
  

  

Abstract—This paper presents a data-driven approach to 
generating virtual patients using mathematical models of 
physiological processes. Such models often contain a large 
number of tunable parameters that must be calibrated to 
capture the observed characteristics of each real patient in a 
dataset. By sampling from this parameter space, potentially 
new virtual patients can be generated. However, it is often the 
case that the resulting set of virtual patients contains members 
that exhibit physiologically unrealistic behavior. In the present 
work, we employ a practically important case study on the 
modeling of cardiovascular responses to hemorrhage and fluid 
resuscitation in order to demonstrate that subject-specific 
characteristics observed in a dataset can be alternatively 
represented within a highly compressed latent parameter space 
without significant losses in calibration error for each real 
patient. Then, we show that by sampling from this latent 
parameter space, it is possible to generate new virtual patients 
that also exhibit physiologically realistic behavior. 

I. INTRODUCTION 

The task of automating patient care using planning and 
control algorithms is worthy of extensive research attention 
due to its potential for achieving superiority in vigilant and 
precise performance of patient care routines, especially for 
critically ill patients. However, effective prototyping and 
testing of such algorithms are currently challenging due to 
the expensive nature and ethical limitations of conducting 
clinical trials on real patients.  

Testing patient care algorithms based on populations of 
virtual patients is a promising direction that can potentially 
replace clinical trials in the early stages of algorithm and 
device development, increasing the maturity of the designs 
before they advance to more expensive stages of testing. For 
this purpose, using mathematical models of physiological 
processes as virtual patients has recently received notable 
attention in the research community [1]. To name a few: the 
diabetes simulator introduced in [2] is used to develop and 
test artificial pancreas control algorithms; the model of 
hemodynamic responses to hemorrhage presented in [3] has 
been used in a hardware-in-the-loop setup to test fluid 
resuscitation algorithms [4]; a synthetic virtual cohort of 
heart electro-grams has been used in [5] to run computer-
aided clinical trials for implantable cardiac devices; and 
models of physiological responses to interacting drugs have 
been used in [6] to develop and test medication control 
algorithms. In addition, the U.S. Food and Drug 
Administration (FDA) has recently acknowledged the 
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potential for computer simulations to complement regulatory 
submissions for new medical devices [7].  

To reproduce the behavior of real patients in the form of 
virtual patients, a dynamic model of relevant physiological 
mechanisms is needed. Such models often consist of 
differential equations with possibly nonlinear elements and 
appropriately defined input-output signals, and a potentially 
large number of tunable parameters [8]–[10]. Generating 
virtual patients in this scenario consists of sampling from a 
distribution over the model parameters. A prevalent approach 
to conduct this sampling is to identify parameter values based 
on a dataset of subjects and use the identified models as 
virtual patients (e.g. as in [4], [11]). Alternatively, suitable 
physiological ranges for each parameter (calculated from the 
literature or based on the calibration of the model to a 
dataset) can be sampled to obtain potentially larger cohorts 
(e.g. as in [5], [12]). In some cases, additional information 
may be available about the distribution of each parameter 
and/or the relationship between the parameters, which can 
also be incorporated into the sampling procedure (e.g. as in 
[2], [13]). Furthermore, data “bootstrapping” can also be 
cited as a generation method, where subsets of data are 
randomly sampled and the corresponding maximum-
likelihood parameter estimates are regarded as new virtual 
patients [14]. 

The possibility of generating virtual patients with realistic 
and reliable behavior through sampling from the parameter 
space of a model is limited by at least two important 
challenges: First, parameter values associated with a 
physiological system may be related in potentially unknown 
ways, and thus breaking relations by independently sampling 
from each model parameter could create virtual patients that 
would not have existed in reality. Second, a vast array of 
mathematical models proposed in biology and physics are 
known to exhibit the “sloppiness” property [15] (i.e., a lack 
of practical identifiability [16], [17]) in many directions in 
their parameter space, which is known to cause parameter 
estimates to drift out of proportion during model calibration, 
giving larger-than-reality values for parameter ranges, which 
can in turn result in unrealistic virtual patients when sampled. 
As an effective ad-hoc solution, objectively un-realistic 
simulations can be omitted from a virtual population after 
sampling from the parameters [18], however, a systematic 
way of generating virtual patients that takes into account both 
parameter interactions and parameter sloppiness is desirable. 

