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Abstract—Through smartphone apps, drivers and passengers
can dynamically enter and leave ride-hailing platforms. As
a result, ride-pooling is challenging due to complex system
dynamics and different objectives of multiple stakeholders. In this
paper, we study ride-pooling with no more than two passenger
groups who can share rides in the same vehicle. We dynamically
match available drivers to randomly arriving passengers and also
decide pick-up and drop-off routes. The goal is to minimize a
weighted sum of passengers’ waiting time and trip delay time. A
spatial-and-temporal decomposition heuristic is applied and each
subproblem is solved using Approximate Dynamic Programming
(ADP), for which we show properties of the approximated value
function at each stage. Our model is benchmarked with the one
that optimizes vehicle dispatch without ride-pooling and the one
that matches current drivers and passengers without demand
forecasting. Using test instances generated based on the New York
City taxi data during one peak hour, we conduct computational
studies and sensitivity analysis to show (i) empirical convergence
of ADP, (ii) benefit of ride-pooling, and (iii) value of future
supply-demand information.

Index Terms—Mobility on Demand (MoD), supply-demand
uncertainty, ride-pooling, spatial-temporal decomposition, ap-
proximate dynamic programming

I. INTRODUCTION

Increasing population and environmental issues have led
to various shared-mobility forms, including carsharing and
ride-hailing services whose demand drastically increased in
the past decade (see [1]). Ref. [2] thoroughly reviewed the
literature related to ride-hailing including vehicle dispatching,
scheduling, routing, and solution methods mainly based on
optimization and heuristics. In this paper, we study an on-
demand ride-pooling problem over a finite time horizon, and
the decisions include matching drivers with passengers, as well
as finding optimal routes for drivers to pick up and drop off
matched passengers. We focus on the case where no more
than two groups of passengers may share rides at the same
time in one vehicle, and prove value function properties of
the dynamic problem characterized by an ADP approach.

To show the benefit and feasibility of pooling rides in prac-
tice, [3] considered the minimum fleet problem and conducted
large-scale simulation to show that by pooling rides, the taxi
fleet size in the Manhattan area of the New York City can
be reduced by 40% without delaying existing trips. Ref. [4]
studied ride-pooling effects under different pricing schemes
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and demonstrated the importance of pooling rides for revenue
maximization. Reported in [5], UberPOOL has saved $4.5
million worth in fuel costs in India since launch. Large-scale
operations of ride-pooling were considered in [6]-[10] with
the deployment of simulation, parallel computing, machine
learning, stochastic control, and combinatorial optimization
techniques. Their studies demonstrated the possibility and ef-
fectiveness of implementing on-demand ride-sharing at scale.

In this paper, we model the ride pooling problem as a mul-
tistage stochastic program and incorporate different objectives
of individual passenger groups and drivers, measured based
on waiting time and trip delay. If directly using dynamic
programming, the number of states will grow exponentially
as the number of drivers and passengers grows, resulting
in the “curse of dimensionality” issue. We employ ADP
[11] for the tractability of modeling system dynamics. While
dynamic programming calculates value functions exactly, ADP
exploits an approximation of the value function at each stage
[12]. Furthermore, by examining spatial-temporal structures
of supply-demand data, we propose a heuristic decomposition
scheme and only apply ADP to each subproblem to achieve
better computational performance. Our goal is to show the
convergence of ADP, benefit of pooling rides, and value of
supply-demand information via testing real-world instances
using different parameters.

A. Literature Review

Ride-hailing operations are closely related to several fun-
damental mathematical problems including matching, vehicle
routing, service scheduling, and queueing networks. Different
from the traditional static settings in these problems where
demands and supplies are pre-given, the drivers (supply) and
passengers (demand) randomly arrive in on-demand ride-
hailing systems, urging the use of stochastic and dynamic
methods to ensure solution quality. Ref. [13] deployed a
rolling horizon approach and matched drivers with random
passenger arrivals in each horizon without optimizing detailed
routes. Refs. [14] and [15] considered algorithms for online
matching and the latter specifically focused on the ride-sharing
application. Ref. [16] utilized queueing networks to develop
a continuous linear program that accounted for the time-
varying property of arrival rates of passengers and drivers in
different locations. In addition to matching and routing, pricing
and vehicle rebalancing are two other important issues that
can significantly affect operational efficiency and ride-hailing



revenue, and they were studied in [16]-[22] and in [23]-[28],
respectively.

Incorporating ride-pooling into ride-sharing can increase
modeling and computational complexity, but its benefit has
been justified in the previously mentioned work, such as [3]-
[5]. The study of pooling rides among deterministic sets of
drivers and passengers dates back to [29], who used spatial-
temporal networks for pooling taxi rides. Ref. [30] applied
heuristics to develop routing strategies in taxi-pooling. Ref.
[31] assumed that all the trips are known in advance, and
introduced a “shareability” network and a graph-based model
to quantify the benefits of ride pooling.

In practice, mobility-on-demand (MoD) or autonomous
mobility-on-demand (AMoD) systems ubiquitously involve
information uncertainty. Refs. [8], [10], [23], [26], [28] em-
ployed queueing theories, machine learning, and/or stochas-
tic control to predictively position vehicles under random
spatial-temporal distributions of demand and supply. Ref. [32]
proposed a dynamic request-vehicle assignment heuristic and
a rebalancing policy for AMoD systems, and evaluated the
value of demand information through simulation. On the other
hand, the design and operations of MoD/AMoD systems need
to account for diverse objectives of drivers, passengers and
system operators, whose benefits may be conflicting. Ref. [31]
optimized ride-pooling by considering the maximum number
of trips that can be shared and the maximum delay customers
can tolerate. Ref. [33] characterized quality of service in ride-
sharing through potential trip delay probability. They proposed
a predictive positioning method to improve quality of service.
Under demand uncertainties, [27], [34] proposed data-driven
distributionally robust optimization schemes to ensure service
fairness.

