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Abstract—This paper presents a data-driven approach to
generating virtual patients using mathematical models of
physiological processes. Such models often contain a large
number of tunable parameters that must be calibrated to
capture the observed characteristics of each real patient in a
dataset. By sampling from this parameter space, potentially
new virtual patients can be generated. However, it is often the
case that the resulting set of virtual patients contains members
that exhibit physiologically unrealistic behavior. In the present
work, we employ a practically important case study on the
modeling of cardiovascular responses to hemorrhage and fluid
resuscitation in order to demonstrate that subject-specific
characteristics observed in a dataset can be alternatively
represented within a highly compressed latent parameter space
without significant losses in calibration error for each real
patient. Then, we show that by sampling from this latent
parameter space, it is possible to generate new virtual patients
that also exhibit physiologically realistic behavior.

[. INTRODUCTION

The task of automating patient care using planning and
control algorithms is worthy of extensive research attention
due to its potential for achieving superiority in vigilant and
precise performance of patient care routines, especially for
critically ill patients. However, effective prototyping and
testing of such algorithms are currently challenging due to
the expensive nature and ethical limitations of conducting
clinical trials on real patients.

Testing patient care algorithms based on populations of
virtual patients is a promising direction that can potentially
replace clinical trials in the early stages of algorithm and
device development, increasing the maturity of the designs
before they advance to more expensive stages of testing. For
this purpose, using mathematical models of physiological
processes as virtual patients has recently received notable
attention in the research community [1]. To name a few: the
diabetes simulator introduced in [2] is used to develop and
test artificial pancreas control algorithms; the model of
hemodynamic responses to hemorrhage presented in [3] has
been used in a hardware-in-the-loop setup to test fluid
resuscitation algorithms [4]; a synthetic virtual cohort of
heart electro-grams has been used in [5] to run computer-
aided clinical trials for implantable cardiac devices; and
models of physiological responses to interacting drugs have
been used in [6] to develop and test medication control
algorithms. In addition, the U.S. Food and Drug
Administration (FDA) has recently acknowledged the
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potential for computer simulations to complement regulatory
submissions for new medical devices [7].

To reproduce the behavior of real patients in the form of
virtual patients, a dynamic model of relevant physiological
mechanisms is needed. Such models often consist of
differential equations with possibly nonlinear elements and
appropriately defined input-output signals, and a potentially
large number of tunable parameters [8]-[10]. Generating
virtual patients in this scenario consists of sampling from a
distribution over the model parameters. A prevalent approach
to conduct this sampling is to identify parameter values based
on a dataset of subjects and use the identified models as
virtual patients (e.g. as in [4], [11]). Alternatively, suitable
physiological ranges for each parameter (calculated from the
literature or based on the calibration of the model to a
dataset) can be sampled to obtain potentially larger cohorts
(e.g. as in [5], [12]). In some cases, additional information
may be available about the distribution of each parameter
and/or the relationship between the parameters, which can
also be incorporated into the sampling procedure (e.g. as in
[2], [13]). Furthermore, data “bootstrapping” can also be
cited as a generation method, where subsets of data are
randomly sampled and the corresponding maximum-
likelihood parameter estimates are regarded as new virtual
patients [14].

The possibility of generating virtual patients with realistic
and reliable behavior through sampling from the parameter
space of a model is limited by at least two important
challenges: First, parameter values associated with a
physiological system may be related in potentially unknown
ways, and thus breaking relations by independently sampling
from each model parameter could create virtual patients that
would not have existed in reality. Second, a vast array of
mathematical models proposed in biology and physics are
known to exhibit the “sloppiness” property [15] (i.e., a lack
of practical identifiability [16], [17]) in many directions in
their parameter space, which is known to cause parameter
estimates to drift out of proportion during model calibration,
giving larger-than-reality values for parameter ranges, which
can in turn result in unrealistic virtual patients when sampled.
As an effective ad-hoc solution, objectively un-realistic
simulations can be omitted from a virtual population after
sampling from the parameters [18], however, a systematic
way of generating virtual patients that takes into account both
parameter interactions and parameter sloppiness is desirable.

