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Abstract. Problem definition: We study electric vehicle (EV) sharing systems and explore
the opportunity for incorporating vehicle-to-grid (V2G) electricity selling in EV sharing.
Academic/practical relevance: The problem involves complex planning and operational
decisions, as well as multiple sources of uncertainties. The related optimization models
impose significant computational challenges. The potential value of V2G integration may
have far-reaching impacts on EV sharing and sustainability. Methodology: We formulate
the problem as a two-stage stochastic integer linear program. In the first stage, we optimize
decisions related to service planning, the capacity of parking and charging facilities, EV
battery capacities, and EV allocation in each zone under uncertain time-dependent trip
demand and electricity prices. In the second stage, for a realized demand–price scenario,
we construct a time-and-charging-status expanded transportation network and optimize
operations of the shared vehicle fleet, EV battery charging, and V2G selling. We develop
Benders decomposition and scenario decomposition approaches to improve computa-
tional efficiency. A linear-decision-rule-based approximation approach is also provided to
model dynamic operations. Results: Via testing instances based on real-world and syn-
thetic data, we demonstrate the computational efficacy of our approaches and study the
benefits of integrating V2G in EV sharing from the service provider, consumer, and
socioenvironmental aspects. Managerial implications: V2G integration can significantly
increase the profitability of EV sharing and the quality of service. It results in the pref-
erence of larger EV fleets and battery capacities, which further leads to various socio-
environmental benefits. The benefit of V2G can still prevail, even with more severe battery
degradation and can be more significant when combined with (i) more stringent service
levels, (ii) more traffic congestion, or (iii) urban spatial structures with concentrated
business/residential areas. V2G integration (complemented by fast charging technology)
can also benefit carshare users through improvement in the quality of service.

Funding: This workwas supported by theNational Science Foundation [Grants CMMI-1727618, CMMI-
1727478, and ECCS-1709094].

Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2019.0855.
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1. Introduction
The concept of a sharing economy introduces new
business models serving as middle grounds between
public transportation and private vehicle ownership.
Growing environmental consciousness and the rising
cost of vehicle ownership have also accelerated the
introduction and adoption of carsharing as ameans of
reducing greenhouse gas (GHG) emissions, traffic
congestion, as well as transportation expenses. In-
deed, the carsharing industry has been booming re-
cently, as it provides a flexible transport means and
affordable vehicle access for individual customers.

Driven by government subsidies, tightened regu-
lations on fuel economy, and advances in sustainable
energy technologies, the development of electric ve-
hicles (EVs) is transforming the automotive industry,
including the evolution of carsharing. EV sharing
programs are currently implemented in several major
cities around the globe (e.g., BlueLA in Los Angeles,
WE in Berlin, and EVCard in Shanghai) and pro-
vide effective ways to achieve cleaner transportation.
Meanwhile, vehicle-to-grid (V2G) technology allows
EVs to communicate with the power grid to release
stored energy back to the grid, making renewable
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sources even more diffused and affordable. V2G in-
tegration has received widespread and enthusiastic
support from the automobile and energy industries
as well as from government agencies. For example,
Southern California Edison, a primary regional elec-
tricity supplier, partnered with the Department of De-
fense to test a V2G pilot project at the Los Angeles
Air Force Base and reported positive results (Douris
2017). The Japanese automobile manufacturer Nissan
has secured regulatory approval in Germany for its
LEAF EVs to provide electricity to the grid, hoping to
attract corporate fleet customers with more than 60
EVs (Steitz 2018).

1.1. Motivation and Research Questions
In this paper, we aim to investigate, from an opera-
tions management point of view, the potential effects
and benefits of incorporatingV2G electricity selling in
EV sharing, categorized as follows.

1.1.1. Carshare Service Providers and User Benefits.
For carsharing service providers, the primary bene-
fit from V2G integration is the additional revenue
generated by selling stored electricity in EVs back to
the grid. However, many important questions remain
unanswered. How much revenue can be generated?
How will V2G integration interact with regular car-
sharing operations? We will quantify the revenue
increase due to V2G and study its impact on the
carshare business.

1.1.2. Carshare User Benefits. For carshare users, one
concern about V2G is that it may reduce vehicle ac-
cessibility and, therefore, lower the quality of service.
However, the introduction of V2G will affect the
service provider’s planning and operational deci-
sions, which may in turn increase or decrease vehicle
accessibility. We will investigate whether V2G will
actually benefit the carshare users with a higher quality
of service, after taking all effects into consideration.

1.1.3. Socioenvironmental Benefits. Carsharing is ef-
fective in reducingprivate vehicle ownership and,when
equipped with EVs, it can further reduce GHG emis-
sions and pollution. Studies have shown that each ve-
hicle added to a carshare fleet can reduce up to 15 pri-
vate cars (Bondorová and Archer 2017), and replacing
each conventional car with an EV results in a decrease
of CO2 emissions by 31 tons over the entire life cycle
of a vehicle (Aguirre et al. 2012). The key to these
benefits is deploying more EVs to a carshare fleet. We
will study how V2G integration affects the fleet size,
which then translates into socioenvironmental impacts.

1.1.4. Electrical Grid Benefits. On a daily basis, one EV
can provide enough electricity tomeet as much as one

household’s demand. EVs can also be used as storage
device against energy shortage. In 2015, the auto-
maker Nissan announced a major V2G trial project in
France, claiming that, in a future in which all vehicles
are EVs, the V2G system can be a virtual power plant
that can exceed the current electricity generation
capacity in that country by threefold.1 With more
shared EV fleets and their available storage, power
grid operators can have more flexibility in generating
power and lowering electricity price, even during
peak load hours. However, it is unknown whether
similar benefits can be achieved with a typical car-
share fleet, especially when V2G may interfere with
regular rental operations. We will evaluate the po-
tential of V2G integration in carshare systems.

1.2. Methodology Overview
For system planning under uncertainty, a common
method is to consider a two-stage stochastic optimi-
zation problem inwhich long-term (planning) decisions
are made before knowing the realizations of uncertain
parameters, and short-term (operational) decisions re-
spond to individual realizations and are solved to ob-
tain a value function of first-stage decisions.
We formulate a two-stage stochastic integer linear

programming model to optimize planning decisions
for opening service zones, parking and charging fa-
cility capacity design, EV fleet allocation, and EV
battery capacity selection. In practice, the planning
decisions are often made monthly, quarterly, or even
yearly and cannot be easily changed on a daily basis.
We assume that all the planning decisions are made
on a yearly basis. The carsharing demand and elec-
tricity price vary throughout a day, and we optimize
vehicle rental, relocation, charging, and electricity
selling based on first-stage planning decisions and
each possible realization generated independently
from an underlying joint distribution of the two un-
certainties. (In this paper, we assume that the full dis-
tributional information is known, which can be obtained
from historical data, and we employ the sample average
approximation approach; see Kleywegt et al. 2002.)
We scale both of the first-stage and second-stage cost
parameters to daily cost andminimize aweighted sum
of the total planning cost of building an integrated EV
sharing system and the expected operational cost for
operating and charging EVs and selling electricity. In
particular, our first-stage variables are purely inte-
gral, and, for each realization, we construct a spatial-
temporal state-of-charge (SoC) network to optimize
operational decisions using linear programming in the
second stage.
Two solution approaches are proposed for speed-

ing up the process of solving the overall stochastic
integer program model with many parallel subprob-
lems. We first employ the Benders decomposition
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algorithm (Benders 1962, Birge and Louveaux 2011) to
seek valid inequalities for lower-bounding the second-
stage value function based on dual extreme-point so-
lutions. Alternatively, we link the first-stage integer
decision variables in each subproblem via nonanti-
cipativity constraints and propose using scenario de-
composition (Ahmed 2013) to derive upper and lower
bounds of the optimal objective value using opti-
mal scenario-based first-stage solutions. Moreover, a
linear-decision-rule-based approximation approach
is presented in Online Appendix E, where we in-
terpret the second-stage decisions as linear functions
of segregated uncertainties and solve the overall
problem as an integer linear program. This approach
allows us to easily implement the recourse decisions
in individual scenarios according to observed re-
alizations of the uncertainties.

1.3. Contributions and Main Results
The main contributions of the paper are threefold.

1. We present a new model for EV sharing systems
integrated with V2G procedures. We formulate a
two-stage stochastic integer programming model to
optimize carshare fleet planning, including service
coverage, EV (battery/range) choice, and fleet deploy-
ment, under two uncertainties from carsharing demand
and seasonal electricity price.

2. Via numerical studies based on real-world data,
we investigate the benefits of integrating V2G selling
in EV sharing, as outlined in Section 1.1. Aside from
increasing the service provider’s revenue, integrat-
ing V2G in EV sharing has other benefits, such as
complementing the use of fast charging and induc-
ing more vehicle deployment and the preference of
larger batteries, as illustrated in Figure 1. Further-
more, we find that the benefits of V2G can endure
higher battery degradation cost and can be even
more significant when combined with fast charging

technology, more stringent service-level require-
ments, more severe traffic congestion, or concentrated
residential/business areas in urban spatial structures.
3. We demonstrate the computational efficacy of

using decomposition approaches, including Benders
decomposition and scenario decomposition, for op-
timizing the two-stage stochastic integer program-
ming model with large-scale spatial-temporal-SoC
networks in the second stage and a large number of
operational decision variables in each network. We
further provide an adaptive approach based on a
linear-decision-rule approximation, for implement-
ing the operational decisions according to future re-
alizations of uncertainty. The solution methods are
general and can be applied to other stochastic re-
source planning and system design problems.