The difficulty of involving uncertainty in MoD- or AMoD-
related system optimization including ride-pooling optimiza-
tion, is to design scalable solution approaches. When consid-
ering vehicle routing in ride-pooling, the problem is closely
related to the Vehicle Routing Problem (VRP) [35], Dial-
a-Ride [36] and Pickup and Delivery problems [37], [38],
which are NP-hard in general. To implement on-demand ride-
pooling strategies, [6], [7], [9], [10], [39] avoided explicitly
modeling road networks and routing decisions, and deployed
simulation, local search, reinforcement learning, parallel com-
puting to handle real-world large-scale data. Specifically, [40]
aimed to dynamically assign passenger requests and exploited
hybrid simulated annealing to obtain quick solutions. Ref. [7]
presented a heuristic approach for real-time high-capacity ride-
hailing that dynamically produced routes given randomly ar-
riving demand requests and uncertain vehicle distribution. Ref.
[6] proposed a real-time online simulation and parallelization
framework to study taxi ride-pooling at scale. Refs. [41] and
[42] developed a taxi-sharing system to handle passengers’
real-time requests.

B. Purposes of the Paper

This paper models dynamic ride-pooling as a multistage
stochastic program and uses ADP ( [11], [43]) for solving
the problem through a heuristic decomposition scheme. Refs.

[44]-[46] are representative literature of applying ADP for
solving stochastic VRP and other transportation problems. We
incorporate multiple objectives including minimizing the total
passengers’ waiting time, trips’ delay time, and unsatisfied trip
requests, to improve quality of service. Note that although the
drivers’ profit is not specified in the objective function, the
passenger-oriented objective can potentially increase drivers’
profit when more passengers’ requests are satisfied. In the
numerical studies, a reward formula is built to calculate and
reflect drivers’ benefits based on the results of passengers’
reward. Moreover, this paper only focuses on how to dynami-
cally match and route drivers and passengers while assuming
given fixed prices.

The main objective is to study the structure of value
functions in ADP. Specifically, we explore the linkage between
value functions in different states and prove the monotonicity
result. We also heuristically decompose time horizon and
service region into sub-periods and sub-regions to allow more
efficient implementation. We conduct numerical studies on
instances generated from real-world data, and consider two
benchmark approaches: (i) myopic, which solves a determin-
istic linear program in each stage and implements the solutions
in a rolling horizon way and (ii) NotPool, which does not allow
ride pooling.

C. Structure of the Paper

The remaining of this paper is organized as follows. In
Section II, problem settings and a deterministic formulation
are introduced. In Section III, we develop the ADP algorithm
for on-demand ride-pooling with no more than two passenger
groups in any shared ride. In Section IV, a spatial-temporal
decomposition heuristic is described for implementing ADP.
In Section V, we test a diverse set of instances and present
computational results. We conclude the paper and state future
research directions in Section VI

II. PROBLEM DESCRIPTION AND FORMULATIONS

A. Assumptions and Notation

The paper has the following assumptions: (i) the capacity
of each vehicle is fixed and pre-given (which we set as 4 seats
excluding the driver seat in our later computational studies);
(ii) every vehicle can be shared by at most two passenger
groups; (iii) at the end of each time stage, passengers with
no matches quit the system. Assumptions (i) and (iii) can be
justified by practical implementation and customer behavior,
respectively. Assumption (ii) is a limitation and it is mainly
made for modeling simplicity. In practice, UberPool and Lyft
Line Apps can allow more than two passenger groups to share
rides at the same time. When the number of ride-sharing
groups increases from 2 to 3, combinations of pickup and
drop-off sequences increase drastically, while the trip delay
time and customer waiting time can be longer. On the other
hand, pooling more rides can potentially increase revenue and
we will explore the more general case without Assumption (ii)
in our future research.



In our problem, for every driver, an attribute vector a
corresponds to a state such that:

a = (Oavﬁaa N(L)a

where o, denotes the current location of the driver, £, is an
ordered list containing all the places that the driver will visit,
and N, is the number of passengers that are currently assigned
to the driver. Note that |£,| is O at minimum (when a vehicle
is empty) and 3 at maximum (when a vehicle is occupied
by a passenger group and needs to pick up another passenger
group). Let A! be the set of all possible driver attribute vectors
a, whose |L,| = ¢ in stage ¢, for ¢ = 0,1,2,3. We denote
A = AV U AL U AZ U A? for each stage t € {1,...,T}.

For every passenger request, an attribute vector b also
corresponds to a state following:

b= (op,dy, Np),

where o, denotes the origin of passenger(s), d;, denotes the
destination of passenger(s), and N, denotes the number of
passengers in the request. Let B; be the set of all possible
passenger attribute vectors b in stage t, R;, be the number of
drivers with attribute vector a in stage t, and Ry = (Rtq)ac 4,
be the resource state vector in stage ¢. Similarly, let Dy, be
the number of passengers with attribute b in stage ¢, and D; =
(D )ben, be the demand state vector in stage t.

Define variable x;,;, as the number of drivers with attribute a
assigned to passengers with attribute b in stage ¢, and variable
T1q0 as the number of drivers with attribute a not assigned to
any passengers in stage t. Let d € D represent a decision index
referring to either assigning a driver to pick up a particular
group of passengers or instructing that driver to wait at the
current position, i.e., D = B; U {(Z)} Note that there may
be other actions such as vehicle rebalancing and empty-car
rerouting, which are not considered in this paper. Variable
Xt = (%tad)ac A, dep denotes the overall decision vector in
stage .

B. Objective Function

Our objective function accounts for passengers’ waiting
time and trip delay time, described in detail as follows.

1) Passengers’ Waiting time: Passengers’ waiting time is
measured using the distance that the assigned driver moves
from his/her current location to the passengers’ origin. For
every pair of driver with attribute a = (04, L4, N,) and
passenger group with attribute b = (0, ds, N}), the waiting
time is:

Wap =] 04 — 0y ||, (1)

where o,, 0, denote the driver’s and passenger’s current loca-
tions, respectively. The norm || - || measures the travel distance
(or time) from o, to 0.

