Fingerprinting Encrypted Voice Traffic on Smart Speakers with
Deep Learning

Chenggang Wang* Sean Kennedy Haipeng Li
University of Cincinnati, USA University of Cincinnati, USA University of Cincinnati, USA
wang2c9@mail.uc.edu kenneds6@mail.uc.edu lizhp@mail.uc.edu
King Hudson Gowtham Atluri Xuetao Wei
University of Cincinnati, USA University of Cincinnati, USA Southern University of Science and
hudsonk4@mail.uc.edu atlurigm@ucmail.uc.edu Technology, China

Wenhai Sun
Purdue University, USA
whsun@purdue.edu

ABSTRACT

This paper investigates the privacy leakage of smart speakers under
an encrypted traffic analysis attack, referred to as voice command
fingerprinting. In this attack, an adversary can eavesdrop both out-
going and incoming encrypted voice traffic of a smart speaker, and
infers which voice command a user says over encrypted traffic. We
first built an automatic voice traffic collection tool and collected
two large-scale datasets on two smart speakers, Amazon Echo and
Google Home. Then, we implemented proof-of-concept attacks by
leveraging deep learning. Our experimental results over the two
datasets indicate disturbing privacy concerns. Specifically, com-
pared to 1% accuracy with random guess, our attacks can correctly
infer voice commands over encrypted traffic with 92.89% accuracy
on Amazon Echo.

Despite variances that human voices may cause on outgoing
traffic, our proof-of-concept attacks remain effective even only
leveraging incoming traffic (i.e., the traffic from the server). This
is because the Al-based voice services running on the server side
response commands in the same voice and with a deterministic
or predictable manner in text, which leave distinguishable pattern
over encrypted traffic. We also built a proof-of-concept defense to
obfuscate encrypted traffic. Our results show that the defense can
effectively mitigate attack accuracy on Amazon Echo to 32.18%.

CCS CONCEPTS

« Security and privacy — Network security.

“The first two authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WiSec 20, July 8-10, 2020, Linz (Virtual Event), Austria

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8006-5/20/07...$15.00
https://doi.org/10.1145/3395351.3399357

254

weixt@sustech.edu.cn

Boyang Wang
University of Cincinnati, USA
boyang.wang@uc.edu

KEYWORDS

machine learning, encrypted traffic analysis, smart speaker

ACM Reference Format:

Chenggang Wang, Sean Kennedy, Haipeng Li, King Hudson, Gowtham
Atluri, Xuetao Wei, Wenhai Sun, and Boyang Wang. 2020. Fingerprinting
Encrypted Voice Traffic on Smart Speakers with Deep Learning. In 13th
ACM Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec °20), July 8—-10, 2020, Linz (Virtual Event), Austria. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3395351.3399357

1 INTRODUCTION

Smart speakers, such as Amazon Echo, Google Home and Apple
HomePod, are being increasingly adopted in the U.S. with sales sur-
passing 133 million [2]. However, privacy remains one of the major
concerns limiting a more widespread adoption among consumers.
This includes two types of concerns: (1) privacy disclosed to voice
service providers [1], and (2) the focus of this research, sensitive
information that can be revealed by external attackers.

We investigated the privacy leakage of smart speakers by consid-
ering an external attacker that runs voice command fingerprinting
attacks [18]. In this attack, an attacker eavesdrops encrypted voice
traffic of a smart speaker, and leverages side-channel information,
including the size, direction, and order of encrypted packets, to
infer a user’s voice command without decryption. For instance, an
attacker can be a local eavesdropper on a victim’s WiFi network or a
compromised WiFi access point. As the content of a response from
the server is correlated with a voice command, an attacker leverages
both outgoing traffic (the encrypted packets of a voice command)
and incoming traffic (the encrypted packets of a response) to infer a
voice command in this attack.

Revealing voice commands can uncover users’ activities, lead
to unauthorized disclosure, and compromise privacy of millions
of users. Moreover, an attacker could leverage voice command
fingerprinting to assist malicious attacks (such as skill squatting [20,
50]) to attack specific targets. For instance, an attacker could infer
which voice commands a specific victim often says by leveraging
voice command fingerprinting and then create malicious skills using
skill squatting, where the names of malicious skills share similar

https://doi.org/10.1145/3395351.3399357
https://doi.org/10.1145/3395351.3399357

WiSec 20, July 8-10, 2020, Linz (Virtual Event), Austria

pronunciations of words appeared in those voice commands. An
attacker could further record user conversations through smart
speakers using malicious skills and steal sensitive information such
as passwords and credit card information [20, 50].

Similar to website fingerprinting [5, 11-14, 19, 22, 25, 27, 28, 30,
34-36, 41] voice command fingerprinting is an encrypted traffic
analysis attack, which can be formulated as supervised learning
problem. Machine-learning-based encrypted traffic analysis can
also be used to fingerprint devices [8, 40]. Kennedy et al. [18] pre-
viously studied voice command fingerprinting over a small dataset,
which consists of 100 commands with 10 traffic traces per com-
mand. By manually selecting features and utilizing AdaBoost as
the classifier, their attack can achieve 33.8% accuracy.

This paper aims to improve attack accuracy and advance our un-
derstanding of the privacy leakage. Deep learning techniques [21]
that have been found to improve attack accuracy of encrypted traf-
fic analysis in website fingerprinting [5, 25, 30, 34, 35], are potential
candidates to address the problem of voice command fingerprint-
ing. However, deep learning techniques require large datasets with
thousands to millions of samples. Currently, there are no large-scale
research datasets available that can be harnessed in the context of
voice command fingerprinting.

In this paper, we report the advances we made in bridging the
gap in the understanding of privacy impacts of smart speakers. Our
experimental results derived from neural networks over two large-
scale datasets indicate disturbing privacy concerns on smart speak-
ers as well as the driving force of smart speakers — the Al-based
voice services. According to our results, despite high variances that
human voices may cause on the outgoing traffic of a smart speaker,
our proof-of-concept attacks remain effective by only lever-
aging the incoming traffic from the server side. This is mainly
because the Al-based voice services running on the server side response
commands in the same voice and with a deterministic or predictable
manner in text, which leave distinguishable network traffic pattern.

Contributions. Our main contributions are summarized below:

e We built an automatic tool to collect encrypted voice traffic
on a smart speaker. It is capable of collecting approximately
3,000 traffic traces per day, which addresses the limitation
of data collection in voice command fingerprinting.

e We collected two large-scale datasets on two popular smart
speakers, Amazon Echo and Google Home, using 5 auto-
mated voices rendered by public text-to-speech APIs. Each
dataset consists of 150,000 traffic traces including 100 com-
mands/classes and 1,500 traffic traces per class.

o We performed the attack utilizing Convolutional Neural Net-
works (CNN), Long Short-Term Memory (LSTM) and Stacked
Autoencoder (SAE) respectively. Our results using bidirec-
tional traffic of Amazon Echo in the closed-world setting!
show that, CNN attained 89.05% accuracy, LSTM achieved
88.65% and SAE obtained 75.98%. Both CNN and LSTM out-
performed the previous attack in [18]. Our attack using en-
semble learning [26] further improved accuracy to 92.89%.

!In the closed world setting, an attacker knows a traffic is associated with a given list
of commands and infers which command it is. In the open-world setting, an attacker
decides whether a traffic is associated with a given list of commands.

255

C. Wang, S. Kennedy, H. Li, K. Hudson, G. Atluri, X. Wei, W. Sun and B. Wang

e As human voices vary in practice due to age, gender and ac-
cent, which could cause higher variances on outgoing traffic
than the automated voices we utilized in our data collection.
We also demonstrated that our attacks are effective using
incoming traffic only. Specifically, both CNN and LSTM still
achieved over 81% accuracy in the closed world-setting on
Amazon Echo dataset. Our attack results in the open-world
setting are also highly effective.

We designed a proof-of-concept defense, which obfuscates
traffic and mitigates privacy leakage against voice command
fingerprinting. According to our results on Amazon Echo
dataset, with privacy parameter € = 0.005, our defense can
reduce attack accuracy to 1.23% if an attacker trains models
with original traffic and tests with obfuscated traffic. If an
attacker adapts, in which it trains and tests with obfuscated
traffic, attack accuracy can still be reduced to 32.18%.

2 RELATED WORK

Website Fingerprinting. The purpose of website fingerprinting
is to infer which website a user visits over encrypted traffic [12-14,
22,27, 28, 30, 35, 41]. Early-stage research in website fingerprinting
focused on manually extracting features from encrypted traffic and
harnessing different conventional machine learning algorithms to
achieve higher accuracy. Among these studies, Panchenko et al.
[27] proposed CUMUL by considering the cumulative sum function
of traffic size. This attack leveraged Support Vector Machine as
the classifier and outperformed other methods [30]. This attack
achieved an accuracy of 93%, and is even comparable in performance
with deep-learning-based attacks [30, 35].

