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Abstract
Westudymultistage distributionally robustmixed-integer programs under endogenous
uncertainty, where the probability distribution of stage-wise uncertainty depends on
the decisions made in previous stages. We first consider two ambiguity sets defined by
decision-dependent bounds on the first and second moments of uncertain parameters
and by mean and covariance matrix that exactly match decision-dependent empirical
ones, respectively. For both sets, we show that the subproblem in each stage can be
recast as a mixed-integer linear program (MILP). Moreover, we extend the general
moment-based ambiguity set in Delage and Ye (Oper Res 58(3):595–612, 2010) to
the multistage decision-dependent setting, and derive mixed-integer semidefinite pro-
gramming (MISDP) reformulations of stage-wise subproblems. We develop methods
for attaining lower and upper bounds of the optimal objective value of the multistage
MISDPs, and approximate them using a series of MILPs. We deploy the Stochas-
tic Dual Dynamic integer Programming (SDDiP) method for solving the problem
under the three ambiguity sets with risk-neutral or risk-averse objective functions, and
conduct numerical studies on multistage facility-location instances having diverse
sizes under different parameter and uncertainty settings. Our results show that the
SDDiP quickly finds optimal solutions for moderate-sized instances under the first two
ambiguity sets, and also finds good approximate bounds for the multistage MISDPs
derived under the third ambiguity set. We also demonstrate the efficacy of incor-
porating decision-dependent distributional ambiguity in multistage decision-making
processes.
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1 Introduction

Data uncertainty appears ubiquitously in decision-making processes in practice, where
system design and operational decisions are made sequentially and dynamically over
a finite time horizon, to be adaptive to varying parameters (e.g., random customer
demand, stochastic travel time). When using stochastic programming approaches,
the goal is to optimize a certain measure of a random outcome (e.g., the expected
cost of service operations) given a fully known distribution of uncertain parameter.
We refer to, e.g., [6,36], for detailed discussions about applications, formulations,
and solution algorithms used in two-stage and multistage stochastic programming.
On the other hand, robust optimization [3,4] provides an alternative way to make
conservative decisions, and assumes that values of uncertain parameter may vary in a
given constrained set, called “uncertainty set.” The resultant model seeks a solution
that is feasible for any realization in the uncertainty set and optimal for the worst-case
objective function.

Recently, an approach that bridges the gap between robust optimization and stochas-
tic programming is proposed to handle decision-making problems with ambiguously
known distributions of uncertain parameter, namely, the distributionally robust opti-
mization (DRO) approach. In DRO, optimal solutions are sought for the worst-case
probability distribution within a family of candidate distributions, called an “ambi-
guity set.” A seminal paper by [8] focused on ambiguity sets defined by mean and
covariance matrix, where they proved that a distributionally robust convex program
can be reformulated as a semidefinite program and solved in polynomial time for a
wide range of objective functions. They also quantified the relationship between the
amount of data and the choice of moment-based ambiguity set parameters for achiev-
ing certain levels of solution conservatism. Recent DRO literature demonstrates that
theways of constructing the ambiguity sets can base on (i) empiricalmoments and their
nearby regions (see, e.g., [8,26,40,43]), and (ii) statistical distances between a candi-
date distribution and a reference distribution, such as norm-based distance (see [17]),
φ-divergence (see [16]), and Wasserstein metric (see, e.g., [7,9,10]). In this paper, we
focus on moment ambiguity sets and extend them to multistage decision-dependent
uncertainty settings, which we elaborate later.

Reference [5] studied adaptive DRO in a dynamic setting, where decisions are
adapted to the uncertain outcomes through stages. They focused on a class of second-
order conic representable ambiguity sets and transformed the adaptiveDROproblem to
a classical robust optimization problem following linear decision rules. Reference [13]
studied a linear optimization problemunder uncertaintywhich has expectation terms in
the objective function and constraints. The authors developed a new nonanticipative
decision rule, which was more flexible than the linear decision rule, to find DRO
solutions.

In practice, system parameters and therefore their uncertain features could depend
on decisions made previously. For example, customer demand in various types of
service industries, especially new service or service launched in a new market, is ran-
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dom and hard to predict due to lack of prior data. Its probability distribution can be
greatly dependent on locations of service centers or facilities. For example, consider
carsharing or bikesharing services offered in metropolitan areas. Normally, one would
sign up as a member only if she can easily find available cars or bikes nearby her
work/home locations (see [19]). This type of uncertainty is called endogenous uncer-
tainty, which has been extensively studied in the literature of dynamic programming
(see, e.g., [41]), stochastic programming (see, e.g., [12,18,22]) and robust optimiza-
tion (see, e.g., [15,20,21,27,32,37]). Among them, [41] proposed an approximate
dynamic programming approach to solve a multistage global climate policy problem
under decision-dependent uncertainties. Reference [12] studied a class of stochastic
programs with decision-dependent parameters and presented a hybrid mixed-integer
disjunctive programming formulation for these programs. Reference [32] investigated
robust combinatorial optimizationwith variable budgeteduncertainty,where the uncer-
tain parameters belong to the image of multifunctions of the problem variables. They
proposed a mixed-integer linear program (MILP) to reformulate the problem. Further-
more, [38] considered the process of revealing uncertain information being affected
by previously made decisions, and proposed decision rules for stochastic programs
with decision-dependent information discovery processes. Reference [39] extended
their methods to a robust optimization setting and performed numerical studies on
instances of the active preference elicitation problem, solved for designing city secu-
rity and crime control policies.

We consider multistage mixed-integer DROmodels under endogenous uncertainty,
of which the ambiguity sets are moment based and depend on previous stages’ deci-
sions. The following papers also incorporate decision-dependent uncertainty intoDRO
formulations, but do not consider multistage, dynamic, nested formulations as the ones
we will introduce in Sects. 3 and 4. Reference [28] considered a DRO problem, where
the ambiguity sets are balls centered at a decision-dependent probability distribu-
tion. The measure they used is based on a class of earth mover’s distances, including
both total variation distance and Wasserstein metrics. Their models are nonconvex
nonlinear programs, which are computationally intractable, and the authors specified
several problem settings under which it is possible to obtain tractable formulations.
They demonstrated the results by solving small instances of a distributionally robust
job scheduling problem that only involves 1 machine, 2 jobs, and 2 scenarios in the
finite support of uncertain job-processing time. Reference [24] studied two-stage DRO
modelswith decision-dependent ambiguity sets constructedusingbounds onmoments,
covariancematrix,Wassersteinmetric, Phi-divergence andKolmogorov–Smirnov test.
For the finite support case, they provide a small numerical example of a newsvendor
problemwhere both the decision variable and uncertainty are 1-dimensional. Recently,
[2] considered a two-stage distributionally robust facility location problem, where
mean and variance of the demand depend on the first-stage facility-opening deci-
sions. The authors derived an equivalent MILP based on special problem structures
and developed valid inequalities to improve the solution time when testing larger-
sized instances (with up to 10 facility locations, 20 demand sites, and 100 possible
realizations in the support of demand).

Regarding algorithms for multistage stochastic programs, [29] were the first to
develop the Stochastic Dual Dynamic Programming (SDDP) algorithm for efficiently
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computing multistage stochastic linear programs based on scenario tree representa-
tion of the dynamically realized uncertainty. We also refer the interested readers to
[11,14,31] for studies on the convergence of the SDDP algorithm under different prob-
lem settings. Recently, [30] studied a variant of SDDP with a distributionally robust
objective, where the ambiguity set is a Euclidean neighborhood of the nominal prob-
ability distribution. The authors showed its almost-sure convergence under standard
assumptions and applied it toNewZealand hydrothermal electricity system. Stochastic
Dual Dynamic integer Programming (SDDiP), firstly proposed by [44], is an extension
of SDDP to handle the nonconvexity arising in multistage stochastic integer programs.
The essential differences are the new reformulations of subproblems in each stage and
a new class of cuts derived for handling the integer variables.

In this paper, we deploy risk-neutral expectation and risk-averse coherent-risk
measures to interpret the objective functions in multistage DROmodels with decision-
dependent endogenous uncertain parameter.We consider three types ofmoment-based
ambiguity sets respectively involving: Type 1 decision-dependent bounds onmoments
(extended from one case of ambiguity sets in [24] for two-stage decision-dependent
DRO models); Type 2 the mean vector and covariance matrix exactly matching
decision-dependent empirical ones (extended from the ambiguity set proposed by
[40] for general DRO models); and Type 3 the mean vector of uncertain parameters
lying in an ellipsoid centered at a decision-dependent estimate mean vector, and the
centered second-moment matrix lying in a positive semidefinite (psd) cone (extended
from the general moment ambiguity set in [8]). For Type 1 and Type 2 ambiguity sets,
we reformulate the problem as multistage stochastic MILPs, and for Type 3, we refor-
mulate it as a multistage stochastic mixed-integer semidefinite program (MISDP). We
then apply variants of the SDDiP approach for solving these reformulations or deriving
objective bounds.

The main contributions of the paper are threefold. First, to our best knowledge, this
paper is thefirst that handlesmixed-integerDROmodels under endogenousuncertainty
in a multistage setting and derives reformulations that can be solved by off-the-shelf
solvers. Second, the reformulation for Type 3 ambiguity set is a multistage MISDP,
which cannot be optimized directly by any state-of-the-art integer-programming
solvers. We derive both lower- and upper-bounds via Lagrangian relaxation and inner
approximation, respectively, and numerically show that these bounds can approximate
the optimal objective of the multistage problem well by having 4% optimality gap in
most instances given demand with high variation. Third, we successfully implement
the SDDiP algorithm for handling both risk-neutral and risk-aversemodels and numer-
ically evaluate the efficacy of our reformulations and bounds via testing diverse-sized
problems (in terms of number of decision variables, constraints, stages in SDDiP and
the support size).

The remaining of this paper is organized as follows. In Sect. 2, we set up the
formulation of a risk-neutral multistage decision-dependent DRO model with mixed-
integer variables in each stage, and describe our problem assumptions. In Sect. 3, we
develop exactMILP reformulations and SDDiP algorithms for themultistage decision-
dependent DRO models under Type 1 and Type 2 ambiguity sets. In Sect. 4, we
develop MISDP reformulations and bounds for approximating the optimal objective
for Type 3 ambiguity set. In Sect. 5, we consider multistage facility-location instances
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having location-dependent demand and a finite set of periods for locating facilities.
We demonstrate the finite convergence of the SDDiP algorithm, and present numerical
results for instanceswith different sizes and parameter settings. In Sect. 6, we conclude
the paper and state future research directions.

Furthermore, we present all reformulations for the continuous support case in
“Appendix A”, analysis of the risk-averse models under the three ambiguity sets in
“Appendix B”, and details of all proofs in “Appendix C”.

Throughout the paper, we use the following notation: The bold symbol will be used
to denote a vector/matrix; for n ∈ Z+, the set {1, . . . , n} is represented by [n]; the
Frobenius inner product trace(ATB) is denoted by A · B.

2 Problem formulation and assumptions

In themain paper,we focus on risk-neutralmultistage decision-dependent distribution-
ally robust mixed-integer programming models. (Due to similar analysis and results,
we describe reformulations for the risk-averse models having coherent-risk-based
objectives in “Appendix B”.)