In an attempt to address this challenge, we investigate the 
generation of virtual patients through sampling from a 
compressed latent parameter space for the model, where both 
parameter interaction and sloppiness are minimal. Focusing 
on a practically important case study on the physiological 
modeling of cardiovascular responses to hemorrhage and 
fluid resuscitation, a model structure is first presented that 
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can be used to simulate changes in blood hematocrit (HCT), 
cardiac output (CO), and mean arterial pressure (MAP) in 
response to hemorrhage and fluid resuscitation. Then, using 
patient-specific data available for HCT, CO, and MAP over 
time, the parameters of the model can be calibrated to match 
its behavior to each real patient. For this purpose, we 
introduce a compressed latent parameter space for the model 
where variabilities across different patients are represented by 
variations in a few latent directions, without significant losses 
in calibration error. Then, we demonstrate that it is possible 
to generate new virtual patients that exhibit realistic behavior 
by sampling from this latent parameter space. 

II. CASE STUDY: MODELING CARDIOVASCULAR RESPONSES 
TO HEMORRHAGE AND FLUID RESUSCITATION 

Hemorrhage (bleeding) is a serious event that can be 
incident in critical patients and patients subjected to trauma, 
the effects of which can be counteracted with appropriate 
fluid resuscitation. To generate virtual patients that can help 
design and test automated fluid resuscitation algorithms, a 
dynamic model is needed to represent the macroscopic 
responses of the cardiovascular system to both hemorrhage 
and fluid resuscitation. In this section, we present such a 
model structure. 

Fig. 1 shows a schema of the proposed model structure 
for the macroscopic response of the cardiovascular system to 
fluid perturbation. We consider the following equations for 
the exchange and balance of fluid volume in the system: 

 ( )a a v h fQ p p R Jv J= − − − −   (1) 
 ( )a v ivv Q p p R J= − + − +   (2) 
 r h Hv J= −   (3) 
 ( )r a vH v v v+=   (4) 
 a vV vv= +   (5) 

where va and vv denote arterial and venous blood volume, V 
is the total blood volume, vr is the total volume of red blood 
cells, H represents hematocrit, pa and pv denote MAP and 
central venous pressure (CVP), R represents the systemic 
vascular resistance, Q is the cardiac output, Jh is the flow 
rate of hemorrhage, Jf is the flow rate of fluid exchange with 
the interstitial compartment, and Ji is the flow rate of fluid 
infusion into the bloodstream.  

Changes in MAP and CVP are modeled to linearly 
depend on changes in arterial and venous blood volume 
through elastance parameters as follows: 

 a a ap K v∆ = ∆   (6) 
 v v vp K v∆ = ∆   (7) 

where Ka and Kv represent the elastance of the arterial and 
venous volume compartments respectively, and Δx = x-x0 for 
all quantities. 

The blood volume compartment is known to be in 
relative equilibrium with the fluid in its surrounding tissue 
(called the interstitial compartment). A perturbation in blood 
volume is partially counteracted by a shift of fluid to/from 
this tissue compartment. The net rate of fluid shift Jf is thus 

modeled as the control input of a hypothetical controller that 
has the goal of maintaining total blood volume as follows: 

 ( )f p VJ K r V= − − ∆   (8) 
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where Kp is a proportional gain for the controller, and rv is 
the new value of blood volume after re-equilibrium. This 
value depends on the history of fluid perturbations, and 
parameters αi and αh determine the fraction of each 
perturbation that will be compensated for by a shift of fluid 
to/from the tissue compartment. Please refer to [19] for more 
information about this particular formulation. 

The systemic vascular resistance (SVR) denoted by R 
represents the resistance to blood flow that is present 
throughout the vascular system. The body can change this 
resistance through vasoconstriction and vasodilation to 
restore a lower-than-normal MAP [20]. Also, a change in the 
fraction of red blood cells in the blood (H) directly affects 
blood viscosity, which in turn affects SVR [21]. The change 
in resistance (ΔR) is therefore modeled as a control input that 
has the goal of maintaining a normal MAP, and is also 
disturbed by changes in H as follows: 
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  (10) 

where the parameters Kr and τr are the gain and time 
constant of the controller respectively, and Kh represents the 
sensitivity of SVR to changes in hematocrit. 