Recent work in website fingerprinting attacks used deep learning
models to automatically extract features and resulted in higher ac-
curacy. Sirinam et al. [35] leveraged Convolutional Neural Network
(CNN) and attained 98% accuracy in the closed-world setting with
95 websites. Rimmer et al. [30] investigated website fingerprinting
with CNN, Long Short-Term Memory (LSTM) and Stacked Denois-
ing Autoencoder (SDAE). SDAE achieved 94% accuracy on a dataset
with 900 classes while CNN and LSTM reached 91% and 88%.

Different defense methods have also been proposed. BuFLO [12]
sends packets at a fixed size with fixed intervals but introduces high
latency. Juarez et al. [17] designed WTF-PAD to obfuscate traffic
pattern by using adaptive padding [33], which hides traffic gaps
and introduces no latency. Wang et al. devised Walkie-Talkie [42],
which applied half-duplex model and burst molding to Tor traffic.

Both WTF-PAD [17] and Walkie-Talkie [42] cause low latency,
but can be compromised by CNN-based attacks [35]. A CNN-based
attack achieved 90% accuracy against WTF-PAD and 49.7% accu-
racy against Walkie-Talkie. Imani et al. [15] proposed to leverage
adversarial examples [37] as a defense against website fingerprint-
ing. However, it requires the knowledge of entire traffic traces in
advance, and hence cannot obfuscate traffic on the fly.

Video Stream Fingerprinting. Schuster et al. [32] showed
that traffic bursts are useful to identify encrypted MPEG-DASH
video streams. Zhang et al. [51] demonstrated the threat of video
stream fingerprinting with 40 YouTube videos with 100 traces per
video. CNN achieved 95% accuracy and outperformed competing
approaches. On the other hand, the authors showed that leveraging

Fingerprinting Encrypted Voice Traffic on Smart Speakers with Deep Learning

WiSec 20, July 8-10, 2020, Linz (Virtual Event), Austria

/2 ~
/ \
User Smart Speaker WiFi AP ISP Cloud Server {fommand Automatic _S_peech \
/ (Audio) Recognition \
@) _ > (((I))) _— E A / ’ /] |
v Encrypted traffic Encrypted traffic E Encrypted traffic ¢ Command |
0 — B3 \ o '
| * \ RCSPO_“SC Natural Language /
| \ (Audio) Understanding /
. A \ /
- (2) Attacker - 4

Figure 1: The system model of voice command fingerprinting attacks.

differential privacy on time-series data (e.g., d*-privacy [47]) can
obfuscate traffic pattern and preserve privacy over encrypted traffic.
In contrast to website fingerprinting, which extracts features on
bi-directional traffic, video stream fingerprinting leverages one-way
traffic (i.e., encrypted video traffic sent by the server).

Voice Command Fingerprinting. Kennedy et al. investigated
voice command fingerprinting attacks over a small dataset, which
includes 100 classes and 10 traces per class [18]. The authors ex-
amined several traditional machine learning methods in website
fingerprinting and applied to encrypted voice traffic on smart speak-
ers. A method leveraging AdaBoost achieved over 33.8% accuracy
in the closed-world setting and outperformed others. The features
that the authors examined in [18] include the size of each burst,
total transmitted bytes, the number of bursts, occurring packet
sizes, percentage incoming packets, and the number of packets.

Apthorpe et al. [8] inferred user activities at home by identifying
different smart home devices (including smart speakers) through
encrypted traffic pattern. In their study, the authors inferred 3 voice
commands (with 3 samples per command) on Amazon Echo based
on traffic rate. The dataset and attack methods in [8] are not as
comprehensive as our study.

Fingerprinting on Encrypted VoIP Traffic. Several previous
studies examined the privacy of encrypted VoIP (Voice over IP
traffic) [9, 43-46]. These studies leverage packet size as the only
fingerprint because VoIP uses a combination of Variable Bit Rate
encoding with stream cipher, but are not effective if data is en-
crypted with block cipher [46]. These attacks are not applicable to
voice command fingerprinting as voice traffic on smart speakers is
encrypted with block cipher.

Fingerprinting IoT Devices. Many research studies [6-8, 10,
16, 23, 24, 38, 39] have investigated how to identify IoT devices
as well as associated events within a smart home by analyzing
encrypted traffic. For instance, Acar et. al. proposed a multi-stage
attack, which can achieve over 90% accuracy inferring smart home
devices. Different from these studies, our attack focuses on analyz-
ing privacy within a single type of smart home devices.

Other Attacks on Smart Speakers. Injection attacks can inject
voice commands through similar pronunciations [20, 50], audible
sounds [31, 49], or songs [48]. These attacks focus on the vulnerabil-
ities of Automatic Speech Recognition. Abdullah et al. [4] explored
the vulnerabilities of the signal processing step before Automatic
Speech Recognition. Zhang et al. [52] investigated the vulnerability
of Natural Language Understanding. In contrast to these active
attacks, voice command fingerprinting is passive.

256

3 BACKGROUND

System Model. The system model is illustrated in Fig. 1. It includes
four entities: a smart speaker, a WiFi access point, an Internet Ser-
vice Provider and a server. When a smart speaker receives a user’s
voice command upon hearing a wake word, it records the voice
data and then forwards data to its cloud server. The voice services
on the server side will produce responses to a voice command. The
voice data traffic between a smart speaker and the server is pro-
tected by off-the-shelf encryption technology. For instance, Amazon
Echo leverages TLS (Transport Layer Security) 1.2 and all traffic is
encrypted with AES (Advanced Standard Encryption) [18].

Threat Model. We assume an attacker is a local eavesdropper
who can sniff the network traffic of a smart speaker. For instance,
an attacker can be an eavesdropper on the victim’s WiFi network
or a compromised WiFi access point. This attacker cannot decrypt
encrypted packets. In addition, this attacker does not drop, change
or inject packets.

We assume there is one smart speaker in the victim’s WiFi net-
work. We assume the attacker knows the model of a smart speaker,
e.g., Amazon Echo or Google Home. We assume the attacker can
infer the IP address of a smart speaker as well as the IP address of
the server running voice services. With the IP address of a smart
speaker, the attacker can filter out traffic from other devices con-
necting to the same WiFi access point [8].

Inferring the IP address of a smart speaker. Inferring the IP
of a smart speaker is feasible for a local eavesdropper. Many existing
studies [6-8, 10, 16, 23, 24, 38, 39] have shown that it is possible to
distinguish the traffic of a smart speaker (therefore its IP address)
from other smart home devices over encrypted traffic.

Once the IP address of a smart speaker is inferred, the server’s IP
address can be easily observed as a smart speaker mainly commu-
nicates with its voice services. Moreover, DNS queries from a smart
speaker can also be used to infer the IP addresses of its voice services.
For instance, Amazon Echo in our data collection sent DNS queries
to resolve the IP addresses of domain name unagi-na.amazon.com.
As DNS queries and responses are not encrypted, and the IP ad-
dresses in the answer section of a DNS response can be easily
obtained (e.g., using Wireshark or dig command).

A traffic trace contains all of the packets for a voice com-
mand and its response. We assume packets that are sent to the
server are outgoing packets (packets containing a voice command),
and packets that are sent to a smart speaker are incoming pack-
ets (packets containing a response). We assume that an attacker

WiSec °20, July 8-10, 2020, Linz (Virtual Event), Austria

can infer the start time and the end time of each traffic trace?. An
attacker can learn side-channel information, including direction,
packet size, and timestamp. A traffic trace of a voice command C
and its response can be described as

TC = <(b1’ S1, tl)s) (bfb Sns tn)) (1)

where n is the number of packets in this trace. Each direction b;
is either +1 (outgoing) or —1 (incoming), each packet size s; is in
bytes, and each timestamp ¢; is represented in milliseconds.

Closed-World Setting and Open-World Setting. We investi-
gate voice command fingerprinting attacks in both the closed-world
setting and the open-world setting.

In the closed-world setting, we assume that an attacker has a
prior set of voice commands. For example, this prior set of voice
commands can be a set of popular commands that users would ask.
Given this prior set, an attacker can harvest labeled traffic traces for
each voice command by itself. An attacker can capture an unlabeled
traffic trace from a user’s smart speaker. This unlabeled traffic trace
is associated with one of the voice commands in the prior set. The
objective of this attacker is to infer which voice command this
unlabeled trace is associated with.

In the open-world setting, an unlabeled traffic trace may not be
in the prior set. The objective of this attacker is to infer whether
the voice command of this unlabeled traffic trace is in the prior set.

Privacy Metric. We leverage the accuracy of the classification to
determine the privacy leakage under voice command fingerprinting
in the closed-world setting. For the open-world setting, we leverage
true positive rate and false positive rate. This privacy metric is often
used in the literature of encrypted traffic analysis.

4 VOICE COMMAND FINGERPRINTING

4.1 Automatic Traffic Collection Tool

Our first challenge is the lack of sufficient training data (or the lack
of tools to collect sufficient training data). Existing data collection
methods can automatically capture web traffic. However, they do
not directly apply to the traffic collection on smart speakers, where
voice interactions are required.