2) Passengers’ Delay time: Passengers’ delay time would
only occur when they start to share rides with other passengers.
The distance of detour is used to measure the delay time (i.e.,
the difference between the original individual travel time and
the total travel time if they share rides). For each pair of
passenger groups to be dropped off by the same driver, we
denote the driver’s current location by o1, the first group of

passengers’ destination by dy, the second group of passengers’
origin and destination by o, and ds, respectively. Which
passenger group to drop off first is decided based on respective
shortest paths. Specifically, when || da — o2 ||<|| d1 — 02 ||,
the driver will first drop off the second group of passengers.
In this case, only the first group of passengers is delayed, and
the delay time is

dap =[[ 02 =01 ||+ [ d2 =02 [[ + [ dr —d2 || = || dr =01 | -

2)

When || d2 — 02 ||>]|| d1 — 02 ||, the driver will first drop

off the first group of passengers. In this case, the total delay
time of both groups of passengers is

dav = |loa—o1|[+|[di—o2|—|di—o1]
+ [di—o2|[+|di—daf = da—o02]. (3)

The above prepossessing procedures are detailed in Algo-
rithm 1.

Algorithm 1 Preprocessing

1: For each pair of driver a = (04, L4, Ng) and passenger b = (op, dp, Np)
Use Google map API to calculate travel time and waiting time wg, following Eq.
(D).
if H do — 02 HSH dy — o2 H then

Calculate delay time d,; following Eq. (2);
else

Calculate delay time dp following Eq. (3).
end if

»

Nk

C. Current-stage-based Deterministic Formulation

In each stage ¢, using current drivers and passengers, one
can solve the following linear program to myopically match
drivers with passenger groups and determine pick-up and drop-
off routes, where set S = {(a,b) € Ay X By | Ny + Ny, < ¢1}
is defined as the set of all possible driver-passenger assign-
ments constrained by vehicle capacities.

min A Z TtabWab + A2 Z ztabdab + M Z Tiab
aG.A(t)U.A% ae_Atl GQA?UA%
(a,b)€S (a,b)es bEB:
+N D wma+P Y [ Du— D T (4)
a€AJUAL beBy ac AQUAL
(a,b)¢S

s.t. Z Tiab + Trap = Ria, Ya € Ay 5)
deBy

Z Ttab < Dy, Vb € Bt ©6)
ac Ay

ZTtad > 0, Va € Ay, d € D. (7

In the objective function (4), the first two terms are a weighted
sum of passengers’ total waiting time and trip delay time
where A1 + Ao = 1, A1, Ao > 0, and the last three terms
denote the penalty costs associated with assigning unavailable
drivers, exceeding vehicle capacities, and unsatisfied passen-
gers’ demand, respectively. Constraint (5) is flow conservation
for drivers, i.e., the total number of drivers is capacitated.
Constraint (6) is flow conservation for passengers, i.e., the
number of drivers assigned to passengers with certain attribute
is no more than the total number of passengers with that



attribute. Since the constraint matrix composed by (5) and (6)
is totally unimodular, integral solutions can be attained at all
extreme points of the above linear program (4)—(7) (see [47]).
Therefore, constraint (7) only requires that all the decision
variables are non-negative, yielding a linear program to solve
for each stage ¢, given updated Ry, and Dy, at the beginning
of the stage.

III. APPROXIMATE DYNAMIC PROGRAMMING

The traditional dynamic programming algorithm approxi-
mates value functions around pre-decision states, and therefore
it requires the calculation of expectation over future informa-
tion. We propose an ADP variant (see [12]) to approximate
value functions around post-decision states.

A. Dynamic Process

Denote the state of the system in stage ¢ as Sy = (R, Dy),
called the pre-decision state, meaning that .S; is measured be-
fore making a decision in stage t. The exogenous information
is denoted as W; = ﬁtb, where ﬁtb is the number of new
passengers with attribute b known between stages ¢t — 1 and ¢.
The dynamic process in which the system evolves is

(S()vx()asgv Wla Slaxlvsfa W27527 <. .,St,Xt7Sf7 .. ~7ST)~

Here S} represents the state after taking decision x;, known
as the post-decision state (see [12]). Denote S§ = (RY, DY)
where RY = (RY,)uea, . and Df = (D} )sep,. which rep-
resent the “post-decision” values of R, and D,, respectively.
Next, we describe how to construct post-decision states of
resource Y and demand DY .

1) Post-decision State: For each pre-decision state S; =
(R:, Dy), define a transition function a™ that acts decision x;
on the attribute vector a € A; and let @’ = a™(a,x;), Va €
Ay. Define set A; , with o’ = (0, L], N.) € Ay 5.

In each stage t, consider all pairs (a,b) € A, x By
that have ;4 > 0. Recall that b = (0p,dp, Np), and set
Og = 0, [,:1 =L, U{op,dp}, N(; = N, + Np. If |£;‘ =3,
the route is determined using the shortest-path strategy in
Section II-B2, and the driver is not available until the current
trip is completed. To better represent post-decision states,
consider an indicator function:

5a( ) 1, if a(a,x;) =a
ala,Xt) = .
’ 0, otherwise.

Then, the post-decision resource state Rf = (Rf,)ac4,, i
updated using

= D Y Sur(@X) et V' € Arpe ()
a€A, dED
The post-decision demand state DY = (D, )yep, , is updated
using
Dy =Dp— Y Tiap, Vb E By. 9)
a€Ay

The state transition function S follows SM:*(S;, x;) =
S¥ = (R7, DY) where the post-decision resource and demand
state RY, DY follow (8) and (9), respectively.

2) Pre-decision State: For a post-decision state S} =
(RZ, DY), we gather the exogenous information Wy, from
stages ¢ to ¢t + 1. To determine the pre-decision state Sy =
(Ri11,Dyy1), define a transition function oW that cap-
tures the physical movement of vehicles with attribute a =
(04, La, Ny) from t to t + 1. That is, a’ = a™'W(a), Va €
Ay . where @’ = (o), L, N!) € Apy1.

When L, is nonempty, let [; be the first element in £, (i.e.,
the first location that driver is going to visit). After finding
the shortest path from o, to I, let o], be where the driver
arrives if he/she moves one stage from o, to [; following
the shortest path. Let £, = £, — {l1} if o, = ;. Also, let
N! = N, — N, if the driver drops off a passenger group
with attribute b = (0, dp, Np). Similarly, consider an indicator

function:
1
(Sa a) = ’
(@) {O,

Then the pre-decision resource state Ry1 = (Ri11,0)acA i
is updated using

Rit1,00 = Z bar (@) R, Va' € Ait1.

