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Abstract  

Turbulent  mixing  is  a  physical  process  of  fundamental  importance  in  high-speed  premixed  !ames.  This  mix-  

ing  results  in  enhanced  transport  of  temperature  and  chemical  scalars,  leading  to  potentially  large  changes  in  

!ame  structure  and  dynamics.  To  understand  turbulent  mixing  in  non-reacting  !ows,  a  number  of  classical  

theories  have  been  proposed  to  describe  the  scaling  and  statistics  of  dispersing  !uid  particle  pairs,  including  

predictions  of  the  effective,  or  turbulent,  eddy  diffusivity.  Here  we  examine  the  validity  of  these  classical  the-  

ories  through  the  study  of  !uid  particle  pair  dispersion  and  eddy  diffusivity  in  a  highly  turbulent  premixed  

methane-air  !ame  at  a  Karlovitz  number  of  approximately  140.  Using  data  from  a  direct  numerical  simula-  

tion  and  a  higher-order  Lagrangian  tracking  algorithm,  particle  pair  centroids  are  seeded  at  different  initial  

temperatures  and  separations,  and  then  integrated  forward  in  time.  We  show  that  scaling  relations  and  results  

developed  for  pair  dispersion  in  non-reacting  !ows  remain  relevant  in  this  high-intensity  premixed  !ame,  and  

we  identify  the  impacts  of  heat  release  on  dispersion  and  eddy  diffusivity.  
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1.  Introduction  

Turbulence  leads  to  substantially  enhanced  

rates  of  scalar  mixing  in  a  wide  range  of  natural  

and  engineering  !ows.  This  enhanced  mixing  

is  especially  important  in  turbulent  premixed  
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combustion,  since  the  properties  and  evolution  

of  scalar  quantities  such  as  temperature  and  fuel  

mass  fraction  have  leading-order  effects  on  the  rate  

of  fuel  consumption  and  heat  release.  Moreover,  

in  many  high-speed  practical  applications  such  as  

scramjets  and  detonation  engines,  the  turbulence  

intensity  is  high  and  turbulent  mixing  can  substan-  

tially  alter  the  structure  of  the  !ame,  leading  to,  for  

example,  !ame  broadening,  distributed  burning,  

and  broken  reaction  zones  [1]  .  
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Although  turbulent  mixing  is  fundamentally  

an  advective  process  whereby  large  turbulence-  

induced  scalar  gradients  lead  to  more  rapid  

molecular  transport,  this  overall  process  is  often  

referred  to  as  simply  “turbulent  diffusion.” Begin-  

ning  with  the  foundational  work  by  Richardson  

[2]  ,  and  recognizing  the  fundamental  connection  to  

turbulent  advection,  a  common  approach  to  study-  

ing  turbulent  diffusion  has  been  to  examine  the  

dispersion,  or  separation,  of  pairs  of  !uid  parti-  

cles.  In  cases  where  particles  separate  more  rapidly,  

turbulent  diffusion  is  stronger,  and  Richardson  

[2]  predicted  that  the  turbulent  diffusivity  is  related  

to  the  4/3  power  of  the  distance  between  the  two  

particles.  This  relation  has  since  been  extensively  

studied  and  validated  in  a  variety  of  non-reacting  

turbulent  !ows  [3–9]  .  

Substantially  less  focus  has  been  placed  on  the  

connection  between  !uid  particle  dispersion  and  

turbulent  diffusivity  in  reacting  !ows.  Chaudhuri  

[10]  examined  the  dispersion  of  pairs  of  !ame  (as  

opposed  to  !uid)  particles  during  hydrogen-air  

premixed  combustion,  "nding  that  the  early-time  

behavior  of  the  particle  pairs  is  non-universal  and  

varies  based  on  the  temperature  of  the  isosurface  

on  which  the  !ame  particles  reside.  For  the  !uid  

particles  that  are  the  focus  of  the  present  study,  

however,  this  dependence  on  !ame  location  may  

not  be  as  strong,  particularly  at  high  turbulence  

intensities.  Indeed,  other  tests  of  classical  turbu-  

lence  theories  (such  as  the  Kolmogorov  hypotheses  

and  corresponding  scaling  laws)  have  shown  that  

turbulence  properties  during  high-speed  premixed  

combustion  are  generally  similar  to  those  found  in  

non-reacting  !ows  (e.g.,  [11–13]  ).  

In  the  present  study,  we  seek  to  understand  

whether  heat  release  affects  pair  dispersion  and  

turbulent  diffusion  in  highly  turbulent  premixed  

!ames,  and  whether  classical  theories  from  non-  

reacting  turbulence  remain  applicable  for  such  

conditions.  This  study  will  address  three  ques-  

tions  in  particular:  (i)  Are  classical  scaling  laws  

and  relations  derived  for  non-reacting  turbulent  

dispersion  applicable  in  high-speed  premixed  com-  

bustion?  (ii)  How  does  heat  release  affect  particle  

dispersion  and  the  applicability  of  classical  scaling  

laws  and  relations?  (iii)  How  does  turbulent  diffu-  

sion  vary  at  different  locations  within  a  premixed  

!ame?  