Consider a generic formulation of a multistage DRO problem with endogenous
uncertainty and risk-neutral objectives as

N-DDDR:

min
(x1, y1)∈X1

{
g1(x1, y1) + max

P2∈P2(x1)
EP2

[
min

(x2, y2)∈X2(x1,ξ2)
g2(x2, y2) + · · ·

+ max
Pt∈Pt (xt−1)

EPt

[
min

(xt , yt )∈Xt (xt−1,ξ t )
gt (xt , yt ) + · · ·

+ max
PT ∈PT (xT−1)

EPT

[
min

(xT , yT )∈XT (xT−1,ξT )
gT (xT , yT )

]}
, (1)

where ξ t ∈ Ξt ⊂ R
J is the random vector at stage t , for all t = 2, . . . , T . W.l.o.g.,

let Ξ1 be a singleton, i.e., ξ1 is a deterministic vector. For t > 1, the probability
of each uncertain parameter ξ t is not known exactly, but lies in an ambiguity set of
probability distributions. LettingΞ = Ξ1×Ξ2×· · ·×ΞT , the evolution of ξ t defines
a probability space (Ξ,F , P), and a filtration F1 ⊂ F2 ⊂ · · · ⊂ FT ⊂ F such that
eachFt corresponds to the information available up to (and including) the current stage
t , withF1 = {∅, Ξ}, FT = F . We define binary state variable xt ∈ {0, 1}I to connect
the consecutive two stages t and t + 1, and define integer/continuous stage variable
yt ∈ R

I×J which only appears at stage t . The feasible region for choosing decisions
(xt , yt ) is Xt (xt−1, ξ t ) ⊂ {0, 1}I × R

I×J , which depends on the values of decision
xt−1 and random vector ξ t . Consider linear cost function gt (xt , yt ) and non-empty
compact mixed-integer polyhedral feasible set Xt (xt−1, ξ t ) for each t ∈ [T ]. The
ambiguity set at stage t is denoted byPt (xt−1), which depends on the previous stage’s
decision variable xt−1, and Pt (xt−1) ⊂ Pt (Ξt ,Ft ), denoting the set of probability
distributions defined on (Ξt ,Ft ), for all t = 2, . . . , T .
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The dynamic decision-making process is as follows:

decision (x1, y1)︸ ︷︷ ︸
Stage 1

→ worst-case (P2) → observation (ξ2) → decision (x2, y2)︸ ︷︷ ︸
Stage 2

→ · · ·

→ worst-case (Pt ) → observation (ξ t ) → decision (xt , yt )︸ ︷︷ ︸
Stage t

→ · · ·

→ worst-case (PT ) → observation (ξ T ) → decision (xT , yT )︸ ︷︷ ︸
Stage T

In the first stage, we make decisions x1, y1. The nature chooses the worst-case prob-
ability distribution P2 ∈ P2(x1), under which the uncertain parameter ξ2 is observed
and then make corresponding decisions x2, y2 in the second stage. This process
continues until reaching stage T .

The Bellman equations for N-DDDR Model (1) involve:

Q1 = min
(x1, y1)∈X1

{
g1(x1, y1) + max

P2∈P2(x1)
EP2 [Q2(x1, ξ2)]

}
,

Qt (xt−1, ξ t ) = min
(xt , yt )∈Xt (xt−1,ξ t )

{
gt (xt , yt ) + max

Pt+1∈Pt+1(xt )
EPt+1 [Qt+1(xt , ξ t+1)]

}
,

(2)

for each t = 2, . . . , T − 1, and

QT (xT−1, ξ T ) = min
(xT , yT )∈XT (xT−1,ξT )

gT (xT , yT ).

Note that the Bellman equation in each stage t ∈ [T − 1] is a min-max problem.
Therefore, our goal is to recast the inner maximization problem as a minimization
problem and then reformulate the min-max model as a monolithic formulation. Let
X̂t represent the feasible set Xt projecting to the xt -space, i.e., xt ∈ X̂t if and only
if there exists yt such that (xt , yt ) ∈ Xt . We make the following assumptions in this
paper.

Assumption 1 The randomvectors are stage-wise independent, i.e., ξ t is stochastically
independent of ξ [1,t−1] = (ξ1, . . . , ξ t−1)

T, for all t = 2, . . . , T .

Assumption 2 The subproblem Qt (xt−1, ξ t ) in each stage t is always feasible for any
decision made in the constraint set Xt and for every realization of the random vector
ξ t for all t ∈ [T ]. That is, the problem has complete recourse.

Assumption 3 For each t = 2, . . . , T , every probability distribution Pt ∈ Pt (xt−1)

has a decision-independent support Ξt := {ξ kt }Kk=1 with finite K elements for all solu-

tion values xt−1 ∈ X̂t−1. Each realization ξ kt is associated with a decision-dependent
ambiguously known probability pk(xt−1) satisfying

∑K
k=1 pk(xt−1) = 1.
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Assumption 2 is for notation simplicity of the derivation and analysis of the SDDiP
algorithm for solving reformulations ofModel (1). It is made w.l.o.g. as we can always
penalize the violation of a certain constraint in the objective function by adding an
additional penalty-related variable to the constraint.

Assumption 3 is needed for deriving efficient, finitely convergent algorithms for
multistagemodels. If we relax the assumption and allow continuous supportsΞt , ∀t =
2, . . . , T , the reformulations of N-DDDR under three ambiguity sets become semi-
infinite programs with an infinite number of constraints and cannot be numerically
tested. (We will present the corresponding reformulations in Theorems A.1, A.2 and
A.3 in “Appendix A”.) Therefore, we keep Assumption 3 in the main paper to derive
reformulations of N-DDDR, and numerically evaluate their performance in Sect. 5.

For notation simplicity, every discrete support Ξt is assumed to have the same
number of elements K for t = 2, . . . , T . However, our model and solution approaches
can be easily extended to settings with time-varying K . Moreover, our setting can also
accommodate the case of decision-dependent support with Ξt (xt−1) = {ξ kt }k∈[K ]\Ω ,
by letting a subsetΩ ⊂ [K ] of realizations to have zero probabilities, i.e., pk(xt−1) =
0, ∀k ∈ Ω , if our decision xt−1 will not lead to any of those specific realizations
ξ kt ,∀k ∈ Ω in stage t for all t = 2, . . . , T .

3 Solving N-DDDR under Type 1 and Type 2 ambiguity sets

We consider Types 1 and 2 ambiguity sets mentioned in Sect. 1 for characterizing
ambiguity sets P2(x1), . . . , PT (xT−1), and will derive MILP reformulations and
algorithms for exactly optimizing N-DDDR under these two ambiguity sets.

3.1 Reformulation under Type 1 ambiguity set

Following the settings of one ambiguity set studied by [24], we bound all the moments
by certain decision-dependent functions. In stage t + 1, the random vector is ξ t+1 =
(ξt+1,1, . . . , ξt+1,J )

T ∈ R
J where ξt+1, j represents the j th uncertain parameter. We

consider m different moment functions f := ( f1(ξ t+1), . . . , fm(ξ t+1))
T. Then for

each s = 1, . . . ,m,

fs(ξ t+1) = (ξt+1,1)
ks1(ξt+1,2)

ks2 · · · (ξt+1,J )
ks J ,

where ks j is a non-negative integer indicating the power of ξt+1, j for the sth moment
function. The lower and upper bounds are defined by l(xt ) := (l1(xt ), . . . , lm(xt ))T

and u(xt ) := (u1(xt ), . . . , um(xt ))T, respectively. For each t ∈ [T − 1], a discrete
Type 1 ambiguity set with Assumption 3 is:

PD1
t+1(xt ) :=

{
p ∈ R

K | p(xt ) ≤ p ≤ p̄(xt ), l(xt ) ≤
K∑

k=1

pk f (ξ t+1) ≤ u(xt )

}
,

(3)
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where p(xt ) and p̄(xt ) are the given lower and upper bounds of the candidate true
probability p, which are decision-dependent. Following the derivations in [24] for
reformulating a two-stage decision-dependent DROmodel, we generalize their results
for the multistage setting and reformulate Bellman equation (2) below in Theorem
1. Note that p can be ensured as a probability distribution by setting one of the
moment functions f , lower and upper bounds l and u to be 1 (which then enforces∑K

k=1 pk = 1). The details are given in Eqs. (5a) and (6a) later and without loss of
generality, we do not include (6a) specifically in (3). We also describe a continuous
version of PD1

t+1(xt ) and the resulting reformulation in “Appendix A”.

Theorem 1 If for any feasible xt ∈ X̂t , the ambiguity set defined in (3) is non-empty,
then the Bellman equation (2) can be reformulated as:

Qt (xt−1, ξ t ) = min
α,β,γ ,γ̄ ,xt , yt

gt (xt , yt ) − αTl(xt ) + βTu(xt )−γ T p(xt ) + γ̄ T p̄(xt ) (4a)

s.t. (−α + β)T f (ξkt+1)−γ
k

+ γ̄k ≥ Qt+1(xt , ξ
k
t+1), ∀k ∈ [K ],

(4b)

(xt , yt ) ∈ Xt (xt−1, ξ t ), (4c)

α, β, γ , γ̄ ≥ 0. (4d)

Theproof ofTheorem1 is presented in “AppendixC”.Note that there exist nonlinear
terms in both objective function (4a) and constraints (4b) (e.g., αTl(xt ), βTu(xt )) and
we explore special structures of PD1

t+1(xt ) to speed up the computation. For the first
and second moments of each parameter, we consider their lower and upper bounds as
follows:

f1(ξ t+1) = 1, l1(xt ) = u1(xt ) = 1, (5a)

f1+ j (ξ t+1) = ξt+1, j , l1+ j (xt ) = μ j (xt ) − ε
μ
j , u1+ j (xt ) = μ j (xt ) + ε

μ
j , ∀ j ∈ [J ],

(5b)

f1+J+ j (ξ t+1) = (ξt+1, j )
2, l1+J+ j (xt ) = S j (xt )ε

S
j , u1+J+ j (xt ) = S j (xt )ε̄

S
j , ∀ j ∈ [J ].

(5c)

Here, (5a) is a normalization constraint to ensure that P is a probability distribution.
Equations (5b) and (5c) demonstrate the first and second moment functions for each
parameter, respectively.When thefirstmoment function is used, l1+ j (xt ) andu1+ j (xt )
bound the mean of parameter ξt+1, j in an ε

μ
j -interval of the empirical mean function

μ j (xt ) for all j ∈ [J ]. Similarly, l1+J+ j (xt ) and u1+J+ j (xt ) bound the second
moment of parameter ξt+1, j via scaling the empirical second moment function S j (xt )
for all j ∈ [J ]. In the rest of our analysis, we set p(xt ) = 0, p̄(xt ) = 1 for any
feasible xt , and focus on specially designed forms of μ j (xt ) and S j (xt ) to derive a
computable reformulation of Model (4). We first specify 2J + 1 constraints in the
ambiguity set (3) as:

PD1
t+1(xt ) =

{
p ∈ R

K+ |
K∑

k=1

pk = 1, (6a)
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μ j (xt ) − ε
μ
j ≤

K∑
k=1

pkξ
k
t+1, j ≤ μ j (xt ) + ε

μ
j , ∀ j ∈ [J ], (6b)

S j (xt )εSj ≤
K∑

k=1

pk(ξ
k
t+1, j )

2 ≤ S j (xt )ε̄Sj , ∀ j ∈ [J ]
}
, (6c)

where for each j ∈ [J ], the empirical first momentμ j (xt ) and second moment S j (xt )
affinely depend on decisions xt , such that

μ j (xt ) = μ̄ j

(
1 +

I∑
i=1

λ
μ
j i xti

)
,

S j (xt ) = (μ̄2
j + σ̄ 2

j )

(
1 +

I∑
i=1

λS
ji xti

)
,

where the empirical mean and standard deviation of the j th uncertain parameter are
denoted by μ̄ j , σ̄ j , respectively. Here by assumption, the first and second moments
will increase when any of the state variable xti changes from 0 to 1. Parameters
λ

μ
j i , λS

ji ∈ R+ respectively represent the degree about how xti = 1 may affect the
values of the first and second moments of ξt+1, j for each j ∈ [J ]. Following this
assumption, the mean and variance of customer demand may increase if there are
more facilities open nearby, and the respective increasing rates are measured by λ

μ
j i

and λS
ji . Depending on specific applications and problem contexts, the values of λμ’s

and λS’s can be set differently. Also note that for notation simplicity, λuji and λS
ji are

the same for all stages t ∈ [T ]. Our models and approaches can also accommodate
time-varying λμ- or λS-values.