In an attempt to address this challenge, we investigate the
generation of virtual patients through sampling from a
compressed latent parameter space for the model, where both
parameter interaction and sloppiness are minimal. Focusing
on a practically important case study on the physiological
modeling of cardiovascular responses to hemorrhage and
fluid resuscitation, a model structure is first presented that

1335



can be used to simulate changes in blood hematocrit (HCT),
cardiac output (CO), and mean arterial pressure (MAP) in
response to hemorrhage and fluid resuscitation. Then, using
patient-specific data available for HCT, CO, and MAP over
time, the parameters of the model can be calibrated to match
its behavior to each real patient. For this purpose, we
introduce a compressed latent parameter space for the model
where variabilities across different patients are represented by
variations in a few latent directions, without significant losses
in calibration error. Then, we demonstrate that it is possible
to generate new virtual patients that exhibit realistic behavior
by sampling from this latent parameter space.

II. CASE STUDY: MODELING CARDIOVASCULAR RESPONSES
TO HEMORRHAGE AND FLUID RESUSCITATION

Hemorrhage (bleeding) is a serious event that can be
incident in critical patients and patients subjected to trauma,
the effects of which can be counteracted with appropriate
fluid resuscitation. To generate virtual patients that can help
design and test automated fluid resuscitation algorithms, a
dynamic model is needed to represent the macroscopic
responses of the cardiovascular system to both hemorrhage
and fluid resuscitation. In this section, we present such a
model structure.

Fig. 1 shows a schema of the proposed model structure
for the macroscopic response of the cardiovascular system to
fluid perturbation. We consider the following equations for
the exchange and balance of fluid volume in the system:

v, =0~ (p,—p)/R-J,—J, (1)
v, ==0+(p,—p,)/R+J, )
y =—J H 3)
H=v,/(,+v,) @
V=v, +v, %)

where v, and v, denote arterial and venous blood volume, V'
is the total blood volume, v, is the total volume of red blood
cells, H represents hematocrit, p, and p, denote MAP and
central venous pressure (CVP), R represents the systemic
vascular resistance, Q is the cardiac output, J, is the flow
rate of hemorrhage, J; is the flow rate of fluid exchange with
the interstitial compartment, and J; is the flow rate of fluid
infusion into the bloodstream.

Changes in MAP and CVP are modeled to linearly
depend on changes in arterial and venous blood volume
through elastance parameters as follows:

Ap, =K, Av, (6)
Ap, =K Av, 7

where K, and K, represent the elastance of the arterial and
venous volume compartments respectively, and Ax = x-x, for
all quantities.

The blood volume compartment is known to be in
relative equilibrium with the fluid in its surrounding tissue
(called the interstitial compartment). A perturbation in blood
volume is partially counteracted by a shift of fluid to/from
this tissue compartment. The net rate of fluid shift J; is thus
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Figure 1. Schematic illustration of the proposed model of
cardiovascular response to hemorrhage and fluid resuscitation

modeled as the control input of a hypothetical controller that
has the goal of maintaining total blood volume as follows:

J, =K, (1, —AV) (8)
1 t 1 t
Y Tra jo Ji()dr— o jo J,(t)dt )

where K, is a proportional gain for the controller, and r, is
the new value of blood volume after re-equilibrium. This
value depends on the history of fluid perturbations, and
parameters «; and o5 determine the fraction of each
perturbation that will be compensated for by a shift of fluid
to/from the tissue compartment. Please refer to [19] for more
information about this particular formulation.

The systemic vascular resistance (SVR) denoted by R
represents the resistance to blood flow that is present
throughout the vascular system. The body can change this
resistance through vasoconstriction and vasodilation to
restore a lower-than-normal MAP [20]. Also, a change in the
fraction of red blood cells in the blood (H) directly affects
blood viscosity, which in turn affects SVR [21]. The change
in resistance (4R) is therefore modeled as a control input that
has the goal of maintaining a normal MAP, and is also
disturbed by changes in H as follows:

K
AR=——"—Ap +K,AH
Ts+1

r

(10)

where the parameters K, and 7. are the gain and time
constant of the controller respectively, and K, represents the
sensitivity of SVR to changes in hematocrit.