We  address  these  questions  by  tracking  pairs  

of  !uid  particles  in  a  direct  numerical  simula-  

tion  (DNS)  of  a  premixed  methane-air  !ame  with  

a  Karlovitz  number  (Ka)  of  roughly  140.  In  the  

following,  we  provide  background  on  the  study  

of  particle  pair  dispersion  and  describe  the  DNS  

and  analysis.  We  then  show  that  theories  devel-  

oped  for  pair  dispersion  in  non-reacting  !ows  are  

applicable  in  this  high-intensity  premixed  !ame,  

with  relatively  limited  impacts  of  heat  release  

on  dispersion  and  the  turbulent  effective  eddy  

diffusivity.  

2.  Background  

Fluid  particle  pairs  consist  of  two  in"nitesi-  

mal  parcels  of  !uid  whose  motions  are  determined  

by  the  local  instantaneous  !ow  velocity.  The  loca-  

tions  of  each  particle  are  denoted  x  (1)  (  t  )  and  x  (2)  (  t  ),  

where  t  =  0  corresponds  to  the  time  at  which  par-  

ticle  tracking  begins  (or  when  the  particles  are  re-  

leased).  The  instantaneous  displacement  between  

the  two  particles  is  D  (t)  =  x  (2)  (t)  − x  (1)  (t)  ,  where  

the  initial  displacement  is  D  0  =  D  (0)  and  the  initial  

separation  distance  is  D  0  =  |  D  0  |  .  The  relative  dis-  

placement  of  a  single  particle  is  R  =  D  − D  0  ,  and  

the  mean-square  relative  displacement  is  〈  R  2  〉  =  

〈|  D  (t)  − D  0  |  2  〉  ,  where  R  =  |  R  |  and  〈·〉  indicates  an  

average  over  all  tracked  pairs  in  a  !ow.  In  the  

present  analysis  of  premixed  !ames,  this  average  is  

taken  over  all  particle  pairs  released  with  a  centroid  

at  a  particular  value  of  the  temperature.  

The  temporal  scaling  of  〈  R  2  〉  changes  as  particle  

pairs  evolve  and  separate.  At  very  small  times,  par-  

ticles  evolve  ballistically  and  at  intermediate  times  

they  enter  the  Richardson  range,  which  is  analo-  

gous  to  the  inertial  range  identi"ed  by  Kolmogorov  

[14]  .  At  large  times,  the  particles  in  a  pair  become  

decorrelated  and  independent  of  their  initial  sepa-  

ration,  thus  entering  the  diffusive  range  described  

by  Taylor  [15]  .  Each  of  these  ranges  are  outlined  in  

the  following  sections.  

2.1.  Ballistic  range  

At  very  small  times,  particle  velocities  are  

roughly  constant  [16]  .  If  D  0  % η,  where  η =  

(ν3  /ε)  1  /  4  is  the Kolmogorov length scale  given  kine-  

matic  viscosity  ν and  the  average  rate  of  turbulence  

kinetic  energy  dissipation  ε,  then  this  will  hold  for  

times  0  ≤ t  ' t  0  ,  where  t  0  =  D  
2  /  3  
0  /ε  1  /  3  is  the  Batche-  

lor  time,  de"ned  as  the  eddy  turnover  time  at  the  

length  scale  of  the  initial  particle  separation.  If  

D  0  ' η,  then  the  velocities  will  be  roughly  constant  

in  the  range  0  ≤ t  ' t  η [14]  ,  where  t  η =  (ν/ε)  1  /  2  is  

the  Kolmogorov  time.  While  a  pair  of  particles  is  in  

this  range,  their  displacement  can  be  approximated  

by  a  Taylor  expansion  about  t  =  0  as  [17]  

D  (t)  =  D  0  +  δv  0  t  +  
1  

2  
δa  0  t  2  +  O  

(
t  3  ) ,  (1)  

where  δv  0  =  ∂  D  (t  )  /∂t  |  t=0  and  δa  0  =  ∂  2  D  (t  )  /∂t  2  |  t=0  
are,  respectively,  the  relative  velocity  and  acceler-  

ation  at  t  =  0  .  The  mean-square  relative  displace-  

ment  in  the  ballistic  range  is  thus  given  by  

〈
R  2  〉(t)  =  〈  δv  0  · δv  0  〉  t  2  +  〈  δv  0  · δa  0  〉  t  3  +  O  

(
t  4  ).  (2)  

For  very  small  times,  the  leading  order  term  is  dom-  

inant,  and  the  t  2  dependence  of  〈  R  2  〉  is  a  character-  

istic  feature  of  particles  separating  in  the  ballistic  

range.  
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2.2.  Richardson  range  

