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Aeroecology is an emerging discipline founded by Tom Kunz and colleagues in the early 2000s
to address the challenges of studying animal flight in the lower atmosphere [1]. By this time, radar
biology had a long history of both site-based studies that employ small specialized radar units [2] and
regional studies using weather surveillance radars [3]. This research was largely the purview of a
few specialists with access to radar equipment or data from national radar networks. Since that time
advances in computing and tracking technologies have revolutionized the possibilities for studying
life in the air [4]. Rapid expansion of the utility of radar for understanding flying animals is evinced in
the breadth of studies contained in this Special Issue. The diversity of taxa studied has grown beyond
what was imagined a decade ago. As impressive as this growth has been, globalization of this research
endeavor has been even more profound. Finally, the disciplinary diversity of scientists contributing to
radar aeroecology is a harbinger of future growth of this approach to understanding life in the air.

Studies in this issue build upon a rich history of applications in radar biology and demonstrate
the breadth of advances in this area. Drake et al. [5] describe how a radar used to collect decades of
insect flight data has been refurbished to improve data quality and quantity, as well as extend the
elevational range of the sampling area. Further expanding capacity in radar entomology, Hao et al. [6]
and Hu et al. [7] both propose innovative new approaches to advance our ability to classify insect
detections in terms of taxonomy, morphology, and size. Continuing on the theme of zenith-pointing
observations, Stepanian and Wainwright [8] use a vertically-oriented cloud radar to investigate animal
flight behavior and atmospheric conditions during a solar eclipse.

Weather surveillance radar has been a primary tool for understanding the aeroecology of birds, bats,
and insects, and as this science matures it progresses along several paths that are evident within the papers
of this issue. Gauthreaux and Diehl [9] explore the efficacy of polarimetric weather radar observations
for bioscatter classification and delineation. Nussbaumer et al. [10] and Kranstuaber et al. [11] both
examine bird migration across Europe and are examples of burgeoning use of the OPERA weather
radar network to estimate both density and distribution of migration, respectively. Finally, all of these
advances in data processing allow a greatly expanded capacity to ask fundamental questions about
the ecology of animal movement. The work by Caberera-Cruz et al. [12] demonstrates this potential
by relating spatial patterns in bird migration to those of intensity of artificial lights at night. Similarly,
Clipp et al. [13] explore the links between synoptic weather patterns and radar-based measurements
of bird stopover distributions. Finally, Boero et al. [14] use weather radar data from Argentina to
characterize the phenology of a free-tailed bat colony and compare radar observations with those from
observers on the ground.

Taken together these studies span the spectrum of radar aeroecology, from hardware improvements
and retrieval techniques, to conservation implications and the behavior of flying animals. This body of
work represents global efforts, including studies from Australia, South America, Europe, Asia, and
North America. Moreover, these research teams demonstrate interdisciplinary collaboration among
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biologists, engineers, meteorologists, and computer scientists. Looking forward, this breadth of topics,
locations, and people bodes well for the future of radar aeroecology.
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