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Applications of nonarchimedean
developments to archimedean
nonvanishing results for
twisted L-functions

E. E. EISCHEN

We prove the nonvanishing of the twisted central critical values
of a class of automorphic L-functions for twists by all but nitely
many unitary characters in particular in nite families. While this
paper focuses on L-functions associated to certain automorphic
representations of unitary groups, it illustrates how decades-old
nonarchimedean methods from Iwasawa theory can be combined
with the output of new machinery to achieve broader nonvanishing
results. In an appendix, which concerns an intermediate step, we
also outline how to extend relevant prior computations for p-adic
Eisenstein series and L-functions on unitary groups to the case
where primes dividing p merely need to be unrami ed (whereas
prior constructions required p to split completely) in the associated
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1. Introduction

From the proof of Dirichlet s theorem on arithmetic progressions of prime
numbers [17] to Shimuras proof of algebraicity of certain values of L-
functions [52] to the class number formula for number elds to the Birch
and Swinnerton-Dyer conjecture and Bloch Kato conjectures [2, 7, 24, 53],
nonvanishing of L-functions at certain points has signi cant consequences.

This paper concerns the (non)vanishing at the central critical value of
L-functions associated to certain cuspidal automorphic representations
of a unitary group twisted by Hecke characters , but the methods (out-
side of the Appendix) are applicable to L-functions associated to a wider
class of data. (The Appendix, however, only applies to unitary groups, as
it explains how several very recent developments enable removal of certain
technical conditions, in particular removal of the requirement that p split,
from earlier nonarchimedean results for automorphic forms and L-functions
associated to unitary groups.) In analogue with the Birch and Swinnerton-
Dyer conjecture, the Bloch Kato conjectures predict the algebraic meaning
(in terms of ranks of certain modules M associated to ) of the vanishing at
critical points (i.e. as de ned in [16], so that the gamma factors occurring in
the functional equation for the L-function do not have poles). In the frame-
work of the Bloch Kato conjectures, twists by  correspond (conjecturally)
to certain -eigenspaces of M (viewed as a Galois module, with  viewed as
a character on a Galois group).

The values at the central critical point are generally particularly chal-
lenging to study. For example, the L-functions associated to tempered cuspi-
dal automorphic representations on unitary groups are known to be nonzero
at critical points to the right of the central critical point, but the behavior
at the central critical point largely remains mysterious. Methods in ana-
lytic number theory often focus on proving results about averages of central
values of twists of L-functions by characters as those characters vary in
certain families.

Even though the results in this paper concern C-valued meromorphic
L-functions and one often uses (archimedean) analytic methods to study
the behavior of the twisted central critical values, the proofs in this paper
mostly exploit p-adic methods, building on an idea of R. Greenberg in [28].
This paper illustrates how decades-old methods from Iwasawa theory can be
combined with the output of new machinery to achieve nonvanishing results
about functions arising in analytic number but which current (archimedean)
analytic number theoretic methods cannot address (at least, as experts have
indicated to me).
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As such, we aim in the present paper to present the results and tech-
niques in a reasonably accessible manner to someone who is interested in
the C-valued L-functions under consideration but not necessarily an expert
in the p-adic theory. While many of the references from which we extract
key ingredients require a background in Iwasawa theory, unitary Shimura
varieties, or related topics, the reader of the present paper need not be an
expert in them.

1.1. Variation of Dirichlet characters and more

B. Mazur distinguished in [43] between two natural types of variation of
horizontal variation, with — ranging over characters of xed order (varying
the conductor, e.g. [6, 25, 45]), and vertical variation, varying over nite
order characters with conductor divisible by some xed nite set of primes.
This paper concerns vertical variation, as we vary over conductors dividing
p (or, more generally, p m for some xed conductor m prime to p) for an
odd prime p.

In the setting of this paper, one could consider a third type of variation,
which we leave for future work: For xed, we may vary analogously to
vertical variation of | at least if is ordinary at a prime p and parametrized
by tuples of characters like in [20]. In the inspiration for the present paper,
Greenberg s vertical variation of in L-functions associated to certain CM
Hecke characters [28], this third type of variation does not exist (or at least,
amounts to vertical variation of ), since representations of GL; are char-
acters.

1.2. Main results

The main results concern the nonvanishing of the twisted central critical
values of certain automorphic L-functions for twists by all but nitely many
unitary characters in particular in nite families. Some of the propositions
and lemmas proved en route to these results are also interesting and, if
one assumes certain conjectures of J. Coates and B. Perrin-Riou [11, 12],
are applicable to L-functions attached to a wider class of data. Indeed, as
new integral representations of L-functions continue to become available,
constructions of associated p-adic L-functions will likely enable immediate
extension of the main results of the present paper to other representations
(including via current, ongoing projects of the author). While many of the
results here can be extended to other groups, the Appendix concerns only
unitary groups.
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Let be a tempered cuspidal automorphic representation of a general
unitary group preserving a hermitian form on a vector space over a quadratic
imaginary eld K, and let be a Hecke character on the ideles of K. Fix
an odd prime p that splits in K.!