If  the  initial  separation  of  the  particles  is  much  

less  than  the  energy  injection  scale,  eddies  larger  

than  D  0  will  advect  the  particles  together,  changing  

their  position  in  space  but  not  the  relative  distance  

between  the  pair.  By  the  locality  hypothesis  [2]  ,  

only  eddies  of  a  size  similar  to  the  separation  

distance  are  expected  to  be  effective  at  changing  

the  relative  distance  between  particles.  If,  addi-  

tionally,  D  0  % η and  t  is  large  enough  such  that  

initial  conditions  have  been  forgotten,  or  if  D  0  ' η
and  the  later  time  separation  distance  is  in  the  

inertial  range,  Kolmogorov’s  second  hypothesis  of  

scale  similarity  applies,  assuming  a  large  enough  

Reynolds  number  [14]  .  Consequently,  it  can  be  

assumed  that  the  statistics  will  depend  only  on  the  

length  scale  and  ε.  By  taking  the  time-dependent  

distance  between  two  particles,  D  (t)  =  |  D  (t)  |  ,  

as  the  length  scale  and  combining  it  with  ε,  the  

turbulent  diffusivity  is  given  as  [2]  

K  
(〈

D  2  〉) =  k  0  ε  1  /  3  〈D  2  〉2  /  3  
,  (3)  

where  k  0  is  a  dimensionless  constant.  This  relation  

is  known  as  the  four-thirds  law  and  is  attributed  

to  Richardson,  who  arrived  at  it  experimentally,  

and  to  Obhukhov,  who  derived  it  using  similar  

arguments  to  those  presented  here  [2,14,18]  .  This  

law  is  analogous  to  the  Kolmogorov  four-"fths  law  

for  the  scaling  of  third  order  structure  functions  

[14]  and  states  that  the  diffusivity  increases  with  

separation  distance.  

The  scaling  of  〈  R  2  〉  (  t  )  in  the  Richardson  range  

can  be  obtained  by  combining  Eq.  (3)  with  Ein-  

stein’s  de"nition  of  !uid  particle  diffusivity,  given  

as  [19]  

K  
(〈

D  2  〉) =  
1  

6  

d  
〈
D  2  

〉

dt  
.  (4)  

Integrating  this  de"nition  using  Eq.  (3)  yields  
〈
R  2  〉(t)  =  gεt  3  ,  (5)  

where  g  is  the  dimensionless  Richardson  constant.  

Although  g  has  traditionally  been  dif"cult  to  mea-  

sure  precisely  [4]  ,  recent  estimates  have  ranged  from  

roughly  0.5  to  0.6  [20–25]  .  In  order  to  accurately  

determine  g  ,  there  must  be  a  large  separation  of  

scales,  thus  requiring  a  suf"ciently  high  Reynolds  

number  in  the  !ow.  

In  addition  to  the  predicted  t  3  scaling  of  〈  R  2  〉  

in  the  Richardson  range,  both  Richardson  [2]  and  

Batchelor  [16]  provided  analytical  predictions  for  

the  distribution  of  relative  separation  distances  R  .  

In  particular,  Richardson  predicted  that  the  proba-  

bility  density  function  (pdf)  of  R  ′  =  R/  〈  R  2  〉  1  /  2  ,  de-  

noted  p  (  R  ′  ,  t  ),  should  obey  the  isotropic  diffusion  

equation  [2,14]  

∂ p(R  ′  ,  t)  

∂t  
=  

1  

R  ′  2  

∂  

∂R  ′  

[
R  ′  2  K (R  ′  ,  t)  

∂ p(R  ′  ,  t)  

∂R  ′  

]
,  (6)  

which  can  be  solved  [24]  as  

p(R  ′  ,  t)  =  αR  ′  2  exp  
(
− βR  ′  2  /  3  ) ,  (7)  

where  α =  117  and  β =  5  .  44  .  By  contrast,  Batche-  

lor  predicted  a  Gaussian  distribution  for  p  (  R  ′  ,  t  )  by  

arguing  that  integration  over  the  velocity  amounts  

to  an  application  of  the  central  limit  theorem  [16]  .  

In  practice,  for  non-reacting  !ows,  the  Richardson  

solution  in  Eq.  (7)  has  been  observed  at  interme-  

diate  times,  and  a  Gaussian-like  distribution  has  

been  observed  at  later  times  outside  the  Richard-  

son  range  [4,26]  .  

2.3.  Diffusive  range  

At  very  long  times,  the  particles  in  each  pair  be-  

come  decorrelated  and  spread  according  to  single  

particle  statistics.  Practically,  Taylor  [15]  showed  

that,  in  this  “diffusive” range,  the  mean-square  

separation  between  two  particles  increases  linearly  

with  t  ,  and  there  is  no  dependence  on  the  initial  

separation.  Here  we  track  particle  pairs  over  suf-  

"ciently  long  durations  to  capture  the  scaling  of  

〈  R  2  〉  in  both  the  ballistic  and  Richardson  ranges,  

but  only  begin  to  approach  this  diffusive  range  scal-  

ing.  However,  it  will  be  seen  that  the  Gaussian-like  

prediction  for  p  (  R  ′  ,  t  )  from  Batchelor  is  approxi-  

mately  recovered  at  long  times  in  high-intensity  tur-  

bulent  premixed  !ames,  consistent  with  observa-  

tions  in  non-reacting  turbulence  [26]  .  