We further rewrite the recursive function Qt+1(xt , ξ kt+1) as Q
k
t+1 for notation sim-

plicity. Using the ambiguity set defined in (6), the Bellman equation (4) becomes

Qt (xt−1, ξ t ) = min
α,β,xt , yt

gt (xt , yt ) − α1 −
J∑

j=1

α2 j (μ̄ j − ε
μ
j ) −

J∑
j=1

I∑
i=1

λ
μ
j i μ̄ jα2 j xti

−
J∑

j=1

α3 j (μ̄
2
j + σ̄ 2

j )ε
S
j −

J∑
j=1

I∑
i=1

λS
jiε

S
j (μ̄

2
j + σ̄ 2

j )α3 j xti

+ β1 +
J∑

j=1

β2 j (μ̄ j + ε
μ
j ) +

J∑
j=1

I∑
i=1

λ
μ
j i μ̄ jβ2 j xti

+
J∑

j=1

β3 j (μ̄
2
j + σ̄ 2

j )ε̄
S
j +

J∑
j=1

I∑
i=1

λS
ji ε̄

S
j (μ̄

2
j + σ̄ 2

j )β3 j xti (7a)

s.t. − α1 + β1 +
∑
j∈[J ]

ξ kt+1, j (−α2 j + β2 j )
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+
∑
j∈[J ]

(ξ kt+1, j )
2(−α3 j + β3 j ) ≥ Qk

t+1,

∀k ∈ [K ], (7b)

(xt , yt ) ∈ Xt (xt−1, ξ t ),

α, β ≥ 0. (7c)

Given binary valued xti , we provide exact reformulations of the bilinear terms
zα2t j i = α2 j xti , zα3t j i = α3 j xti , zβ2t j i = β2 j xti , zβ3t j i = β3 j xti in objective (7a) using

McCormick envelopes Mα2
t j i , Mα3

t j i , Mβ2
t j i , Mβ3

t j i for all i ∈ [I ], j ∈ [J ]. (We omit
constraint details of all the McCormick envelopes here and also in the remaining
reformulations as they follow standard procedures, which can be found in, e.g., [25].)

Then, following the multi-cut version of SDDiP algorithm [44], at iteration �, we
replace the value function Qk

t+1 by under-approximation cuts:

θkt ≥ vlkt+1 + (π lk
t+1)

Txt , ∀k ∈ [K ], l ∈ [�], (8)

where cut coefficients {(vlkt+1,π
lk
t+1)}Kk=1 are evaluated at stage t + 1 in the backward

step at each iteration l ∈ [�] with π lk
t+1 being the optimal solution to a Lagrangian

dual problem of model (7) and vlkt+1 = Lk
t+1(π

lk
t+1) being the value of the Lagrangian

dual function. Then we obtain an under-approximation of the Bellman equation (7) as

Q
t
(xt−1, ξ t ) = min

α,β,xt , yt ,θ t
zα2 ,zα3 ,zβ2 ,zβ3

gt (xt , yt ) − α1 −
J∑

j=1

α2 j (μ̄ j − ε
μ
j ) −

J∑
j=1

I∑
i=1

λ
μ
j i μ̄ j z

α2
t j i

−
J∑

j=1

α3 j (μ̄
2
j + σ̄ 2

j )ε
S
j −

J∑
j=1

I∑
i=1

λ j i ε
S
j (μ̄

2
j + σ̄ 2

j )z
α3
t j i

+ β1 +
J∑

j=1

β2 j (μ̄ j + ε
μ
j ) +

J∑
j=1

I∑
i=1

λ
μ
j i μ̄ j z

β2
t j i

+
J∑

j=1

β3 j (μ̄
2
j + σ̄ 2

j )ε̄
S
j +

J∑
j=1

I∑
i=1

λ j i ε̄
S
j (μ̄

2
j + σ̄ 2

j )z
β3
t j i

s.t. (7c), (8),

− α1 + β1 +
∑
j∈[J ]

ξ kt+1, j (−α2 j + β2 j )

+
∑
j∈[J ]

(ξ kt+1, j )
2(−α3 j + β3 j ) ≥ θkt ,

∀k ∈ [K ],
(zα2t j i , α2 j , xti ) ∈ Mα2

t j i , ∀i ∈ [I ], j ∈ [J ],
(zα3t j i , α3 j , xti ) ∈ Mα3

t j i , ∀i ∈ [I ], j ∈ [J ],
(zβ2t j i , β2 j , xti ) ∈ Mβ2

t j i , ∀i ∈ [I ], j ∈ [J ],
(zβ3t j i , β3 j , xti ) ∈ Mβ3

t j i , ∀i ∈ [I ], j ∈ [J ],
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α, β ≥ 0. (9)

The above under-approximation (9) is an MILP. Therefore, we can apply SDDiP
using Lagrangian cuts to optimize the original N-DDDRmodel (1) with its stage-wise
subproblem reformulations (9), given Type 1 ambiguity set.

3.2 Reformulation under Type 2 ambiguity set

In the previous section, we consider Type 1 ambiguity set defined by decision-
dependent bounds on each moment separately, whereas in reality, there may be
correlations between different parameters. In this case, we rely on estimates of the
true mean and covariance matrix and consider ambiguity sets defined by matching
empirical mean μ(xt ) ∈ R

J and covariance matrix Σ(xt ) ∈ R
J×J exactly. For each

t ∈ [T − 1], we consider Type 2 ambiguity set having a discrete support of uncertain
parameter, given by

PD2
t+1(xt ) :=

{
p ∈ R

k |
K∑

k=1

pk = 1, (10a)

K∑
k=1

pkξ
k
t+1 = μ(xt ), (10b)

K∑
k=1

pk(ξ
k
t+1 − μ(xt ))(ξ kt+1 − μ(xt ))T = Σ(xt )

}
. (10c)

Theorem 2 demonstrates a reformulation of Bellman equation (2) given Type 2 ambi-
guity set (10).

Theorem 2 If for any feasible xt ∈ X̂t , the ambiguity set defined in (10) is non-empty,
then the Bellman equation (2) can be reformulated as

Qt (xt−1, ξ t ) = min
xt , yt ,s,u,Y

gt (xt , yt ) + s + uTμ(xt ) + Σ(xt ) · Y (11a)

s.t. s + uTξ kt+1 + (ξ kt+1 − μ(xt ))(ξ kt+1 − μ(xt ))T · Y ≥ Qk
t+1,

∀k ∈ [K ],
(xt , yt ) ∈ Xt (xt−1, ξ t ). (11b)

A detailed proof of Theorem 2 is presented in “Appendix C”, in which we apply
strong duality to recast the inner maximization problem in (2) as a minimization
problem and combine it with the outer minimization problem. Furthermore, assume
that the elements in μ(xt ), Σ(xt ) are affine in xt , i.e.,

μ j (xt ) = μ̄ j

(
1 +

I∑
i=1

λ
μ
j i xti

)
, ∀ j ∈ [J ] (12a)
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Σ(xt ) = Σ̄

(
1 +

I∑
i=1

λcovi xti

)
, (12b)

where μ̄ is the nominal mean vector and Σ̄ is a psd matrix representing the nominal
covariance matrix. Then

uTμ(xt ) =
J∑

j=1

μ̄ j u j (1 +
I∑

i=1

λ
μ
j i xti ), (13a)

Σ(xt ) · Y =
J∑

j=1

J∑
j ′=1

Σ̄ j j ′(1 +
I∑

i=1

λcovi xti )Y j j ′ , (13b)

μ(xt )μ(xt )T · Y =
J∑

j=1

J∑
j ′=1

μ̄ j μ̄ j ′(1 +
I∑

i=1

λ
μ
j i xti )(1 +

I∑
i ′=1

λ
μ

j ′i ′xti ′)Y j j ′ . (13c)

Both (13a) and (13b) contain bilinear terms and (13c) contains trilinear terms.
Since xti , ∀i ∈ [I ] are binary variables, we can provide exact reformulations of
the bilinear terms wti j = xti u j , zti j j ′ = xti Y j j ′ , and trilinear terms vti i ′ j j ′ =
xti xti ′Y j j ′ for all t ∈ [T ], i, i ′ ∈ [I ], j, j ′ ∈ [J ] using McCormick envelopes
Mw

ti j , Mz
ti j j ′, Mv

ti i ′ j j ′ . Applying the same cutting planes in (8), we obtain an under-
approximation Q

t
(xt−1, ξ t ) of the Bellman equation (11) as:

min
xt , yt ,s,u,Y

w,z,v

gt (xt , yt ) + s +
J∑

j=1

μ̄ j u j

+
I∑

i=1

J∑
j=1

μ̄ jλ
μ
j iwti j +

J∑
j=1

J∑
j ′=1

Σ̄ j j ′Y j j ′ +
I∑

i=1

J∑
j=1

J∑
j ′=1

Σ̄ j j ′λ
cov
i zti j j ′

s.t. (7c), (8)

s + uTξ kt+1 + ξ kt+1(ξ
k
t+1)

T · Y

−
J∑

j=1

J∑
j ′=1

ξ kt+1, j μ̄ j ′
(
Y j j ′ + Y j ′ j +

I∑
i=1

λ
μ

j ′i (zti j ′ j + zti j j ′)
)

+
J∑

j=1

J∑
j ′=1

μ̄ j μ̄ j ′
(
Y j j ′ +

I∑
i=1

(λ
μ

j ′i + λ
μ
j i )zti j j ′

+
I∑

i=1

I∑
i ′=1

λ
μ
j iλ

μ

j ′i ′vti i ′ j j ′
)

≥ θkt , ∀k ∈ [K ],

(wti j , xti , u j ) ∈ Mw
ti j , ∀i ∈ [I ], j ∈ [J ],

(zti j j ′, xti ,Yi j ) ∈ Mz
ti j j ′ , ∀i ∈ [I ], j, j ′ ∈ [J ],

(vti i ′ j j ′, xti ′ , zti j j ′) ∈ Mv
ti i ′ j j ′, ∀i, i ′ ∈ [I ], j, j ′ ∈ [J ],
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which is an MILP and we can again deploy the SDDiP approach for optimally solving
the N-DDDR model (1).

4 Solving N-DDDR under Type 3 ambiguity set

Now we focus on the general moment-based ambiguity set for decision-dependent
DRO models, and derive reformulations and algorithms for N-DDDR under Type
3 ambiguity set, where the mean vector of uncertain parameters lies in an ellipsoid
centered at an affinely decision-dependent estimate mean vector, and the second-
moment matrix lies in a psd cone defined by an affinely decision-dependent matrix.
Specifically, for all t ∈ [T − 1], letting γ, η be coefficients controlling the size of the
ambiguity set, we have

PD3
t+1(xt ) :=

{
p ∈ R

K |
K∑

k=1

pk = 1, (14a)

(
K∑

k=1

pkξ
k
t+1 − μ(xt )

)T

Σ(xt )−1

(
K∑

k=1

pkξ
k
t+1 − μ(xt )

)
≤ γ,

(14b)
K∑

k=1

pk(ξ
k
t+1 − μ(xt ))(ξ kt+1 − μ(xt ))T 
 ηΣ(xt )

}
. (14c)

4.1 Mixed-integer semidefinite programming reformulation

Theorem 3 describes a reformulation of Bellman equation (2) under Type 3 ambiguity
set (14).