1.4. Structure of the Paper
The remainder of the paper is organized as follows.
In Section 2, we review related literature on carshar-
ing, EV sharing, and V2G. In Section 3, we describe
our problem and formulate the two-stage stochas-
tic programming model with details about spatial-
temporal-SoC networks and the related subproblems.
In Section 4, we present the details of the Benders and
scenario decomposition approaches. We also present
a linear-decision-rule-based approximation for easy
implementation of recourse decisions, with details
given in Online Appendix E. In Section 5, we test
diverse instances to demonstrate (i) the computa-
tional efficiency of our approaches and (ii) the ben-
efits of integrating EV sharingwithV2G.We conclude
the paper and discuss future research directions in
Section 6. For the simplicity of tracking notation, we
summarize all of the notation in Table A.1 in Online
Appendix A.

2. Literature Review
We review the related literature in the design and
operations of general carsharing and EV sharing
systems using mathematical optimization approaches
and the related studies on the economics and oper-
ations of V2G, especially on V2G integration in EV
sharing systems.

2.1. Carsharing
Carsharing programs were introduced in Europe
in the 1950s, but not until the late 1980s were they
widely adopted due to the advancement of commu-
nication technology (Shaheen et al. 1998). Barth and
Todd (1999) were among the first to use quantitative
methods for evaluating benefits and drawbacks of
carsharing systems. They developed a simulation
model to evaluate operational issues, including ve-
hicle availability, vehicle distribution, and energy
management, under different demand travel patterns.

Figure 1. Illustration of the Benefits of Integrating V2G in
EV Sharing
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Barrios and Godier (2014) developed an agent-based
simulation model of a flexible carsharing system to
explore trade-offs between fleet size and vehicle re-
location. To obtain minimum-cost vehicle relocation
plans for vehicle sharing systems, Nair and Miller-
Hooks (2011) solved a stochastic mixed-integer lin-
ear programming (MILP) model with joint chance
constraints to ensure high-demand satisfaction rates
under uncertain carsharing demand. Benjaafar et al.
(2017b) studied inventory positioning in a product
rental network, which also applies to carsharing. He
et al. (2020) studied a vehicle repositioning problem
to minimize the total cost of repositioning and lost
sales by solving a multistage distributionally robust
optimization model with an enhanced linear deci-
sion rule.

Recently, Lu et al. (2018) considered a fleet man-
agement problem under uncertain trip demand. They
employed a two-stage stochastic MILP model, in
which they decide strategic decisions, including those
pertaining to station locations and fleet sizes, before
realizing the uncertain demand. In this paper, we
further extend their work to EV sharing systems by
explicitly modeling the EV charging and V2G selling
processes, as well as the battery capacity choices of
the EV fleet. The new features of charging and V2G
increase the problem complexity and motivate us to
develop more efficient algorithms. Also, the intro-
duction of V2G technology restricts the vehicle avail-
ability to customers and thus makes the profitability
and socioenvironmental impact of EV sharing unclear,
which inspires our work.

Another branch of literature about servicization, a
business model concept, under which a firm sells the
use of a product rather than the product itself, is also
related to carsharing. Agrawal and Bellos (2016)
studied the conditions where the servicization can
be environmentally beneficial. Bellos et al. (2017)
considered profitability and the environmental im-
pact of carsharing provided by an automobile man-
ufacturer that designs its product line to trade off
between fuel efficiency and driving performance.
There is a growing body of literature focusing on
peer-to-peer carsharing, where the users can make
decisions either as an owner or a renter. We refer
readers to Benjaafar et al. (2017a, 2019) for more
discussion on modeling, ownership, usage, and so-
cial welfare.

2.2. EV Sharing
Barth and Todd (1999) studied operational issues
related to EV availability, EV distribution, and en-
ergy management when integrating EVs into carshar-
ing systems. In EV sharing, when making strategic
planning decisions, operators also need to consider
charging requirements for shared EVs, including

charging stations, charging duration and amount, and
so on. Mak et al. (2013) studied infrastructure plan-
ning for EVs with battery swapping. Boyacı et al.
(2015) proposed a multiobjective MILP model for
station-based one-way carsharing. They identify po-
tential station locations by solving a set cover prob-
lem and optimize the net benefits of both the operator
and users. However, in their model, only the charging
duration is modeled, but energy consumption levels
of individual EVs are neglected. Biondi et al. (2016)
developed a two-step optimization approach tominimize
charging costs when the power-sharing technology
is employed, to allow multiple EVs to be charged si-
multaneously in one charging station. He et al. (2017)
develop a model to trade off between maximizing
customer adoption and minimizing operation costs
under imbalanced travel patterns. They formulate a
second-order conic program to model customer adop-
tion rates and model fleet operations in a queuing
network with four states: idle, rental, repositioning,
and recharging. He et al. (2018) further considered
more detailed charging operations using queueing
analysis. To the best of our knowledge, none of the
above works considers the V2G selling option for
shared EV systems, which can significantly impact
EV fleet size as well as the service level of EV
sharing systems.

2.3. V2G
Enabled by new technologies, EVs can serve as dis-
tributed energy resources to feed electricity back to
the gridwhen needed. This service provided by EVs is
known as V2G, of which the concept has been studied
from different aspects, including social barriers, so-
cial welfare benefits, potential for supplying elec-
tricity markets, and other issues (see, e.g., Sovacool
and Hirsh 2009, Kempton and Tomić 2005, Lund and
Kempton 2008, Turton and Moura 2008, Peterson
et al. 2010, Tan et al. 2016). To make the V2G con-
cept practical, the first step is to consolidate a large
number of EVs, due to individual EVs’ small battery
capacities. Carsharing fleets provide a means to ag-
gregate EVs as virtual power plants, and thus they
are utilized to generate revenue through the admin-
istration of frequency and voltage. On the other
hand, carsharing may increase the operation time of
EVs, which is against the motivation behind V2G to
take advantage of the under-utilization of EVs. Such
business models have been discussed in recent pub-
lications (e.g., Fournier et al. 2015, 2014; Lauinger
et al. 2017), but the profitability of V2G in carshar-
ing systems is not clear and the model has not been
quantitatively verified, due to the complexity of math-
ematical models, especially under stochastic demand
and electricity price. This motivates our study in
this paper.
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3. Problem Description and Formulation
We consider service zone planning and fleet man-
agement in EV sharing. We particularly focus on the
impact of integrating V2G by taking into account
uncertainties of carsharing demand and electricity
price. Specifically, we consider a reservation-based
EV system for finite time periods. The service region
is discretized into small zones with different costs
of operating and acquiring parking facilities. The
parking, charging, and V2G facilities have capacity
limits, and both the costs and capacities may be dif-
ferent from zone to zone. In each time period, we
assume that any excess demand in a zone is lost
immediately if the demand exceeds the number of
available EVs.

To solve the problem, we formulate a two-stage
stochastic integer programming model, where stra-
tegic decisions are determined in the first stage, in-
cluding choices of which zones to serve, EV battery
capacity choices, the number of EVs deployed in each
service zone, and the capacities of parking spaces
with or without the function of charging and/or V2G.
In the second stage, a recourse problem is solved
to approximate the expected cost of operating the
designed system over all time periods, given the
strategic and tactical decisions made in the first stage.

Remark 1. Although the nature of the problem—
having rental requests over time—leads to a multistage
dynamic model, in this paper, we consider a two-stage
stochastic programming model to focus on resource
planning and its cost estimation, by aggregating all
recourse decisions and system uncertainties in the
second-stage problem. Such a two-stage approxi-
mation has been widely employed to model multi-
stage dynamics. For example, Cheung and Chen
(1998) considered a container allocation problem,
assuming that all random parameters are realized in
the second stage. In another example, Salmerón and
Apte (2010) solved natural disaster asset preposi-
tioning using a two-stage stochastic program with
the first-stage decisions as the resource expansion
and the second-stage decisions as resource allocation
and transportation after disasters.

3.1. First-Stage Problem and Formulation
Consider a set ( of potential service zones and binary
planning decision variables zi, ∀i ∈ (, such that zi � 1
indicates that zone i is served and zi � 0 otherwise.We
consider three types of parking capacities: (i) type P:
solely parking space; (ii) type C: parking space with
charging stations; and (iii) type S: parking space with
charging stations having bidirectional power flow
interfaces that allow electricity to flow into and out of
EVs. Let _ � {P, C, S} be the set of all parking space
types. The integer variable ski indicates the number of

type k parking spaces operated in zone i ∈ (. There
are several business models regarding ownership
and accessibility of EV charging stations. For exam-
ple, car2go in San Diego used to pay a third-party
charging network (i.e., ECOtality) for using its charg-
ing infrastructure. On the other hand, Autolib in Paris
installed and operated its own network of charging
stations that is also available to the public. In this paper,
we assume that the service providers install their own
charging stations. Moreover, we consider a set % of
vehicle battery capacity choices. We also assume that
battery capacities are the same across the entire fleet,
since having homogeneous vehicle fleets is com-
mon in existing carsharing systems. For example,
car2go operates purely electric fleets with the same
Smart Fortwo electric vehicles in Amsterdam and
Madrid.2 Let σe denote the battery capacity decision
such that σe � 1 if chosen and σe � 0 otherwise for all
e ∈ %. Throughout this paper, as a convention, we use
boldface letters to denote vectors of corresponding
variables; that is, z � (zi, i ∈ ()T, s � (ski , k ∈_, i ∈ ()T,
and σ � (σe, e ∈ %)T.
The service coverage, the number of parking/

charging facilities, and the battery capacity choice
decisions are strategic decisions that must be con-
sistent over long terms. Vehicle deployment, on the
other hand, can be adjusted in shorter periods (e.g.,
in each season) to cope with varying business con-
ditions. We further consider the case where rental
demand and/or electricity prices may have signifi-
cant seasonality. Let * � {1, . . . ,H} denote the set of
“seasons.” Let xhe,i denote the number of vehicles with
battery capacity e allocated to service zone i during
season h, and let xhe � (xhe,i, i ∈ ()T.
We associate the planning variables zi, xhe,i, and ski

with unit costs cFi , c
V
e,i, and cki , respectively. Here, cFi is

the fixed cost of opening service zone i, cVe,i represents
the cost of allocating one EV in zone i, and cki is the cost
of acquiring one type k parking space in zone i, for
all i ∈ (.
Given the first-stage decision inputs, let Qh

e (xhe , z, s)
be the expected value of the total operational cost plus
demand loss penalty, minus revenue in season h, with
battery capacity e. We denote oh ≥ 0 as the weight
associated with the cost incurred in season h such
that