Note that the central critical point sg for L(s ) depends on the pair
() and is the same for ( ) for any nite order character |, since only
the in nity type of a ects the value of sg. A Hecke character of type Ag (in
the sense of [56]) may be identi ed with a character on Gx = Gal(K K),
which we also denote by

As discussed in Section 2, there are certain extensions K of K with
Galois group = Zyp, with KT denoting the cyclotomic Z,-extension (the
unique extension of K with Galois group isomorphic to Z, contained in the
extension obtained by adjoining all p-power roots of unity to K) and K
denoting the anti-cyclotomic Zy-extension (the compositum of the p-power
cyclic extensions of K that are dihedral over Q). Characters of Gal(K K)
that factor through 1 (resp. ) are called cyclotomic (resp. anti-
cyclotomic). Welet  be the Galois group of the compositium KT K over K.

On the Galois group of the compositum of the cyclotomic p-power ex-
tensions of K, identi ed with Z, through the Galois action on the p-power
cyclotomic extensions of K, there is a unique (Z pZ) -valued character
(the Teichmuller character, which we view as a Hecke character) with the
property that (a) a mod p for each a Ly,
Theorem 1.1 (Theorem 3.16). Let be a representation meeting Con-
dition 3.2 (e.g. one of the in nitely many representations in [20], extended
further by Section 4 of the present paper). For each critical point s1 to the
right of the central critical point so for ()

(1.1) L(so S -

for all but nitely many (of the in nitely many) nite order cyclotomic Hecke
characters  of . Moreover, for all but nitely many of those

L(s0 @ s )=

for all but nitely many unitary anti-cyclotomic characters  of

In the Appendix, building on very recent developements [5, 21, 41, 42], we
explain the extent to which we can remove this condition on p and replace it with
the condition that p is merely unrami ed.
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For simplicity, we have assumed in Theorem 1.1 that has conductor
dividing p . For more general conductor, there is an additional nite order
character (given precisely in Theorem 3.16) by which we must twist the
L-function in Equation (1.1).

The condition at the beginning of Theorem 1.1 is satis ed, for example,
if is of type Ap and is ordinary at p (as a consequence of the main results
of [20]). All tempered cuspidal automorphic representations ordinary at p
satisfy Condition 3.2, by the main results of [20]. Furthermore, this can be
extended (via the Appendix in Section 4, employing [5, 21, 41, 42]) to certain
P-ordinary representations, For generalizations to L-functions attached to
other data, we have Theorem 1.2, which relies on a weaker condition. Note
that for tempered cuspidal automorphic representations on unitary groups,
for each  of type Ag, L(s ) = 0 for s to the right of the central critical
point for (). Therefore, with su cient information about the exceptional
zeroes (equivalently, the form of the modi ed Euler factors) of an associated
p-adic L-function, we could obtain the stronger theorem. (In the statement,

m 1s a certain nite group and N is the norm character.)

Theorem 1.2 (Theorem 3.17). For each ( €) meeting Condition 3.1
and type Ag Hecke character — of Ay such that sg is central for () and
such that N °° =, there is a nite order Hecke character — of  such
that such that at the central critical point sy for (),

(1.2) L(s )=0
and

L(SQ ) =0
for all but nitely many unitary cyclotomic (resp. anti-cyclotomic) char-
acters  of T (resp. ). Furthermore, for all but nitely many such
L(sg ) =0 for all but nitely many unitary anti-cyclotomic (resp.
cyclotomic) characters — of (resp. T).

Remark 1.3. Assuming the Langlands conjectures, our nonvanishing re-
sults immediately imply new nonvanishing results for GL,,. More precisely,
the Langlands conjectures (see, for example, [1, 13]) predict that associated
(via Langlands functoriality) to the cuspidal automorphic representation

of a unitary group of rank n, there is an automorphic representation of
GL,, whose L-function agrees with the L-function associated to . Lang-
lands functoriality also respects tensor products, so our results on twisted
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L-functions also carry over. If the cuspidal automorphic representation 7 is
ordinary at p, then it meets Condition 3.2. As explained in [33, Section 8],
ordinariness (what Hida calls near-ordinariness) at p is preserved under
functoriality. (Ordinariness is determined by the action of certain Hecke op-
erators that are unnecessary in the present paper.) A more general class of
representations of unitary groups that includes those in the Appendix Sec-
tion 4 (P-ordinary representations, which also satisfy Condition 3.2) has an
analogous property preserved under functoriality, by [33, Section 8§].

1.3. Approach

As indicated above, this paper illustrates how decades-old methods in Iwa-
sawa theory can be combined with the output of new machinery to prove
results about functions arising in analytic number but for which no known
proof via (archimedean) analytic number theoretic methods currently exists.