LLEAt,z

if aW(a)=a

otherwise.

(10)

Because unsatisfied demand is immediately lost in every stage
(i.e., Assumption (iii)), the pre-decision demand state Dy, =
(Dt+1,b)beB,,, can be updated as

Diy1p = Wiyr, Vb € Biyy. (1D

The state transition function SM:W is SMW (52 W, 1) =
St+1 = (Ri+1, Dia1), where the pre-decision resource and
demand state R;y1, D;4; follow (10) and (11), respectively.

B. Dynamic Programming Equation

The objective function in problem (4)—(7) is denoted by
C(St, x¢). Then the Bellman equation is conventionally given
by:

Vi(St) = min {C(St, x¢) +YE[Vig1(Se11)]S:]}¢12)

xt€X¢

where + is the discount factor, E[V;41(St+1)|S:] denotes the
conditional expectation of objective value at time ¢ 4 1 given
the current state S;, and the feasible region X; consists of
constraints (5)—(7).

Using the post-decision state, Eq. (12) can be decomposed
into two steps:

Vi(Sy) = xnéiﬁ {Ce(Se,xe) +ViE (S}, (13)
ViE(SY) = EVig1(Sir1)|SE]. (14)

Next, we configure an approximation function V;(S¥) for
value function V;*(S7) around post-decision state S¥, which
yields the following optimization problem:

Fi(S;) = nin {C(St,x¢) +YVi(SE)} . (15)

The basic algorithmic strategy is as follows: At iteration n, a
sample path w™ is randomly chosen, and then the following



optimization problem for every time stage t = 0,1,...,7" is

solved under the current approximation:

Fy(5¢) = min {Co(SP xe) AV H(SM (ST x0)) } -
t t (16)

After obtaining the optimal solution x}', compute the post-
decision state S;"" = SM(SP x;) and the next pre-decision
state S = SMW (S, Wy (w™)). Then, solve the optimiza-
tion problem (16) again to continue the process from stage ¢
to stage ¢+ 1 until reaching stage T'. After that, advance to the
next iteration n + 1. The algorithm is terminated if it reaches
a given maximum number of iterations (denoted by N) and
also the objective function becomes stable.

To efficiently computing (16), consider an approximation
function that is linear in Ry,, given by:

v, NS = VNRY) va,Rm,

= E Uta § § 50/ aaXt Ltad
a/

_ ~n—1

= Z th aM (a, xt)xtad
a

Then the optimization problem (16) becomes

Ci(S{', x¢) +'YZZ taMax Ttad

a7)
What is left now is how to update the coefficient 7 * in the
linear approximation function. Note that 7} " is the slope of
F(S7) with respect to Rf,, which can be computed using:
1 8F(St) aF(St> aRta
() = =
b 8Rt 1,a aRta/ aRt 1,a

Flso = i,

a’ €A
where OF(S;)/0R;, are the dual variables associated with

constraints (5) in model (17), denoted by v}},. We have
ORww |1, ifad =adW(ai_,)
8Rt lLa ~ 10, otherwise.

This means that if from stage ¢ — 1 to stage ¢, attribute ai_;
evolves to a’ = a-W (a¥_,), then we only need to optimize
over variable v4;,, and update ;" ; ., = vy, . After obtaining
@f_L «» the coefficient can be updated using

—1

=l —an-1)v",,, + o100, (18)

—n,
Vt—1,a5-1

where o, _1 is a stepsize in iteration n. The above steps of
ADP are summarized in Algorithm 2.

C. Value Function Properties

Suppose that the state space is equipped with a partial order
=, then a value function is monotone if it satisfies

S =S = Vi(Sy) < Vi(S)), vVt <T. (19)

A common example of < is the generalized component-wise
inequality. In the ADP approach, our state can be decomposed
into S; = (R, D;). For any two states Sy = (R, D¢), S =

Algorithm 2 ADP

1: TInitialize value functions Vto, t=0,1,...,

2: while n < N do

3: Randomly pick a sample path w™.

4: fort =0,1,...,7T do

5: Gather all drivers’ state A, and passengers’ requests B;. For each pair
of a € A; and b € By, implement Algorithm 1 to obtain parameters

T and state S3. Set n = 1.

Wab, dab-
6: Solve the optimization problem (16). Let x} be the optimal solution, and
v, 4 be the dual associated with the resource constraint.
7. Update the value function using (18).
8: Update the state:
SJ: n SA{,E(SZL’xt)7 St"-}—l — SIM’W(Sf’",Wt(wn>).
9: end for
10: n:=n+4+1
11: end while

(R}, D;), we have

S, =<8/ < R, <R, D =D, (20)

The monotonicity of the value function indicates that we have
more resource in stage ¢ + 1 if starting with more resource in
stage ¢, regardless of the outcome of the random information
Wt+1.

Theorem 1. Let = be the generalized component-wise in-
equality over all dimensions of the state space. The optimal
value function is monotone based on (19) and (20).

The detailed proof of Theorem 1 is provided in the online
e-companion.

We continue exploring quantitative properties of ADP value
functions. The linear program in each time ¢ is:

min Z (Ctad + YV 401 (4,0)) Ttad
a€A,
deD

st (5)=(T),

where cyqq is the cost related to each action w;.q, and
vlLaM(a Q) 18 the approximate value function. (We abbreviate

Uy aM (q,q) A Vgq 1N OUT later discussion.) Using specific cost

terms in the objective function (4), the dual of the above linear
program is

max Z Vo Riq + Z 1y Dypy 21
a€AL beB;

st Va4 iy < Mwep — P+ 0%, Ya € A9, (a,b) € S (22)
Vo 4y < Mwap + Aadap — P + v, Ya € A}, (a,b) € S

(23)

Vo + py < N 4+, Ya € ADU AL, (a,b) €S (24)

Vo +py < M + 0%, Ya g A2U AL be B (25)

va < gy, Va € A (26)

up <0, Vb € By, 27)

where v, is the Lagrangian multiplier (dual variable) associ-
ated with constraint (5), and p is the dual variable associated
with constraint (6).