∑
h∈* oh � 1. We formulate the overall model

as follows:

min
z,s,σ,x

∑
i∈(

cFi zi +
∑
k∈_

cki s
k
i +

∑
h∈*,e∈%

cVe,ix
h
e,i

( )
+ ∑

h∈*,e∈%
σeohQh

e xhe , z, s
( ) (1a)

s.t. ski ≤ Mk
i zi, ∀i ∈ (, ∀k ∈ _, (1b)∑

e∈%
σe � 1, (1c)
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xhe,i ≤
∑
k∈_

Mk
i σe, ∀e ∈ %, ∀h ∈ *, ∀i ∈ (, (1d)

xhe,i ≤
∑
k∈_

ski , ∀e ∈ %, ∀h ∈ *, ∀i ∈ (, (1e)

zi, σe ∈ 0, 1{ }, ski , xhe,i ∈ Z+ ∪ 0{ },
∀e ∈ %,∀h ∈ *,∀i ∈ (, ∀k ∈ _. (1f)

The objective function (1a) minimizes the sum of the
total cost of planning service zones, acquiring EVs
and parking spaces with charging and V2G-selling
abilities, and the expected operational cost Qh

e (xhe , z, s)
over all time periods, of which we will present a
detailed formulation in Section 3.3. Constraints (1b)
require that parking spaces and EVs can only be
deployed in served zones, where the big-M coeffi-
cient Mk

i is set as the maximum capacity of type k
parking space in zone i, for all i ∈ (, k ∈ _, which is
subject to investment budget and/or government
policy. Constraints (1c)–(1d) ensure that only one bat-
tery capacity is selected for all EVs. Constraints (1e)
require that the number of EVs deployed in each
zone must be no more than the total number of
parking spaces (of all types) allocated in that zone, for
all zones. Constraints (1f) enforce binary values of
z-variables and nonnegative integer values of s- and
x-variables.

3.2. Spatial-Temporal-SoC Network
Given the first-stage decisions (xhe , z, s), we optimize
EV operations, including rental, charging, reloca-
tion, and V2G selling, over each spatial-temporal-
SoC network & � (1,!) in the second-stage problem,
modeled as Qh

e (xhe , z, s). Let 7 � {1, . . . ,T} be the set of
time periods for which we operate the designed EV
sharing system, and let @e � {0, 1, . . . , e} be the set of
SoC levels. Let (z � {i ∈ ( : zi � 1} denote the set of
zones to serve according to decision z.

Let d̃ijts be the number of trips requested from zone i
to zone j at time t that need to be completed by time s,
where s ≥ t + lij, where lij > 0 is the shortest travel-
ing time from zone i to j. For all zones, we denote
unit electricity prices of charging and V2G selling by
p̃C,h
t and p̃ S,h

t for each time period t ∈ 7 (in season
h ∈ *), respectively. Let d̃ � (̃dijts, ∀i, j ∈ (z, t, s ∈ 7)T
be the vector of spatial-temporal demand. We de-
note p̃C,h � (̃pC,h

t , t ∈ 7)T and p̃S,h � (̃p S,h
t , t ∈ 7)T as the

vectors of electricity buying and selling prices, re-
spectively. Given the first-stage decisions (xhe , z, s), the
network & is constructed for each realization of un-
certain parameters (d̃, p̃C,h, p̃S,h).

Throughout this paper, we assume that, for each
EV, the SoC changes linearly in time for both charging
and discharging processes, andwe present the details
of SoC modeling in Online Appendix B. We assume
that an EV cannot be rented or relocatedwhen the SoC

falls below a given threshold level andmust be idle or
charged in the current zone. The SoC consumption of
driving is assumed to be linearwith the traveling time
(or, equivalently, the traveling distance following the
justification in Zhou et al. 2011), and we denote the
number of SoC units consumed per time period bD.
Let bC (bS) be the number of SoC units increased
(decreased) by one time period of charging (dis-
charging). Because a battery’s service life degrades
due to repeating charge/discharge cycles (Kempton
and Tomić 2005, Peterson et al. 2010, Zhou et al. 2011),
following Peterson et al. (2010), we assume that the
degradation cost is proportional to the number of SoC
units increased (decreased). Each unit of SoC change
incurs a unit degradation cost cdege , where e is the
chosen battery capacity. Let rij be the revenue per
period generated by one trip from zone i ∈ ( to zone
j ∈ (. The operational costs include the cost of relo-
cating EVs from zone i to zone j, denoted by creloij ≥ 0
per vehicle per period, and the cost incurred when
EVs are idle in zone i, denoted by cidlei ≥ 0 per vehicle
per period.
We use the term “movements” to denote changes of

EV states, and we use arcs a ∈ ! to represent all
movements in &. We let node nitb ∈ 1 represent a state
of EVs, that is, being in location i ∈ (z at time t ∈ 7
with SoC b ∈ @e, and we construct arcs in-between
pairs of nodes with all possible transitions between
their corresponding states. We consider the following
five types of arcs in !:
1. Rental arcs a�(nitb,njsb′ ) ∈Arent for d̃ijts > 0, b′ ≥ 0,

and s − t ≥ lij, with capacity d̃ijts and cost −rij(s − t)
per unit flow. To be a rental arc, the relation between
b and b′ needs to satisfy b − b′ ≥ (s − t)bD, and b should
also be above the minimum required driving SoC
level threshold. Flows on these arcs represent EVs
with SoC b > 0 being rented from zone i starting
from period t, and returned to zone j in period s
with the SoC level being b′. Let $rent

ijts � {(nitb,njsb′ ) ∈
!rent : b′ ≥ 0}, and note that the combined capacity
of all arcs in $rent

ijts is d̃ijts.
2. Relocation arcs (nitb, nj,t+lij,b′ ) ∈ Arelo for b′ ≥ 0

and 1 ≤ t ≤ T − lij, with infinite capacity and cost
creloij lij per unit flow. The SoC levels need to satisfy
b ≥ b′ + lijbD, and the SoC level b has to be above the
driving threshold SoC level. Flows on the arcs rep-
resent EVs with SoC b > 0 being relocated from zone i
in period t, and arriving at zone j in period t + lij with
the ending SoC equal to b′.
3. Idle arcs (nitb,ni,t+1,b) ∈ Aidle for zone i ∈ Iz and

period 1 ≤ t ≤ T, with cost cidlei per unit flow. Flows
on these arcs represent EVs being idle (i.e., not in-
volved with either charging or V2G selling) in zone i
from period t to t + 1 with the SoC equal to b. Let
$P

it � {(nitb,ni,t+1,b) ∈ !idle : b ∈ @e}. We note that the
combined capacity of all arcs in $P

it is
∑

k∈_ ski , since
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an idle EV is allowed to park in a parking space of
any type.

4. Charging arcs (nitb,ni,t+1,b+bC) ∈ Acharge for zone
i ∈ (z, 0 ≤ b + bC< e, and period 0 ≤ t ≤ T − 1, with
cost p̃C,ht + cdege per unit flow. Flows on these arcs
represent the EVs being charged from b to b + bC in
zone i from period t to t + 1. Let$C

it � {(nitb,ni,t+1,b+bC) ∈
!charge : b + bC ∈ @e} for t ≤ T − 1, and the combined
capacity of all arcs in $C

it is s
C
i + sSi . Here we may have

several options for bC, representing different charging
speeds such as regular and fast charging, as men-
tioned in Section 5.

5. Selling arcs (nitb,ni,t+1,b−bS) ∈ !sell for zone i ∈ (z,
0 ≤ b − bS, and period t ≤ T − 1, with cost −p̃S,ht + cdege
per unit flow. Flows on these arcs represent EVs
selling electricity back to the grid in zone i fromperiod
t to t + 1 and the SoC decreasing from b to b − bS. Let
$S

it � {(nitb, ni,t+1,b−bS) ∈ !sell : b − bS ∈ @e} for t ≤ T − 1
and the combined capacity of $S

it is s
S
i .

The combined capacity of all arcs in set ∪k∈_$k
it is∑

k∈_ ski . The set! is the union of the five types of arcs;
that is, ! � !rent ∪!relo ∪!idle ∪!charge ∪!sell. We
denote the per-unit net flow cost and the capacity on
arc a by cha and ua, respectively. The notation u$ de-
notes the combined capacity of arcs in set $ ⊂ !. The
unit flow costs and capacities of all five arc types are
summarized in Table 1. Note that, although the re-
location arcs have infinite capacity here, the flows
over relocation arcs are bounded above due to other
arcs’ capacities and flow balance constraints (5c).
Moreover, because the unit cost of relocation is posi-
tive, with the objective of minimizing the total cost,
theflowamounts on relocation arcswill beminimized
at optimum.