The cardiac output denoted by Q is the flow rate of blood 
that is pumped by the heart. This flow rate can be affected 
by a few important mechanisms: The Frank-Starling 
mechanism is related to the inherent properties of cardiac 
muscles, where a higher preload (~proportional to pv) results 
in a more forceful stroke in a single beat and thus higher Q. 
The cardiac contractility (force of contraction) and heart rate 
are controlled by the autonomic nervous system and the 
endocrine system in order to maintain a normal Q [20]. 
Overall, to obtain a minimal and lumped model of these 

 
Figure 1. Schematic illustration of the proposed model of 

cardiovascular response to hemorrhage and fluid resuscitation 
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effects, Q is assumed to be regulated as a controlled variable 
by a controller that acts through manipulating a control input 
(which corresponds to heart rate and cardiac contractility), 
and is disturbed by changes in preload (Δpv) as follows: 

 ( )v v
c

sQ p
s K

β∆ = ∆
+

  (11) 

where Kc is the controller gain, and βv is the sensitivity of 
cardiac output to changes in preload (which corresponds to 
the slope of the cardiac function curve in the Frank-Starling 
mechanism). Note that (11) represents the closed-loop 
relationship between the disturbances and ΔQ. 

     To numerically simulate the model, the initial values for 
arterial and venous blood volume are set as va0=0.3V0, and 
vv0=0.7V0, where V0 is the initial total blood volume to be 
estimated; the values for initial arterial pressure pa0, initial 
venous pressure pv0, initial blood hematocrit H0, and initial 
cardiac output Q0 are set from baseline values in measured 
data; and the initial SVR is calculated from R0=(pa0-pv0)/Q0. 

In the presented model structure, each subject can be 
characterized by np=11 tunable parameters (denoted 
hereafter by the vector θ) as follows:  

 0i h p a v r r h v cK V K K K K Kθ α α τ β =     (12) 

The experimental data used in this work included HCT, 
CO, and MAP time-series measurements acquired from 
N=23 animal (sheep) experiments under hemorrhage and 
fluid resuscitation [22], [23]. The measurements were made 
at ~5 min intervals for 180 minutes. 

III. VIRTUAL PATIENT GENERATION USING A COMPRESSED 
LATENT PARAMETERIZATION 

An important desirable when generating virtual patients 
is for the variations in the generated set to be representative 
of variations that are incident across real patients. Such a 
representation for inter-subject variability can be thought of 
as a joint distribution over the model parameters, where each 
sample represents a virtual patient. In the absence of 
additional assumptions, finding such a joint distribution is 
often infeasible given the amount of data that is available in 
physiological applications. In this section, we first argue that 
when certain conditions are met, the variations across real 
subjects can be alternatively represented in a compressed 
latent parameter space for the model. Then, we demonstrate 
that independently sampling from the dimensions of this 
latent space results in a set of generated patients that can 
represent the variations observed in the dataset and also 
exhibit realistic behavior. 

A. Model Calibration in Compressed Latent Space 
To find a compressed representation for the variabilities 

across patients (in case such a representation exists), we first 
consider a nominal model parameter vector θ , which 
represents a model of typical physiological behavior. One 
candidate for such a model is the “group-average” model, 

which is defined as the solution to the following 
optimization problem: 

 
2

2
arg min ˆ ( )

θ
θ θ−= Y Y   (13) 

where Y denotes the data from all patients and ˆ ( )θY denotes 
the corresponding model predictions given the parameter θ . 
The solution θ  is a maximum-likelihood estimate using all 
available data, which can be interpreted as a group-average 
model that represents expected behavior in the population.  

Given the group-average model θ , variations across real 
patients in the dataset can be thought of as local deviations 
from θ . To find a potentially compressed representation for 
these deviations, we are interested in finding orthogonal 
directions in the vicinity of θ , sorted by the prominence of 
their effect on the predictions of the model. To find such 
directions, k >> np random local deviations around θ  are 
obtained and stored in Θ  (np × k). The corresponding 
changes in model predictions are stored in ˆ

ΘY (nd × k). Then, 
the following matrix can be constructed: 

 ˆ ΘT T
ΘC = = USVY   (14) 

where the elements of C represent the (scaled) covariance 
between local parametric deviations from the group-average 
model and the corresponding changes in model predictions. 
The matrices U, S, and V are computed from the singular 
value decomposition of the covariance matrix. The columns 
of V constitute sorted orthogonal directions of maximum 
covariance in the parameter space, and the diagonal values 
of S represent the local sensitivity of model predictions to 
deviations along each of the columns of V.  

Depending on the structure of the physiological model, 
the matrix of (sorted) local sensitivities S can show 
interesting properties. For example, in the case that the 
proposed model exhibits the sloppiness property [15] (which 
is a prevalent property in a wide range of proposed models 
across many disciplines) the first few elements of S will be 
significantly larger than the rest. This means that locally 
deviating from the group-average model θ  in the first few 
directions in V will have a large effect on model outputs 
while deviating from θ in the last few directions in V will 
have a small effect on model outputs and possibly only 
affect the internal behavior of the model.  