Theorem 3 Suppose that the Slater’s constraint qualification conditions are satisfied,
i.e., for any feasible xt ∈ X̂t , there exists a vector p = (p1, p2, . . . , pK )T such that
∑K

k=1 pk = 1,
(∑K

k=1 pkξ
k
t+1 − μ(xt )

)T
Σ(xt )−1

(∑K
k=1 pkξ

k
t+1 − μ(xt )

)
< γ ,

and
∑K

k=1 pk(ξ
k
t+1 − μ(xt ))(ξ kt+1 − μ(xt ))T ≺ ηΣ(xt ). Using the ambiguity set

defined in (14), the Bellman equation (2) can be recast as

Qt (xt−1, ξ t ) = min
xt , yt ,s,Z,Y

gt (xt , yt ) + s

Σ(xt ) · z1 − 2μ(xt )Tz2 + γ z3 + ηΣ(xt ) · Y (15a)

s.t. s − 2zT2ξ
k
t+1 + (ξ kt+1 − μ(xt ))(ξ kt+1 − μ(xt ))T

· Y ≥ Qk
t+1, ∀k ∈ [K ], (15b)

Z =
(
z1 z2
zT2 z3

)
� 0, Y � 0, (15c)

(xt , yt ) ∈ Xt (xt−1, ξ t ). (15d)
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A detailed proof of Theorem 3 is given in “Appendix C”. The key idea is to use
the Lagrangian function and apply strong duality to recast the inner maximization
problem in (2) as a minimization problem. We still assume the linear dependence
of μ(xt ),Σ(xt ) on xt , as shown in (12a) and (12b). Because xti , i ∈ [I ] are
binary variables, we can provide exact reformulations of the bilinear terms wti j j ′ =
xti z1, j j ′, uti j = xti z2 j , Rti j j ′ = xti Y j j ′ , and trilinear terms vti i ′ j j ′ = xti xti ′Y j j ′
using McCormick envelopes Mw

ti j j ′, Mu
ti j , MR

ti j j ′ , Mv
ti i ′ j j ′ for all t ∈ [T ], i, i ′ ∈

[I ], j, j ′ ∈ [J ]. Overall, the Bellman equation (15) can be recast as Qt (xt−1, ξ t ) =

min
xt , yt ,s,Z,Y

w,u,R,v

gt (xt , yt ) + s +
J∑

j=1

J∑
j ′=1

Σ̄ j j ′ z1, j j ′ +
J∑

j=1

J∑
j ′=1

I∑
i=1

Σ̄ j j ′λ
cov
i wti j j ′

− 2
( J∑

j=1

μ̄ j z2 j +
I∑

i=1

J∑
j=1

μ̄ jλ
μ
j i uti j

)
+ γ z3

+ η
( J∑
j=1

J∑
j ′=1

Σ̄ j j ′Y j j ′ +
J∑

j=1

J∑
j ′=1

I∑
i=1

Σ̄ j j ′λ
cov
i Rti j j ′

)

s.t. s − 2zT2ξ
k
t+1 + ξ kt+1(ξ

k
t+1)

T · Y

−
J∑

j=1

J∑
j ′=1

ξ kt+1, j μ̄ j ′
(
Y j j ′ + Y j ′ j +

I∑
i=1

λ
μ

j ′i (Rti j ′ j + Rti j j ′)
)

+
J∑

j=1

J∑
j ′=1

μ̄ j μ̄ j ′
(
Y j j ′ +

I∑
i=1

(λ
μ
j i + λ

μ

j ′i )Rti j j ′

+
I∑

i=1

I∑
i ′=1

λ
μ
j iλ

μ

j ′i ′vti i ′ j j ′
)

≥ Qk
t+1, ∀k ∈ [K ], (16a)

(xt , yt ) ∈ Xt (xt−1, ξ t ), (16b)

(wti j j ′, xti , z1, j j ′) ∈ Mw
ti j j ′, ∀i ∈ [I ], j, j ′ ∈ [J ], (16c)

(uti j , xti , z2 j ) ∈ Mu
ti j , ∀i ∈ [I ], j ∈ [J ], (16d)

(Rti j j ′, xti ,Y j j ′) ∈ MR
ti j j ′, ∀i ∈ [I ], j, j ′ ∈ [J ], (16e)

(vti i ′ j j ′ , xti ′ , Rti j j ′) ∈ Mv
ti i ′ j j ′, ∀i, i ′ ∈ [I ], j, j ′ ∈ [J ], (16f)

Z =
(
z1 z2
zT2 z3

)
� 0, Y � 0. (16g)

For notation simplicity,we rewrite the linear objective function as g̃t (xt , yt , s, Z,Y ,w,

u, R) and the linear function on the left-hand side of Constraint (16a) as ft (s, Z,Y , R,

v, ξ kt+1). We fold all linear constraints (16b)–(16f) into set X̃t . Then model (16)
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becomes:

Qt (xt−1, ξ t ) = min
xt , yt ,s,Z,Y

w,u,R,v

g̃t (xt , yt , s, Z,Y ,w, u, R) (17a)

s.t. ft (s, Z,Y , R, v, ξ kt+1) ≥ Qk
t+1, ∀k ∈ [K ], (17b)

(xt , yt , Z,Y ,w, u, R, v) ∈ X̃t (xt−1, ξ t ), (17c)

Z � 0, Y � 0. (17d)

4.2 Derivation and computation of bounds for multistageMISDPs

To solve (17), we aim to replace the value function Qt+1(xt , ξ kt+1) in (17b) by some
under-approximation linear cuts, which will result in a multistage stochastic MISDP.
The MISDP itself is difficult to solve directly due to the nature of semidefinite pro-
grams with integer variables. To our best knowledge, no solvers can directly optimize
MISDP. For example, BNB and CUTSDP are two internal mixed-integer conic pro-
gramming solvers in YALMIP [23], which rely on relaxing integrality/semidefinite
cones during iterative processes but not solve them exactly. If we want to leverage
SDDiP with Lagrangian cuts, an MILP is needed in each stage. In the next two sub-
sections, two methods are proposed to tackle this issue. In Sect. 4.2.1, we solve a
Lagrangian relaxation, which provides valid cuts and the procedures will produce a
lower bound on the optimal objective value of the original multistage problem. In Sect.
4.2.2, we approach the problem by inner approximating MISDPs via MILPs so that
we can apply SDDiP with Lagrangian cuts directly on the resultant multistage MILP.
The gaps of these two approaches are demonstrated numerically in Sect. 5, to show
the efficacy of the bounds.

4.2.1 Lower bounding via relaxed Lagrangian cuts

In the forward step, we solve the MISDPs (17) for all stages t ∈ [T − 1] with current
approximations of the value functions. Then in the backward step, at iteration � of stage
t , our goal is to find under-approximation linear cuts with coefficients {(v�k

t , π�k
t )}Kk=1

for value function Qt (xt−1, ξ
k
t ) such that Qt (xt−1, ξ

k
t ) ≥ v�k

t + (π�k
t )Txt−1 for all

xt−1 ∈ {0, 1}I . Following [44], we make a copy of the state variable zt = xt−1
and then relax it to get a Lagrangian function. Specifically, at iteration �, for each
realization ξ kt , we solve the following relaxation problem in the backward step:

Lk
t (π t ) = min

xt , yt ,zt ,s,Z,Y
θ t ,w,u,R,v

g̃t (xt , yt , s, Z,Y ,w, u, R) − πT
t zt

s.t. ft (s, Z,Y , R, v, ξ k
′

t+1) ≥ θk
′

t , ∀k′ ∈ [K ],
(8)

(xt , yt , Z,Y ,w, u, R, v) ∈ X̃t (zt , ξ kt ),

Z � 0, Y � 0.
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A collection of cuts given by the coefficients {(v�k
t , π�k

t )}Kk=1 is generated, where
π�k
t ∈ R

I is any real vector and v�k
t = Lk

t (π
�k
t ). We name this collection of cuts

the Relaxed Lagrangian Cuts because it does not require the coefficient π to be the
optimal solution to the Lagrangian dual problem.

Proposition 1 The collection of Relaxed Lagrangian Cuts {(vlkt , π lk
t )}Kk=1 is valid

because the true value function is bounded from below by these cuts for all xt−1,
i.e., Qt (xt−1, ξ

k
t ) ≥ vlkt + (π lk

t )Txt−1 for all xt−1 ∈ {0, 1}I .
The proof is similar to the one of Theorem 3 in [44] and it is omitted here.

As a result, SDDiP algorithm with Relaxed Lagrangian Cuts provides a lower
bound on the original multistage stochastic MISDP. However, because the Relaxed
Lagrangian Cuts are not necessarily tight, our algorithm is not guaranteed to converge
to an optimal solution. In Sect. 5, the tightness of the bounds is verified numerically
based on diverse instances with different problem sizes and parameter settings.

4.2.2 Upper bounding via inner approximating MISDP by MILPs

We also propose to inner approximate psd cones by polyhedrons to obtain valid upper
bounds for the MISDPs (17).

Definition 1 A symmetric matrix A is diagonally dominant (dd) if aii ≥ ∑
j 
=i |ai j |

for all i .

We can further define a set of cones parameterized by a matrix U ∈ R
n×n :

DD(U) := {M ∈ Sn | M = UTQU for some dd matrix Q},

where Sn represents the set of real symmetric n×nmatrices. Optimizing over DD(U)

is a linear program since U is fixed and the associated constraints are linear in M and
Q. Moreover, the matrices in DD(U) are all psd, i.e., ∀U, DD(U) ⊂ Pn , where Pn
represents the set of n × n psd matrices.

Then, following similar ideas in [1], one natural way is to replace the conditions
Z � 0, Y � 0 by Z ∈ DD(U), Y ∈ DD(V ) for some fixed matrices U, V in the
forward step. This will provide us an upper bound on the value function Qt (xt−1, ξ t ),
given by

Qt (xt−1, ξ t ) = min
xt , yt ,s,Z,Y

w,u,R,v

g̃t (xt , yt , s, Z,Y ,w, u, R)

s.t. ft (s, Z,Y , R, v, ξ kt+1) ≥ Qt+1(xt , ξ
k
t+1), ∀k ∈ [K ],

(xt , yt , Z,Y ,w, u, R, v) ∈ X̃t (xt−1, ξ t ),

Z ∈ DD(U), Y ∈ DD(V ).

Then in the backward step, we can construct the Lagrangian cuts on the stage-wise
MILPs. As a result, the optimal objective value of the resultant multistage MILP will
serve as an upper bound of the original multistage MISDP.
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In “Appendix B”, we generalize the risk-neutral objective functions in theN-DDDR
model (1) to risk-averse ones based on coherent risk measures. We present reformu-
lations of the risk-averse multistage decision-dependent DRO problems under Types
1, 2, 3 ambiguity sets and derive SDDiP algorithms or bounds, similar to the results
in Sects. 3 and 4.

5 Numerical studies

Weuse instances of amultistage facility-locationproblem (see, e.g., [42]) for validating
our reformulations and algorithms. In these instances, consider 1, . . . , I potential
facilities and 1, . . . , J customer sites. We define binary decision variable xti , ∀t ∈
[T ], i ∈ [I ], such that xti = 1 if a facility is open at location i in stage t , and
xti = 0 otherwise. Decision variable yti j represents the flow of products from facility
i to customer site j in stage t . The random vector at stage t is ξ t = (ξt1, . . . , ξt J )

T,
representing the demand in each customer site at stage t . Then, in model N-DDDR
(1), the objective function at stage t is defined as gt (xt , yt ) = ∑I

i=1
∑J

j=1 ci j yti j −∑J
j=1 R j

∑I
i=1 yti j , where it minimizes the total transportation cost minus the total

revenue, and ci j , R j denote the unit transportation cost from facility i to customer site
j and revenue for meeting one unit demand at customer site j , for all i ∈ [I ], j ∈ [J ],
respectively. The stage-wise feasibility set Xt (xt−1, ξ t ) for each t ∈ [T ] consists of
the following constraints:

I∑
i=1

yti j ≤ ξt j , ∀ j ∈ [J ], (18a)

J∑
j=1

yti j ≤ hti

t∑
τ=1

xτ i , ∀i ∈ [I ], (18b)

I∑
i=1

fti (xti − xt−1,i ) ≤ N , (18c)

xti ≥ xt−1,i , ∀i ∈ [I ], (18d)

xti ∈ {0, 1}, ∀i ∈ [I ], (18e)

yti j ∈ Z+, ∀i ∈ [I ], j ∈ [J ]. (18f)

where (18a) and (18b) require that the total shipment to a customer site/from a facility
in each stage cannot exceed the demand/capacity of that customer site/facility, respec-
tively. Constraints (18c) imply that the building cost in each stage cannot exceed a
given budget N , and according to (18d), any open facilities cannot be removed.