In Figure 2, we illustrate an example of the spatial-
temporal-SoC network, with two zones (A and B),
four time periods (7 � {1, 2, 3, 4}), and three SoC
levels (@e � {1, 2, 3}). The numbers alongside differ-
ent types of arcs indicate a solution of renting, idling,
charging, relocating EVs, and selling electricity in
different zones and at different time periods. We il-
lustrate all five types of arcs in Figure 2. Note that
within the part of the network for the same service
zone, we have V2G, idle, and charging arcs, since they
are not related to EVs’ location transition. Rental and

relocation arcs connect two nodes belonging to dif-
ferent zones.

Remark 2. Energy conversion losses may be of interest
to study whether charging and V2G are cost-effective
(Kempton and Tomić 2005). With the consideration of
conversion losses, in order to buy bC (sell bS) units of
electricity, one needs to buy bC/μ̄ from (sell bS/μ̄ to) the
grid with μ̄ ∈ (0, 1). It can be integrated in the current
model by increasing the unit flow cost of charging arcs
to (̃pC,h

t + cdege )/μ̄ and reducing the unit flow cost to
μ̄(−p̃ S,h

t + cdege ).

3.3. Second-Stage Subproblem Formulation
After constructing a spatial-temporal-SoC network &
for each realized demand and electricity price, we
calculate recourse decisions ya ≥ 0, ∀a ∈ !, represent-
ing EV movements over the network &, including
EV rentals, relocation, idling, charging, and return-
ing electricity to the grid. (We relax the integral
constraint for ya, since we use only the subproblem
solutions to estimate the expected cost of the first-
stage planning decisions in the future. In Section 5.2,
we show that the optimal objective value of the linear-
programming relaxation is very close to that of the
formulationwith integer recourse ya ∈ Z+.)We denote
by wijts ≥ 0, i, j ∈ (z, 1 ≤ t < s ≤ T the slack variables
representing total unmet demands on the rental arcs
in set $rent

ijts . We denote by y � (ya, a ∈ !)T and w �
(wijts, for d̃ijts > 0)T the vectors of recourse decision
variables. Let

4h
e xhe , z, s, d̃, p̃

S
( )
� min

y,w
c p̃S,h, p̃C,h
( )T

y + gTw : y,w
( ) ∈ Y xhe , z, s, d̃

( ){ }
,

(2)
where set Y(xhe , z, s, d̃) is the feasible region of (y,w)
based on each network & given the value of random
demand d̃; we will discuss detailed constraints in
Y(xhe , z, s, d̃) later. In the objective function, c(p̃S,h, p̃C,h)
is the vector of arc costs per unit flow and is a function
of p̃S,h and p̃C,h, since costs of selling/charging arcs
depend on the electricity selling/buying price p̃S,h

and p̃C,h. The objective cost consists of two parts.

Table 1. Unit Flow Costs and Capacities for Each Arc Type

Types of arc a Cost per unit flow cha Combined capacity u$

Rental arc (nitb,nisb′ ) −rij(s − t) u$rent
ijts

� d̃ijts
Relocation arc (nitb, nj,t+lij ,b′ ) creloij lij +∞
Idle arc (nitb, ni,t+1,b) cidlei u$P

it
� ∑

k∈_ ski
Charging arc (nitb,ni,t+1,b+bC ) p̃C,ht + cdege u$C

it
� sCi + sSi

Selling arc (nitb, ni,t+1,b−bS ) −p̃S,ht + cdege u$S
it
� sSi
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The first term c(p̃S,h, p̃C,h)Ty is the cost of vehicle
movements and the second cost gTw is the penalty
from unserved demandswith g being the unit penalty
cost vector.

We consider the expected cost

Qh
e xhe , z, s
( ) � E 4h

e xhe , z, s, d̃, p̃
S,h, p̃C,h

( )[ ]
. (3)

For season h, consider M i.i.d. samples following a
known distribution of (d̃, p̃S,h, p̃C,h). We index the
scenarios by m ∈ } � {1, . . . ,M} and let (dh,m,pS,h,m,
pC,h,m) be demand and electricity prices in scenario
m, ∀m ∈ }. Each scenario occurs with probability
qhm ≥ 0 such that

∑
m∈} qhm � 1. The second-stage prob-

lem is then equivalent to

Qh
e xhe ,z,s
( )

� min
ym ,wm ,m∈}

∑
m∈}

qhm ch,m
( )Tym+gTwm) (4a)

s.t. ym,wm( )∈Y xhe ,z,s,d
h,m( )

,∀m∈},

(4b)
where ch,m represents the realized cost vector in sce-
nariom under season h. We use (ym,wm) to denote the
recourse solution in scenario m, ∀m ∈ }.

This approach is known as sample average approxi-
mation (Kleywegt et al. 2002, Shapiro andHomem-de-
Mello 2000). Kleywegt et al. (2002) provide a sufficient
condition for sample size M ≥ 3σ2max/(ε − δ)2 log |S|/α( )
where δ ∈ [0, ε) and ε > 0 is small enough, indicating
that an optimal solution obtained by sample average
approximation is an ε-optimal solution. The signifi-
cance level 1 − α ∈ (0, 1) is the probability of the so-
lution calculated from theM samples belonging to the
ε-optimal set. Set S is the feasible set of integer de-
cision variables, and σ2max is the maximum variance
depending on objective function and the ε-optimal
solution set. In practice, this bound can be too con-
servative, and so we choose much smaller sample
sizes (described in Section 5.1) to obtain reasonably
good solutions.

Recall that $C
it ∈ !charge is the set of arcs representing

EVs being charged in time period t, and$S
it ∈ !sell is the

set of arcs representing EVs in V2G processes in time
period t. Let δ+(nitb) and δ−(nitb) be the sets of arcs for
which nitb is the origin and destination node, re-
spectively. We have

Y xhe , z, s,d
m( )

:� ya ≥ 0, a ∈ !, wijts ≥ 0, i, j ∈ (z, s − t ≥ lij :
{

, (5a)∑
a∈δ+ ni1e( )

ya � xhe,i ∀i ∈ (z, (5b)∑
a∈δ+ nitb( )

ya −
∑

a∈δ− nitb( )
ya � 0

∀i ∈ (z, t ∈ 7/ 1,T{ }, b ∈ @e,

(5c)∑
a∈δ− niTe( )

ya � xhe,i ∀i ∈ (z, (5d)∑
a∈$k

it

ya ≤ u$k
it

∀k ∈ _, i ∈ (z, t ∈ 7, (5e)
∑

a∈∪k∈_$k
it

ya ≤
∑
k∈_

ski ∀i ∈ (z, t ∈ 7, (5f)
∑

a∈$rent
ijts

ya+wijts � dmijts ∀i, j∈ Iz, t∈7, s� t+ lij, . . . ,T,

(5g)
ya � 0 ∀a ∈ δ+ ni1b( ), b �� e, b ∈@e,

∀a ∈ δ− niTb( ), b �� Be, b ∈@e},
(5h)

where constraints (5b)–(5d) are flow balance con-
straints with respect to network &. Constraints (5d)
require that the locations of EVs in the last period are
reset as their initial locations and all EVs are charged
full, for the purpose of operating the carsharing system
every T periods with the same initial deployment of
fully charged EVs. Constraints (5e) and (5f) are capac-
ity constraints for different types of arcs and parking
spaces, respectively. In constraints (5g), wijts indicates
the amounts of unserved demand from zone i to jwith
starting time t and ending time s. Constraints (5g) also
ensure that the total number of EVs being rented out
cannot exceed the demand since wijts ≥ 0.

Remark 3. Compared with the two-stage model based
on a spatial-temporal network in Lu et al. (2018), the
complexity of our problem increases due to the in-
troduction of SoC. Suppose that there are N nodes and
M arcs in the spatial-temporal network in Lu et al.
(2018). Then, the number of nodes in this paper in-
creases to eN and the number of arcs can increase up to
e2M. This inspires us to develop more efficient algo-
rithms in the next section.

4. Solution Approaches
As we relax the second-stage integer variables, the
resulting model becomes a two-stage problem with

Figure 2. (Color online) An Example of the Spatial-
Temporal-SoC Network
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first-stage integer variables and continuous second-
stage variables. Additionally, model (1) can be decom-
posed into the planning and operational phases, and
thus it is natural to apply Benders decomposition
to seek optimal solutions by generating optimality
cuts from subproblems associated with all the sam-
ples. We also explore another algorithm as a scenario
decomposition that uses the Lagrangian relaxation
method to obtain objective bounds and iteratively
applies cutting planes to obtain optimal first-stage
solutions that can close the optimality gap. Further-
more, in Online Appendix E for a real-time decision
guideline of EVoperations,wepresent a linear-decision-
rule-based approximation approach. We describe the
details of the first two approaches as follows.

4.1. Benders Decomposition
One classical method to solve two-stage stochastic
linear programs is Benders decomposition (Birge and
Louveaux 2011), which decomposes the original prob-
lem into a relaxed master problem and a set of inde-
pendent subproblems, one for each scenario m ∈ } and
each season h ∈ *. The Benders decomposition ap-
proach iteratively generates cuts from each subproblem
and adds them to the relaxed master problem if the
current first-stage solution is not optimal or feasible. In
our model (1), since, for any feasible first-stage so-
lution, we always can find a feasible solution at the
operational phase (e.g., having all EVs idle for all T
timeperiods; that is,ya � xhe,i for all arcs a � (nite,ni,t+1,e) ∈
!idle and ya � 0 for all other arcs a ∈ !/!idle), no
Benders feasibility cuts are needed and we describe
the deviation of the optimality cuts in the following.

We define variables θ � (θh
e,m, m ∈ }, h ∈ *, e ∈ %)T

as lower bounds of 4h
e (xhe ,z,s,dh,m,pS,h,m,pC,h,m), ∀m∈}.