Based on the observation above, we can define the 
following model calibration problem to find patient-specific 
models for each member of the dataset without unnecessary 
deviations from the group-average model: 

 
1

2

2
ˆ ˆ ( ) ( )arg min T
i θ

θ θ λ θ θ= − + −i YY V   (15) 

where îθ  denotes the vector of model parameters calibrated 
to match the behavior of real patient i. The second term in 
(15) measures the L1-deviation of each patient from the 
group-average model in the latent space ( T T Tφ θ θ= −V V ). 
The well-known sparsity-promoting nature of the L1-norm 
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induces compression in the latent space so that individual 
subjects deviate from θ  only in a few necessary latent 
directions. The rate of compression can be controlled 
through the choice of λ . 

B. Generating Virtual Patients 
     Assuming that a compressed representation exists in the 
latent space ϕ for variations across different subjects, it is 
possible to generate new in-silico subjects by mimicking the 
observed variations in the latent space through sampling 
from the latent parameters. In this work, samples are drawn 
from a distribution of the mean-field variational family: 

 
1

( ) ( )
p

j

n

j

P pφ φ
=

= ∏   (16) 

where each dimension of the latent parameter space ϕj has its 
density p(ϕj). For each latent dimension, we use a uniform 
density with a range that is equal to that of the real patients 
represented in the compressed latent space. Sampling from 
P(ϕ) will generate virtual patients, and the corresponding 
model parameter values can be obtained from: 

 Vθ φ θ= +   (17) 

C. Comparing Generated Cohorts 
To evaluate and compare different generated cohorts of 

virtual patients in terms of having realistic members and 
covering the range of variation observed in the real patient 
dataset, we first define the following evidence for the real 
patient i: 

 ( | ) ( | , ) ( )P P P dφ φ φ
Φ

= ∫i i i iY I Y I   (18) 

where P(Yi|Ii) represents the probability that the generation 
method P(ϕ) produces patients that behave similarly to the 
measured data from the actual subject i, when given the 
input signals that subject i received in reality (Ii). In this 
setting, the similarity between a virtual patient and a real 
patient is measured by measuring the distance of their 
outputs through a Gaussian kernel: 

 
( )11

2
exp ˆ ˆ( )) ( )( (

( | )
(2

)
,

) d

T

n
P

φ φ
φ

π

−− − −
=

i i

i i

Y ΣY YY
Y I

Σ
   (19) 

where the elements of the diagonal matrix Σ determine how 
close the simulation and the data should be to be considered 
similar. In the present work, diagonal elements of Σ were 
chosen according to the type of each data point (i.e., σMAP for 
MAP data, σHCT for HCT data, and σCO for CO data). 

Having the probability in (18), which represents how 
likely is the incidence of patient i under the generation 
method P(ϕ), we can construct the following overall score: 

 [ ]
11

log ( | ) log ( | )
N N

ii

S P P
==

 
= − = − 

 
∑∏ i i i iY I Y I   (20) 

which represents how likely is the incidence of all real 
patients under the generation method P(ϕ). The score S will 

be used in subsequent sections as one of the ways to 
compare different generated cohorts, and a lower score 
shows a better cohort in this sense. 

IV. RESULTS AND DISCUSSION 
Fig. 2 shows the HCT, CO, and MAP responses of the 

uncompressed, compressed, and group-average calibrated 
models versus the data for a representative subject. The 
responses of the group-average model follow the overall 
trends observed in the data but do not exactly match the 
data, as this kind of model represents the expected behavior 
in the population. Uncompressed calibration (λ=0) of model 
parameters to the subject-specific data results in responses 
that match the data well. Alternatively, compressed 
calibration (λ=0.15) of the model to this data results in 
responses that match the data well and are close to the 
uncompressed case. This indicates that it is possible to 
calibrate the model to subject-specific data by limited 
deviations from the group-average model. 

Fig. 3 shows changes in calibration error and deviation 
distance (in the L1 sense, from the group-average model) 

 
Figure 2. Simulation results of the compressed, un-compressed and group-

average models versus the data for one representative subject. 
 