In all our tests, we randomly sample I potential facilities and J customer sites on
a 100 × 100 grid. The transportation costs between facilities and customer sites are
calculated by their Manhattan distances divided by 4, i.e., ci j = dist(i, j)/4, ∀i ∈
[I ], j ∈ [J ]. We set the building costs fti = 100 for all i ∈ [I ] and t ∈ [T ]. In
each stage t , we set budget N = 100, and all the facilities have the same capacity
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hti = 1000 for all t ∈ [T ], i ∈ [I ]. The revenue for meeting one unit demand is
set to R j = 100 for all j ∈ [J ]. The empirical demand mean μ̄ j is drawn uniformly
between 20 and 40 for each j ∈ [J ], and the empirical standard deviation σ̄ j is set to
μ̄ j × ρ̄, where we vary the coefficient ρ̄ to represent different demand variations later.
Then, for the uncertain demand ξt j , we sample K data points following N (μ̄ j , σ̄

2
j )

for all j ∈ [J ], to construct the discrete support Ξt in each stage t ∈ [T ].
In Sect. 5.1, we test small instances with T = 2 stages, I = 3 facilities and J = 1

or 2 customer site(s) for each of the three ambiguity sets. Specifically, we compare
using the SDDiP algorithm for solving each reformulation of the N-DDDR model
with an algorithm that enumerates all feasible first-stage solutions and optimizes the
corresponding second-stageDROmodels to seek optimal solutions.We show that both
the optimal solutions and objective values of these two approaches are the same under
the first two ambiguity sets, confirming the finite convergence of SDDiP algorithm to
the true optimum.

In Sects. 5.2 and 5.3, we test the SDDiP algorithm for solving reformulations
given by Type 1 and Type 3 ambiguity sets, respectively, on larger-sized instances by
increasing values of T , I , J and parameters used in SDDiP.

Our experiments utilize YALMIP toolbox in MATLAB [23] for modeling, where
MOSEK is used to directly solve the stage-wise MILPs, and CUTSDP is used to solve
MISDPs. All numerical experiments are conducted on a Windows 2012 Server with
128 GB RAM and an Intel 2.2 GHz processor.

5.1 Results of small instances and finite convergence of SDDiP

5.1.1 Results of Type 1 ambiguity set on two-stage instances

We first consider N-DDDR model with T = 2 stages, I = 3 facilities and J = 1
customer site. For Type 1 ambiguity set (6) in Sect. 3.1, we set the empirical first and
second moments as μ̄ = 10, σ̄ = 0.1, and the bounding parameters as εμ = 5, εS =
0.5, ε̄S = 1.5. We evaluate four different patterns with fixed λμ- and λS-values given
in Table 1. For each pattern, we first solve the two-stage min-max formulation of
N-DDDR by enumerating on all feasible first-stage solutions and each second-stage
problem is directly optimized by MOSEK solver. We then apply SDDiP algorithm to
solve both the N-DDDR and the decision-independent counterpart (N-DIDR) with all
λμ- and λS-values set to 0, where the algorithm iteratively builds cuts to approximate
the first-stage value function. Table 2 demonstrates the performance of the above
three models under different patterns. Each column under “Two-stage enumeration”
displays the cost with the corresponding first-stage x-solution (x-sol.), where wemark
the optimal solution in bold. The rest of the columns record the optimal objective values
and optimal solutions of the N-DDDR and N-DIDR models, respectively.

From Table 2, both the optimal solutions and objective values of the two-stage
model by enumeration and N-DDDR are the same, confirming the finite convergence
of the SDDiP algorithm. The model N-DDDR always yields a better objective value
than the one of N-DIDR, indicating the benefits of considering decision-dependency.
When we set λS-values the same, as shown in Pattern #1–1, N-DDDR first builds
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Table 1 Patterns with varying
λμ-/λS -values that interpret how
decisions affect mean/variance

Pattern (λ
μ
11, λ

μ
12, λ

μ
13)

T (λσ
11, λ

σ
12, λ

σ
13)

T

1–1 (0.9, 0.5, 0.1)T (0.5, 0.5, 0.5)T

1–2 (0.5, 0.5, 0.5)T (0.9, 0.5, 0.1)T

1–3 (0.1, 0.1, 0.1)T (0.9, 0.5, 0.1)T

1–4 (0.5, 0.9, 0.1)T (0.9, 0.5, 0.1)T

Table 2 Results of different models using Type 1 ambiguity set

Pattern Two-stage enumeration N-DDDR N-DIDR

(1, 0, 0)T (0, 1, 0)T (0, 0, 1)T Obj. x-sol. Obj. x-sol.

1–1 −2160 −1800 −1575 −2160 (1, 0, 0)T −1463 (0, 0, 1)T

1–2 −1800 −1800 −1800 −1800 (0, 0, 1)T

1–3 −1665 −1575 −1485 −1665 (1, 0, 0)T

1–4 −1800 −2160 −1485 −2160 (0, 1, 0)T

the facility that has the highest impact on the mean values of demand, coinciding
with our intuition that building such a facility will increase demand in later stages
the most and as a result, it will bring the largest revenue. When we decrease all λμ-
values to 0.1, N-DDDR chooses the facility with the highest λS-value, indicated in the
optimal solution in Pattern #1–3. In Patterns #1–4, N-DDDR chooses the facility with
λμ = 0.9 and λS = 0.5. These results suggest that the impact on the first moment
(e.g., mean values) plays a more important role than the impact on demand variance
when choosing optimal facility-location solutions.

5.1.2 Results of Type 2 ambiguity set on two-stage instances

Now we consider N-DDDR model with T = 2 stages, I = 3 facilities and J = 2
customer sites. For Type 2 ambiguity set (10), assume that each facility has the same
impact on different customer sites, i.e., λμ

j i = λi , ∀ j ∈ [J ]. The empirical mean and

covariance matrix are given by μ̄ = (10, 10)T, Σ̄ =
(
10 10
10 10

)
. Note that this type

of ambiguity set is the most restricted one because it is defined by three equalities.
As a result, we evaluate three different patterns with fixed λμ- and σ -values given in
Table 3, which will make the ambiguity set (10) non-empty. Table 4 demonstrates the
results of the two-stage model solved by enumeration, N-DDDR and N-DIDR solved
by SDDiP under different patterns.

From Table 4, in Pattern #2–1, when all the σ -values are the same, N-DDDR builds
the facility with the highest impact on the mean. In Pattern #2–2, when the third
facility has the highest impact on the mean (λμ

j3 = 0.3) and the lowest impact on
the covariance matrix (σ3 = 0.1), N-DDDR still builds the third one, indicating the
importance of mean values of demand.

123



X. Yu, S. Shen

Table 3 Patterns with varying
λμ-/σ -values that interpret how
decisions affect mean/covariance

Pattern (λ
μ
j1, λ

μ
j2, λ

μ
j3)

T (σ1, σ2, σ3)
T

2–1 (0.1, 0.2, 0.3)T (0.5, 0.5, 0.5)T

2–2 (0.1, 0.2, 0.3)T (0.9, 0.5, 0.1)T

2–3 (0.3, 0.3, 0.3)T (0.9, 0.5, 0.1)T

Table 4 Results of different models using Type 2 ambiguity sets

Pattern Two-stage enumeration N-DDDR N-DIDR

(1, 0, 0)T (0, 1, 0)T (0, 0, 1)T Obj. x-sol. Obj. x-sol.

2–1 −3780 −3960 −4140 −4140 (0, 0, 1)T −3600 (0, 0, 1)T

2–2 −3780 −3960 −4140 −4140 (0, 0, 1)T

2–3 −4140 −4140 −4140 −4140 (0, 0, 1)T

Bold values indicate the optional solutions

Table 5 Patterns with varying
λμ-/σ -values that interpret how
decisions affect mean/covariance

Pattern

(
λ
μ
11, λ

μ
12, λ

μ
13

λ
μ
21, λ

μ
22, λ

μ
23

)
(σ1, σ2, σ3)

T

3–1

(
0.1, 0.5, 0.9
0.1, 0.5, 0.9

)
(0.5, 0.5, 0.5)T

3–2

(
0.5, 0.5, 0.5
0.5, 0.5, 0.5

)
(0.9, 0.5, 0.1)T

3–3

(
0.1, 0.5, 0.9
0.1, 0.5, 0.9

)
(0.1, 0.5, 0.9)T

3–4

(
0.1, 0.5, 0.9
0.9, 0.5, 0.1

)
(0.5, 0.5, 0.5)T

5.1.3 Results of Type 3 ambiguity set on two-stage instances

For Type 3 ambiguity set (14), we set bounding parameters as γ = 1000, η = 500,

the empirical mean and covariance matrix as μ̄ = (10, 10)T, Σ̄ =
(
0.1 0.2
0.2 0.9

)
. We

evaluate four different patterns with fixed λμ- and σ -values given in Table 5. Then in
Table 6, we show the results of the two-stage model solved by enumeration, N-DDDR
and N-DIDR for different patterns given in Table 5.

From Table 6, when the λμ-values are the same as shown in Pattern #3–2, N-DDDR
builds the facility with the lowest impact on the covariance matrix, which is different
from the previous two ambiguity sets. In other patterns, N-DDDR always builds the
facility with the highest impact on the mean values of demand for both customer
locations. When different facilities have the highest impact on the demand in the two
locations, the location with smaller demand variance will play a more important role
in choosing facilities to build.
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Table 6 Results of different models under Type 3 ambiguity set and correlated demand

Pattern Two-stage exact N-DDDR N-DIDR

(1, 0, 0)T (0, 1, 0)T (0, 0, 1)T Obj. x-sol. Obj. x-sol.

3–1 −2700 −3150 −3856.2 −3856.2 (0, 0, 1)T −2701 (1, 0, 0)T

3–2 −2950 −3150 −3350 −3350 (0, 0, 1)T

3–3 −2700 −3150 −3625.4 −3625.4 (0, 0, 1)T

3–4 −2700 −3150 −4201.8 −4201.8 (0, 0, 1)T

Bold values indicate the optional solutions

Fig. 1 Locations of customer
sites and potential facilities on a
100 × 100 grid
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5.2 Results of larger instances under Type 1 ambiguity set

We first consider N-DDDR model with T = 3 stages, I = 10 facilities, J = 20 cus-
tomer sites and Type 1 ambiguity set (6) in Sect. 3.1. We set the bounding parameters
εμ = 25, εS = 0.1, ε̄S = 1.9. Parameters λ

μ
j i , λS

ji follow exponential func-
tions in terms of the distance between customer site j and facility i so that farther
facilities have lower impacts on the first and second moments of the demand, i.e.,
λ

μ
j i = e−dist(i, j)/25, λS

ji = e−dist(i, j)/50 for all i ∈ [I ], j ∈ [J ], and then they
are normalized to ensure that the sum of impacts over all facilities equals to 1, i.e.,∑

i∈[I ] λ
μ
j i = ∑

i∈[I ] λS
ji = 1, ∀ j ∈ [J ].

We sample K data points following N (μ̄ j , σ̄
2
j ) to construct the discrete support

Ξt for each t ∈ [T ], and set the demand variation coefficient ρ̄ = σ̄ j/μ̄ j to 0.8
for each j ∈ [J ] by default, where we vary it in Sect. 5.2.2. We then apply SDDiP
algorithm to solve both the N-DDDR and N-DIDR with all λμ- and λS-values set to 0.
The locations of potential facilities and customer sites are displayed in Fig. 1, where
triangles represent customer sites and circles stand for potential facilities.
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(a) The original result (b) A truncated version by dropping all the
unbounded cases

Fig. 2 Objective values of N-DDDR and N-DIDR under Type 1 ambiguity set and varying support sizes
K . a The original result, b a truncated version by dropping all the unbounded cases

5.2.1 Objective values with different support sizes

We vary the number K of data samples in the discrete, finite support from 10 to 100
and display the objective values of N-DDDR and N-DIDR in Fig. 2a, respectively,
where Fig. 2b zooms in Fig. 2a by dropping the unbounded cases.