Based on strong duality and complementary slackness, the
following result reveals the relationship between dual variables
and value functions.

Lemmal 1) Ifag AJUA} orae AU A} (a,b) ¢
S, Vb € By, then v, = vy
2) If a € A, then
Vo > Mily (g p)es {MWab — P+ 707 15



3) if a € A}, then
Vg 2 MiNg(q,p)e5 { AN Wab + A2day, — P+ vl }.

Please refer to the online e-companion for the detailed proof
of Lemma 1.

IV. TEMPORAL AND SPATIAL DECOMPOSITION

Two decomposition schemes based on time and location are
proposed to improve the solution time of the ADP approach.

A. Temporal Decomposition

When making driver-passenger matching and dispatching
decisions, it is often unnecessary to incorporate the uncertainty
over the entire operational time horizon. On the other hand,
as most trips end within shorter time frame, it becomes
important to determine the best time duration to plan ahead.
To implement the ADP algorithm, we propose a temporal
decomposition scheme (see Figure 1) to train data.

New information arrives New information arrives

Initial state l Initial state Initial state l Final state
Algorithm 2 Algorithm 2
Updated state S, Updated state Sy
\ Y J L Y
Period 1 Period H

Fig. 1. Procedure of Temporal Decomposition

Algorithm 3 describes the algorithmic details for temporal
decomposition. The overall time horizon is divided into H
periods with each period having T stages, and then the ADP
approach is implemented in a rolling-horizon manner. That is,
for each period, we perform Algorithm 2 on the corresponding
T stages to find an optimal solution and implement it in the
current period to see where the drivers are after actions are
taken and new information arrives. Then, we move one period
forward, update the system state, and implement Algorithm 2
again. Note that for each period h = 1, ..., H, the procedures
are divided into “Training” and “On-demand Solution” (ODS)
phases, of which the former can be done offline using historical
data and the latter accounts for the time needed for on-demand
response. In Section V, we compare the CPU time taken by
“training” versus “ODS” for different-sized problems.

Algorithm 3 Temporal Decomposition

Divide the whole operational time into H periods.

forh=1,...,H do
Training: Implement Algorithm 2 on period h with initial state Sp.
ODS: Update drivers’ status according to the optimal solution and correspond-
ing passengers’ information at the end of period h.
Set the end state of the current period as the initial state for next period:
S() = ST.

end for

hal S e

> W

B. Spatial Decomposition

We further divide a given service region into L sub-regions
along with a subset of drivers in each sub-region given their
initial locations. Drivers belong to each region only serve for

trips within that region. For trips across regions, we create
a (L + 1)-th sub-region, namely, the Cross region and its
own subset of drivers whose travel trajectories are “mostly”
(specified later) across sub-regions based on historical data.
Take New York City for example. It has five boroughs clearly
defined by its daily taxi data, labeled from 1 to 5 in Figure 2.
Moreover, we consider a sixth Cross region enclosed by the
red dashed box.

Fig. 2. Map and Spatial Decomposition of New York City

Specifically, we determine the subset of drivers that serve
the Cross region using the percentage of cross-region trips
at the initial state. Given initial state Sy = (Rg, Dy), for all
l =1,...,L, denote the number of drivers in region [ by
r1, the number of trips starting from region [ by d;, and the
number of trips starting from region [ but ending in other
regions by e;. Then for drivers in region [, we randomly choose
ri g drivers to serve region L+ 1 and keep the rest r;(1— ¢-)
drivers to serve region [, for all [ = 1,..., L. Also, denote
the corresponding initial state in region ! by So; = (Ror, Doi)
where |Ry;| = rl(l—;—i), |Doi| = di—ey, foralll =1,...,L,

L L
and |Ro,p41| =222 g [Dopal =221 e

We illustrate the drivers’ assignment in Table I, and provide
the details of spatial decomposition heuristic in Algorithm 4.

TABLE I
ILLUSTRATION OF DRIVERS’ ASSIGNMENT

Region In-region drivers | Out-region drivers
l:].,...7L Tl(L—%) ’l“l%
L+1 Do rlZ—’L' N.A.

Algorithm 4 Spatial Decomposition

1: Given initial state So, choose 7;(1 — %) drivers in region [ to form the initial
state So; for I = 1,..., L. Also, form the initial state So,r 41 using the rest
SE o <L drivers.
forl=1,...,L+1do

Implement Algorithm 3 on region I with initial state So; = (Roz, Doy).-
end for

seN

Note that Step 3 in Algorithm 4 can be performed in parallel
given the spatial-independence of all L + 1 sub-regions.



V. NUMERICAL RESULTS

We first test randomly generated small instances to con-
figure parameter for implementing ADP (see the online e-
companion), and then use instances generated based on real-
world data collected from New York City taxi daily operations
to perform numerical tests. We use the New York City data for
one peak-hour operations (from 8am to 9am). Two benchmark
policies are described below.

o Benchmark 1 (B1): Solve the linear program (4)—(7) for
the current stage given information of existing drivers and
passengers. Repeat the process for each stage in a rolling
horizon way.

o Benchmark 2 (B2): Apply decomposition-based ADP
without ride-pooling.

A. Experimental Setup

According to the parameter configuration results, we set
M =1000, N =1000, P = 500, weight A = (0.2,0.8), and
stepsize o, = 1/n in each iteration n of the ADP algorithm.
Our test instances are based on data from the New York City
Taxi and Limousine Commission (TLC) (see [48]). The taxi
trip records include pick-up and drop-off dates/times, loca-
tions, trip distances, itemized fares, rate types, payment types,
and driver-reported passenger counts. There are 265 different
locations among all five boroughs (i.e., Manhattan, Bronx,
Brooklyn, Queens and Staten). In Table II, we summarize
the total number of trips in one month within each borough
(see Row ‘In’), going out of each borough (see Row ‘Out’),
and their approximate ratios. Note that the number of trips
within Cross region is the sum of out-region trips in all the
five boroughs. Staten has much fewer trips compared to other

TABLE I
TRIPS DISTRIBUTION AMONG BOROUGHS
Manhattan ~ Bronx Brooklyn Queens Staten Cross
In 301618 30833 296324 271349 123 162155
Out 35639 9747 84577 32158 34 N.A.
Ratio 1 0.1 1 1 N.A. 0.5

boroughs, and thus we eliminate this borough in our tests. The
ratio of trips among all remaining five sub-regions is roughly
1:0.1:1:1:0.5, which is used to generate their associated drivers
in the initial state.