3.  Direct  numerical  simulation  

A  direct  numerical  simulation  (DNS)  

of  premixed  methane-air  combustion  has  

been  performed  by  solving  the  compressible  

reactive-!ow  Navier-Stokes  equations  [27]  us-  

ing  Athena-RFX  [28,29]  .  This  code  solves  the  

governing  equations  on  a  "xed,  equispaced,  three-  

dimensional  (3D)  mesh  using  the  unsplit  corner  

transport  upwind  scheme  [30,31]  with  a  nonlinear  

HLLC  Riemann  solver  and  piecewise-parabolic  

spatial  reconstruction.  Periodic  forcing  at  the  scale  

of  the  domain  width,  L  ,  is  performed  throughout  

the  entire  domain  and  has  been  con"rmed  to  pro-  

duce  statistically  stationary  turbulent  !ames  [29]  .  

Overall,  the  simulation  has  third-order  spatial  

and  second-order  temporal  accuracy.  A  19-step  

reduced  chemical  mechanism  [32]  is  used  to  model  

stoichiometric  methane-air  combustion  at  atmo-  

spheric  conditions.  All  physical  parameters  used  

to  initialize  and  setup  the  simulations  are  shown  in  

Table  1  .  

The  computational  domain  consists  of  an  un-  

con"ned  prismatic  box  with  an  aspect  ratio  of  

1  × 1  × 16,  with  periodic  boundaries  in  all  three  di-  

rections  prior  to  ignition;  this  con"guration  has  

been  described  in  numerous  previous  studies  (e.g.,  

[11,13,29,33]  ).  Turbulence  develops  in  the  domain  

for  one  large-scale  eddy  turnover  time  τL  (see  
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Table  1  
Physical  model  parameters  of  the  premixed  methane-air  
!ame  DNS  examined  in  the  present  study.  

L  0.70037  cm  Domain  width  
T  r  300  K  Unburnt  temperature  
P  r  1.01325  × 10  6  erg/cm  3  Unburnt  pressure  
ρr  1  .  12  × 10  −3  g/cm  3  Unburnt  density  
δf  4  .  38  × 10  −2  cm  Laminar  thermal  width  
S  f  37.2  cm/s  Laminar  !ame  speed  

*  2  .  05  × 10  −1  cm  Unburnt  integral  scale  
U  ′  *  785  cm/s  Unburnt  integral  vel.  
τL  5  .  922  × 10  −4  s  Eddy  turnover  time  
Da  0.19  Damköhler  number  
Ka  142  Karlovitz  number  

ε 1.181  × 10  9  erg/g  s  Energy  dissipation  rate  
ηr  1  .  382  × 10  −3  cm  Unburnt  Kolm.  length  
ηp  1  .  734  × 10  −2  cm  Burnt  Kolm.  length  
t  ηr  1  .  174  × 10  −5  s  Unburnt  Kolm.  time  
t  ηp  6  .  340  × 10  −5  s  Burnt  Kolm.  time  
Re  T r  87  Unburnt  Reyn.  number  
Re  T p  28  Burnt  Reyn.  number  

Table  1  )  before  a  planar  laminar  !ame  with  a  nor-  

mal  direction  along  the  z  axis  is  introduced  near  the  

center  of  the  domain.  After  ignition,  the  z  bound-  

ary  conditions  are  switched  to  be  zero-order  extrap-  

olation,  allowing  !ow  into  and  out  of  the  domain,  

while  the  x  and  y  boundaries  remain  periodic.  

The  simulation  domain  is  discretized  using  

256  × 256  × 4096  grid  cells,  giving  a  resolution  of  

2  .  7  × 10  −3  cm.  This  provides  half  a  grid  cell  per  un-  

burnt  Kolmogorov  scale,  ηr  ,  and  six  grid  cells  per  

burnt  Kolmogorov  scale,  ηp  (see  Table  1  ).  This  also  

corresponds  to  16  grid  cells  per  laminar  !ame  ther-  

mal  width  δf  ,  which  was  found  in  previous  studies  

[29]  to  be  suf"cient  for  resolving  the  !ame  when  

thin  radical  regions  are  largely  absent,  as  is  the  case  

in  the  present  methane-air  !ame.  The  simulation  is  

run  for  one  τL  prior  to  ignition  and  is  then  run  for  

another  one  τL  prior  to  starting  data  collection.  At  

this  point,  data  are  output  at  a  high  frequency  to  al-  

low  the  calculation  of  Lagrangian  trajectories;  the  

data  collection  occurs  over  roughly  5  τL  .  