To automatically collect traffic traces for the study of voice com-
mand fingerprinting, we designed a voice command traffic collection
tool as shown in Fig. 2. This tool consists of three main components:
a Raspberry Pi, a regular speaker and a smart speaker. The Rasp-
berry Pi is leveraged as a compromised WiFi Access Point, which
can capture and store traffic traces. It is connected to the Internet
through an Ethernet cable. A smart speaker is connected to the
Raspberry Pi through WiFi. The regular speaker is connected to the
Raspberry Pi via an audio cable. An Amazon Echo (2nd generation)
is used as an example in Fig. 2. The system is generic, and also
works for other smart speakers, such as Google Home.

We prepared a list of commands in text and utilized text-to-
speech APIs to generate audio files of voice commands. Specifically,
we leveraged Google Cloud text-to-speech API and Amazon Polly
to generate multiple audio files for each command. We utilized
multiple different automated voices (in US English), including 3

21t is feasible for an attacker to infer the start time of each trace on a smart speaker.
For example, through our data collection, there is a significant amount of outgoing
traffic initiated around the start time of a traffic trace. The end time could be identified
once there is no significant volume of traffic after certain time frame, e.g., 2~3 seconds.

257

C. Wang, S. Kennedy, H. Li, K. Hudson, G. Atluri, X. Wei, W. Sun and B. Wang

Speaker

Amazon Echo
(2nd)

Cable
Raspberry Pi 3 Model B (as WiFi AP)

Figure 2: Our automatic voice traffic collection tool.

female voices (Google, Joanna, Salli) and 2 male voices (Joey and
Matthew). Google voice is from Google Cloud text-to-speech API
and the other four voices are selected from Amazon Polly. For each
voice command, our tool generates five audio files, one for each
voice. More voices can be supported in this tool if needed.

We used a Raspberry Pi (Pi 3 Model B) running the Raspian OS.
We developed a Python script containing 80 lines of code and run
the script on the Raspberry Pi to automatically play audio files
one by one. Upon receiving each voice command from the regular
speaker, the smart speaker forwards the command to its cloud server
and returns a response. A pre-defined time interval is estimated and
applied between the start time of two audio files to ensure that the
smart speaker can complete each response. tcpdump is executed
on the Raspberry Pi to automatically capture traffic traces for each
voice command and its response.

To the best of our knowledge, this is the first automatic tool that
can be utilized for encrypted traffic analysis on smart speakers. Based
on our tests, this tool is capable of automatically collecting approx-
imately 3,000 traffic traces per day without any human interaction.
We leveraged this tool and collected two large datasets. Details of
these two datasets are presented in Sec. 5.

4.2 Data Format

A raw traffic trace captured by tcpdump is first converted to a
sequence of tuples as described in Eq. 1. Since this format cannot
be directly passed to neural networks, we further transformed the
data into two different formats.

Binary Format. Given a traffic trace Te = ((b1, 51, t1), --» (b,
Sm» tm)), its binary format is Tc = (b1, ..., bm), which keeps only
the direction of each packet.

Numeric Format. Given a traffic trace To = ((b1, s1,t1), ..., (b,
Sms tm)), its numeric format is Te = (by X $1, ..., by X $1), which
keeps direction and packet size.

For instance, given a traffic trace Tc = ((1, 20,0.5), (1,50, 2.1),
(-1, 250,5.3), (1,100, 6.7)), its binary format is (1,1, —1,1) and its
numeric format is (20, 50, —250, 100).

It is worth mentioning that previous studies in deep-learning-
based website fingerprinting often examine binary format only,
as Tor networks send fixed-size packets (i.e., cells) [35]. In our
study, we observed that the packet size of voice traffic on smart
speakers varies, so we examined results in both formats. Data in the
numeric format is further normalized using MinMaxScaler (with
scikit-learn library) before being used for neural networks, as
the inputs for deep learning should be within the range of [-1, 1].

Fingerprinting Encrypted Voice Traffic on Smart Speakers with Deep Learning

Since neural networks require the same input length for different
classes, different traffic traces are adjusted to an identical vector
size. If the original length is smaller than the uniform vector size,
we padded the input with Os; if it is greater, we trimmed the input
by dropping data after the uniform vector size. This uniform vector
size is one of the hyperparameters we tuned in our experiments.
Padding traces to an identical size is commonly used in other attacks,
such as website fingerprinting [30, 35], if neural networks are used
as classifiers.

4.3 Neural Networks

We implement proof-of-concept attacks using three neural net-
works, including Convolutional Neural Networks, Long Short-Term
Memory and Stacked Autoencoder, respectively. For each type of
neural networks, we exploited several different structures, and re-
ported the structure that achieved the highest accuracy.

Convolutional Neural Network (CNN). CNN has been widely
used in various classification problems. According to studies in
other research areas, especially image classification [21], the accu-
racy of CNN often outperforms other neural networks. It is likely
that CNN would produce higher accuracy than others in voice
command fingerprinting.

The structure of our CNN. Our CNN (described in Fig. 8 in
Appendix) consists of 11 layers, including 1 input layer, 4 convolu-
tional layers, 5 pooling layers and 1 output layer.

Long Short-Term Memory (LSTM). Long Short-Term Mem-
ory, is an advanced version of a Recursive Neural Network. It can
mitigate the vanishing gradient and exploding gradient problem
in (vanilla) RNNs. LSTM performs better over time-series data. En-
crypted traffic, in essence, is time-series data, which implies LSTM
could outperform others in voice command fingerprinting.

The structure of our LSTM. Our LSTM (illustrated in Fig. 9 in
Appendix) consists of 1 input layer, 5 LSTM layers, and 1 output
layer. Each LSTM layer consists of multiple LSTM units.

Stacked AutoEncoder (SAE). SAE includes an encoder, a code
and a decoder. SAE first compresses data to a smaller number of di-
mensions and then produces the output by decoding the compressed
data. SAE can efficiently extract features from a great number of
dimensions and increase accuracy in classification. A traffic trace
includes hundreds of packets, where the side-channel information
of one packet is a dimension. Leveraging SAE in voice command
fingerprinting could attain better attack results.

The structure of our SAE. Our SAE (described in Fig. 10 in
Appendix) consists of 9 layers, including 4 layers for encoder, 1 layer
for code and 4 layers for decoder. Once it is trained, the encoder
and the code are extracted and one dense layer is attached to the
end in order to perform classification.

Ensemble Learning. In addition to the three neural networks,
we also harness ensemble learning [26]. Ensemble learning takes
the output of the output layer (i.e., sof tmax function) of each single
network, calculates a summation and obtains a prediction with an
argmax function. We assign weights wi, wp and ws for the three
neural networks. If the weight for each single network is the same,
then it is called average ensemble; otherwise, it is referred to as
weighted ensemble [26].

258

WiSec 20, July 8-10, 2020, Linz (Virtual Event), Austria

5 ENCRYPTED VOICE TRAFFIC DATASETS

Overview. We collected two datasets with the tool described in
Sec. 4. We refer to the two datasets as Amazon Echo Dataset and
Google Home Dataset. We ran our data collection tool in a 200
square-foot room on campus with a reasonable level of background
noise and human activities. Those include a person working on a
laptop/PC and typing next to the tool, opening and closing the door
occasionally as regular office hours, and students passing the door
and the windows of the room from the hallway. The two datasets
were collected from March 2019 to August 2019.

Amazon Echo Dataset. For the closed-world setting, we col-
lected 150,000 encrypted traffic traces on Amazon Echo (2nd gener-
ation). This dataset includes 100 voice commands and 1,500 traffic
traces per command. This list of commands is referred to as the
monitored list by following the literature in website fingerprint-
ing [30, 35]. For the open-world setting, we chose another 100 voice
commands and collected 200 traffic traces for each class. This list of
commands is referred to as the unmonitored list. We leveraged
5 different voices (Google, Joanna, Joey, Matt, and Salli) for each
command in both the closed-world and the open-world setting.
Each voice is associated with 20% of traffic traces. This effort lasted
approximately 8 weeks in total to complete all the traffic traces in
the closed-world setting and approximately 3 weeks to finish the
traffic traces in the open-world setting of this dataset. The size of
this data is 26.05 GBs (closed-world) and 4.07 GBs (open-world).

The voice commands in our study were selected based on Ama-
zon Echo weekly emails. These emails include popular voice com-
mands that Amazon Echo users often ask. We selected voice com-
mands based on Amazon Echo weekly emails from December 2018
to March 2019. A full list of those commands can be found at [3].

Google Home Dataset. We collected another dataset on Google
Home. For this dataset, we only chose a list of 100 voice commands
for the study of the closed-world setting. As 21 voice commands in
the monitored list of Amazon Echo dataset did not work on Google
Home, we chose another 21 new commands and added them to the
monitored list of this dataset. Since the wake word is different, we
regenerated the audio files with the same voices. For each command,
we still collected 1,500 traffic traces with 20% traces per voice. This
effort lasted 9 weeks and resulted in a dataset of size 33.57 GBs.