The cardiac output denoted by Q is the flow rate of blood
that is pumped by the heart. This flow rate can be affected
by a few important mechanisms: The Frank-Starling
mechanism is related to the inherent properties of cardiac
muscles, where a higher preload (~proportional to p,) results
in a more forceful stroke in a single beat and thus higher Q.
The cardiac contractility (force of contraction) and heart rate
are controlled by the autonomic nervous system and the
endocrine system in order to maintain a normal Q [20].
Overall, to obtain a minimal and lumped model of these
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effects, Q is assumed to be regulated as a controlled variable
by a controller that acts through manipulating a control input
(which corresponds to heart rate and cardiac contractility),
and is disturbed by changes in preload (4p.) as follows:

s
s+K,

AQ = (B.Ap,) an

where K. is the controller gain, and f, is the sensitivity of
cardiac output to changes in preload (which corresponds to
the slope of the cardiac function curve in the Frank-Starling
mechanism). Note that (11) represents the closed-loop
relationship between the disturbances and 4Q.

To numerically simulate the model, the initial values for
arterial and venous blood volume are set as v,=0.3V), and
wo=0.7Vy, where Vj is the initial total blood volume to be
estimated; the values for initial arterial pressure po, initial
venous pressure p,o, initial blood hematocrit Hy, and initial
cardiac output Oy are set from baseline values in measured
data; and the initial SVR is calculated from Ry=(pao-pvo)/Qo.

In the presented model structure, each subject can be
characterized by n,=// tunable parameters (denoted
hereafter by the vector ) as follows:

ez[ai ah Kp VO Ka Kv Kr Z-r Kh ﬁv K<:| (12)

The experimental data used in this work included HCT,
CO, and MAP time-series measurements acquired from
N=23 animal (sheep) experiments under hemorrhage and
fluid resuscitation [22], [23]. The measurements were made
at ~5 min intervals for 180 minutes.

III. VIRTUAL PATIENT GENERATION USING A COMPRESSED
LATENT PARAMETERIZATION

An important desirable when generating virtual patients
is for the variations in the generated set to be representative
of variations that are incident across real patients. Such a
representation for inter-subject variability can be thought of
as a joint distribution over the model parameters, where each
sample represents a virtual patient. In the absence of
additional assumptions, finding such a joint distribution is
often infeasible given the amount of data that is available in
physiological applications. In this section, we first argue that
when certain conditions are met, the variations across real
subjects can be alternatively represented in a compressed
latent parameter space for the model. Then, we demonstrate
that independently sampling from the dimensions of this
latent space results in a set of generated patients that can
represent the variations observed in the dataset and also
exhibit realistic behavior.

A. Model Calibration in Compressed Latent Space
To find a compressed representation for the variabilities
across patients (in case such a representation exists), we first
consider a nominal model parameter vector &, which

represents a model of typical physiological behavior. One
candidate for such a model is the “group-average” model,

which is defined as the
optimization problem:

solution to the following

0 =argmin|[¥ —\?(9)“2 (13)
where Y denotes the data from all patients and Y(8) denotes
the corresponding model predictions given the parameter 6 .
The solution ¢ is a maximum-likelihood estimate using all
available data, which can be interpreted as a group-average
model that represents expected behavior in the population.

Given the group-average model @ , variations across real
patients in the dataset can be thought of as local deviations
from 6 . To find a potentially compressed representation for
these deviations, we are interested in finding orthogonal
directions in the vicinity of 6, sorted by the prominence of
their effect on the predictions of the model. To find such
directions, k >> n, random local deviations around 6 are
obtained and stored in ® (n, x k). The corresponding
changes in model predictions are stored in Y, (14 % k). Then,
the following matrix can be constructed:

C=Y,0" =USV' (14)
where the elements of C represent the (scaled) covariance
between local parametric deviations from the group-average
model and the corresponding changes in model predictions.
The matrices U, S, and V are computed from the singular
value decomposition of the covariance matrix. The columns
of V constitute sorted orthogonal directions of maximum
covariance in the parameter space, and the diagonal values
of S represent the local sensitivity of model predictions to
deviations along each of the columns of V.

Depending on the structure of the physiological model,
the matrix of (sorted) local sensitivities S can show
interesting properties. For example, in the case that the
proposed model exhibits the sloppiness property [15] (which
is a prevalent property in a wide range of proposed models
across many disciplines) the first few elements of S will be
significantly larger than the rest. This means that locally
deviating from the group-average model 6 in the first few
directions in V will have a large effect on model outputs
while deviating from @ in the last few directions in V will
have a small effect on model outputs and possibly only
affect the internal behavior of the model.