Using  the  3D  volumes  of  velocity  output  by  the  

DNS,  !uid  particles  are  tracked  using  a  Lagrangian  

algorithm  [33,34]  .  Each  particle  is  evolved  in  time  

using  4th  and  5th  order  Runge-Kutta  time  integra-  

tion  to  check  accuracy;  the  5th-order  results  are  

used  in  the  present  analysis.  Spatial  and  temporal  

interpolations  are  performed  using  Akima  splines,  

giving  at  least  2nd  order  accuracy.  

The  centroids  of  particle  pairs  are  seeded  uni-  

formly  in  spanwise  (i.e.,  x  − y  )  planes  at  speci"c  

values  of  the  temperature  along  the  z  direction.  The  

particle  pairs  are  centered  at  300,  600,  1000,  1400,  

1800,  and  2100  K,  giving  results  that  span  the  un-  

burnt  reactants,  !ame  region,  and  burnt  products,  

as  well  as  within  the  preheat  zone  where  mixing  is  

strongest.  At  each  centroid,  three  pairs  of  particles  

are  seeded  in  the  x,  y  ,  and  z  directions,  with  ini-  

tial  pair  separations  of  D  0  /ηr  =  1/8,  1/4,  1,  4,  16,  

and  32.  In  total,  we  examine  65,536  particle  pairs  

at  each  temperature  for  each  initial  separation,  re-  

sulting  in  over  14  million  trajectories  in  the  present  

study.  

Each  particle  pair  is  tracked  for  5  τL  ,  corre-  

sponding  to  roughly  three  thermal-width  !ame  

crossing  times  t  f  =  δf  /S  f  =  1  .  2  ms.  The  analysis  is,  

however,  focused  almost  entirely  on  times  less  than  

t  f  ,  suggesting  that  the  present  results  are  indicative  

of  particle  behavior  within  the  !ame.  In  particular,  

t  ηp  ,  corresponding  to  the  approximate  end  of  the  

ballistic  range,  is  nearly  20  times  smaller  than  t  f  ,  

and  the  integral  time  scale  t  *  ,  roughly  correspond-  

ing  to  the  end  of  the  Richardson  range,  is  nearly  1.5  

times  smaller.  As  a  result,  only  0.23%  of  particles  

with  initial  centroids  at  300  K  reached  a  tempera-  

ture  of  1800  K  (roughly  corresponding  to  the  end  

of  the  region  of  peak  heat  release)  by  t  ηp  and  28%  of  

these  particles  reached  this  temperature  by  t  *  .  For  

the  higher  centroid  temperature  of  1400  K,  only  

37%  of  particles  reached  1800  K  by  t  ηp  ,  with  81%  

by  t  *  .  Thus,  many  of  the  particles  remain  within  the  

!ame  for  the  duration  of  the  ballistic  and  Richard-  

son  ranges,  both  of  which  end  before  the  character-  

istic  !ame  crossing  time  t  f  .  

4.  Results  and  discussion  

4.1.  Particle  dispersion  scaling  and  statistics  

The  time  evolution  of  〈  R  2  〉  for  particle  pairs  re-  

leased  with  an  initial  separation  in  the  z  direction  

is  shown  in  Fig.  1  .  Results  for  initial  separations  in  

the  x  and  y  directions  are  similar  and  are  not  shown  

here.  In  Fig.  1  (a),  〈  R  2  〉  is  normalized  by  ηp  ,  and  time  

is  normalized  by  t  ηp  ,  both  taken  in  the  products  

(see  Table  1  ).  At  small  times,  〈  R  2  〉  for  each  initial  

separation  exhibits  a  t  2  scaling,  as  expected  in  the  

ballistic  range,  with  relatively  small  differences  in  

the  time  evolution  based  on  the  temperature.  There  

is,  however,  an  offset  in  〈  R  2  〉  that  depends  on  tem-  

perature,  with  smaller  values  of  〈  R  2  〉  occurring  for  

higher  temperatures.  This  is  most  likely  due  to  dif-  

ferences  in  the  temperature-dependent  local  viscos-  

ity  at  the  particle  centroids,  while  the  subsequent  

evolution  of  〈  R  2  〉  is  largely  independent  of  temper-  

ature.  

At  intermediate  times,  the  displacement  speed  

begins  to  increase,  as  indicated  by  an  increasing  

slope  of  〈  R  2  〉  in  Fig.  1  (a).  Of  the  initial  separations  

shown,  only  those  with  the  largest  D  0  appear  to  

approach  the  t  3  scaling  predicted  in  the  Richard-  

son  range.  Pairs  with  a  smaller  D  0  achieve  a  greater  

than  t  3  scaling  due  to  the  relatively  low  Reynolds  

number  of  the  present  case  and  the  resulting  in!u-  

ences  from  the  ballistic  (i.e.,  short  time)  and  diffu-  

sive  (i.e.,  long  time)  ranges.  Within  this  range,  how-  

ever,  there  is  relatively  little  observed  temperature  
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Fig.  1.  Uncompensated  (a)  and  compensated  (b)  time  se-  
ries  of  the  mean-square  relative  separation  〈  R  2  〉  (  t  )  for  par-  
ticle  pairs  initially  separated  in  the  z  direction  with  cen-  
troids  at  six  different  temperatures.  Results  are  shown  for  
initial  displacements  D  0  /ηr  =  1  /  8  (solid  lines),  1  (dash-  
dot  lines)  and  16  (dashed  lines).  The  horizontal  dash-dot  
line  in  (b)  indicates  the  estimated  value  of  the  Richardson  
constant  reported  by  Sawford  et  al.  [25]  ,  g  =  0  .  6  .  