We first test a finite horizon with each stage length being 5
minutes. The data from 1/1/17 to 6/30/17 (181 days) during
the rush hour 8am-9am, and is divided into 12 stages. For
each stage and each location, we fit the historical data into the
negative binomial distribution, and then generate test instances.
The average trip duration of all the data is 14.7 minutes with
a standard deviation 1 minute and 42 seconds, and the average
number of trips per hour is 1523. Drivers’ profits are calculated
using a base fee $2.5 plus $2 per mile similar to New York
City Taxi fares. Let |.A4] and |B| be the total number of drivers
and passengers in all five regions, respectively. We vary their
values to change instance sizes in our later analysis.

B. In-sample Tests and Results of Smaller Instances

First, we focus on time period 8:00am-8:25am and Manhat-
tan borough with 69 nodes. Let T' = 5, | A| = 10, 20. In Table
I, we display waiting time (WT) and delay time (DT) per
passenger per stage, profits per driver per stage and proportion
of unsatisfied demand (UD) per stage.

TABLE III
COMPARISON OF THE RESULTS OF ADP, B1, AND B2

G Metrics ADP B1 B2
WT (min.) 4.33 4.11 4.29

DT (min.) 1.54 1.28 0.00

10 54 Profits ($) 9.72 9.67 4.34
UD (%) 18.77% 19.82% 33.25%

WT (min.) 4.72 4.26 4.55

DT (min.) 2.01 1.56 0.00

10 72 Profits ($) 10.43 9.83 4.31
UD (%) 18.14% 19.46% 31.57%

WT (min.) 3.62 3.29 4.8

DT (min.) 0.21 0.17 0.00

20 56 Profits ($) 5.73 5.90 4.06
UD (%) 0.68% 1.01% 6.62%

WT (min.) 4.22 3.73 5.08

DT (min.) 0.49 0.25 0.00

20 73 Profits ($) 6.27 6.08 4.03
UD (%) 0.81% 1.27% 7.76%

In Table III, when the number of drivers increases from
10 to 20, the proportion of unsatisfied demand for ADP drops
from above 18% to below 1%, showing much better quality of
service. Comparing ADP, B1 and B2, we observe that ADP
always yields the lowest unsatisfied demand rate, while B2
always has the highest rate. However, ADP may result in
longer waiting time than B1 because the drivers pick up more
passengers. Although B2 always has zero delay time (since it
does not allow for pooling), it performs badly in waiting time,
drivers’ profits and unsatisfied demand. When we increase |B]
while keeping |.A| unchanged, almost all the above results in
Table III increase slightly.

In summary, having more drivers can lead to better perfor-
mance in waiting time, delay time and proportion of unsatisfied
demand, although profits per driver could become slightly less.

C. Results of Larger Instances

We then test the decomposition-based ADP for all five sub-
regions of New York City for 1-hour ride-pooling operations.
Let T =4, H = 3 (and thus 12 stages in total with each stage
being 5 minutes). In Table IV, the results in each region are
aggregated by a weighted sum where the weight is the ratio
of drivers in each region.

We focus on the case where |A| = 108, |B| = 393 and
use bar charts to illustrate the overall performance in Table
IV as well as the performance in each region separately. In
Figure 3, z-axis denotes different approaches. From Table
IV, when the driver-passenger ratio is approximately 1:4, the
proportion of unsatisfied demand is around 6%, produced
by ADP, whereas it drops to below 0.3% when the driver-
passenger ratio becomes 1:2. This result can provide guidelines
for ridesharing operators to control driver-passenger balance



TABLE IV
RESULTS OF ADP, B1, B2 WHEN T' = 4, H = 3 FOR ONE-HOUR TAXI
OPERATIONS IN NEW YORK CITY

Al |B] Metrics ~ ADP B1 B2
WT (min.) 6.31 6.33 9.26

DT (min.) 0.31 0.29 0.00

108 286 pofits ($) 557 551 4.06
UD (%) 028% 034%  2.40%

WT (min.) 8.53 8.81 9.19

DT (min.) 3.39 3.51 0.00

108~ 393 Profits ($) 7.32 7.26 4.21
UD (%) 6.05% 6.17% 11.92%

WT (min.) 4.09 4.20 5.16

DT (min.) 0.00 0.00 0.00

180 283 Profits ($) 3.92 3.92 3.50
UD (%) 0.00% 0.00% 0.02%

WT (min.) 4.06 4.17 5.66

DT (min.) 0.11 0.11 0.00

180 389 Profits ($) 4.31 4.33 3.69
UD (%) 0.15% 0.16%  0.40%

with desired quality-of-service levels. From Figure 3, in all five
regions, ADP yields the lowest unsatisfied demand rate, where
B2 always gains the longest waiting time and the highest
unsatisfied demand. On the other hand, across different re-
gions, Brooklyn has the best results with the lowest unsatisfied
demand rate and shortest delay time, while Cross region yields
the longest waiting and delay time because the related trips
usually have longer travel distances.

D. Value of Uncertainty

Now consider Manhattan borough and uncertain demand
over twelve time stages with each stage being 5-minute long
(i.e., 60 minutes). We first solve the problem containing the
first six stages (i.e., 30 minutes), update the state of the system,
and solve the problem for the later six stages. Alternatively,
we repeatedly solve the problem for every four/three/two
stages (i.e., 20/15/10 minutes) to further reduce the problem
dimension and the number of stages we “look ahead.” We use
|A| = 30, |B| = 120 and present the results of 7' =6, T =
4, T =3, T = 2 in Table V. The cases with T' = 4 and
T = 3 perform relatively better overall. Both cases with 7" = 6
and T = 2 have worse unsatisfied demand, and the latter
is much worse than the other three in all three approaches.
However, T" = 2 has slightly better waiting time, trip delay
time, and profit. These results agree on that it may not be
necessary to take into account the information 20 minutes
from now since the average trip duration is 14.7 minutes with
standard deviation being roughly 1 minute. However, if the
dispatcher only forecasts one or two stages’ future demand,
the unsatisfied demand rate is intolerably high, indicating the
importance of looking-ahead, stochastic policies.