Based on the observation above, we can define the
following model calibration problem to find patient-specific
models for each member of the dataset without unnecessary
deviations from the group-average model:

A

6, =argminy, —Y(a)”z vilo-oyv|  as
where é denotes the vector of model parameters calibrated
to match the behavior of real patient i. The second term in
(15) measures the L;-deviation of each patient from the
group-average model in the latent space (¢’ =0'V—-6"V).
The well-known sparsity-promoting nature of the L;-norm
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induces compression in the latent space so that individual
subjects deviate from 6 only in a few necessary latent
directions. The rate of compression can be controlled
through the choice of 1.

B. Generating Virtual Patients

Assuming that a compressed representation exists in the
latent space ¢ for variations across different subjects, it is
possible to generate new in-silico subjects by mimicking the
observed variations in the latent space through sampling
from the latent parameters. In this work, samples are drawn
from a distribution of the mean-field variational family:

p
P =]]r@) (16)
j=1
where each dimension of the latent parameter space ¢; has its
density p(¢;). For each latent dimension, we use a uniform
density with a range that is equal to that of the real patients
represented in the compressed latent space. Sampling from

P($) will generate virtual patients, and the corresponding
model parameter values can be obtained from:

O=Vp+6 (17)

C. Comparing Generated Cohorts

To evaluate and compare different generated cohorts of
virtual patients in terms of having realistic members and
covering the range of variation observed in the real patient
dataset, we first define the following evidence for the real
patient i:

P(Y, |1,) = [ PCY, |1, 9)P(@)d 4 (18)

where P(Yi|li) represents the probability that the generation
method P(¢) produces patients that behave similarly to the
measured data from the actual subject i, when given the
input signals that subject i received in reality (/;). In this
setting, the similarity between a virtual patient and a real
patient is measured by measuring the distance of their
outputs through a Gaussian kernel:

exp(— (%~ V(@) =7(Y, - V(9))
Jeor |z

where the elements of the diagonal matrix X determine how
close the simulation and the data should be to be considered
similar. In the present work, diagonal elements of ¥ were
chosen according to the type of each data point (i.e., oaup for
MAP data, orcr for HCT data, and oco for CO data).

Having the probability in (18), which represents how
likely is the incidence of patient i under the generation
method P(¢), we can construct the following overall score:

P(Y; |1,,9) = (19)

S = —log(HP(Yi | L)) = log[P(Y, 1) 20)

which represents how likely is the incidence of all real
patients under the generation method P(¢). The score S will

50 k]
5
% T 259,
7 o = s
E TN = Mg Lo om
5 ! A B0 By e
k= i : T e
£ 0 Infusion E L T .
.-‘% R Hemorrhage T 15
™ L — — —Urinary Output
-100 10
0 30 60 90 4120 150 180 0 30 60 90 4120 150 180
Time (min) Time (min)
— 120
—_— [=2]
£® o t
= j,,_:;;gﬂ Ew PN
5 ,;.ﬂ@’s"&"’m I ) ' %
24y B 5 8h R\S' LR
5 o @ s fﬂmﬁuo
o l'\ vy ] G p T
o |k o | 4
(o] p—
‘é 2 q J [} a0 47
5 |48 5 ¢
[&] ° =
0 < 20
0 30 60 90 120 150 180 0 30 60 90 120 150 180
Time (min) Time (min)

Figure 2. Simulation results of the compressed, un-compressed and group-
average models versus the data for one representative subject.
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Figure 3. The effect of parameter space compression on calibration error
(blue) and L;-distance (red). Solid lines denote the mean value across all
subjects, and dashed lines denote first and third quartile values.

be used in subsequent sections as one of the ways to
compare different generated cohorts, and a lower score
shows a better cohort in this sense.

IV. RESULTS AND DISCUSSION

Fig. 2 shows the HCT, CO, and MAP responses of the
uncompressed, compressed, and group-average calibrated
models versus the data for a representative subject. The
responses of the group-average model follow the overall
trends observed in the data but do not exactly match the
data, as this kind of model represents the expected behavior
in the population. Uncompressed calibration (4=0) of model
parameters to the subject-specific data results in responses
that match the data well. Alternatively, compressed
calibration (1=0.15) of the model to this data results in
responses that match the data well and are close to the
uncompressed case. This indicates that it is possible to
calibrate the model to subject-specific data by limited
deviations from the group-average model.