 

 
Figure 3. The effect of parameter space compression on calibration error 
(blue) and L1-distance (red). Solid lines denote the mean value across all 

subjects, and dashed lines denote first and third quartile values. 
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with respect to the compression weight λ for the subjects in 
the dataset. In the uncompressed case (λ=0), the calibrated 
parameter values tend to have very high L1-distances from 
the group-average model, which indicates that they are 
highly dispersed in the parameter space. As λ is increased, 
deviation distances drop with a steep slope, while at the 
same time calibration errors only mildly increase. 
Furthermore, in the case that λ is increased to very high 
values, calibration errors will increase significantly and tend 
to the calibration error for the group-average model. This 
indicates that for a middle-ground value of the compression 
weight (e.g. λ=0.15) the variations across different subjects 
can be represented in a compressed way without noticeable 
losses in calibration error. 

Fig. 4 shows values for the first six latent parameters in 
case of uncompressed and compressed calibration. In Fig. 
4(a), which represents the uncompressed calibration case, 
variations are visible in all dimensions of the latent space. 
However, in the compressed calibration case shown in Fig. 
4(b), most of the variations are represented by the first four 
dimensions of the latent space, while from the fifth 
dimension onward, the latent parameters are nearly zero for 
most of the real subjects. This result suggests that the 
variations across different subjects have a compressed 
representation in the latent space. 

Fig. 5 compares the outcomes of virtual subject 
generation when the compressed versus uncompressed latent 
parameter values are used in (16) to generate subjects. These 
outcomes have been shown as histograms of model output 
values at three points in time (20min, 45min, and 95min) in 
response to a typical hemorrhage and resuscitation profile. In 
the uncompressed case, objectively un-realistic subjects are 
incident (and even common) in the set: (i) many virtual 

subjects have a CO at or near zero at t=20min, and similarly, 
(ii) many have a MAP near zero at t=20min, and (iii) some 
virtual subjects have a cardiac output greater than 5 at 
t=95min, which is also considered un-realistic. Interestingly, 
in the compressed case, most of these un-realistic subjects 
vanish from the generated population. The potential reason 
behind this advantage is the following: In the uncompressed 
calibration case, the sloppiness property [15] of the model 
structure with respect to available data causes unnecessary 
drifts in some parametric directions (visible in Fig. 4(a) and 
also Fig. 3 at λ=0). A sampling method that uses these 
values would also sample in-between the drifted values and 
thus create un-realistic virtual subjects. In contrast, latent 
space compression prevents any such unnecessary deviations 
from the group-average model, resulting in a lower number 
of un-realistic virtual subjects. 

Fig. 6 compares the quality of the generated cohort for 
different compression weights, using the score introduced in 
equation (20). At λ=0, where there is no compression, the 
score shows a poor value, which indicates that the 
probability of generating realistic (as compared to the data) 
patients in the uncompressed case is relatively low. As λ 
increases above zero, the score improves, which corresponds 
to using the compressed method for virtual patient 
generation. Finally, for large values of λ, most generated 
virtual patients will become too similar to the group-average 

 
Figure 4. Comparison of the first six latent parameter values identified for 
the dataset of 23 subjects: (a) latent parameter values in the uncompressed 

case where λ=0, and (b) in the compressed case where λ=0.15. 
 

 

 
Figure 5. Representative histograms of the HCT, CO, and MAP responses 

from the virtual subjects: the comparison is made between subjects that 
were generated using compressed vs uncompressed parameter values.    
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model, which again results in a poor score. As a result, it is 
beneficial to pick a moderate compression weight according 
to Fig. 3 for the purpose of model calibration and virtual 
subject generation. 

V. CONCLUSION 
     In this paper, we investigated the data-driven generation 
of virtual patients using physiological models. For this 
purpose, a parameter space compression method and a 
virtual patient generation method were proposed and applied 
to a practically important case study on the physiological 
modeling of cardiovascular responses to hemorrhage 
(bleeding) and fluid resuscitation. The results suggested the 
validity of the proposed approach: A set of virtual patients 
generated using the proposed compressed sampling method 
showed higher similarity to a real dataset when compared to 
the uncompressed sampling case. Furthermore, unlike the 
uncompressed sampling case, the compressed sampling 
method generated fewer virtual patients with unrealistic 
behavior. Future effort should be devoted to the 
investigation of the advantages and limitations of the 
proposed method for a wider range of physiological 
modeling applications, and to the possibility of utilizing 
more advanced calibration and compression techniques to 
further improve the quality of the generated virtual patients. 
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Figure 6. The quality of virtual subjects generated by sampling from a 
compressed latent space with compression weight λ (lower is better). 
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