Removing Invalid Traffic Traces. We removed invalid traffic
traces due to unexpected errors of a smart speaker. For example, an
invalid traffic trace could happen when a voice command was cor-
rectly played but there was no response from the server. Removing
invalid traffic traces is also common in the data collection of other
encrypted traffic analysis, such as website fingerprinting [36].

Only a very small number of traces are invalid and removed.
For the Amazon Echo dataset, it has 148,770 valid traffic traces
(99.18%) for the closed-world setting. The minimal number of traces
belonging to one class is 1,340, and the maximum number is 1,500.
There are 19,953 valid traffic traces (99.77%) for the open-world
setting. The Google Home dataset has 149,745 valid traffic traces
(99.83%) for the closed-world setting.

Categories of Voice Commands. Based on the responses of
each command, we grouped commands into three categories, re-
ferred to as single response commands, time-sensitive response com-
mands, and multiple response commands.

WiSec °20, July 8-10, 2020, Linz (Virtual Event), Austria

A single response command indicates that the response was
always (or almost) the same during our data collection. For example,
for voice command “Where is Mount Rushmore?" the response from
the Amazon server was always the same in our study.

A time-sensitive response command implies that the response
changed overtime. For example, “What is the weather today?" the
Amazon server replied a different answer each day.

A multiple response command suggests that we received a number
of different responses. However, the content of each response did
not change over time. For instance, for the command “Tell me a
barbecue joke." the Amazon server randomly returned one of five
possible jokes during our data collection.

The ratio of each command category of the monitored list in our
Amazon Echo dataset is elaborated in Table. 1. We further discuss
the impact of categories on the attack results in the next section.

Table 1: Ratios of Voice Commands in The Three Categories
(Amazon Echo Dataset, The Monitored List)

Time-Sensitive
21%

Single
45%

Multiple
34%

Data Visualization. Before we evaluated the results of our neu-
ral networks, we first visualized some traffic traces from Amazon
Echo dataset by generating heat maps of traffic traces from each
command. The main purpose of this step is to demonstrate that
it is feasible to fingerprint voice commands based on encrypted
traffic of smart speakers. Due to space limitation, we only present
the heat maps of 4 voice commands in Fig. 3 and each heat map
only contains 10 traffic traces in Amazon Echo dataset.

First, we observe that it is indeed viable to infer voice commands
based on encrypted traffic. Specifically, the traffic traces of one
command are not exactly the same in each heat map, but are very
similar. In addition, the traffic pattern of some commands are com-
pletely different. For instance, the traffic traces from the first three
heat maps, including heat map (a), (b) and (c), are obviously distin-
guishable. On the other hand, we also notice that it is not trivial
to distinguish all the commands based on heat maps as the traffic
pattern of some commands are similar. For example, the difference
of traffic traces between (c) and (d) in Fig. 3 are not obvious. In fact,
most of the classes we investigate have similar pattern as heat map
(c) and (d). This creates the need for sophisticated neural networks

6 ATTACK EVALUATION

Experiment Setting. We implement our proof-of-concept attack
in Python. We used Keras as the front end and Tensorflow as the
back end to implement neural networks. We ran our experiments
on a Linux machine with Ubuntu 18.04 OS, 2.8 GHz CPU, 16 GB
Memory, and a GPU (NIVIDA GeForce GTX 1070). We ran 5-fold
cross validation. We used 64% of the data for training, 16% for
validation, and 20% for testing.

Hyperparameter Tuning. We searched hyperparameters for
neural networks with NNI (Neural Network Intelligence), a Mi-
crosoft open-source toolkit. We used TPE (Tree-structured Parzen
Estimator) as our search/tuning algorithm, which is one of the
tuning algorithms provided by NNI.

For each neural network, we ran NNI with 50 iterations at most
or stopped the search if it took longer than 200 hours. After we

259

C. Wang, S. Kennedy, H. Li, K. Hudson, G. Atluri, X. Wei, W. Sun and B. Wang

- 1500
il T BT B
-500
1A W L
--=500
(LR RRR TR T
-—1500

(a) What is my sports update?
- 1500

| froo
-500
[[l °
--500
i N [
- ~1500
(b) What is the date tomorrow?
- 1500
il | 1N | frou

500

| 1 °

—500

i [
- ~1500
(c) What is my traffic report?
- 1500
[l | oo
-500
Il il | °
--500
1[R[[

- —1500

(d) What is the price of Bitcoin?

Figure 3: Each heat map includes 3 encrypted traffic traces
of one voice command. Traffic traces were generated by an
Alexa Echo. Outgoing traffic are marked with red color and
incoming traffic are marked with blue color. A darker color
indicates a packet has a greater packet size.

found a set of tuned hyperparameters with the highest accuracy
score, we recorded the tuned hyperparameters and trained our
networks using these optimal hyperparameters. When we trained
each network, we limited the number of training epochs to 500
or stopped the training early if the accuracy did not continue to
improve after 10 consecutive epochs. The search space and tuned
hyperparameters can be found in Appendix.

6.1 Closed-World: Outgoing & Incoming Traffic

We first evaluate attack results in the closed-world setting leverag-
ing both outgoing and incoming traffic.

Which Input Format is More Effective? We first compared
the attack results between the binary format and numeric format
for each model. As shown in Table 2, the accuracy of the numeric
format is much higher than the accuracy of binary format. This
indicates that data in the numeric format leaves more identifiable
fingerprints in the encrypted traffic.

Which Neural Network is More Effective? We observed that
CNN and LSTM resulted in very similar results and were both signif-
icantly higher than SAE in the closed-world setting. The variance of
accuracy in each network is small in 5-fold cross validation, which
suggests the neural networks are stable.

The results on Google Home dataset indicated similar observa-
tions as the ones derived from Amazon Echo dataset. For the attacks
on Google Home dataset, we used the same hyperparameters for

Fingerprinting Encrypted Voice Traffic on Smart Speakers with Deep Learning WiSec 20, July 8-10, 2020, Linz (Virtual Event), Austria

Table 2: Attack Results in the Closed-World Setting Based on Both Outgoing and Incoming Traffic (AE: Averaging Ensemble;
WE: Weighted Ensemble; ACC: Accuracy; VAR: Variance)

Dataset Format CNN LSTM SAE AE WE
ACC VAR ACC VAR ACC VAR ACC ACC
Binary 75.88% 0.56 x 107> 77.51% 4.68x 107> 66.59% 0.44x 107 85.49% 85.70%
Numeric 89.05% 1.50x 107> 88.65% 0.49x 107> 7598% 0.48 x 107> 89.41% 92.89%
Binary 95.17% 1.62Xx 107> 96.90% 2.48x 107> 90.20% 0.47 X 107> - -
Numeric 99.22% 0.06 X 107> 98.62% 0.13x 107> 92.34% 0.28 x 107> - -

Amazon Echo

Google Home

Table 3: The Comparison with Previous Methods in the Closed-World Setting Based on Both Outgoing and Incoming Traffic
of Amazon Echo Dataset

Attack Method CNN LSTM SAE CUMUL [27] CNS19[18] Random Guess
Accuracy 89.05% 88.65% 75.98% 61.44% 76.32% 1%
Training Time (second) 5,327 23,967 1,800 6,073 4,421 N/A
each neural network as the ones in Amazon Echo dataset. This 10
suggests that our neural networks are transferable across encrypted W’W
traffic from different smart speakers. 08 T SR
Can Ensemble Learning Improve Accuracy? As presented g 5’}% M%@ K
in Table 2, our results demonstrate that ensemble learning can g 06 Z‘V-ﬁf =T o
improve the attack accuracy nearly 4% and outperforms each single 0.4 3 e
network in the closed-world setting on Amazon Echo dataset. g oxets
For weighted ensemble, we calculated the normalized weights 027350 500 750 1000 1250

using the accuracy on the validation data and reported the attack Number of traffic traces

accuracy based on test data. The normalized weights we derived
for CNN, LSTM and SAE were 0.35, 0.35, and 0.30 respectively on
Amazon Echo dataset. We did not run 5-fold cross validation in
ensemble learning as the variance of each single network was very
low. For Google Home dataset, as CNN already achieved extremely
high accuracy with over 99%, we did not use ensemble learning.
Comparison with Previous Studies. We compared our results
with previous studies. Particularly, we compared our neural net-
works running the numeric format with two conventional machine
learning attack methods, CUMUL [27] and CNS19 [18], on Amazon performed the best among all the three deep learning models with

Echo dataset in the closed-world setting. We chose CUMUL as it is every size we tested. CNS19 outperformed others only when the
number of traces for each class was 100. The accuracy of CNS19

and CUMUL increased slowly and did not gain much improvement
when the number of traces per class approached 1,300.

Figure 4: The impact of data size on attack accuracy.

increased the number of traces per class from 100 to 1,300 with an
interval of 100. We tested attack accuracy of five methods, including
CNN, LSTM, SAE, CNS19, and CUMUL for each different size. For
different sizes, we used the same hyperparameters, retrained the
neural networks each time based on the corresponding data.

