some cases. We observe that Zoltan is the “easiest” baseline
partitioner, while KaHyPar with flow-based refinement is
the most challenging. Because KaHyPar with flow-based
refinement produces higher quality partitions than Zoltan
in prior work [26], it is notable that some instances of Zoltan
with embedding-based coarsening can achieve similar qual-
ity.

When looking across the KaHyPar trials, we see that
embedding-based coarsening without flow-based refine-
ment can outperform community-aware coarsening with the
most expensive flow-based refinement. This result confirms
the intuition, initially discussed in Section 1, that the coars-
ening process one of the most fundamental operations in
multilevel partitioning.

Across all considered implementations of embedding-

based coarsening we still observe a decrease in performance
for larger values of k. As previously discussed, this derives
from the smoothed embedding space produced by iterative
averages of coarse nodes. It is worth noting that this smooth-
ing effect produces results that are most similar to KaHyPar
with its broad community-aware coarsening. In contrast,
embedding-based coarsening still outperforms Zoltan and
PatoH, partitioners that do not account for global structural
properties in a similar way.
Runtime Our proposed coarsening introduces two sources
of overhead into the typical partitioning process, as de-
scribed in Section 4. We compare this runtime effect across
our benchmark by focusing on the considered implementa-
tions of KaHyPar. In Figure 3b we present average runtimes
for each implementation, as well as isolated runtimes for
the coarsening and uncoarsening phases. Note that when re-
porting runtime results for the embedding-based implemen-
tations of KaHyPar, these performance numbers represent
an average across all considered embeddings. We find that
embedding-based coarsening multiplies the time needed to
coarsen an input hypergraph, which is due to the additional
node-wise comparisons and sorting overhead. However,
we also find that coarsening amounts to only a fraction
of the overall petitioner runtime, which is dominated by
the runtime of the uncoarsening phase, which is relatively
unchanged.

We present a plot of the distributions in runtime for
FOBE and HOBE across the benchmark in the supplemen-
tal information. These methods are the slower of those
considered, and are not as easily distributed as the other
random-walk embedding techniques. We again note that all
considered embeddings are treated as an offline component
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that is subject to its own field of research, are highly subject
to hyperparameters like batch size and number of training
epochs, and that the considered graph embedding imple-
mentations have not been optimized. However, we find
that the median considered FOBE embedding requires 1832
seconds, while the median HOBE embedding requires 8682
seconds.

These runtimes are multiples of the average partition-
ing time, which may disqualify our proposed algorithm
from “high performance” scenarios, such as hypergraph
partitioning to accelerate scientific computing workloads
at runtime [6]. However, many applications, such as plac-
ing circuits on a chip [1], recommending documents [53],
machine learning on hypergraphs [2], or deep learning on
hypergraphs [54], could all significantly benefit from the
slow but higher-quality partitioning brought by embedding-
based coarsening.

8 CONCLUSION

We propose embedding-based coarsening, an approach that
leverages global structural features present in a pretrained
hypergraph embedding in order improve the solution qual-
ity of multilevel hypergraph partitioning. This approach
prioritizes self-similar regions of the hypergraph by visit-
ing nodes in a deterministic order based on the embed-
ding properties of each node’s neighborhood. From there,
embedding-based coarsening matches nodes by a score that
combines a more traditional edge-wise inner-product with
the dot product of node embeddings. We observe that
the introduction of embedding-based features provides a
“tie-breaking” mechanism that ultimately preserves global
structural features at the coarsest level in the V-cycle. We
implement our proposed coarsening strategy in both KaHy-
Par [18] and Zoltan [15].

We observe a significant increase in quality for small val-
ues of k (from 2 to 16) gained from embedding-based coars-
ening. For higher values of £ we observe overall quality
that returns to the state-of-the-art baseline. Furthermore, we
find that embedding-based coarsening improves partition-
ing quality significantly across a range of scenarios in both
the KaHyPar and Zoltan frameworks. Specifically, KaHyPar
with flow-based refinement [26] and embedding-based coarsening,
using either FOBE or HOBE [21] to produce node embedding,
scores consistently higher on average than all considered baselines.
Furthermore, we find that by replacing the random node
visit order in many coarsening algorithms with a determin-
istic strategy that prioritizes self-similar node pairs, we both
improve solution quality while drastically reducing solution
variance, often by an order of magnitude. Large scale results
for all benchmarks and considered metrics is also available
in the online appendix: sybrandt.com/2019/partition.
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