We formulate the relaxed master problem as

MP : min
x,z,s,σ,θ

∑
i∈(

cFi zi +
∑
k∈_

cki s
k
i +

∑
h∈*,e∈%

cVe,ix
h
e,i

( )
+ ∑

e∈%,h∈*
ohσe

∑
m∈}

qhmθ
h
e,m

s.t. Lhe,m θh
e,m, x

h
e , z, s

( ) ≥ 0, m ∈ },

h ∈ *, e ∈ % (1b)–(1f),
where constraints Lhe,m(θh

e,m, x
h
e , z, s) ≥ 0 denote the set

of cuts generated from solving the subproblems in
scenario m of season h, which we specify later. To
linearize the bilinear terms σeθh

e,m in the objective
function, we introduce auxiliary variables φh

e,m � σeθh
e,m,

h ∈ *, e ∈ %, m ∈ }, and McCormick inequalities:
φh
e,m≥σeθh,L

e,m,φ
h
e,m≤σeθh,U

e,m ,φ
h
e,m≤θh

e,m−θh,L
e,m(1−σe), φh

e,m≥
θh
e,m−θh,U

e,m (1−σe), where θh,U/L
e,m is the upper/lower

bound of θh
e,m. Alternatively, considering the specific

second-stage problem structure, we can drop the

coefficient σe directly from the objective function and
multiply the right-hand side of (5g), dmijts, with σe,
which enforces the second-stage objective value to be
0 when σe � 0. This will result in a different sub-
problem formulation which can be easily adapted
from what we describe below.
Let the dual variables of (5b) and (5d) be π1

i and πT
i ,

respectively. Let αitb, βkit, γit, and ηijts be the dual
variables associated with constraints (5c), (5e), (5f),
and (5g), respectively. For each scenariom of season h,
we derive the subproblem dual formulation as

SP xhe , z, s,d
m,pS,h,m,pC,h,m

( )
:

max
π1,πT ,α,β,γ,η

∑
i∈(z

(
π1
i + πT

i

)
xhe,i +

∑
i∈(z ,k∈_,t∈7

u$k
it
βkit

+ ∑
i∈(z ,t∈7

γit
∑
k∈_

ski +
∑

i,j∈(z,t,s∈7
dh,mijts ηijts (7a)

s.t. π1
i − αi2e + βPi1 + γi1 ≤ cha ,

a � ni1e,ni2e( ) ∈ !idle (7b)
π1
i −αi,2,b′ + βSi1 +γi1 ≤ cha ,

a � ni1e,ni2b′( ) ∈!selling,b′ � e− bS, . . . , e− 1,

(7c)
π1
i −αjsb≤ cha , 2≤ s≤T−1, a� ni1e,njsb

( )∈!relo,

(7d)
π1
i − αjsb + ηij1s ≤ cha , 2 ≤ s ≤ T − 1,

a � ni1e,njsb
( ) ∈ !rent, (7e)

πT
i + αi,T−1,e + βPi,T−1 + γi,T−1 ≤ cha ,

a � ni,T−1,e,niTe( ) ∈ !idle, (7f)
πT
i +αi,T−1,b′ +βCi,T−1+γi,T−1≤ cha ,

a� ni,T−1,b′ ,niTe
( )∈!charge, b′ � e−bC, . . .,e−1,

(7g)
αitb − αi,t+1,b + βPit + γit ≤ cha , 2 ≤ t ≤ T − 2,

a � nitb,ni,t+1,b
( ) ∈ !idle,

(7h)
αitb−αi,t+1,b′ +βCit +γit≤ cha , 2≤ t≤T−2,

a� nitb,ni,t+1,b′
( )∈!charge,b′ � b+1, . . . ,b+bC,

(7i)
αitb−αi,t+1,b′ +βSit+γit ≤ cha , 2≤ t≤T−2,

a� nitb,ni,t+1,b′
( )∈!selling,b′ � b−bS, . . . ,b−1,

(7j)
αitb − αjsb′ ≤ cha , 2 ≤ t < s ≤ T − 1,

a � nitb,njsb′
( ) ∈ !relo, (7k)

αitb − αjsb′ + ηijts ≤ cha , 2 ≤ t < s ≤ T − 1,

a � nitb,njsb′
( ) ∈ !rent, (7l)

Zhang, Lu, and Shen: Vehicle-to-Grid Electricity Selling in Electric Vehicle Sharing
Manufacturing & Service Operations Management, Articles in Advance, pp. 1–20, © 2020 INFORMS 9



ηijts ≤ gijts, i, j ∈ (, 1 ≤ t < s ≤ T − 1,
such that dijts>0, (7m)

βkit ≤ 0, γit ≤ 0, i ∈ (, t ∈ 7, k ∈ _. (7n)
At each iteration of the Benders decomposition al-
gorithm, we optimize MP to obtain an optimal solu-
tion (x̂he , ẑ, ŝ, θ̂). Then, for each scenario m ∈ }, we
solve the corresponding subproblem SP(x̂he , ẑ, ŝ,dh,m,
pS,h,m,pC,h,m). If the optimal objective value of the sub-
problemof scenariom is reached and season h is greater
than θ̂h

e,m given by MP and an optimality cut is gen-
erated and added to Lhe,m(θh

e,m, x
h
e , z, s) ≥ 0 in the current

MP. Given an optimal solution (π̂1, π̂T, α̂, β̂, γ̂, η̂) to the
subproblem SP(x̂he , ẑ, ŝ,dh,m,pS,h,m,pC,h,m), following
strong duality, a Benders cut takes the following form:

θh
e,m − ∑

e∈,i∈(z

π̂1
i + π̂T

i

( )
xhe,i −

∑
i∈(,k∈_,t∈7

u$k
it
β̂kit

− ∑
i∈(,t∈7

γ̂it
∑
k∈_

ski −
∑

i,j∈(,t,s∈7
dh,mijts η̂ijts ≥ 0. (8)

4.2. Scenario Decomposition
Alternatively, we consider a scenario decomposition
approach for optimizing model (1). We further as-
sume that q1m � · · · � q|*|

m � 1/M for m ∈ }. We sepa-
rate first-stage decision variables into (1 +H)|%| vec-
tors: xhe , h ∈ *, e ∈ %, and X � (z, s, σ). We denote Ch,e

x
and CX as the cost vectors of xhe , h ∈ *, e ∈ % and
X, respectively. Let -h

e � {xhe : (1d)--(1f)} and - � {X �
(z, s, σ) : (1b), (1c), (1f)} be the feasible region defined
by all the first-stage constraints. We also denote Yh,e

m �
(yh,em ,wh,e

m ) as the recourse decision in scenario m of
season h under battery capacity e, and we denote Ch,e

Y,m
as the cost vector of Yh,e

m . For each season h ∈ * with
battery capacity e, we make M copies of vector xhe for
each scenario, denoted by xhe,m, ∀m ∈ }, such that

xhe,1 � · · · � xhe,M. (9)
We also make copies of vector X for each scenario,
denoted by Xm, ∀m ∈ }, such that

X1 � · · · � XM. (10)
Theorem 1. For a scenario m ∈ }, given parameters
μ and λ � (λh,e, h∈*, e∈%), consider a Lagrangian function

+m λ,μ
( )

� min
xhe,m ,Xm,Y

h,e
m

qm CT
XXm+

∑
h∈*,e∈%

oh

[{
Ch,e

x

( )T
xhe,m+ Ch,e

Y,m

( )T
Yh,e
m

(

+ λh,e
( )T

Ah,e
x,mx

h
e,m

)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+μTAmXm :xhe,m∈-h
e ,

Xm∈-,Yh,e
m ∈Y xhe,m,Xm,dh,m

( )}
. (11)

An optimal solution to the problemmaxλh,e,μ
∑

m∈} +m(λ, μ)
provides a valid lower bound for model (1).

The details of the proof can be found in Online
Appendix C. In (2b), noting that the objective function
and constraints in the minimization problem are de-
composable by scenario, we can first optimize scenario-
based subproblems (11) and then aggregate the results
to obtain a lower bound for any given λ and μ.
For given λ and μ, suppose that solution (xh,∗e,m,X∗m)

optimizes the above m-scenario-based subproblem
(11) and yields an optimal objective valueOBJm,∗. We
obtain a lower bound LB � ∑

m∈} OBJm,∗. We can
apply the subgradient method to update λ and μ to
strengthen LB. On the other hand, any (xh,∗e,m,X∗m) is a
feasible solution to the original problem (1), and there-
fore a feasible upper bound UB � CT

XX
h,∗
m +∑

h∈* oh ×
[(Ch,e

x )Txh,∗e,m +∑
n∈} qn4h

e (xh,∗e,m,X∗m,dh,n,pS,h,n, pC,h,n)]. The
best upper bound is obtained as

min
m∈}

CT
XX

h,∗
m +∑

h∈*
oh Ch,e

x

( )Txh,∗e,m
[{

+∑
n∈}

qn4h
e xh,∗e,m,X∗m,dh,n,pS,h,n,pC,h,n
( )]}

. (12)

We use binary representation of the general inte-
ger variables, specifically, the x- and X-variables. If
UB > LB, then we prohibit such solutions from being
generated in future iterations by adding no-good cuts
for binary variables in all subproblems (11).We iterate
the above process until UB ≤ LB for some optimal
solution (xh,∗e,m,Xh,∗

m ), which will automatically satisfy
the nonanticipativity constraints and be returned as
the overall optimal solution for (xhe ,X). Note that since
(xhe ,X) is integral, we have only a finite number of
possible first-stage solutions to cut, and therefore the
algorithm terminates in finite steps.