As shown in Fig. 4, for neural networks, we observed significant
improvements by utilizing a greater number of traffic traces. CNN

one of the most effective attack methods, and its accuracy is compa-
rable with deep-learning-based methods in website fingerprinting
[30]. CNS19 [18] manually selected a feature set and implemented

the classifier with AdaBoost. We implemented both CUMUL and We could obtained more fine-grained results in Fig. 4 if we in-
CNS19 with Python in our comparison. crease the data size with a smaller interval (e.g., 10). In that case, we

As shown in Table 3, CNS19 achieved 76.32% accuracy on our would need to re-train hundreds of neural networks, which is time-
Amazon Echo dataset in the closed-world setting, which is signif- consuming even with a GPU. Using the interval of 100 was sufficient
icantly higher than the accuracy of 33.8% reported in [18]. Since for us to observe the impact of data size on attack accuracy.
we applied the same feature set and same classifier as CNS19, this
accuracy increase is likely because the size of our dataset is signifi-

6.2 Closed-World: Incoming Traffic Only

cantly greater than the dataset utilized in CNS19. Specifically, our Will Our Attacks Be Effective on Human Voices? Our attack
dataset has 1,500 traces per class while the dataset in CNS19 only results using both outgoing and incoming traffic are promising.
has 10 traces per class. CNS19 outperformed CUMUL and SAE but However, a key question we have not investigated is whether our
was outperformed by our CNN and LSTM in the comparison. attacks will be effective on human voices in the real world.

The Impact of The Number of Traces. Next, we evaluated The encrypted traffic traces in our two datasets were triggered
attack accuracy with different sizes of data. Specifically, we kept with five different automated voices from public Text-to-Speech
the same 100 commands in the monitored list of Amazon Echo APIs. Although these automated voices render a certain degree of
dataset, but we randomly selected a subset of traffic traces from variance in voices, human voices vary significantly due to multiple
each command based on a given number of traces per class. We factors, including gender, age, and accent. These factors could lead

to high variances in the voice data of the same voice command,

260

WiSec 20, July 8-10, 2020, Linz (Virtual Event), Austria

C. Wang, S. Kennedy, H. Li, K. Hudson, G. Atluri, X. Wei, W. Sun and B. Wang

Table 4: Attack Results in the Closed-World Setting Based on Incoming Traffic Only (AE: Averaging Ensemble; WE: Weighted

Ensemble; ACC: Accuracy; VAR: Variance)

Dataset Format CNN LSTM SAE AE WE
ACC VAR ACC VAR ACC VAR ACC ACC
Binary 24.40% 0.18x 107> 24.38% 0.28 X107 24.65% 1.72x107° 24.44% 24.16%
Amazon Echo . _5 -5 -5
Numeric 81.69% 1.70 X 10 85.09% 1.93 x 10 73.77% 2.37 X 10 84.41% 86.09%
Binary 8.90% 0.88x 10> 9.25% 0.21x 10 892% 0.35x107° 9.26% 9.35%
Google Home . _5 5 -5
Numeric 88.50% 6.97 X 10 92.24% 7.84% 10 81.57% 3.01x 10 91.66% 92.48%

which may change the pattern of the traffic to the server and affect
the accuracy of our attacks.

In addition, humans can ask the same intent with variations
in text. For example, a human can ask "Will it rain tomorrow?" or
"Is it going to rain tomorrow?", where both commands have the
same semantic intent and will receive the same response. These
variations in text could also affect in the pattern of outgoing traffic.

While investigating all the variances in human voices and texts
is obviously challenging (and nearly impossible), one of our key
observations is that all these variances do not affect the in-
coming traffic from the server. Specifically, humans can ask the
same commands with different voices and texts, but as long as the
Al-based voice services on the server side understand correctly,
the responses (as well as the incoming traffic) are not affected by
these variances in voices and texts. Thus, we further conducted
experiments using incoming traffic only to prove our attacks would
be effective in the real world.

Our results in Table 4 shown that our neural networks are ef-
fective even considering incoming traffic only. For instance, LSTM
still achieved 85.09% accuracy with the numeric format on Amazon
Echo dataset. Between the numeric format and binary format, we
observed that the numeric format were more effective.

For each neural network, we re-tuned hyperparameters based on
incoming traffic only. The tuned hyperparameters can be found in
Appendix. Our results based on incoming traffic only also indicated
that the primary reason causing identifiable voice commands over
encrypted traffic on smart speakers is likely because their Al-based
voice services response in a deterministic or predictable manner,
which leave distinguishable fingerprints in encrypted traffic.

The Impact of Different Voice Command Categories. We
also evaluated the impact of the categories on attack accuracy using
incoming traffic only. We separated Amazon Echo dataset into three
subdatasets based on the categories of each command. We evaluated
attack accuracy based on each subdataset.

According to the results, single response commands and time-
sensitive response commands were easier to infer. For instance,
CNN achieved 87.57% accuracy for single response commands and
88.94% accuracy for time-sensitive response commands. For com-
mands with multiple responses, CNN still revealed significant pri-
vate information with over 75% accuracy.

6.3 Open-World: Incoming Traffic Only

We evaluated the open-world setting with our Amazon Echo dataset.
To keep the data balanced, we used 200 valid traces per class in
the monitored list and we used all the valid traces of each class
in the unmonitored list. We retrained each neural network under

261

Table 5: Attack Results for Different Categories in the
Closed-World Setting (Incoming Traffic, Numeric Format)

CNN LSTM SAE
Single 87.57% 81.50% 80.92%
Time-Sensitive 88.94% 86.67% 83.95%
Multiple 75.92% 74.46% 68.41%

the assumptions of the open-world scenario, which is a binary
classification with the aim to decide whether or not a traffic trace
is associated with the monitored list. We only reported the results
in the open-world setting with incoming traffic only.

Table 6: Attack Results in The Open-World Setting on Ama-
zon Echo (Incoming Traffic Only)

Format Metric CNN LSTM SAE AE
ACC 99.94% 100% 99.92% 100%

Numeric TPR 100% 100% 99.93% 100%
FPR 0.12% 0.00% 0.08% 0.00%
ACC 57.09% 57.56% 50.54% 56.33%

Binary TPR 66.04% 56.46% 47.41% 57.31%
FPR 51.98% 41.32% 46.28% 44.67%

Our results in Table 6 show that, with data in numeric format,
an attacker can decide whether a traffic trace is associated with the
monitored list with an extremely high true positive rate and a very
low false positive rate.

7 A DEFENSE AGAINST FINGERPRINTING

We present a proof-of-concept defense to mitigate the privacy leak-
age against voice command fingerprinting. It integrates two existing
primitives, including adaptive padding [33] and differential privacy
[47], to obfuscate traffic pattern.

Defense Details. To minimize latency, we first deploy adaptive
padding in our defense. Adaptive padding, which was proposed
in [33], adds dummy packets and introduces no latency. Dummy
packets are inserted based on the distribution of interarrival time
and each real packet is still sent at the original timestamp. As a
result, it hides traffic bursts and traffic gaps. Details of adaptive
padding can be found in [33]. This primitive has been used in
WTF-PAD [17] as a defense in website fingerprinting. However,
adaptive padding does not hide other traffic fingerprints, such as
traffic length or packet size. Recent studies [35] have shown that
leveraging adaptive padding alone is not effective against deep-
learning-based attacks.

Fingerprinting Encrypted Voice Traffic on Smart Speakers with Deep Learning

To maintain efficacy, we further obfuscate fingerprints that are
not well protected by adaptive padding. First, we randomly deter-
mine the size of dummy packets based on the distribution of real
packet size. Second, we extend the length of different traffic traces
to identical obfuscated traffic length. Specifically, after sending
the last real packet in each trace, our defense will keep producing
dummy packets with adaptive padding until it reaches an obfus-
cated traffic length. Instead of padding all traffic traces to the same
length, which is less efficient, our defense extends a trace with the
traffic length of m (i.e., the total number of packets) to an obfuscated
traffic length of m’, where 24~! < m < m’ = 2% and a is an integer.

Third, our defense applies differential privacy to obfuscate packet
size on the fly. Specifically, we leverage d*-privacy [47] to add noise
to modify packet size, where d*-privacy is a variation of differen-
tial privacy on time-series data. With d*-privacy, the obfuscated
outputs of two identical length sequences with a distance of d are
indistinguishable. Due to space limitation, details of d*-privacy
can be found in [47]. A recent study [51] has demonstrated that
d*-privacy is effective in obfuscating one-way encrypted traffic
in video streams. Building upon [51], we utilize this primitive to
obfuscate bi-directional traffic in our study. A high-level description
of our defense of obfuscating each packet size is described in Fig. 5.

A dummy or
real packet

An obfuscated
packet

Differential

Privacy

I

|

} Adaptive
| Padding
|

Figure 5: Our defense obfuscates each packet on the fly.