From Fig. 2a, when K = 10, 20, the N-DDDR model is unbounded with an
empty ambiguity set (6), mainly due to a lack of data points in the discrete support.
By increasing the support size K , the objective values of N-DDDR increase. Recall
that the worst-case scenario is calculated by the inner maximization problem, and
therefore, larger-sized discrete supports lead to higher worst-case objectives. Overall,
we are minimizing the N-DDDR objective function, and thus lower objective values
aremore favorable.More data points K in the discrete support can either be interpreted
as a more risk-averse altitude, or represent a better approximation of the continuous
distribution. From Fig. 2b, the objective values of N-DDDR and N-DIDR both have
step-wise increments. That is, when we include more data points, the objective values
may stay constant or take a step upward, depending on whether the inclusion of
these data points changes the worst-case scenarios. Moreover, N-DDDR always yields
better objective values than N-DIDR, indicating the benefits of considering decision-
dependency.

5.2.2 Objective values with different sample variance and distributions

Next, we fix the support size K = 100 and vary the demand variation coefficient
ρ̄ = σ̄ j/μ̄ j from 0.2 to 1 for all j ∈ [J ]. To further illustrate the impact of demand
variations on the objective values, we also compare the results of different distributions
of which the data points come from. Figure 3 displays the objective values of N-DDDR
with varying demand variation coefficients ρ̄ and Normal/Log-normal distributions,
respectively, where we drop the demand variations that make the problem unbounded
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(i.e., make the ambiguity sets empty). To be comparable with Normal distributions, we
set the scale parameter (the median of the Log-normal distribution) to be the empirical
mean of the Normal distribution, i.e., μ̄ j , the location parameter (parameter μ of the
Log-normal distribution) to be log(μ̄ j ) and the shape parameter (parameter σ of the
Log-normal distribution) to be ρ̄ log(μ̄ j ) for each j ∈ [J ].

In Fig. 3, the objective valueswithNormal andLog-normal distributions have totally
different behaviors with respect to demand variations. When ρ̄ is low (i.e., ρ̄ ≤ 0.5),
the ambiguity sets with discrete supports constructing by Normal distributions are
empty, because the data points in the discrete support mostly concentrate around the
empirical mean and lack of diversity. On the contrary, the problem with Log-normal
distributions becomes unbounded when ρ̄ is high (i.e., ρ̄ ≥ 0.5). This is because
of the long-tail characteristic of Log-normal distributions. Under increasing demand
variations, it is more likely to include extreme scenarios in the discrete support when
sampling from a Log-normal distribution, and having too many deviated data points
from the empirical mean is hard to construct a non-empty ambiguity set (6). It is also
worth noting that the objective values with Normal and Log-normal distributions both
decrease as demand variation increases.

5.2.3 Optimal solutions with varying budgets and transportation costs

We fix the support size K = 100, demand variation ρ̄ at 0.8, and increase the building
budget N from 100 to 500. Table 7 displays the optimal objective values and solutions
of models N-DDDR and N-DIDR with varying budgets, respectively.

In Table 7, when we only have budgets to build one facility at the first stage, the
optimal solutions of N-DDDR and N-DIDR both choose facility #1. Combining with
Fig. 1, facility #1 is in the most central location. With higher budget values N = 300
and N = 500, the optimal solutions of N-DDDR do not include facility #1 anymore
and the objective values get improved by buildingmore facilities.Moreover, N-DDDR
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(a) Normal distribution (b) Log-normal distribution

Fig. 3 Objective values of N-DDDR under Type 1 ambiguity set, varying demand variations ρ̄ and distri-
butions. a Normal distribution, b log-normal distribution
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Table 7 Optimal solutions of N-DDDR and N-DIDR with varying budgets

Budget N N-DDDR Obj. N-DDDR Sol. N-DIDR Obj. N-DIDR Sol.

100 −163, 907 1 −146, 535 1

300 −169, 148 [2, 4, 10] −150, 479 [2, 6, 10]
500 −171, 986 [2, 4, 6, 8, 10] −151, 323 [1, 2, 5, 6, 10]

Table 8 Optimal solutions of N-DDDR and N-DIDR with varying budgets and fixed transportation cost

Budget N N-DDDR Obj. N-DDDR Sol. N-DIDR Obj. N-DIDR Sol.

100 −162, 752 2 −145, 811 9

300 −165, 461 [2, 4, 8] −145, 815 [7, 8, 9]
500 −168, 114 [1, 2, 4, 8, 10] −145, 820 [4, 5, 7, 8, 10]

Table 9 Total impact on the first and second moments of each facility

I #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

∑
j∈[J ] λ

μ
j i 2.11 3.47 1.08 2.15 1.43 1.69 1.47 1.86 2.09 2.65

∑
j∈[J ] λSji 2.23 2.58 1.48 2.02 1.57 1.80 1.85 2.11 2.06 2.31

always yields better objective values than N-DIDR by building facilities having bigger
impacts on the demand mean.

To not take relative locations into account, we set all the transportation costs to
10, and record the optimal objective values and solutions in Table 8. We also display
the impacts on the first and second moments of all customer sites by calculating∑

j∈[J ] λ
μ
j i ,

∑
j∈[J ] λS

ji for each i ∈ [I ] in Table 9.
From Tables 8 and 9, facility #2 has the largest total impact on the first and second

moments of the uncertain demand among all facilities, which is built in the optimal
solutions of N-DDDR. However, without the decision-dependency settings, the opti-
mal solutions of N-DIDR always choose facilities having smaller impacts on the first
and second moments, leading to worse objective values than N-DDDR.

5.2.4 Computational time

Wefirst compare the computational time ofmodels N-DDDR andN-DIDRunder Type
1 ambiguity set. We first fix I = 10, J = 20, T = 3 and vary the number K of data
points in the support from 10 to 100. The computational time results are displayed in
Fig. 4a. Then we fix K = 10, T = 3 and vary the number I of facilities from 10 to
50 while setting J = 2I in Fig. 4b. Finally, we fix K = 10, I = 10, J = 20 and
vary the number T of stages from 3 to 8 in Fig. 4c.

InFig. 4, the computational time increases approximately linearlywith respect to the
support size K and thenumberT of stages,while it increases exponentiallywith respect
to the numbers of facilities I and customer sites J , due to the existence of McCormick
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constraints. Moreover, the N-DDDR model is always more time-consuming than the
N-DIDR counterpart, although it has superior performance in terms of objective values
as we note before.

5.3 Results of larger instances under Type 3 ambiguity set

The default setting of the N-DDDR model in this section has T = 3 stages, I = 3
facilities and J = 6 customer sites. For Type 3 ambiguity set (14), we set bounding
parameters γ = 10, η = 100. Parameters λ

μ
j i are the same as described in Sect. 5.2,

and λcovi are drawn uniformly between 0 and 1 for all i ∈ [I ], j ∈ [J ]. We then
normalize parameters λ

μ
j i , λcovi to ensure that the sum over all facilities equals to 1,

i.e.,
∑

i∈[I ] λ
μ
j i = ∑

i∈[I ] λcovi = 1, ∀ j ∈ [J ].
We sample K data points following N (μ̄ j , σ̄

2
j ) for each j ∈ [J ] to construct the

discrete support, and set the demand variation coefficient ρ̄ = σ̄ j/μ̄ j to 0.8 for all
j ∈ [J ] by default, where we vary it in Sect. 5.3.2. Then the empirical covariance Σ̄
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Fig. 4 Computational time of N-DDDR and N-DIDR under Type 1 ambiguity set and different support
sizes K , numbers of facilities I , and stages T . a Different support sizes K , b different numbers of facilities
I , c different stages T
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is set to the sample covariance matrix of the K × J data points among all customer
sites. The locations of potential facilities and customer sites are displayed in Fig. 5,
where triangles represent customer sites and circles represent potential facilities.

5.3.1 Objective values with different support sizes

We vary the values of K from 10 to 100 and display bounds on the objective values
of models N-DDDR and N-DIDR in Fig. 6, respectively, where “LB” indicates valid
lower bounds using Relaxed Lagrangian Cuts introduced in Sect. 4.2.1, and “UB”
stands for valid upper bounds provided by the inner approximation scheme in Sect.
4.2.2 with U, V being identity matrices.

In Fig. 6, the objective values of N-DDDR’s UB and N-DIDR’s LB and UB all
increase stepwise with increased support sizes K , and the objective values of N-DIDR
are slightly higher than N-DDDR’s UB. It is also worth noting that the relative gaps
of N-DDDR are always within 4% while the scale of the relative gaps of N-DIDR
is at 10−4, showing the close proximity of LB and UB provided by our algorithms.

Fig. 5 Locations of customer
sites and potential facilities on a
100 × 100 grid
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Fig. 6 Objective values of N-DDDR and N-DIDR under Type 3 ambiguity set and varying support sizes
K . a Bounds on objective values of N-DDDR, b bounds on objective values of N-DIDR
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Fig. 7 Objective values of N-DDDRunder Type 3 ambiguity set and varying demand variations ρ̄. aNormal
distributions, b log-normal distributions

Moreover, both the LB and UB of N-DDDR and N-DIDR choose to build facility #1 in
the first stage of the optimal solutions, which locates centrally and also has the largest
impact on the mean and covariance of the uncertain demand.

5.3.2 Objective values with different sample variance and distributions

Next we fix K = 10 data points in the support and vary the demand variation ρ̄ =
σ̄ j/μ̄ j from 0.2 to 1. Figure 7 displays the objective values of model N-DDDR’s LB
and UB with respect to Normal and Log-normal distributions, respectively. We only
display the demand variations that make the ambiguity sets non-empty and drop the
unbounded cases.

In Fig. 7, similarly,when the demandvariation ρ̄ is low (i.e., ρ̄ ≤ 0.4), the ambiguity
sets constructing by Normal distributions become empty, while the ones constructing
by Log-normal distributions become empty when the demand variation is high (i.e.,
ρ̄ ≥ 0.8). Moreover, the gaps between LB and UB decrease as demand variation
increases with Normal distributions, while the gaps are significantly reduced with
Log-normal distributions.

5.3.3 Computational time

Lastly, we compare the computational time of solving models N-DDDR and N-DIDR
under Type 3 ambiguity set. We first fix I = 3, J = 6, T = 3 and vary the support
size K from 10 to 50, displayed in Fig. 8a. Then we fix K = 10, T = 3 and vary
the number I of facilities from 3 to 6 while setting J = 2I in Fig. 8b. Finally, we fix
K = 10, I = 3, J = 6 and vary the number T of stages from 3 to 6 in Fig. 8c. The
time limit for solving each instance is set as 7200s.

In Fig. 8, Type 3 ambiguity set (14) makes N-DDDR more difficult to solve than
Type 1 ambiguity set. Comparing different approximation schemes for solving model
N-DDDR under Type 3 ambiguity set, UB is the fastest as it solves a stage-wise MILP
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in both forward and backward step, LB is the most time-consuming as it solves a
stage-wise MISDP in both forward and backward steps.

6 Conclusions

In this paper, we studied multistage mixed-integer DRO model with decision-
dependent moment-based ambiguity sets. We also extended the models to risk-averse
cases by replacing the expectation with a coherent risk measure in the objective func-
tion. We recast the two problems as multistage stochastic MILP/MISDP and applied
variants of SDDiP to solve them. Via numerical studies, we showed that N-DDDR
always yielded a better objective value than that of its decision-independent counter-
part. Also, our solution approaches converged to the true optimal results under Types
1 and 2 ambiguity sets, and yielded small gaps between lower- and upper-bounds for
N-DDDR under Type 3 ambiguity set.
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Fig. 8 Computational time of N-DDDR and N-DIDR under Type 3 ambiguity set and different support
sizes K , number of facilities I , and stages T . a Different support sizes K , b different numbers of facilities
I , c different stages T
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The ambiguity sets used in this paper are all moment-based. However, this ambi-
guity sets do not have asymptotic consistency, i.e., we can not recover the true optimal
objective value of the stochastic program as the number of data points increases to
infinity. Therefore, it will be interesting to construct ambiguity sets based on some
divergencemeasures, such asWassersteinmetric, and extend such sets for the decision-
dependent setting in our future research studies.