5. Computational Results
In this section, we use Zipcar’s carsharing demand
data in the Boston–Cambridge, Massachusetts, area
in 2014 (following data descriptions in Lu et al. 2018)
and synthetic data to generate diverse instances with
various carsharing demand types, spatial-temporal
patterns, seasonal electricity buying and selling pri-
ces, battery degradation costs, battery capacities, and
charging speeds. We test our two-stage optimization
model and solution algorithms on these instances to
demonstrate the computational efficiency of the al-
gorithms and draw insights on the benefit of in-
tegrating V2G into EV sharing.

5.1. Experimental Design and Setup
We mainly follow Lu et al. (2018) and Chang et al.
(2017) to generate all instances and consider five
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potential service zones in our studies. We let each
operational time period be 15 minutes, and we re-
peatedly operate the system on a daily basis. There-
fore, the planning horizon T is 24 hours or, equiva-
lently, 96 time periods. We set the maximum number
of the three types of parking spaces (i.e., P–parking
only, C–parking space with charging stations, and
S–parking space with bidirectional charging stations)
as 300, 100, and 100 for all service zones.

We scale all the planning cost parameters (i.e., cFi ,
cVe,i, and cki ) to cost per day. Following cost justification
as in Lu et al. (2018), we set cFi � $9.60 per parking lot
per day for all zones. The idle cost cidlei is $0.10 per
period, and the cost of relocating one EV creloij is $2.50
per period in-between any pairs of zones i and j. In
addition to the fixed cost cFi , we consider the costs of
equipping a parking lot to become P-, C-, and S-types
of parking spaces, and we set them as cPi � $0.00,
cCi � $0.70, and cSi � $5.50 per parking lot per day, for
all zones i. The latter two costs are calculated by as-
suming that the prices of regular and bidirectional
charging stations are $1,200 and $10,000, respec-
tively, and that the average lifetime of each charging
station is five years.3

In thebaselinemodel, thebatterycapacity is e� 20kWh
or 20 SoC units, which is a typical EV battery capac-
ity. The cost of locating one EV in any service zone is
cVe,i � $27.00 per vehicle per day, calculated based on
EV purchase price and average maintenance cost.
We consider both regular charging of rate 1 SoC unit/
period (i.e., 4 kW) and fast charging of rate 10 SoC
units/period (i.e., 40 kW). The battery discharge rate
is 2 SoC units/period for driving (i.e., 8 kW), and
is 4 SoC units/period for V2G selling (i.e., 16 kW).
We assume that there is no degradation cost associ-
ated with either charging or V2G procedures in
the baseline model, and we will study the impact
of various degradation costs in a later computa-
tional test.

We use three months of Zipcar 2014 data in the
Boston–Cambridge area to generate rental demand.
The original data set contains both one-way and
round-trip rentals. Unfortunately, the actual driving
time of round trips was not recorded in the data set,
making it impossible to estimate the battery discharge
associated with each trip. Therefore, we focus on one-
way trips. Following Lu et al. (2018) and Chang et al.
(2017), demand per period follows the gamma dis-
tribution, with hourly average demand shown in
Figure 3. Based on the Zipcar 2014 data, we generate a
one-way travel time from a uniform distribution
between 15 to 45 minutes. We use the actual rental
rate charged by Zipcar to its one-way rental services,
that is, rij � $3.00 per period or $12.00 per hour. In the
baseline case, we consider the unit penalty cost of not
fulfilling a trip the same as its revenue.

We assume uncertain electricity prices of regular
charging and fast charging. For the following com-
putational studies, we assume that the V2G price is
the same as the charging price. In Online Appendix G,
we present the results by assuming a fixed-price V2G
contract with a time-of-use (ToU) type. Given that the
V2G technology is in the early stage of commercial
adoption, its market value is still uncertain. The two
cases considered here are conservative. Under higher
selling prices, the value of V2G integration may be
even higher. We follow real-world data to set elec-
tricity prices for charging and V2G selling, and we
differentiate the prices for winter and summer time.
(More details about electricity prices are given in
Online Appendix D.)
All of the computational tests are performed on a

Windows Server 2012 R2 Standard with Intel(R)
Xeon(R) CPU E5-2630 v4 CPU 2.20 GHz, 20 cores (40
logical processors), and 128 GB memory. We imple-
ment all the computation tests in Python with Gurobi
8.0.1 as the optimization solver.

5.2. Computational Study
We first solve the two-stage model (1) with inte-
ger recourse variables and compare the objective
values with those from solving relaxation models
with continuous recourse variables. In Table 2, we
present the objective values and CPU time of five
instances solved with continuous and integer re-
course. The CPU time in seconds is reported for both
models. We note that all the integer recourse models
failed to be solved within 32 hours (= 115,200 sec-
onds). The optimality gaps (opt. gap) of the integer re-
course are reported, and their objective values pro-
vide upper bounds (UB) of the true optimal. The
objective values of the relaxation models with contin-
uous recourse are the lower bounds (LB) of the true
optimal. The relative difference (rel. diff.) is calculated
as (UB − LB)/UB × 100%, the ratio of the difference of
two objectives to the objective of integer recourse.

Figure 3. (Color online) Hourly Demand Pattern in the
Zipcar 2014 Data in the Boston–Cambridge Area Reported
in Chang et al. (2017)
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Among the first three instances, the objective values
of continuous recourse are less than those of inte-
ger recourse variables, and their relative differences
are less than 1%. For the last two instances having
larger optimality gaps when solved with integer re-
course, all the relative differences are within their
corresponding optimality gaps. Therefore, in the fol-
lowing tests we relax the integrality constraints on
recourse variables.

Next, we compare the computational time of the
three solution approaches based on the relaxation
model with continuous recourse variables: approach
(i) directly solving the MILP model (1) using Gurobi,
Approach (ii) Benders decomposition in Section 4.1,
and approach (iii) scenario decomposition in Sec-
tion 4.2. The two decomposition algorithms are par-
allelly implemented via ThreadPoolExecutor of the
concurrent.futures module in Python. All subprob-
lems (7), (11), and (12) are solved in parallel. The
results demonstrate the efficiency of our tailored
solution methods [i.e., methods (ii) and (iii)] when
compared with the off-the-shelf commercial solvers.
Following Lu et al. (2018), in each instance, we con-
sider nine service zones (into which the Boston–
Cambridge area is divided) and 50 scenarios of un-
certainties (i.e., electricity prices and rental demand).
The electricity prices are randomly generated from
a normal distribution, with mean and standard de-
viation calculated from the real-world price data.

The rental demand scenarios are generated following
the procedure described in Section 5.1.
Table 3 shows the total CPU time (see columns

“Overall”) taken by all three approaches, as well as
the average time of solving the master problems (see
column “MP”) and subproblems (see column “SP”)
by Benders decomposition, as well as the average
time of solving subproblems (11) to obtain a valid
lower bound (reported under column “LB”) and
calculating upper bound (12) (reported under column
“UB”) by scenario decomposition. The time limit in
this test is set at 8 hours (= 28,800 seconds).
In Table 3, for all the instances, directly solving the

MILP model takes a significantly longer time, as
compared with the other two decomposition algo-
rithms. The scenario decomposition slightly outper-
forms the Benders decomposition with an average
solution time of 276.60 seconds. The Benders de-
composition spends most of the time in solving dual-
based subproblems to obtain Benders cuts. The sce-
nario decomposition approach spends most of the
time on solving the scenario-based subproblems (11).
In practice, it may sometimes be necessary to solve

instances with larger sizes compared with those in
Table 3. To tackle these situations, the decomposition
methods can be implemented parallelly using mes-
sage passing interfaces such as Open MPI5 to further
improve the CPU time.4 In addition, the SoC levels
and time periods can be grouped, and thus the

Table 2. Objective and CPU Time Comparison Between Models With Integer and
Continuous Recourse Variables

Recourse type
Continuous Integer

Instance Rel. diff. (%) LB Time (s) UB Opt. gap (%) Time (s)

1 0.13 −1,418.59 3,228 −1,416.74 0.21 Limit
2 0.85 694.35 3,649 700.29 0.95 Limit
3 0.23 957.48 2,914 959.65 0.25 Limit
4 5.13 159.88 3,203 168.52 5.33 Limit
5 1.11 687.04 3,029 694.77 1.19 Limit

Note. Rel. dif., relative difference; LB, lower bound; UB, upper bound; opt. gap, optimality gaps.

Table 3. CPU Time (in Seconds) Comparison of Solving MILP, Benders, and
Scenario Decomposition

MILP
Benders decomposition Scenario decomposition

Instance Overall Overall MP SP Overall LB UB

1 3,502.17 85.78 4.67 81.11 464.44 309.18 155.26
2 Limit 675.27 286.28 388.99 262.10 158.43 103.66
3 13,725.71 168.55 14.35 154.19 261.39 186.45 74.94
4 Limit 871.75 364.55 507.20 242.00 153.19 88.82
5 852.95 168.53 18.29 150.24 153.07 82.88 70.19
Average 15,136.17 393.98 137.63 256.35 276.60 178.03 98.57

Note. MP, master problem; SP, subproblem; LB, lower bound; UB, upper bound.
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number of second-stage variables can be reduced. An
alternative approximationmethod (presented inOnline
Appendix E) can also be considered to improve com-
putational efficiency.

5.3. Benefit of V2G Integration
We now study various benefits of integrating V2G in
EV sharing, as well as how the benefits are impacted
by important factors such as battery degradation
costs, fast charging technology, seasonality of demand
and electricity price, and urban spatial structure.

We consider four performance measures, including
the total operating profit [the negative of the objective
value in (1a) excluding the penalty cost for unserved

demand], service level (the percentage of rental requests
that are fulfilled in both summer and winter time), the
number of deployed EVs (in both summer and winter),
and the amount of electricity sold to the grid (in summer
and winter). Among these performance measures, the
operating profit represents the benefit to carsharing
service providers; the service level represents the benefit
to consumers, that is, carsharing users. According to
recent studies, each vehicle added to a carsharing fleet
can replace up to 15 private vehicles, which correspond
to more than 100,000 private car miles per year (Glotz-
Richter 2016). Therefore, the number of deployed EVs
reflects the socioenvironmental benefit. The amount of
V2G electricity represents the benefit to the power grid.