We further test the model with each stage being one minute
to examine result sensitivity dependent on the granularity of
data. We consider demand during 8am to 8:30am (i.e., 30
stages) and look ahead 5-minute demand uncertainty each
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Fig. 3. Performance overall and in different regions

TABLE V
VALUE OF UNCERTAINTY RESULTS BY VARYING 7" AND H

T H Metrics ADP B1 B2
WT (min.) 3.94 3.54 447

6 2 DT (min.) 0.77 0.62 0.00
Profits ($) 7.49 7.34 4.10

UD (%) 2.90% 271% 15.67%

WT (min.) 3.77 3.70 497

4 3 DT (min.) 0.14 0.09 0.00
Profits ($) 6.21 6.17 4.14

UD (%) 0.54%  0.74% 6.11%

WT (min.) 5.00 5.02 7.81

34 DT (min.) 0.12 0.15 0.00
Profits ($) 5.67 5.72 3.88

UD (%) 0.09%  0.19%  7.50%

WT (min.) 2.33 2.34 2.57

6 DT (min.) 0.17 0.18 0.00
Profits ($) 8.36 8.40 4.50

UD (%) 29.71%  29.85%  43.58%

time, resulting in parameter setting 7' = 6, H = 5. We

compare the solutions with the ones in the previous case
having each stage being five minutes and use parameter setting
T = 2, H = 3 so that we also look ahead five minutes
each time. The corresponding results are displayed in Table
VI. We observe that cases with 1-minute stage length have
shorter waiting and delay time, but they have much higher and
unacceptable unsatisfied demand rates due to Assumption (i).



TABLE VI
VALUE OF UNCERTAINTY RESULTS BY VARYING TIME UNIT

T H Metrics ADP B1 B2
WT (min.) 0.75 0.81 0.66

6 5 DT (min.) 0.28 0.48 0.00
Profits ($) 3.17 3.16 2.68

UD (%) 81.3% 81.36% 83.97%

WT (min.) 2.86 2.89 2.93

) 3 DT (min.) 0.18 0.19 0.00
Profits ($) 9.24 9.1 4.51

UD (%) 28.32% 28.62% 45.29%

E. Computational Time

We end this section by showing the computational time for
different instances. First, in Table VII we report the CPU time
for solving instances having each stage being five minutes with
T =4, H = 3. As the decomposed ADP can be implemented
for each region in parallel, we record the maximum time
used by each of the five regions. Moreover, the training time
for each period is recorded separately in Columns “h = 17,
“h = 2” and “h = 37, and the on-demand solution time is
presented in Column “ODS”. All the training steps can be
performed offline while the on-demand implementation just
extracts the updated value functions to solve a linear program
in each stage, which only takes no more than 90 seconds for
the largest instance and it is almost linearly dependent on the
number of drivers and passengers. All times that exceed 3600-
second CPU time limit are labeled by N.A.

TABLE VII
TRAINING TIME AND ON-DEMAND SOLUTION (ODS) TIME (IN SECONDS)
[A] 18] h=1 h=2 h=3 ODS
285 83.62 83.85 82.03 12.26
108 390 149.51 149.63 148.85 11.58
498 354.58 351.82 35093 24.56
285 145.47 143.7 1432  10.09
180 390 402.18 400.9 403.48 22.14
498 861.76 82543 817.29 45.08
285 517.86 519.14 518.78 82.21
360 390 1354.97 1291.5 1290.5 90.01
498 N.A. N.A. N.A.  N.A.

Second, we compare the CPU time taken by the two settings
used in Section V-D. Specifically, when letting each stage
being five minutes (with 7" = 2 and H = 3), on average
the instances take 20.34 seconds, 18.28 seconds, and 22.37
seconds for training data in periods h = 1,2, 3, respectively,
and the on-demand computation only requires 2.01 seconds.
However, when each stage is one minute (with 7" = 6, H = 5),
based on the same 30-minute data, the ADP approach takes
around 2400 seconds for training in each period, and the ODS
phase requires 275.5 seconds. This also justifies our choice of
letting each stage being five minutes.

VI. CONCLUSIONS

We considered ride-pooling problem with no more than two
passenger groups sharing rides at the same time. We employed

the ADP approach to solve the problem dynamically and ex-
ploited properties of value functions. A decomposition heuris-
tic was developed to divide the whole space and operation
time into sub-regions and several periods. Numerical results
showed quick convergence and result stability of using ADP.
We compared ADP with two benchmarks, and demonstrated
that it can serve the most passengers among all, showing the
importance of including future demand uncertainty into ride-
pooling decision making. Also, ADP led to shorter waiting
time per passenger as compared to the benchmark with no
ride-pooling, showing the importance of pooling rides in ride-
hailing systems.

For future research, we plan to investigate ride pooling
problems allowing more than two passenger groups in the
same vehicle. One can also incorporate pricing and vehicle
relocation into the current operational model, to investigate
how they affect ride pooling strategies.
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Abstract

Through smartphone apps, drivers and passengers can dynamically enter and
leave ride-hailing platforms. As a result, ride-pooling is challenging due to com-
plex system dynamics and different objectives of multiple stakeholders. In this pa-
per, we study ride-pooling with no more than two passenger groups who can share
rides in the same vehicle. We dynamically match available drivers to randomly ar-
riving passengers and also decide pick-up and drop-off routes. The goal is to mini-
mize a weighted sum of passengers’ waiting time and trip delay time. A spatial-and-
temporal decomposition heuristic is applied and each subproblem is solved using
Approximate Dynamic Programming (ADP), for which we show properties of the
approximated value function at each stage. Our model is benchmarked with the one
that optimizes vehicle dispatch without ride-pooling and the one that matches current
drivers and passengers without demand forecasting. Using test instances generated
based on the New York City taxi data during one peak hour, we conduct computa-
tional studies and sensitivity analysis to show (i) empirical convergence of ADDP, (ii)
benefit of ride-pooling, and (iii) value of future supply-demand information.