Given a (real or dummy) packet, if noise produced by d*-privacy
is positive (e.g.,), then additional dummy data is inserted to in-
crease the packet size (e.g., I’ = I + 0); if noise is negative (e.g.,
—0), then the packet size will be reduced (e.g., I’ = | — 0) and a
corresponding portion of a packet (e.g., o) will be buffered until a
subsequent real or dummy packet is available in a traffic trace. We
implement the buffer as a queue, which sends buffered data before
sending new data.

Unlike [51], which operates d*-privacy (or differential privacy
in general) over bins, our defense adds the noise on packets. A
bin consists of packets within a fixed-size interval. It serves better
for one-direction traffic in [51]. For bi-directional traffic, one time
interval may have traffic on both directions, which makes it hard
to aggregate as one bin and apply noise to traffic. Adding noise
directly on packets is more suitable for the bi-directional traffic in
our problem. Besides, this minimizes latency, as our defense does
not need to buffer the packets in each bin before inserting noise.

Discussions. Adaptive padding complements differential pri-
vacy in two aspects. First, it hides traffic bursts and traffic gaps,
which differential privacy alone does not. Second, for buffered data
caused by negative noise, the dummy packets produced by adaptive
padding can send buffered data sooner, which minimizes latency.

Assumptions on Defense. We apply our defense on both in-
coming and outgoing traffic to minimize the privacy leakage from
the encrypted traffic. While our results in the previous section
showed that incoming traffic plays a dominating role in the attacks,
it is still necessary to obfuscate outgoing traffic to preserve privacy

262

WiSec 20, July 8-10, 2020, Linz (Virtual Event), Austria

0.6

-~ CNN
> - LSTM
8 0.4] © s
>
Q
Q

0.005 0.05 0.5 5

Privacy parameter ¢

Figure
inputs

6: The impact of privacy parameter on defense with
in the numeric format.

0.6

o
~

Accuracy

o
)

0.005 0.05 0.5 5

Privacy parameter ¢
Figure 7: The impact of privacy parameter on defense with
inputs in the binary format.

against attacks based on traditional machine learning algorithms,
such as CUMUL and CNS19.

We assume the server will obfuscate incoming traffic, and the
smart speaker (or a proxy) will obfuscate outgoing traffic. In prac-
tice, the server can calculate the distribution information of interar-
rival time and packet size, and other information that are required
to perform the defense, and forward these information to a smart
speaker. As we do not have the capability to change the current
network protocol, we run simulations of our defense to generate
obfuscated traffic from real traffic and demonstrate its efficacy.

8 DEFENSE EVALUATION

We implemented our defense in Python. We produced obfuscated
traffic traces based on Amazon Echo dataset. The distribution of
interarrival time and packet size we used in adaptive padding are
generated based on Amazon Echo dataset. For differential privacy,
we generated multiple versions of obfuscated datasets based on
different values of privacy parameter €. Privacy parameter ¢ decides
the privacy protection (i.e., the noise level) rendered by differential
privacy. A smaller value of € generates higher noise produced and
offers stronger privacy protection.

We assessed the performance of the defense in two cases: (1)
Training with original traffic. In this case, neural networks are
trained based on original traffic traces, but test data are obfuscated,;
(2) Training with obfuscated traffic. In this scenario, we assume
an attacker adapts to the defense, where it trains neural networks
with obfuscated traffic traces and tests with obfuscated traffic traces.

As shown in Table 7, when training with original traffic, our
defense can suppress attack accuracy of CNN to 1.23% in the closed-
world setting, which is nearly the same as random guess. If an
attacker trains a CNN with obfuscated traffic traces, it can improve
its accuracy back to 26.81%, which is still significantly lower com-
pared to the accuracy without defense. With average ensemble, an
attacker can attain 28.41% accuracy (v.s. 89.41% with no defense).
Our defense is also effective against CUML and CNS19.

The Impact of Privacy Parameter. In Fig. 6, we show the
impact of € on attack accuracy where the inputs are in the numeric

WiSec 20, July 8-10, 2020, Linz (Virtual Event), Austria

C. Wang, S. Kennedy, H. Li, K. Hudson, G. Atluri, X. Wei, W. Sun and B. Wang

Table 7: Defense Results in The Closed-World Setting among Different Methods with €=0.005

CNN LSTM SAE AE CUMUL CNS19
No Defense 89.05% 88.65% 75.98% 89.41% 61.44% 76.32%
Training with original traffic 1.23% 1.05% 1.12% 1.07% 1.97% 1.77%
Training with obfuscated traffic 26.81% 19.48% 15.69% 28.42% 17.14% 14.59%

Table 8: Tradeoffs with Different Privacy Parameter

Privacy Latency Bandwidth
Parameter € | Per Packet (ms) Per Trace (ms) | Overhead (KB)
0.005 16.5 136.0 (2.6%) | 55.82 (138.7%)
0.05 10.4 314 (0.6%) | 66.34(146.0%)
0.5 7.0 17.4 (0.3%) 70.38 (148.3%)

format. When € decreases, the noise level generated by differential
privacy increases, which can reduce attack accuracy.

We also studied the impact of privacy parameter € on attack
accuracy with inputs in the binary format. As illustrated in Fig 7,
we found that attack accuracy remained relatively stable when we
changed privacy parameter. The reason is that changing privacy
parameter € does not have effect on the inputs if they are in the
binary format. There are still some minor changes in accuracy as
the privacy parameter changes in Fig. 7. It is because the obfuscated
datasets in binary format are not exactly the same across different
values of € as adaptive padding is a probabilistic algorithm.

It is worth mentioning that when e = 0.005, accuracy with inputs
in the binary format is slightly higher than the one in the numeric
format. For instance, CNN achieved 30.18% accuracy compared to
26.81% in the numeric format. Average ensemble attained 32.18%
accuracy compared to 28.42% in the numeric format.

Latency. We examined the latency of our defense by evaluating
latency per packet and also latency per traffic trace. Latency per
packet indicates how many milliseconds it takes to clear the (po-
tential) buffered data for each real packet. Latency per traffic trace
suggests how many extra milliseconds it takes to complete sending
all the real packets of a traffic trace. Our results in Table 8 show that
the defense introduced minimal latency. The latency per packet
hardly aggregated over packets as the buffered data is cleared rather
soon either by dummy packets or the next real packet.

Bandwidth. The bandwidth overhead introduced by the defense
is affordable. If € decreases, the latency increases but bandwidth
overhead decreases. The reason is that when privacy parameter
is lower, noise generated by differential privacy is higher, which
causes more buffered data per packet and therefore a longer latency
on average. On the other hand, more buffered real data are sent by
dummy packets generated by adaptive padding, which reduces the
overall dummy data needed in each traffic trace.

9 LIMITATIONS AND FUTURE WORK

Human Voices. In this study, we leveraged automated voices but
not human voices to trigger encrypted traffic on a smart speaker
during our data collection. One of our future work is to evaluate
voice command fingerprinting with human voices by considering
different genders, ages and accents.

Voice Commands. We did not study popular voice commands
that require interactions with other IoT devices or involve credit

263

card transactions. For instance, asking a smart speaker to success-
fully order an item online with 1,500 times is challenging to perform
in a lab setting.

We studied 100 popular voice commands in the closed-world
setting. On the other hand, we acknowledge that the number of
voice commands users could ask in practice is much greater than
100. It would be interesting to assess the privacy leakage of voice
command fingerprinting on data with a much greater number of
voice commands (e.g., 1,000). A more effective way of collecting
data will be needed in that case.

Packet Timing. We did not leverage packet timing information
[29] in our attack. It would be interesting to examine how packet
timing information could be utilized in voice command fingerprint-
ing. We will leave it as a future work.

Different Prior Probabilities. In this study, as other existing
fingerprinting attacks, we assume that each class in the closed-
world setting has a uniform prior probability. However, this is not
the most accurate way to formulate the problem. Different voice
commands could have different prior probabilities if an attacker
takes into account additional background information.

For instance, given two voice commands, Q1: “How many days
until Thanksgiving?" and Q2: “How many days until Tax Day?", if it
is in October, the probability of asking Q1 is obviously greater than
the probability of asking Q2. On the contrary, if it is in March, then
the probability of asking Q2 is clearly greater than the probability
of asking Q1. Without the statistic information from voice service
providers, accurately formulating the prior probabilities of different
voice commands is challenging.

10 CONCLUSION

We advance the understanding of privacy impacts of smart speakers
by investigating voice command fingerprinting attacks using neu-
ral networks. Our attack results show worrying privacy concerns
especially using incoming traffic only. The experimental results
show that our proposed defense can mitigate privacy leakage.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers and our shepherd, Dr. Selcuk
Uluagac, for their insightful comments on this paper. UC authors
were partially supported by National Science Foundation (CNS-
1947913), UC Office of the Vice President for Research - Pilot Pro-
gram, and Ohio Cyber Range at UC. King Hudson was partially
supported by NSF LSAMP (Louis Stokes Alliances for Minority Par-
ticipation) program. Wenhai Sun was partially supported by Purdue
Research Foundation Summer Faculty Grant. The code, datasets,
and other additional information of this study can be found at [3].