Table 4. The Benefit of V2G Integration and the Impact of Fast Charging and Seasonality

V2G Yes No Yes No

Fast charge Yes Yes No No

Total profit ($) 3,664.30 2,941.25 3,081.88 2,153.49

% increase 24.58 N/A 43.11 N/A

Season Winter Summer Winter Summer Winter Summer Winter Summer

EVs deployed 197 211 184 188 231 233 218 216
Service level (%) 91 92 90 89 86 86 83 83
V2G amount (kWh) 2,863.04 2,595.47 N/A N/A 3,826.23 3,198.12 N/A N/A
Revenue ($) Rental 5,729.10 5,756.50 5,645.74 5,622.66 5,332.51 5,349.30 5,208.52 5,187.81

V2G 175.94 814.13 N/A N/A 228.38 936.88 N/A N/A
Cost ($) Relocation 552.50 551.79 530.63 517.48 474.50 480.38 436.20 430.60

Idle 7.87 85.78 342.25 353.14 9.35 97.73 462.30 455.55
Charging 598.50 1,015.63 496.20 880.25 347.42 558.40 148.20 259.47

Charging (kWh) Regular 6,181.51 6,130.63 3,093.82 3,192.28 7,760.83 7,148.62 3,821.31 3,803.02
Fast 942.94 743.94 1,094.51 970.14 N/A N/A N/A N/A
Net total 4,261.40 4,279.10 4,188.33 4,162.43 3,934.60 3,950.50 3,821.31 3,803.02
% increase 1.74 2.80 N/A N/A 2.96 3.88 N/A N/A

Table 5. The Benefit of V2G Integration Under Higher Service Penalty and
Longer Travel Time

Baseline scenario
High service
requirement Long travel time

V2G Yes No Yes No Yes No

Total profit ($) 3,664.30 2,941.25 3,407.45 2,493.50 4,788.82 3,678.56
% increase 24.58 N/A 36.65 N/A 30.18 N/A
Service level (%) 91.39 89.27 93.58 92.51 93.07 91.20
EVs deployed Winter 197 184 214 207 289 273

Summer 211 188 230 211 307 281
V2G amount (kWh) 5,458.51 N/A 6,313.37 N/A 7,996.68 N/A
Revenue ($) Rental 11,485.60 11,268.40 11,682.00 11,584.88 18,038.12 17,792.18

V2G 990.07 N/A 1119.72 N/A 1545.98 N/A
Cost ($) Relocation 1,104.29 1,048.11 1,165.00 1,149.38 2,205.55 2,135.57

Idle 93.65 695.39 99.23 831.50 105.71 1,022.85
Charging 1,614.13 1,376.45 1,602.63 1,267.61 3,698.22 3,228.00

Charging (kWh) Regular 12,312.13 6,286.10 13,662.39 6,999.04 17,500.76 8,743.69
Fast 1,686.88 2,064.65 1,370.98 1,643.71 4,285.76 4,826.22
Net total 8,540.50 8,350.76 8,720.00 8,642.75 13,789.85 13,569.91
% increase 2.27 N/A 0.89 N/A 1.62 N/A
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5.3.1. Impact of Fast Charging and Seasonality. Table 4
shows the performance measures along with detailed
results of revenue, cost, and charging operations,
with or without V2G procedures and with or without
fast charging technology in winter and summer time.
The fourth row, “% increase,” is the percentage of
profit increase with V2G compared with the case
without V2G procedure. Similarly, the last row “%
increase” shows the percentage of net total charging
increase compared with the case without V2G.

We have several observations from Table 4.
• First, integrating V2G in EV sharing can signif-

icantly increase profitability. The benefit of V2G is
more significant when fast charging is not available.

Both V2G and fast charging can improve the service
level. The combination of V2G and fast charging can
achieve significant improvement in both profitability
and quality of service.
• Second, the integration of V2G technology sig-

nificantly increases the size of the EV fleet, whereas
the use of fast charging decreases the fleet size. For
example, implementing V2G alone can increase the
fleet size by an average of 15, whereas fast charging
along can reduce the fleet size by an average of 31.
Recall that studies have shown that each EV added to
the carshare fleet can replace up to 15 private cars
(Bondorová and Archer 2017), which is the major
socioenvironmental benefit of EV sharing.

Table 6. The Benefit of V2G Integration With Various Battery Degradation Costs

Degradation cost ($/kWh) 0 0.01 0.05

V2G Yes No Yes No Yes No

Total profit ($) 3,664.30 2,941.25 3,338.03 2,677.20 2,152.87 1,730.00
% increase 24.58 N/A 24.68 N/A 24.44 N/A
Service level (%) 91.39 89.27 91.27 89.17 90.21 89.08
EVs deployed Winter 197.00 184.00 200.00 186.00 208.00 203.00

Summer 211.00 188.00 213.00 191.00 224.00 209.00
V2G amount (kWh) 5458.51 N/A 5470.42 N/A 5325.60 N/A
Revenue ($) Rental 11,485.60 11,268.40 11,483.59 11,269.72 11,418.41 11,310.04

V2G 990.07 N/A 944.74 N/A 715.88 N/A
Cost ($) Relocation 1,104.29 1,048.11 1,093.13 1,039.23 1,040.32 1,009.22

Idle 93.65 695.39 100.43 708.84 163.87 815.56
Charging 1,614.13 1,376.45 1,831.95 1,567.65 2,457.83 1,994.06

Charging (kWh) Regular 12,312.13 6,286.10 12,424.15 6,408.36 12,660.42 7,064.92
Fast 1,686.88 2,064.65 1,576.50 1,936.17 1,109.71 1,282.48
Net total 8,540.50 8,350.76 8,530.23 8,344.53 8,444.53 8,347.40
% increase 2.27 N/A 2.23% N/A 1.16 N/A

Table 7. The Benefit of V2G Integration With Battery Capacity Choices

V2G Yes No

Battery capacity 30 20

Total profit ($) 3,707.17 2,941.25

% increase 26.04 N/A

Service level (%) 91.85 89.27

Season Winter Summer Winter Summer

EVs deployed 195 225 184 188
Service level (%) 90.94 92.76 89.63 88.91
V2G amount (kWh) 2,651.02 3,105.42 N/A N/A
Revenue ($) Rental 6,005.81 6,100.41 5,645.74 5,622.66

V2G 185.25 1,218.27 N/A N/A
Cost ($) Relocation 572.34 586.02 530.63 517.48

Idle 3.35 35.57 342.25 353.14
Charging 633.37 1,553.93 496.20 880.25

Charging (kWh) Regular 6,007.96 6,927.64 3,093.82 3,192.28
Fast 1,104.81 1,104.81 1,094.51 970.14

Net total 4,461.75 4,927.03 4,188.33 4,162.43
% increase 6.53% 18.37% N/A N/A
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• Third, V2G selling can provide substantial flexible
electricity back to the grid. Considering the net total
electricity consumption,which is the sumof regular and
fast charging minus V2G, the integration of V2G only
causes a veryminimal increase in the net total electricity
while generating benefits in multiple aspects.

5.3.2. Impact of Higher Service Penalty and Longer
Travel Time. As the carsharing industry becomes in-
creasingly competitive, it is important for service pro-
viders to maintain high levels of service quality, espe-
cially in large cities with excessive traffic congestion.
Therefore, we study the benefit of V2G selling under
higher service requirements and longer travel times. For
service requirements, we double the penalty cost of
unmet demand to be twice the revenue of the unfulfilled
rental request. For travel time, we also double the av-
erage trip time. The result details are shown in Table 5.

In Table 5, compared with the baseline case, V2G
selling leads to more significant improvement in prof-
itability under higher service penalty or longer travel
time. The amount of V2G electricity is also larger under
higher service penalty or longer travel time, asmoreEVs
are being deployed.

5.3.3. Impact of Battery Degradation. EV manufac-
turers have debated over whether battery degrada-
tion may hinder the effectiveness of V2G, making it
economically infeasible. For example, Tesla originally
objected to the idea of V2G, citing battery degradation
as the major concern, but recently announced that it
might reconsider the possibility. Nissan, on the other
hand, has always maintained that battery degrada-
tion will not affect V2G operations (Lambert 2018).
The cost of battery degradation depends on the bat-
tery purchase cost and battery lifetime degradation

from charging/discharging.We follow Peterson et al.
(2010) and assume that the battery degradation cost is
proportional to the SoC unit changes from charging/
discharging.
To study the impact of battery degradation,we vary

the unit degradation cost from 0.0 to 0.05 $/kWh
based on the calculations in Peterson et al. (2010)
and present the results in Table 6. We see that bat-
tery degradation may worsen system performance
regarding profitability and quality of service, with
or without V2G. However, given the same battery
degradation cost, V2G integration can still signifi-
cantly benefit EV sharing systems, resulting in higher
profit, better service, and a larger fleet. Compared
with the baseline case with no degradation cost, the
increase in profit fromV2G integration is similar with
battery degradation cost. The fast charging amount
decreases greatly under higher degradation costs,
which may be a result of the increase in fast charging
prices due to the degradation costs. These results
suggest that V2G integration is beneficial, despite
battery degradation, and its benefit may be more or
less as the degradation cost increases.