Acknowledgements The authors sincerely thank the Associate Editor and two reviewers for their help-
ful review and constructive feedback. The authors are grateful for the support from the United States
National Science Foundation Grants #1727618, #1709094, and Department of Engineering (DoE) Grant
#DE-SC0018018 for this project.

Appendix

A Reformulations of N-DDDR having continuous supports

A continuous version of the Type 1 ambiguity set PD1
t+1(xt ) in Sect. 3.1 is given by

PC1
t+1(xt ) :=

{
P ∈ M(Ξt+1,Ft+1) | ν(xt ) ≤ P ≤ ν̄(xt ),

∫

Ξt+1

fs(ξ t+1)P(dξ t+1) ∈ [ls(xt ), us(xt )], ∀s ∈ [m]
}

, (A.1)

where M(Ξt+1,Ft+1) represents the set of all positive measures defined on
(Ξt+1,Ft+1), and ν(xt ), ν̄(xt ) ∈ M(Ξt+1,Ft+1) are two given measures that are
lower and upper bounds for the true probability measure, respectively. To ensure that
P is a probability distribution, let l1(xt ) = u1(xt ) = f1(ξ t+1) = 1 (see (5a) for more
details).

Let Ξt+1 be a closed and bounded set in the Euclidean space, and the probability
measures P, ν, ν̄ be defined on the measurable space (Ξt+1,Ft+1), where the σ -
algebra Ft+1 contains all singleton subsets, i.e., {ξ} ∈ Ft+1 for all ξ ∈ Ξt+1. Then,
based on the ambiguity set PC1

t+1(xt ) in (A.1), we describe a reformulation of the
Bellman equation (2) as an analogy to Theorem 1 for the continuous support case.

Theorem A.1 If for any feasible xt ∈ X̂t , the ambiguity set (A.1) has a non-empty
relative interior, then the Bellman equation (2) can be reformulated as Qt (xt−1, ξ t ) =

min
α,β,γ ,γ̄ ,xt , yt

gt (xt , yt ) − αTl(xt ) + βTu(xt )

−
∫

ξ t+1∈Ξt+1

γ (ξ t+1)ν(xt , ξ t+1)dξ t+1

+
∫

ξ t+1∈Ξt+1

γ̄ (ξ t+1)ν̄(xt , ξ t+1)dξ t+1

s.t. (−α + β)T f (ξ t+1)−γ (ξ t+1) + γ̄ (ξ t+1) ≥ Qt+1(xt , ξ t+1), ∀ξ t+1 ∈ Ξt+1,
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(xt , yt ) ∈ Xt (xt−1, ξ t ),

α, β, γ (ξ t+1), γ̄ (ξ t+1) ≥ 0, ∀ξ t+1 ∈ Ξt+1.

Next, a continuous version of the Type 2 ambiguity set PD2
t+1(xt ) in (10) is given

by

PC2
t+1(xt ) :=

{
P ∈ M(Ξt+1,Ft+1) |EP [ξ t+1] = μ(xt ), (A.2a)

EP [(ξ t+1 − μ(xt ))(ξ t+1 − μ(xt ))T] = Σ(xt )
}
, (A.2b)

Then, the following result is an analogy to Theorem 2 based on the continuous ambi-
guity set (A.2).

Theorem A.2 If for any feasible xt ∈ X̂t , the ambiguity set (A.2) has a non-empty
relative interior, then the Bellman equation (2) can be reformulated as

Qt (xt−1, ξ t ) = min
xt , yt ,s,u,Y

gt (xt , yt ) + s + uTμ(xt ) + Σ(xt ) · Y (A.3a)

s.t. s + uTξ t+1 + (ξ t+1 − μ(xt ))(ξ t+1 − μ(xt ))T · Y
≥ Qt+1(xt , ξt+1),

∀ξ t+1 ∈ Ξt+1,

(xt , yt ) ∈ Xt (xt−1, ξ t ). (A.3b)

Finally, a continuous version of the Type 3 ambiguity set PD3
t+1(xt ) in (14) is given

by

PC3
t+1(xt ) :=

{
P ∈ M(Ξt+1,Ft+1) |(EP [ξ t+1] − μ(xt ))TΣ(xt )−1(EP [ξ t+1] − μ(xt )) ≤ γ,

(A.4a)

EP [(ξ t+1 − μ(xt ))(ξ t+1 − μ(xt ))T] 
 ηΣ(xt )
}
. (A.4b)

We present a reformulation of the Bellman equation (2) in the following theorem that
is an analogy to Theorem 3, but given the continuous ambiguity set (A.4).

Theorem A.3 Suppose that the Slater’s constraint qualification conditions are sat-
isfied, i.e., for any feasible xt ∈ X̂t , there exists a probability measure P ∈
M(Ξt+1,Ft+1) such that (EP [ξ t+1] − μ(xt ))TΣ(xt )−1(EP [ξ t+1] − μ(xt )) < γ ,
and EP [(ξ t+1 − μ(xt ))(ξ t+1 − μ(xt ))T] ≺ ηΣ(xt ). Using the ambiguity set defined
in (A.4), the Bellman equation (2) can be recast as

Qt (xt−1, ξ t ) = min
xt , yt ,s,Z,Y

gt (xt , yt ) + s + Σ(xt ) · z1 − 2μ(xt )T z2 + γ z3 + ηΣ(xt ) · Y (A.5a)

s.t. s − 2zT2ξ t+1 + (ξ t+1 − μ(xt ))(ξ t+1 − μ(xt ))T · Y ≥ Qt+1(xt , ξ t+1),

∀ξ t+1 ∈ Ξt+1, (A.5b)
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Z =
(
z1 z2
zT2 z3

)
� 0, Y � 0, (A.5c)

(xt , yt ) ∈ Xt (xt−1, ξ t ). (A.5d)

The proof of Theorem A.1 is similar to the proof in [24] for the two-stage continuous-
support case, andwe omit its details.We provide detailed proofs for TheoremsA.2 and
A.3 in “Appendix C”. Note that the above three reformulations for ambiguity sets with
continuous support are semi-infinite programs and thus cannot be optimized directly.

B Risk-averse multistage DROwith endogenous uncertainty

We can extend N-DDDR in (1) to a more general setting. Previously, the robust
counterpart chooses the worst-case distribution P from a risk-neutral aspect using
expectation to measure the uncertain cost over multiple stages. However, a decision
makermaymeasure theworst-case distribution in a risk-averse fashion, andwe accord-
ingly replace the expectations by coherent risk measures ρt , ∀t = 2, . . . , T . The
corresponding risk-averse multistage decision-dependent DRO model is:

A−DDDR :
min

(x1, y1)∈X1

{
g1(x1, y1) + max

P2∈P2(x1)
ρ2

[
min

(x2, y2)∈X2(x1,ξ2)
g2(x2, y2) + · · ·

+ max
Pt∈Pt (xt−1)

ρt

[
min

(xt , yt )∈Xt (xt−1,ξ t )
gt (xt , yt ) + · · ·

+ max
PT ∈PT (xT−1)

ρT

[
min

(xT , yT )∈XT (xT−1,ξT )
gT (xT , yT )

]}
. (B.6)

We consider a special class of coherent risk measures, which is a convex combination
of expectation and Conditional Value-at-Risk (CVaR) [34]:

ρt (Z) = (1 − λt )E[Z ] + λtCVaRαt [Z ],

where λt ∈ [0, 1] is a parameter that balances the expectation and CVaR measure
at αt ∈ (0, 1) risk level. This risk measure is more general than expectation and it
becomes the risk-neutral case when λt = 0.

The Bellman equations for A-DDDR (B.6) then become:

Q1 = min
(x1, y1)∈X1

g1(x1, y1) + max
P2∈P2(x1)

ρ2[Q2(x1, ξ2)],

where for t = 2, . . . , T − 1,

Qt (xt−1, ξ t ) = min
(xt , yt )∈Xt (xt−1,ξ t )

gt (xt , yt ) + max
Pt+1∈Pt+1(xt )

ρt+1[Qt+1(xt , ξ t+1)],
(B.7)

and
QT (xT−1, ξ T ) = min

(xT , yT )∈XT (xT−1,ξT )
gT (xT , yT ).
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Following the results by [33], CVaR can be attained by solving the following opti-
mization problem:

CVaRαt [Z ] := inf
η∈R

{
η + 1

1 − αt
E[Z − η]+

}
,

where [a]+ := max{a, 0}, and η is an auxiliary variable. To linearize [Z − η]+, we
replace it by a variable m with two additional constraints: m ≥ 0, m ≥ Z − η.

Recall that by assumption, every Pt+1 ∈ Pt+1(xt ) has a decision-independent finite
support Ξt+1 := {ξ kt+1}Kk=1, ∀xt ∈ Xt for a fixed K and all t ∈ [T −1]. Each realiza-
tion k ∈ [K ] is associated with probability pk , and therefore the inner maximization
problem maxPt+1∈Pt+1(xt ) ρt+1[Qt+1(xt , ξ t+1)] in (B.7) can be reformulated as

max
Pt+1∈Pt+1(xt )

min
m,η

λt+1η +
K∑

k=1

pk(
λt+1

1 − αt+1
m + (1 − λt+1)Q

k
t+1) (B.8a)

s.t. m + η ≥ Qk
t+1, ∀k ∈ [K ], (B.8b)

m ≥ 0, ∀k ∈ [K ]. (B.8c)

We further simplify the notation of the recursive function Qt+1(xt , ξ kt+1) as Qk
t+1.

Associating dual variables qk with constraints (B.8b) and applying strong duality
result, we have

max
Pt+1∈Pt+1(xt )

{
(1 − λt+1)

K∑
k=1

pkQ
k
t+1 + max

q

K∑
k=1

qkQ
k
t+1 (B.9a)

s.t. qk ≤ pk
λt+1

1 − αt+1
, ∀k ∈ [K ], (B.9b)

K∑
k=1

qk = λt+1, (B.9c)

qk ≥ 0, ∀k ∈ [K ].
}

(B.9d)

Merging the two layers of maximization problems, for each t ∈ [T − 1], we solve

max
p,q

(1 − λt+1)

K∑
k=1

pkQ
k
t+1 + qkQ

k
t+1 (B.10a)

s.t. (B.9b), (B.9c),

p ∈ Pt+1(xt ), (B.10b)

qk ≥ 0, ∀k ∈ [K ]. (B.10c)

In the following subsections, we present reformulations of A-DDDR in (B.6) under
the three types of ambiguity sets mentioned in Sect. 3.
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B.1 Solving A-DDDR under Type 1 ambiguity set

Using the ambiguity set defined in (3), the inner maximization problem (B.10) can be
recast as

max
p,q

(1 − λt+1)

K∑
k=1

pkQ
k
t+1 + qkQ

k
t+1 (B.11a)

s.t. (B.9b), (B.9c), (C.16b)–(C.16e)

pk, qk ≥ 0, ∀k ∈ [K ]. (B.11b)

Theorem B.4 If for any feasible xt ∈ X̂t , problem (B.11) is feasible, then the Bellman
equation (B.7) can be reformulated as Qt (xt−1, ξ t ) =

min
α,β,xt , yt

gt (xt , yt ) + λt+1θ − αTl(xt ) + βTu(xt )−γ T p(xt ) + γ̄ T p̄(xt ) (B.12a)

s.t. πk + θ ≥ Qk
t+1, ∀k ∈ [K ], (B.12b)

− λt+1

1 − αt+1
πk + (−α + β)T f (ξ kt+1)−γ

k
+ γ̄k ≥ (1 − λt+1)Q

k
t+1,

∀k ∈ [K ], (B.12c)

(xt , yt ) ∈ Xt (xt−1, ξ t ), (B.12d)

πk, α, β, γ , γ̄ ≥ 0. (B.12e)

The proof of Theorem B.4 is similar to the one of Theorem 1 in “Appendix C”, where
the only difference is thatwe introduce the twomore dual variablesπk and θ , associated
with constraints (B.9b) and (B.9c), respectively.