Fig. 3 shows changes in calibration error and deviation
distance (in the L; sense, from the group-average model)
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(a) Uncompressed Deviations in Latent Space
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(b) Compressed Deviations in Latent Space
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Figure 4. Comparison of the first six latent parameter values identified for
the dataset of 23 subjects: (a) latent parameter values in the uncompressed
case where A=0, and (b) in the compressed case where A=0.15.

with respect to the compression weight A for the subjects in
the dataset. In the uncompressed case (1=0), the calibrated
parameter values tend to have very high L;-distances from
the group-average model, which indicates that they are
highly dispersed in the parameter space. As 4 is increased,
deviation distances drop with a steep slope, while at the
same time calibration errors only mildly increase.
Furthermore, in the case that A is increased to very high
values, calibration errors will increase significantly and tend
to the calibration error for the group-average model. This
indicates that for a middle-ground value of the compression
weight (e.g. 4=0.15) the variations across different subjects
can be represented in a compressed way without noticeable
losses in calibration error.

Fig. 4 shows values for the first six latent parameters in
case of uncompressed and compressed calibration. In Fig.
4(a), which represents the uncompressed calibration case,
variations are visible in all dimensions of the latent space.
However, in the compressed calibration case shown in Fig.
4(b), most of the variations are represented by the first four
dimensions of the latent space, while from the fifth
dimension onward, the latent parameters are nearly zero for
most of the real subjects. This result suggests that the
variations across different subjects have a compressed
representation in the latent space.

Fig. 5 compares the outcomes of virtual subject
generation when the compressed versus uncompressed latent
parameter values are used in (16) to generate subjects. These
outcomes have been shown as histograms of model output
values at three points in time (20min, 45min, and 95min) in
response to a typical hemorrhage and resuscitation profile. In
the uncompressed case, objectively un-realistic subjects are
incident (and even common) in the set: (i) many virtual
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Figure 5. Representative histograms of the HCT, CO, and MAP responses
from the virtual subjects: the comparison is made between subjects that
were generated using compressed vs uncompressed parameter values.

subjects have a CO at or near zero at t=20min, and similarly,
(i1) many have a MAP near zero at t=20min, and (iii) some
virtual subjects have a cardiac output greater than 5 at
t=95min, which is also considered un-realistic. Interestingly,
in the compressed case, most of these un-realistic subjects
vanish from the generated population. The potential reason
behind this advantage is the following: In the uncompressed
calibration case, the sloppiness property [15] of the model
structure with respect to available data causes unnecessary
drifts in some parametric directions (visible in Fig. 4(a) and
also Fig. 3 at A=0). A sampling method that uses these
values would also sample in-between the drifted values and
thus create un-realistic virtual subjects. In contrast, latent
space compression prevents any such unnecessary deviations
from the group-average model, resulting in a lower number
of un-realistic virtual subjects.

Fig. 6 compares the quality of the generated cohort for
different compression weights, using the score introduced in
equation (20). At A=0, where there is no compression, the
score shows a poor value, which indicates that the
probability of generating realistic (as compared to the data)
patients in the uncompressed case is relatively low. As A
increases above zero, the score improves, which corresponds
to using the compressed method for virtual patient
generation. Finally, for large values of A, most generated
virtual patients will become too similar to the group-average
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model, which again results in a poor score. As a result, it is
beneficial to pick a moderate compression weight according
to Fig. 3 for the purpose of model calibration and virtual
subject generation.

V. CONCLUSION

In this paper, we investigated the data-driven generation
of virtual patients using physiological models. For this
purpose, a parameter space compression method and a
virtual patient generation method were proposed and applied
to a practically important case study on the physiological
modeling of cardiovascular responses to hemorrhage
(bleeding) and fluid resuscitation. The results suggested the
validity of the proposed approach: A set of virtual patients
generated using the proposed compressed sampling method
showed higher similarity to a real dataset when compared to
the uncompressed sampling case. Furthermore, unlike the
uncompressed sampling case, the compressed sampling
method generated fewer virtual patients with unrealistic
behavior. Future effort should be devoted to the
investigation of the advantages and limitations of the
proposed method for a wider range of physiological
modeling applications, and to the possibility of utilizing
more advanced calibration and compression techniques to
further improve the quality of the generated virtual patients.
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