5.3.4. Impact of V2G on the Service Provider’s Choice
of Battery Capacity. There are various EVs with dif-
ferent battery capacities in the current market, such
as the Nissan LEAF with a 30-kWh battery pack, the
Ford Focus Electric with a 33-kWh battery pack, and
the Hyundai Ioniq Electric with a 28-kWh battery
pack. Different choices of battery capacities can im-
pact the rental, charging, V2G, and vehicle reposi-
tioning operations. Furthermore, because the “range
anxiety” is a major concern in EV adoption (see, e.g.,
Lim et al. 2014), an EV fleet with larger batteries (i.e.,
longer ranges) can attract more users. Therefore, study

Table 8. The Benefit of V2G Integration Under Different Urban Spatial Structures

Spatial structure Random Concentrated CRDB DRCB

V2G Yes No Yes No Yes No Yes No

Total profit ($) 3,664.30 2,941.25 1,765.86 1,071.88 1,181.69 709.51 1,311.02 642.95
% increase 24.58 N/A 64.74 N/A 66.55 N/A 103.91 N/A
Service level (%) 91.39 89.27 91.01 88.00 88.51 82.15 87.53 83.46
EVs deployed Winter 197 184 183 165 179 150 194 173

Summer 211 188 205 176 190 147 212 178
V2G amount (kWh) 5,458.51 N/A 5,722.49 N/A 6,041.63 N/A 6,169.46 N/A
Revenue ($) Rental 11,485.60 11,268.40 10,075.14 9,839.69 9,533.40 8,983.48 10,155.73 9,806.44

V2G 990.07 N/A 1,026.07 N/A 1,037.13 N/A 1,086.12 N/A
Cost ($) Relocation 1,104.29 1,048.11 1,505.77 1,562.86 1,546.48 1,493.13 1,586.94 1,583.25

Idle 93.65 695.39 107.22 688.91 91.08 647.02 149.06 772.56
Charging 1,614.13 1,376.45 1,884.96 1,668.53 2,161.08 1,935.62 2,108.74 1,839.17

Charging (kWh) Regular 12,312.13 6,286.10 11,411.54 5,086.33 10,676.05 3,662.77 11,516.11 4,688.29
Fast 1,686.88 2,064.65 2,232.33 2,723.75 2,958.37 3,520.72 2,693.38 3,115.93
Net total 8,540.50 8,350.76 7,921.38 7,810.08 7,592.79 7,183.49 8,040.03 7,804.23
% increase 2.27 N/A 1.43 N/A 5.70 N/A 3.02 N/A

Note. CRDB, centralized residential and distributed business; DRCB, distributed residential and centralized business.
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how V2G integration may affect the service pro-
vider’s choice of battery capacity. We consider two
battery capacity options: 20 kWh and 30 kWh. The
cost of locating one EV with 20 kWh is $27.00 and is
$27.50 with 30 kWh. The solution details with and
without V2G procedures are shown in Table 7.

In Table 7, when the V2G procedure is available, the
larger battery capacity 30 kWh is selected; but the
smaller battery is preferred without V2G. Therefore,
V2G integration induces the service provider to deploy
EVswith larger batteries and longer ranges, whichmay
in turn facilitate the adoption of EV sharing. Similar
to our previous observations, with battery capacity
choices, V2G still leads to various benefits, including
higher profitability, better service, and larger fleet size.

5.4. Impact of Urban Spatial Structure
Next, we look into the impact of urban spatial struc-
ture, that is, the pattern of residential and business/
commercial land use in urban areas. The relative
location of residential and business areas largely
determines the traffic pattern during morning and
evening rush hours. Based on the Zipcar 2014 data,
themajority (approximately 90%) of the trips are from
residential sectors to business districts in the morning
(9 a.m. to 11 a.m.) and in the reverse direction during
the evening (5 p.m. to 10 p.m.). The rush hours are
identified by the hourly demand shown in Figure 3.
In the following study, depending on the major

function of each zone, we consider four different
spatial distributions of demand, which affects the

Figure 4. Hourly Numbers of Idle EVs at Each Zone Under Different Spatial Structures
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distribution of rental requests but not the geographical
relations or travel times.

1. Random: a city where residential and business
land use is geographically dispersed. Carsharing de-
mands are randomly distributed and do not have any
specific spatial pattern. This is the structure that we
use in the baseline case in all the previous sections.

2. Concentrated: a city where residential sectors
(zones 1, 2, and 3 in our numerical study) and busi-
ness districts (zones 4 and 5) are separated.

3. Centralized residential and distributed business (CRDB):
a city with a centralized residential zone (zone 1) and
multiple business districts in zones 2, 3, 4, and 5.

4. Distributed residential and centralized business (DRCB):
a city with multiple residential sectors in zones 1, 2, 3,
and 4, and a centralized business district (zone 5).
Table 8 shows the solution details under different

spatial structures. (We focus on the case with fast
charging options.) The observations from Section 5.3
still hold. That is, with V2G procedures available,
the operating profit increases greatly, the quality of
service is improved, and more EVs are deployed,
under all considered spatial structures. Compared
with the random structure case, V2G selling has a
more significant impact on improving profitability
with concentrated residential/business areas.

Figure 5. Hourly Numbers of Unmet Demand at Each Zone Under Different Spatial Structures
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5.5. Hourly Operational Patterns
So far, we have focused on aggregate performance
measures. In this section, we look into the hourly pat-
terns of vehicle movement and charging operations
to gain more insights. We present the second-stage
decision variables under one randomly selected sce-
nario in the two-stage stochastic programming model.
The hourly rental demand is presented in Online Ap-
pendix F.

Figure 4 demonstrates the numbers of idle EVswith/
without V2G procedures. In all of the cases, most of the
time, the total number of idle EVs with V2G available is
much lower than thosewithoutV2G.Under the random
structure, the plots at different zones have similar
patterns. When V2G is not available, most EVs are idle

before the morning rush hours and before the evening
rush hours. When V2G is available, EVs are only idle in
the morning before the rush hours. Under the other
three spatial structures, the patterns vary, depending on
whether the zone is a residential area or a business
district. In the residential areas, most idle EVs appear in
themorning,while in the business areas,most arebefore
the evening rush hours. For example, in Figure 4(b),
zones 1–3 are residential areas, where most idle EVs
appear in the morning. Whereas, in zones 4 and 5, the
majority appears during the afternoon.
Figure 5 demonstrates the hourly numbers of un-

met demand with/without V2G procedures. The
unmet demand patterns with and without V2G pro-
cedures are very similar. With V2G, the amount of

Figure 6. Hourly Numbers of EVs Charged and in V2G Procedures at Each Zone Under the Random Structure
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unmet demand has more reduction in the residential
areas compared with the business areas such as under
“Concentrated,” “CRDB,” and “DRCB” structures.

Figure 6 shows the numbers of EVs being charged
and the numbers of EVs in V2G processes under the
random spatial structure. We consider the recourse
solutions of winter and summer time, respectively, in
the cases with and without fast charging procedures.
In summer time, most V2G procedures happen in the
morning (i.e., before 6 a.m.) and early afternoon
(i.e., before 3 p.m.). In winter time, most V2G selling
occurs in the morning and lasts for longer time than
in the summer time. But in the case without fast
charging, V2G happens both in themorning and early
afternoon. As for the “random” structure, compared
with Figure 4(a), we notice that most of V2G happens
in the morning, when most idle EVs present without
V2G options. That is, V2G helps to utilize vehicle idle
time, which can also be reflected in the idle cost re-
duction in Table 4.

6. Conclusions
In this paper, we studied EV sharing systems inte-
grated with V2G. We formulated the problem of opti-
mal service zone planning and EV fleet deployment
under uncertain rental demand and electricity price as
a two-stage stochastic integer program. We developed
Benders decomposition and scenario decomposition
algorithms to efficiently solve this computationally
challenging problem. Via numerical study using real-
world and synthetic data, we drew insights into the
values of V2G integration in different aspects. We
found that integrating V2G in EV sharing systems can
significantly benefit the service provider through in-
creased profitability. Furthermore, the benefit of V2G
can withstand the impact of battery degradation and
can bemore significantwhen there ismore severe traffic
congestion, or when the urban spatial structure has
concentrated business/residential areas. V2G integra-
tion (complemented by fast charging technology) can
also benefit carshare users through improvement in the
quality of service. With respect to socioenvironmental
benefit, V2G integration results inmore EVdeployment
and larger battery capacities, which in turn facilitates
the adoption of EV sharing and reduces private car
ownership and GHG emissions. A shared EV fleet
equippedwith V2G selling can also provide substantial
flexible capacity to the power grid.

Our model can be extended in several ways. First,
we can formulate a multistage dynamic program
and obtain real-time operational solutions via linear-
decision-rule-based approximation (see Online Ap-
pendix E). Second, our current model is formulated
for designing a new EV sharing system from scratch.
It can be easily modified to handle system reoptim-
ization and/or expansion with existing facilities and

deployed vehicle fleets. Third, the service-level re-
quirement is enforced by penalty cost in our model.
It is possible to adopt a chance constraint formulation
to provide more explicit service-level guarantees. For
future research, it is possible to apply other method-
ologies, such as approximate dynamic programming,
to provide real-time decision support to large-scale
systems. It is also interesting to study adaptive robust
analogues of this problem to address the high level of
ambiguity in carsharing demand and electricity price.

Acknowledgments
The authors are grateful for constructive feedback and sug-
gestions given by reviewers and the Associate Editor. The
authors are grateful for support from the National Science
Foundation.

Endnotes
1 See https://uk.nissannews.com/en-GB/releases/release-145248-nissan
-and-enel-launch-groundbreaking-vehicle-to-grid-project-in-the-uk.
2 See https://www.car2go.com/NL/en/amsterdam/ and https://
www.car2go.com/ES/en/madrid/.
3 See https://www.mpoweruk.com/infrastructure.htm.
4 See www.open-mpi.org/.
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