Notice here when λt+1 = 0, model (B.12) reduces to the risk-neutral case (4). This
reformulation also has similar computational complexity as model (4) in Theorem
1. Therefore, with the same specific ambiguity set considered in (6) in Sect. 3, we
can apply McCormick envelopes to obtain a multistage stochastic MILP and deploy
SDDiP to solve it.

B.2 Solving A-DDDR under Type 2 ambiguity set

Under Type 2 ambiguity set in (10), the inner maximization problem (B.10) can be
recast as

max
p,q

(1 − λt+1)

K∑
k=1

pkQ
k
t+1 + qkQ

k
t+1 (B.13a)

s.t. (B.9b), (B.9c), (C.17b)–(C.17d)

pk, qk ≥ 0, ∀k ∈ [K ]. (B.13b)
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Theorem B.5 If for any feasible xt ∈ X̂t , problem (B.13) is feasible, then the Bellman
equation (B.7) can be reformulated as Qt (xt−1, ξ t ) =

min
xt , yt ,s,u,Y

gt (xt , yt ) − λt+1θ + s + uTμ(xt ) + Σ(xt ) · Y (B.14a)

s.t. s + uTξ kt+1 + (ξ kt+1 − μ(xt ))(ξ kt+1 − μ(xt ))T · Y
− πk

λt+1

1 − αt+1
≥ (1 − λt+1)Q

k
t+1,

∀k ∈ [K ], (B.14b)

πk − θ ≥ Qk
t+1, ∀k ∈ [K ], (B.14c)

πk ≥ 0, ∀k ∈ [K ], (B.14d)

(xt , yt ) ∈ Xt (xt−1, ξ t ). (B.14e)

The proof of Theorem B.5 is similar to the one of Theorem 2 in “Appendix C”, where
the only difference is thatwe introduce the twomore dual variablesπk and θ , associated
with constraints (B.9b) and (B.9c), respectively.

Notice here when λt+1 = 0, the risk-aversemodel (B.14) reduces to the risk-neutral
case (11). We can apply McCormick envelopes to get a multistage stochastic MILP
and use SDDiP algorithm to attain optimal solutions as in Sect. 3.2.

B.3 Solving A-DDDR under Type 3 ambiguity set

Given Type 3 ambiguity set defined in (14), the inner maximization problem (B.10)
can be recast as

max
p,q

(1 − λt+1)

K∑
k=1

pkQ
k
t+1 + qkQ

k
t+1

s.t. (B.9b), (B.9c), (C.19b)–(C.19e)

pk ≥ 0, qk ≥ 0, ∀k ∈ [K ].

Theorem B.6 Suppose that Slater’s constraint qualification conditions are satisfied,
i.e., for any feasible xt ∈ X̂t , there exists a vector p = (p1, p2, . . . , pK )T such that∑K

k=1 pk = 1, (
∑K

k=1 pkξ
k
t+1 − μ(xt ))TΣ(xt )−1(

∑K
k=1 pkξ

k
t+1 − μ(xt )) < γ , and∑K

k=1 pk(ξ
k
t+1 − μ(xt ))(ξ kt+1 − μ(xt ))T ≺ ηΣ(xt ). Using the ambiguity set defined

in (14), the Bellman equation (B.7) can be recast as Qt (xt−1, ξ t ) =
min

xt , yt ,s,Z,Y
gt (xt , yt ) − λθ + s + Σ(xt ) · z1 − 2μ(xt )T z2 + γ z3 + ηΣ(xt ) · Y (B.15a)

s.t. s − 2zT2ξ
k
t+1 + (ξkt+1 − μ(xt ))(ξkt+1 − μ(xt ))T · Y − πk

λt+1

1 − αt+1
≥ (1 − λt+1)Q

k
t+1,

∀k ∈ [K ], (B.15b)

Z =
(
z1 z2
zT2 z3

)
� 0, Y � 0, (B.15c)
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πk − θ ≥ Qk
t+1, πk ≥ 0, ∀k ∈ [K ], (B.15d)

(xt , yt ) ∈ Xt (xt−1, ξ t ). (B.15e)

The proof is similar to the one of Theorem 3. All the proofs in this section are omitted
here due to similarity.

Notice at we obtain an MISDP in each stage and when λt+1 = 0, the risk-averse
model (B.15) reduces to the risk-neutral case (15).We can applyMcCormick envelopes
and approximation schemes to obtain valid upper and lower bounds similar to the
procedures in Sects. 4.2.1–4.2.2.

C Details of all needed proofs

Proof (Theorem 1) The proof follows Theorem 3.1 in [24]. Using the ambiguity set
defined in (3), the inner maximization problem of (2) can be expressed as

max
p∈RK

K∑
k=1

pkQt+1(xt , ξ kt+1) (C.16a)

s.t.
K∑

k=1

pk f (ξ kt+1) ≥ l(xt ), (C.16b)

K∑
k=1

pk f (ξ kt+1) ≤ u(xt ), (C.16c)

pk ≥ p
k
(xt ), ∀k ∈ [K ], (C.16d)

pk ≤ p̄k(xt ), ∀k ∈ [K ], (C.16e)

pk ≥ 0, ∀k ∈ [K ]. (C.16f)

We associate dual variables α, β ∈ R
m with Constraints (C.16b) and (C.16c), dual

variables γ and γ̄ ∈ R
K with Constraints (C.16d) and (C.16e), respectively. When

(C.16) is feasible, strong duality holds and the Bellman equation (2) can be reformu-
lated as (4), which completes the proof. ��

The proof of Theorem A.1 is omitted due to its similarity to the proof of Theorem
3.3 in [24].

Proof (Theorem 2) Following Type 2 ambiguity set in (10), the inner maximization
problem in (2) can be recast as

max
p∈RK

K∑
k=1

pkQt+1(xt , ξ kt+1) (C.17a)

s.t.
K∑

k=1

pk = 1, (C.17b)
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K∑
k=1

pkξ
k
t+1 = μ(xt ), (C.17c)

K∑
k=1

pk(ξ
k
t+1 − μ(xt ))(ξ kt+1 − μ(xt ))T = Σ(xt ), (C.17d)

pk ≥ 0, ∀k ∈ [K ]. (C.17e)

If the above linear program is feasible, then strong duality holds. Associate dual
variables s ∈ R, u ∈ R

J , Y ∈ R
J×J with the three sets of constraints, respectively,

and recast the innermaximization problem as aminimization problem. After including
constraints (xt , yt ) ∈ Xt (xt−1, ξ t ), the Bellman equation (2) is equivalent to (11),
and we complete the proof. ��
Proof (Theorem A.2) The proof follows the conic duality in functional spaces [35].
Using the ambiguity set defined in (A.2), the inner maximization problem of (2) can
be formulated as a conic linear program in a functional space as follows:

max
P∈M(Ξt+1,Ft+1)

EP [Qt+1(xt , ξ t+1)] (C.18a)

s.t. EP [1] = 1, (C.18b)

EP [ξ t+1] = μ(xt ), (C.18c)

EP [(ξ t+1 − μ(xt ))(ξ t+1 − μ(xt ))T] = Σ(xt ) (C.18d)

We associate dual variables s ∈ R, u ∈ R
J , Y ∈ R

J×J with the three sets of
constraints, respectively. Because the primal problemhas a non-empty relative interior,
strong duality holds and the dual problem can be formulated as (A.3), which completes
the proof. ��
Proof (Theorem 3) Given Type 3 ambiguity set (14), the inner maximization problem
in (2) can be recast as

max
p∈RK ,τ∈RJ

K∑
k=1

pkQt+1(xt , ξ kt+1) (C.19a)

s.t.
K∑

k=1

pk = 1, (C.19b)

K∑
k=1

pkξ
k
t+1 = τ , (C.19c)

(τ − μ(xt ))TΣ(xt )−1(τ − μ(xt )) ≤ γ, (C.19d)
K∑

k=1

pk(ξ
k
t+1 − μ(xt ))(ξ kt+1 − μ(xt ))T 
 ηΣ(xt ), (C.19e)

pk ≥ 0, ∀k ∈ [K ]. (C.19f)

123



Multistage distributionally robust mixed-integer…

We rewrite Constraint (C.19d) as

(
Σ(xt ) τ − μ(xt )

(τ − μ(xt ))T γ

)
� 0,

and associate dual variables s ∈ R, u ∈ R
d , Z =

(
z1 z2
zT2 z3

)
� 0, Y � 0 with

Constraints (C.19b)–(C.19e), respectively. The Lagrangian function of (C.19) has the
following form:

L( p, τ , s, u, Z,Y) =
K∑

k=1

pk Qt+1

(
xt , ξ kt+1

)
− s

(
K∑

k=1

pk − 1

)
+ uT

(
τ −

K∑
k=1

pkξ
k
t+1

)

+
(

Σ(xt ) τ − μ(xt )
(τ − μ(xt ))T γ

)
· Z

+
(

ηΣ(xt ) −
K∑

k=1

pk(ξ
k
t+1 − μ(xt ))(ξ kt+1 − μ(xt ))T

)
· Y

=
K∑

k=1

pk
(
Qt+1(xt , ξ kt+1) − s − uTξ kt+1 − (ξ kt+1 − μ(xt ))(ξ kt+1 − μ(xt ))T · Y

)

+ τ T(u + 2z2) + s + Σ(xt ) · z1 − μ(xt )T(2z2) + γ z3 + ηΣ(xt ) · Y . (C.20)

Because problem (C.19) is convex and under the Slater’s conditions, strong duality
holds. The maximization problem (C.19) can be recast as

min
s,u,Z,Y

{
max
p,τ

{
L( p, τ , s, u, Z,Y) : p ≥ 0, τ ∈ R

J
}}

. (C.21)

Following the Lagrangian function (C.20), after solving the inner maximization prob-
lem in (C.21) over p, τ , we have

min
s,u,Z,Y

s + Σ(xt ) · z1 − μ(xt )T(2z2) + γ z3 + ηΣ(xt ) · Y
s.t. Qt+1(xt , ξ kt+1) − s − uTξ kt+1 − (ξ kt+1 − μ(xt ))(ξ kt+1 − μ(xt ))T · Y ≤ 0,

∀k ∈ [K ],
u + 2z2 = 0,

Z =
(
z1 z2
zT2 z3

)
� 0,

Y � 0.

Substituting u = −2z2 and combining with the outer minimization problem in (2),
we complete the proof. ��
Proof (Theorem A.3) The proof follows the conic duality in functional spaces [35].
Using the ambiguity set defined in (A.4), the inner maximization problem of (2) can
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be formulated as a conic linear program in a functional space as follows:

max
P∈M(Ξt+1,Ft+1)

EP [Qt+1(xt , ξ t+1)] (C.22a)

s.t. EP [1] = 1, (C.22b)

(E[ξ t+1] − μ(xt ))TΣ(xt )−1(E[ξ t+1] − μ(xt )) ≤ γ, (C.22c)

E[(ξ t+1 − μ(xt ))(ξ t+1 − μ(xt ))T] 
 ηΣ(xt ) (C.22d)

We associate dual variables s ∈ R, Z =
(
z1 z2
zT2 z3

)
� 0, Y � 0 with Constraints

(C.22b)–(C.22d), respectively. The Slater’s constraint qualification conditions ensure
that the primal problem has a non-empty relative interior. Therefore, strong duality
holds and the dual problem can be formulated as (A.5), which completes the proof.

��
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