dependence  beyond  that  which  may  be  attributed  

to  variations  in  the  temperature-dependent  viscos-  

ity.  At  large  times,  displacements  approach  linear  

scaling  with  t  as  particle  pairs  become  decorrelated  

in  the  diffusive  range  and  lose  their  dependence  on  

the  initial  separation.  

The  compensated  mean-square  relative  dis-  

placements,  〈  R  2  〉  /  εt  3  ,  shown  as  a  function  of  t  /  t  0  
in  Fig.  1  (b),  indicate  the  time  period  over  which  

the  Richardson  range  scaling  is  present.  Here  we  

use  a  constant  value  of  ε for  all  separations  and  

temperatures,  since  it  has  been  shown  that  ε is  

only  weakly  dependent  on  temperature  in  high-  

Karlovitz  number  !ames  [13]  .  The  theory  from  

Richardson  [2]  states  that,  if  D  0  for  a  pair  of  parti-  

cles  is  in  the  inertial  range,  then  the  corresponding  

compensated  displacement  will  decrease  linearly  

until  leveling  off  at  a  plateau.  This  linear  decrease  

is  expected  from  the  ballistic  scaling  [16]  ,  and  the  

plateau  corresponds  to  the  scaling  from  Eq.  (5)  in  

the  Richardson  range.  

Fig.  2.  Local  scaling  exponent  of  〈  R  2  〉  (  t  )  from  
d  log  (  〈  R  2  〉  )/  d  log  (  t  )  for  D  0  /ηr  =  16  (a).  Panel  (b)  
shows  local  linear  "ts  of  

[〈 ˆ  R  2  〉(t)  /ε  
]1  /  3  (red  lines),  giving  

the  Richardson  constant  as  g  1/3  .  

Both  the  linear  decrease  and  the  plateau  are  

evident  in  Fig.  1  (b)  for  D  0  /ηr  =  16  .  By  contrast,  

〈  R  2  〉  /  εt  3  for  particle  pairs  with  smaller  D  0  falls  be-  

low  the  plateau  before  approaching  it  from  below.  

This  is  because  the  separation  distance  must  be  in  

the  inertial  range  to  be  on  the  plateau,  and  since  the  

separation  is  increasing  it  will  eventually  be  in  the  

inertial  range.  In  order  to  hit  the  plateau,  however,  

the  separation  distance  must  be  in  the  inertial  range  

after  the  particles  have  forgotten  their  initial  con-  

ditions;  i.e.,  after  the  max  of  t  η and  t  0  ,  but  before  

they  become  affected  by  large-scale  effects.  Thus,  if  

the  particles  do  not  separate  fast  enough,  they  may  

never  approach  the  plateau,  as  shown  in  Fig.  1  (b)  

for  the  pairs  with  smaller  initial  separations.  

The  range  over  which  the  t  3  scaling  of  〈  R  2  〉  

applies  is  further  indicated  by  the  derivatives  of  

log  (  〈  R  2  〉  )  with  respect  to  log  (  t  )  for  D  0  /ηr  =  16  ,  

shown  in  Fig.  2  (a).  For  t  <  t  ηp  ,  〈  R  2  〉  at  all  temper-  

atures  scales  as  t  2  .  Between  t  0  and  t  *  ,  by  contrast,  

〈  R  2  〉  for  all  temperatures  approaches  the  Richard-  

son  range  scaling  of  t  3  .  Due  to  the  relatively  low  

Reynolds  number  of  the  present  case,  the  range  

over  which  this  t  3  scaling  applies  is  relatively  small,  
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and  there  does  seem  to  be  a  temperature  depen-  

dence  of  the  scaling  exponent.  In  particular,  the  

intermediate  temperature  results  more  completely  

reach  the  t  3  scaling,  while  the  lowest  and  high-  

est  temperatures  have  scaling  exponents  below  and  

above  three,  respectively.  For  t  >  t  *  ,  the  scaling  ex-  

ponents  decrease  as  the  particle  pairs  enter  the  dif-  

fusive  range.  