REFERENCES

[1] [nd.]. Amazon Staff Are Listening To Alexa Conversations.
//www.forbes.com/sites/kateoflahertyuk/2019/04/12/amazon- staff-are-

https:

https://www.forbes.com/sites/kateoflahertyuk/2019/04/12/amazon-staff-are-listening-to-alexa-conversations-heres-what-to-do
https://www.forbes.com/sites/kateoflahertyuk/2019/04/12/amazon-staff-are-listening-to-alexa-conversations-heres-what-to-do
https://www.forbes.com/sites/kateoflahertyuk/2019/04/12/amazon-staff-are-listening-to-alexa-conversations-heres-what-to-do

Fingerprinting Encrypted Voice Traffic on Smart Speakers with Deep Learning

WiSec 20, July 8-10, 2020, Linz (Virtual Event), Austria

Input |[—»| Conv |—» Ma.x — | Dropout |—»| Conv |—» Ma.x — | Dropout | —»| Conv
Pooling Pooling
Dense GlobalAver Max Max
Softmax Dense agePooling Pooling Conv Dropout Pooling
Figure 8: The structure of our CNN.
Input |—» LSTM — | Dropout |—» LSTM — | Dropout |—» LSTM — | Dropout
Layer Layer Layer
Dense <—| Dense |<—| Flatten |<—| Dropout |<€— LSTM <—| Dropout | €— LST™M
Softmax Layer Layer

Figure 9: The structure of our LSTM.

Table 9: Tuned Hyperparameters of Each Neural Network with Both Outgoing and Incoming Traffic in the Numerical Format

Hyperparameters Search Space CNN LSTM SAE
Input Dimension {300, 325, 350, ..., 575, 600} 475 350 375
Optimizer {Adam, SGD, Adamax, Adadelta} Adamax Adamax Adam
Learning Rate {0.001, 0.002, 0.01, 0.05, 0.1} 0.002 0.002 0.001
Decay {0.00, 0.01, 0.02, .., 0.50} 0.13 0.19 0.30
Batch Size {30, 40, 50, ..., 120, 130} 70 130 110
Activation Function {softsigh, tanh, elu, selu} [tanh; elu; elu; selu || selu] | [tanh; tanh; tanh; tanh || selu] | [elu; tanh; selu; elu; softsign || tanh]
Dropout {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} [0.1; 0.3; 0.1; 0.0] [0.4; 0.1; 0.1 0.3; 0.5] [0.2; 0.0; 0.0; 0.3]
Dense Layer Size {100, 110, 120, ..., 170, 180} 180 70 130
Convolution Number {16, 32, 64, 128, 256} [128; 128; 64; 256] - -
Filter Size {7,9,11, ..., 25,27} [7: 19; 13; 23] - -
Pool Size {1,3,5,7} [1;1;151] - -
LSTM Layer Size {90, 100, 110...., 300, 310} - [210; 190; 190; 190; 130] -
SAE Encoder Layer Size {200, 210, ..., 390, 400} - - [330; 260; 330; 280; 250]

Table 10: Tuned Hyperparameters of Each Model with Incoming Traffic Only in the Numerical Format

Dense Layer Size {100, 110, 120, ..., 170, 180}

Convolution Number {16, 32, 64, 128, 256} [25
Filter Size {7,9,11, ..., 25, 27} [
Pool Size {1,3,5,7}
LSTM Layer Size {90, 100, 110...., 300, 310}
SAE Encoder Layer Size {200, 210, ..., 390, 400}

Hyperparameters Search Space CNN LSTM SAE

Input Dimension {300, 325, 350, ..., 575, 600} 450 500 350
Optimizer {Adam, SGD, Adamax, Adadelta} Adam Adamax Adadelta

Learning Rate {0.001, 0.002, 0.01, 0.05, 0.1} 0.002 0.002 1.0

Decay {0.00, 0.01, 0.02, ..., 0.50} 0.50 0.20 0.30

Batch Size {30, 40, 50, ..., 120, 130} 150 170 130

Activation Function {softsigh, tanh, elu, selu} [tanh; selu; elu; selu || selu] | [tanh; tanh; tanh; tanh || elu] | [elu; selu; selu; softsign; tanh || elu]
Dropout {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} [0.2; 0.1; 0.4; 0.5] [0.1; 0; 0.1; 0; 0.1, 0.5] [0.1; 0.0; 0.0; 0.0]

140
6; 32; 128; 32]
9;9; 11; 15]
[3;2;1; 2]

150

160

[170; 290; 170; 90; 250]

[330; 290; 270; 250; 220]

listening-to-alexa- conversations-heres-what-to-do
marketsandmarkets.com/

SmartHomePrivacyProject/DeepVCFingerprinting
H. Abdullah, W. Garcia, C. Peeters, P. Traynor, K. R. B. Butler, and J. Wilson

.2019.

[7]
(8]

[n.d.]. Smart Speaker Market, Worth USD 11.79 Billion by 2023. https://www.

[n.d.]. Voice Command Fingerprinting with Deep Learning. https://github.com/

[9]

Practical Hidden Voice Attacks against Speech and Speaker Recognition Systems.

In Proc. of NDSS’19.
K. Abe and S. Goto. 2016. Fingerprinting Attack on Tor Anonymity Using
Learning. In Proc. of Aisa Pacific Advanced Network (APAN).

A.R. Sadeghi, and A. Selcuk Uluagac. [n.d.]. Peek-a-Boo: I see your smart
activities, even encrypted! ([n. d.]). https://arxiv.org/pdf/1808.02741.pdf.

A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu, M. Conti,

(10]
Deep

(1]

home

264

A. Alshehri, J. Granley, and C. Yue. 2020. Attacking and Protecting Tunneled
Traffic of Smart Home Devices. In Proc. of ACM CODASPY 20.

N. Apthorpe, D. Y. Huang, D. Reisman, A. Narayanan, and N. Feamster. 2019.
Keeping the Smart Home Private with Smart(er) IoT Traffic Shaping. In Proc. of
PETS’19.

M. Backes, G. Doychev, M. Durmuth, and B. Kopf. 2010. Speaker Recognition in
Encrypted Voice Streams. In Proc. of ESORICS’10.

B.Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray, and I. Ray. 2018. Behavioral
Fingerprinting of IoT Devices. In Proc. of Workshop on Attacks and Solutions in
Hardware Security.

S.Bhat, D. Lu, A. Kwon, and S. Devadas. 2019. Var-CNN: A Data-Efficient Website
Fingerprinting Attack Based on Deep Learning. In Proc. of PETS’19.

https://www.forbes.com/sites/kateoflahertyuk/2019/04/12/amazon-staff-are-listening-to-alexa-conversations-heres-what-to-do
https://www.forbes.com/sites/kateoflahertyuk/2019/04/12/amazon-staff-are-listening-to-alexa-conversations-heres-what-to-do
https://www.forbes.com/sites/kateoflahertyuk/2019/04/12/amazon-staff-are-listening-to-alexa-conversations-heres-what-to-do
https://www.forbes.com/sites/kateoflahertyuk/2019/04/12/amazon-staff-are-listening-to-alexa-conversations-heres-what-to-do
https://www.forbes.com/sites/kateoflahertyuk/2019/04/12/amazon-staff-are-listening-to-alexa-conversations-heres-what-to-do
https://www.marketsandmarkets.com/
https://www.marketsandmarkets.com/
https://github.com/SmartHomePrivacyProject/DeepVCFingerprinting
https://github.com/SmartHomePrivacyProject/DeepVCFingerprinting

WiSec °20, July 8-10, 2020, Linz (Virtual Event), Austria

[12]

[13]

[14]

[15]

[16]
[17]

[18

[19]

[21]

[22

[23

[24]
[25]
[26]

[27

[28]

[29]

[30]

(31

[32]

[33

[34]

[35

[36

[37]

C. Wang, S. Kennedy, H. Li, K. Hudson, G. Atluri, X. Wei, W. Sun and B. Wang

Input
Code
_—— I _———— — |
Encoder Decoder

Output

Input
Code
Dense
D D*D Softmax
_——— _———4
Encoder Classifier

Figure 10: The structure of our SAE. Encoder and code are trained in training (left) and used in classification (right).

Kevin P. Dyer, Scott E. Coull, T. Ristenpart, and T. Shrimpton. 2012. Peek-a-Boo,
I Still See You: Why Efficient Traffic Analysis Countermeasures Fail. In Proc. of
IEEE S&P’12.

J. Hayes and G. Danezis. 2016. K-Fingerprinting: A Robust Scalable Website
Fingerprinting Technique. In Proc. of USENIX Security’16.

D. Hermann, R. Wendolsky, and H. Federrath. 2009. Website Fingertinging:
Attacking Popular Privacy Enhancing Technologies with the Multinomial Naive-
Bayes Classifier. In Proc. of ACM Workshop on Cloud Computing Security.

M. Imani, M. S. Rahman, N. Mathews, and M. Wright. [n.d.]. Mockingbird:
Defending Against Deep-Learning-Based Website Fingerprinting Attacks with
Adversarial Traces. ([n. d.]). https://arxiv.org/abs/1902.06626.