This online companion provides proofs of some results omitted from the main body
of the paper. We also report some additional computational results. The numbered ref-
erences and citations correspond to those in the main paper, and all new expressions,
results, figures and tables are numbered contiguously following those in the main paper.

Proof of Theorem 1

Theorem 1 Let < be the generalized component-wise inequality over all dimensions of the state
space. The optimal value function is monotone based on (19) and (20).

Proof: Suppose that R, < R;, D; = D;. According to Proposition 3.1 in Jiang and Powell
(2015), to show V;(S;) < Vi(S]), we only need to verify

*Xian Yu and Sigian Shen are with Department of Industrial and Operations Engineering at the Univer-
sity of Michigan in Ann Arbor, USA. yuxian@umich.edu, sigian@umich.edu



(1) For every S;, S; with S; < 5], x; € D and W,,,, the state transition function f (i.e.,
the composition of SM"W and S**) satisfies

f (St xe, Wiga) = f(S[, e, Wiga).
(2) Forevery t <T,S;, S;with S, < S}, x, € D,
Ct(stuxt) S Ct(sziaxt)’ CT(ST) S OT(S%)

(3) For each t < T, R, and W, are independent.

First of all, (3) is true due to our assumption on W, ;. Because R, < R;,, state S; has
R;, — Ry, more drivers than state S;. To have x; (defined for state .S;) also be feasible under
state S; (i.e., it should satisfy the equality constraints (5)), we extend decision variable x;
to X; = (Ttad)ac A, dep for state S) as follows: for every a € A,

Ltab, lf d = b c Bt
Ttad = Tiad + Rzlfa — Rm, if d= (Z)
0, otherwise,

which means that x; is the same as x; for the number of drivers within R;, and the ex-
tended decision is to hold the extra R}, — R,, drivers (i.e., to assign no passenger to them).
We let

St+1 = f(St,Xn Wt+1) = (Rt+1, Dt+1)
S = f(S, %, W) = (Riq, Diyq)-

Since only the values of W, determine D, , we have D, = D;_,.

According to (8),
Rtxa/ = Z Z (5(1’(a7xt)xtad7 VCL/ S At,m
acA; deD
Ry =Y bula,&e)iag, Ya' € Ay,
a€Ay deD

Because x4 < Z10q, Wwe have Ry, < R?,, and furthermore R, < R}, due to the mono-
tonicity of transition function o'V

Therefore, S;+1 = Sit1/, which shows the monotonicity of transition function f.

On the other hand, because the reward function C,(S;, x;) is determined by (%14t ac A, beB,,
while (2;49)ac.a, does not contribute to C;(S;, x;), we have Cy(S;, x;) = Cy(S}, X;). This com-
pletes the proof.

Proof of Lemma 1
Lemmal 1. Ifa g AJUAjoraec AJUA], (a,b) €S, Ybe B, then v, = 7.

2. Ifa € A, then v, > miny(qp)es {\way — P + 0l };
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3.

Proof:
1.

ifa € A}, then v, > miny. g pes {AMwap + Aoday, — P + Y02 }.

If a ¢ AY U A}, then the constraints imposed on a are (25)—(27). Since M is a large
positive number, constraint (25) is redundant. To maximize the objective, we must
have v, = 7. The case of a € A} U A}, (a,b) € S, ¥b € B, is similar and we omit
the details here.

Alternatively, we can show this fact from another perspective. If a & AY U A} or
a€ AAUA], (a,b) € S, Vb € By, then z,49 = 1 because driver a is unavailable and we
impose a large penalty on unavailable drivers. Then by complementary slackness,
we have v, = yv};.

. If a € AY, then the constraints imposed on a are (22), (24), (26) and (27). Since N is a

large positive number, constraint (24) is redundant, and we have

Ve < min {Mwe — P+ 0% — ), Va € AY.

" bi(ah)ES
Because P is a large positive number, (22) implies (26). To maximize the objective,
we have
Vo= min {Mwe — P+ — )}, Ya € AD.
b:(a,b)esS

As 1, < 0, we can further derive

Ve > min {\we — P+ v}

b:(a,b)esS

Specifically, when there are unsatisfied demand, ie., ) . 4, Ttay < Dw, Vb € By, by
complementary slackness, j;, = 0. In this case,

v, = min {M\wgp — P +v%), Va e AY.
b:(a,b)eS{ 1Wab +Yvgy t

. If a € A}, the constraints on a are (23), (24), (26) and (27). The rest of the analysis is

similar to the one for a € A? and we omit the details. This completes the proof.

Parameter Configuration

We show the empirical performance of ADP on randomly generated instances with dif-
ferent parameter settings. We set the number of stages 7" = 4, and randomly distribute
ten drivers on a 10 x 10 grid network following a uniform distribution. In every stage,
we randomly generate five potential passenger origin-destination (O-D) pairs. We set
penalty parameter M/ = 1000, N = 1000, P = 500 and weight A = (0.2,0.8).

We first fix v = 0.9 and vary o, = 0.1,0.2,0.3,1/n to depict the results in Figure 1,
where n is the index of iteration. We observe that larger a-values lead to faster conver-
gence but less stable objective values through iterations. When «,, = 1/n, the algorithm
converges fast and maintains stable performance.

3
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Figure 1: Convergence performance of ADP under different a-values while z-axis repre-
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sents the number of iterations and y-axis represents the objective value F;(.S).

Next, we examine the effect of discount factor v and fix a,, = 1/n. We vary v =
0.3,0.5,0.7,0.9. From Figure 2, we observe that the value of discount factor ~ could affect
the optimal objective value. As v represents the importance of future information when

making decisions, we will fix v = 0.9 in our later texts.
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Figure 2: Convergence performance under different y-values while z-axis represents the
number of iterations and y-axis represents the objective value F;(.Sp).
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