The  Richardson  constant  g  can  be  estimated  

from  the  curves  of  
[〈 ˆ  R  2  

〉
(t)  /ε  

]
1  /  3  shown  in  Fig.  2  (b),  

where  ˆ  R  =  |  D  (t)  − D  0  − δv  0  t|  ,  as  a  function  of  t  

within  the  Richardson  range  [21,24,25]  for  D  0  /ηr  =  

16  .  The  subtraction  of  the  relative  velocity  δv  0  t  

is  required  to  reduce  the  impact  of  the  ballistic  

range  scaling  on  the  estimate  of  g  (for  further  de-  

tails,  see  [25]  ).  Given  the  relation  in  Eq.  (5)  ,  the  

slopes  of  these  curves,  shown  in  Fig.  2  (b),  give  

g  1/3  .  Estimates  of  g  for  initial  centroid  tempera-  

tures  within  the  !ame  (i.e.,  for  1000  K,  1400  K,  

and  1800  K)  are  between  0.55  and  0.70,  bracketing  

the  classical  non-reacting  value  g  =  0  .  6  estimated  

by  Sawford  et  al.  [25]  .  There  is  some  temperature  

dependence  of  this  constant,  however,  with  g  de-  

creasing  from  a  maximum  value  of  0.88  at  300  K  

to  0.34  at  2100  K.  This  indicates  that,  within  the  

Richardson  range  for  large  D  0  ,  the  scaling  relation  

in  Eq.  (5)  is  valid  in  high-intensity  turbulent  pre-  

mixed  !ames,  but  that  the  Richardson  constant  is  

temperature-dependent,  generally  decreasing  with  

increasing  temperature.  

The  pdfs  of  R  ′  in  Fig.  3  provide  a  test  of  the  

Richardson  prediction  in  Eq.  (7)  and  the  Gaussian-  

like  prediction  from  Batchelor.  At  intermediate  

times  in  Fig.  3  (a),  the  pdfs  for  each  temperature  are  

in  good  agreement  with  the  Richardson  prediction.  

The  pdfs  at  time  t/t  0  =  4  shown  in  Fig.  3  (a)  corre-  

spond  to  the  t  3  scaling  range  indicated  in  Fig.  2  ,  fur-  

ther  suggesting  that  we  do  capture  a  relatively  short  

Richardson  range  in  these  simulations,  despite  the  

low  Reynolds  number.  

By  contrast,  the  pdfs  at  t/t  0  =  25  in  Fig.  3  (b)  are  

in  much  closer  agreement  with  the  Gaussian-like  

pdf.  This  corresponds  to  times  greater  than  t  *  where  

we  would  expect  diffusive  range  behavior,  and  the  

recovery  of  the  Gaussian-like  pdf  in  Fig.  3  (b)  is  

consistent  with  prior  results  at  long  times  in  non-  

reacting  turbulence  [24,25]  .  It  should  be  noted  that  

there  is  no  apparent  temperature  dependence  of  

the  pdfs  in  Fig.  3  at  either  time,  and  the  results  

from  Richardson  and  Batchelor  thus  appear  to  be  

independent  of  the  location  in  the  !ame.  

Finally,  we  note  that  these  results  are  speci"c  

to  the  particular  type  of  conditioning  used  in  this  

analysis.  That  is,  we  examine  the  dispersion  and  

subsequent  evolution  of  !uid  particles  beginning  

at  the  same  location  within  the  premixed  !ame.  

However,  after  initialization,  the  particles  are  free  

to  then  separate  such  that  either  particle  may  re-  

enter  the  unburnt  reactants,  proceed  to  the  burnt  

products,  or  remain  within  the  !ame.  Fig.  4  shows  

Fig.  3.  Probability  density  functions  (pdfs)  of  R  ′  =  
R/  〈  R  2  〉  1  /  2  for  D  0  /ηr  =  16  at  (a)  t/t  0  =  4  and  (b)  t/t  0  =  
25  .  Gaussian  distributions  and  the  Richardson  prediction  
from  Eq.  (7)  are  also  shown.  

Fig.  4.  Compensated  time  series  of  〈  R  2  〉  (  t  )  condi-  
tioned  on  the  location  of  each  particle  at  t  =  t  f  in  ei-  
ther  the  unburnt  reactants  (  T  <  500  K),  !ame  region  
(500  K  ≤ T  ≤ 1800  K),  or  burnt  products  (  T  >  1800  K).  
Results  are  shown  for  initial  displacements  D  0  /ηr  =  1  /  8  
(solid  lines),  1  (dash-dot  lines)  and  16  (dashed  lines).  
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Fig.  5.  Turbulent  diffusivity  K  (  〈  D  2  〉  )  for  each  initial  sepa-  
ration  and  centroid  temperature.  Diffusivities  for  increas-  
ing  D  0  increase  along  the  direction  indicated  by  the  arrow.  
The  dashed  black  line  corresponds  to  the  Richardson-  
Obhukov  4/3  law  in  Eq.  (3)  .  

results  for  the  compensated  mean-square  relative  

displacements,  〈  R  2  〉  /  εt  3  ,  depending  on  whether  

each  particle  was  in  the  unburnt  reactants  (de"ned  

as  T  <  500  K),  burnt  products  (  T  >  1800  K),  or  

within  the  !ame  (500  K  ≤ T  ≤ 1800  K)  at  t  =  t  f  .  