H. Jafari, O. Omeotere, D. Adesina, H. Wu, and L. Qian. 2018.
Fingerprint Using Deep Learning. In Proc. of IEEE MILCOM’18.
M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright. 2016. Toward an Efficient
Website Fingerprinting Defense. In Proc. of ESORICS’16.

S. Kennedy, H. Li, C. Wang, H. Liu, B. Wang, and W. Sun. 2019. I Can Hear Your
Alexa: Voice Command Fingerprinting on Smart Home Speakers. In Proc. of IEEE
CNS’19.

K. Kohls, D. Rupprecht, T. Holz, and C. Popper. 2019. Lost Traffic Encryption:
Fingerprinting LET/4G Traffic on Layer Two. In Proc. of Wisec’19.

D. Kumar, R. Paccagnella, P. Murley, E. Hennenfent, J. Mason, A. Bates, and
M. Bailey. 2018. Skill Squatting Attacks on Amazon Alexa. In Proc. of USENIX
Security’18.

Y. LeCun, Y. Bengio, and G. E. Hinton. 2015. Deep Learning. Nature 521 (2015),
436 — 444.

M. Liberatore and B. N. Levine. 2006. Inferring the Source of Encrypted HTTP
Connections. In Proc. of ACM CCS’06.

M. H. Mazhar and Z. Shafiq. [n.d.]. Characterizing Smart Home IoT Traffic in the
Wild. ([n.d.]). https://arxiv.org/pdf/2001.08288.pdf.

N. Msadek, R. Soua, and T. Engel. 2019. IoT Device Fingerprinting: Machine
Learning based Encrypted Traffic Analysis. In Proc. of IEEE WCNC’19.

S.E. Oh, S. Sunkam, and N. Hopper. 2019. p-FP: Extraction, Classification, and
Predication of Website Fingerprints. In Proc. of PETS’19.

D. Opitz and R. Maclin. 1999. Popular ensemble methods: An empirical study.
Journal of Artificial Intelligence Research (1999).

A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Penekamp, K. Wehrle, and T.
Engel. 2016. Website Fingerprinting at Internet Scale. In Proc. of NDSS’16.
A.Panchenko, L. Niessen, A. Zinnen, and T. Engel. 2011. Website Fingerprinting in
Onion Routing Based Anonymization Networks. In Proc. of Workshop on Privacy
in the Electronic Society.

M. S. Rahman, P. Sirinam, N. Mathews, K. G. Gangadhara, and M. Wright. 2020.
Tik-Tok: The Utility of Packet Time in Website Fingerprinting Attacks. In Proc.
of PETS’20

V. Rimmer, D. Preuveneers, M. Juarez, T. V. Goethem, and W. Joosen. 2018. Auto-
mated Website Fingerprinting through Deep Learning. In Proc. of NDSS’18.

N. Roy, S. Shen, H. Hassanieh, and R. R. Choudhury. 2018. Inaudible Voice Com-
mands: The Long-Range Attack and Defense. In Proc. of 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI'18).

R. Schuster, V. Shmatikov, and E. Tromer. 2017. Beauty and the Burst: Remote
Identification of Encrypted Video Streams. In Proc. of USENIX Security’17.

V. Shamtikov and M. H. Wang. 2006. Timing Analysis in Low-Latency Mix
Networks: Attacks and Defenses. In Proc. of ESORICS’06.

A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren, and Y. Yarom.
2019. Robust Website Fingerprinting Through the Cache Occupancy Channel. In
Proc. of USENIX Security’19.

P. Sirinam, M. Imani, M. Juarez, and M. Wright. 2018. Deep Fingerprinting:
Understanding Website Fingerprinting Defenses with Deep Learning. In Proc. of
ACM CCS’18.

P. Sirinam, N. Mathews, M. S. Rahman, and M. Wright. 2019. Triplet Fingerprint-
ing: More Practical and Portable Website Fingerprinting with N-shot Learning.
In Proc. of ACM CCS’19.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R.
Fergus. 2014. Intriguing Properties of Neural Networks. In Proc. of ICLR’14.

V. Thangavelu, D. M. Divakaran, R. Sairam, S. S. Bhunia, and M. Gurusamy.
2019. DEFT: A Distributed IoT Fingerprinting Technique. IEEE Internet of Things
Journal (2019).

IoT Devices

265

[39] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky. 2020. Packet-
Level Signatures for Smart Home Devices. In Proc. of NDSS’20.

A. S. Uluagac, S. V. Radhakrishnan, C. Corbett, A. Baca, and R. Beyah. 2013. A
Passive Technique for Fingerprinting Wireless Devices with Wired-Side Obser-
vations. In Proc. of IEEE CNS’13.

T. Wang, X. Cui, R. Nithyannand, R. Johnson, and I. Goldberg. 2014. Effective
Attacks on Proable Defenses for Website Fingerprinting. In Proc. of 23rd USENIX
Security Symposium.

T. Wang and 1. Goldberg. 2017. Walkie-Talkie: An Efficient Defense Against
Passive Website Fingerprinting Attacks. In Proc. of USENIX Security’17.

X. Wang, S. Chen, and S. Jajodia. 2005. Tracking Anonymous Peer-to-Peer VoIP
Calls on the Internet. In Proc. of ACM CCS’05.

A. M. White, A. R. Matthews, K. Z. Snow, and F. Monrose. 2011. Phonotactic
Reconstruction of Encrypted VoIP Conversations: Hookt on Fon-iks. In Proc. of
IEEE S&P’11.

C. Wright, L. Ballard, F. Monrose, and G. M. Masson. 2007. Language Identification
of Encrypted VoIP Traffic: Alejandra y Roberto or Alice and Bob?. In Proc. of
USENIX Security’07.

C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Masson. 2008. Spot
me if you can: Uncovering spoken phrases in encrypted VoIP conversations. In
Proc. of IEEE S&P08.

Q. Xiao, M. K. Reiter, and Y. Zhang. 2015. Mitigating Storage Side Channels Using
Statistical Privacy Mechanisms. In Proc. of ACM CCS’15.

X. Yuan, Y Chen, Y. Zhao, Y. Long, X. Liu, K. Chen, S. Zhang, H. Huang, X. Wang,
and C. A. Gunter. 2018. CommandSong: A Systematic Approach for Practical
Adversarial Voice Recognition. In Proc. of USENIX Security’18.

G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu. 2017. DolphinAttack:
Inaudible Voice Commands. In Proc. of ACM CCS’17.

N. Zhang, X. Mi, X. Feng, X. Wang, Y. Tian, and F. Qian. 2019. Dangerous Skills:
Understanding and Mitigating Security Risks of Voice-Controlled Third-Party
Functions on Virtual Personal Assistant Systems. In Proc. of IEEE S&P’19.

X. Zhang, J. Hamm, M. K. Reiter, and Y. Zhang. 2019. Statistical Privacy for
Streaming Traffic. In Proc. of NDSS’19.

Y. Zhang, L. Xu, A. Mendoza, G. Yang, P. Chinprutthiwong, and G. Gu. 2019. Life
after Speech Recognition: Fuzzing Semantic Misinterpretation for Voice Assistant
Applications. In Proc. of NDSS’19.

[40]

[41]

[42]
[43]

[44]

[45

[46]

[47]

[48

[49

[50

[51

o
&,

APPENDIX

Tuned Hyperparameters. For the search space of each hyper-
parameter in Table 9 and Table 10, we represent it as a set. We
searched for learning rate and decay values if the optimizer is Sto-
chastic Gradient Decent (SGD). If the tuned optimizer is not SGD,
we used the default learning rate and decay provided by Keras.
For the activation functions, dropout, filter size and pool size, we
searched for hyperparameters at each layer. For each of these, the
tuned parameters we report in the table are presented as a sequence
of values by following the order of layers we presented in Fig. 8,
Fig. 9, and Fig. 10. For instance, for our CNN, the tuned activation
functions are tanh (1st Conv), elu (2nd Conv), elu (3rd Conv) and
selu (4th Conv). The selu after symbol || in the table means that
the second to last dense layer in our CNN uses selu as its activation
function. We did not include relu as one of the activation functions
in the search space. It is because relu maps all the negative values
(the sizes of all the incoming packets) to 0s, which is not suitable
for traffic analysis and has been pointed out in a previous study
[35]. Due to space limitation, we skip the tuned hyperparameters
in the binary format.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Voice Command Fingerprinting
	4.1 Automatic Traffic Collection Tool
	4.2 Data Format
	4.3 Neural Networks

	5 Encrypted Voice Traffic Datasets
	6 Attack Evaluation
	6.1 Closed-World: Outgoing & Incoming Traffic
	6.2 Closed-World: Incoming Traffic Only
	6.3 Open-World: Incoming Traffic Only

	7 A Defense against Fingerprinting
	8 Defense Evaluation
	9 Limitations and Future Work
	10 Conclusion
	References