In  general,  these  results  are  largely  consistent  

with  the  results  shown  in  Fig.  1  (b),  revealing  a  

dependence  on  the  "nal  locations  of  the  particles,  

although  there  is  still  a  general  correspondence  to  

classical  scaling  laws  in  the  ballistic,  Richardson,  

and  diffusive  ranges.  Further  conditioning  of  these  

results  is  left  as  a  direction  for  future  research.  

4.2.  Turbulent  diffusivity  

The  effective  eddy,  or  turbulent,  diffusivity  is  

computed  from  the  calculated  values  of  〈  D  2  〉  (  t  )  

for  each  temperature  and  initial  separation  using  

Eq.  (4)  .  Fig.  5  shows  that  K  (  〈  D  2  〉  )  increases  with  

〈  D  2  〉  and  approaches  the  Richardson–Obhukov  

four-thirds  scaling  law  from  Eq.  (3)  for  large  〈  D  2  〉  .  

Signi"cantly,  results  for  all  temperatures  and  ini-  

tial  separations  approach  this  scaling  law,  although  

there  is  a  persistent  difference  in  the  magnitude  

of  K  with  temperature.  In  particular,  K  is  largest  

for  small  temperatures,  corresponding  to  locations  

within  the  preheat  zone  of  the  !ame  where  mix-  

ing  is  strongest,  and  smallest  for  large  temperatures,  

corresponding  to  locations  in  the  fully  burnt  prod-  

ucts.  

From  a  modeling  perspective,  Fig.  5  suggests  

that  the  scaling  relation  between  particle  pair  dis-  

persion  and  turbulent  diffusivity  is  independent  of  

location  in  the  !ame  for  the  highly-turbulent  case  

examined  here,  but  the  magnitude  of  the  diffusiv-  

ity  does  vary  through  the  !ame.  This  indicates  that  

there  may  be  predictable  and  potentially  universal  

aspects  of  turbulent  mixing  in  high-speed  combus-  

tion.  However,  further  studies  spanning  a  broader  

range  of  !ow  con"gurations  and  turbulence  condi-  

tions  must  be  explored  before  predictability  or  uni-  

versality  can  be  fully  established.  

5.  Conclusions  

Using  data  from  a  DNS  of  a  highly-turbulent  

methane-air  premixed  !ame  and  a  Lagrangian  

analysis,  we  have  examined  the  dispersion  of  !uid  

particle  pairs  in  high-speed  premixed  combustion.  

In  general,  scaling  laws  and  statistical  relations  in  

the  ballistic,  Richardson,  and  diffusive  ranges  de-  

veloped  for  non-reacting  pair  dispersion  are  found  

to  remain  largely  valid  in  the  highly-turbulent  pre-  

mixed  !ame  examined  here.  In  particular,  despite  

the  relatively  low  Reynolds  number  of  the  present  

case,  we  observe  t  3  scaling  of  the  mean-square  rel-  

ative  separation  〈  R  2  〉  and  a  correspondence  with  

the  Richardson  pdf  for  particle  displacements  in  

Eq.  (7)  ;  both  of  these  results  indicate  the  recovery  

of  the  Richardson  range  in  the  simulations.  

The  Richardson  constant  was  estimated  us-  

ing  the  cubic  local  slope  approach  and  found  to  

have  a  value  of  g  ≈ 0.6  for  intermediate  temper-  

atures  within  the  !ame,  in  agreement  with  previ-  

ous  non-reacting  studies  at  higher  Reynolds  num-  

bers.  For  lower  and  higher  temperatures,  however,  

the  Richardson  constant  was  found  to  be  larger  

and  smaller,  respectively,  than  the  classical  value.  

Finally,  turbulence  diffusivity  was  found  to  ap-  

proach  the  Richardson-Obhukov  law  in  Eq.  (3)  for  

all  initial  temperatures  and  separations,  although  

the  magnitude  of  the  diffusivity  was  temperature  

dependent.  

Overall,  this  study  suggests  that  many  aspects  

of  !uid  particle  dispersion  and  turbulent  diffusiv-  

ity  are  largely  similar  to  non-reacting  results  for  tur-  

bulent  premixed  !ames  at  high  turbulence  intensi-  

ties.  We  do  observe  a  dependence  on  temperature  

and,  hence,  location  in  the  !ame,  but  many  of  these  

differences  may  be  due  solely  to  changes  in  the  lo-  

cal  viscosity  and  dissipation  rate,  both  of  which  are  

temperature  dependent.  This  suggests  that  classical  

non-reacting  theories  of  turbulence  and  models  for  

turbulent  mixing  may  be  relevant  at  such  highly-  

turbulent  conditions.  Future  research  is,  however,  

required  to  expand  the  generality  of  these  results  

for  other  fuels  and  !ame  con"gurations,  including  

realistic  !ow  con"gurations  where  mean  shear  is  

present,  as  well  as  to  examine  the  applicability  of  

non-reacting  results  as  the  turbulence  intensity  de-  

creases.  
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