1.3.1. Existence of p-adic L-functions. Readers unfamiliar with p-
adic measures and Iwasawa algebras are encouraged to consult [54, §12.1-12.2
and §7.1-7.2] alongside this paper. Most of the paper relies on the existence
of a p-adic L-function (realized as a p-adic measure and as an element of
an Iwasawa algebra over a p-adic ring) whose values p-adically interpolate
(an appropriate normalization of) L(s1, 7, x) at critical points s; and Hecke
characters x.

The machinery in [20] allows the construction of p-adic L-functions for
7 ordinary at p, and this is extended further in Section 4 (Appendix) of the
present paper, by building on very recent developments ([5, 21, 41, 42]). To
prove some of the results of the present paper concerning cyclotomic char-
acters, it is crucial for the p-adic L-function to interpolate among different
critical values. For this reason, the earlier construction of associated p-adic
L-functions proposed in [31] is insufficient for completing the work in the
present paper. Instead, one must work with more general p-adic L-functions,
which employ the Eisenstein measure in [23] and differential operators from
[22] that enable interpolation among all the critical values.

Coates and Perrin-Riou have conjectured the existence of a wide class
of p-adic L-functions, attached to ordinary motives [11, 12]. Assuming their
conjectures, one can extend most of the work in this paper to their setting, as
we use almost nothing specific to unitary groups in the purely p-adic portions
this paper, except for the crucial fact that we have already constructed the
requisite p-adic L-functions in that case. In fact, we have stated most of the
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propositions and lemmas so that they can easily be modi ed to accommodate
other cases where the requisite p-adic L-functions exist.

While the construction in [20] (and [22, 23]) relies on the geometry of
Shimura varieties (extending [39] to unitary groups), the method of construc-
tion of the p-adic L-functions is irrelevant to the nonvanishing results in this
paper. What matters is their existence as p-adic measures and, equivalently,
elements of Iwasawa algebras identi ed with power series rings.

1.3.2. Structure of p-adic power series rings and properties of p-
adic measures. Building on an idea of Greenberg in [28], we exploit the
structure of the Iwasawa algebra (as a power series ring) in which the p-adic
L-function is realized. In particular, we use the Weierstrass Preparation
Theorem ([4, Chapter VII Section 4]) in the proof of Proposition 3.5, which
states, roughly, for each critical value that either all the cyclotomic (resp.
anti-cyclotomic) twists of the L-function vanish or only nitely many do.
(The proof actually shows this for the p-adic L-function, and hence, one
needs to know something about the relationship between the L-function and
the associated p-adic L-function.) One could also apply P. Monsky s results
on the structure of p-adic power series rings, for example [44, Theorem 2.6],
in our context to obtain a more re ned description of the set of zeroes of
these p-adic L-functions.

Given Proposition 3.5, it is su cient to prove that at least one value of
the p-adic L-function does not vanish. For this, we actually show the nonva-
nishing of in nitely many values. While our approach to this task necessarily
invokes entirely di erent methodology that used by from Greenberg in his
setting, we both rely on relating limits (archimedean limits in his case, p-
adic in ours) of linear combinations of the L-values in question to a di erent
L-value known to be nonzero. There is no clear way to extend Greenberg s
approach, an intricate real-analytic argument involving Abel means, to our
situation. Likewise, there is no clear way to extend our approach, a p-adic
argument requiring the existence of a nonvanishing critical value to the right
of the central critical point, to his situation.

More precisely, using the fact that

(1'3) L(Sl ) = L(SO N S1+so)

(where N denotes the norm character), p-adically approximating A by linear
combinations of nite order cyclotomic characters, and using the formulation
of the p-adic L-function as a p-adic measure, we achieve Lemma 3.12, which
states (roughly) that in nitely many twists by cyclotomic characters do not
vanish, so long as some critical (not necessarily central) value is known to
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vanish. For this, we need a value of L(s ) at a critical point to the
right of the central critical point not to vanish and not to correspond to an
exceptional zero of the associated p-adic L-function. For this, it is crucial
that we know something about the L-functions with which we work, and
merely taking an L-function whose values are interpolated by a p-adic L-
function (without knowing something about its zeroes and exceptional zeroes
of the associated p-adic L-function) will not, by itself, su ce.

1.4. Related directions

The inspiration for the approach in this paper comes from R. Greenberg s
work in [28, 29]. For a di erent class of L-functions for which the construc-
tion of p-adic L-functions follows from di erent techniques, F. Januszewski
also recently independently obtained related nonvanishing results [37]. As
the theorems (but neither the propositions nor the lemmas) in this paper
require nonvanishing at a critical point to the right of the central critical
point, our theorems do not naturally extend to modular forms of weight
2 (elliptic curves). As noted above, though, they may extend to certain L-
functions associated to other data. More immediately, one can use [8 10, 30]
to associate Galois representations  (including in p-adic families) to and
reframe the results from this paper in terms of Galois representations. We
have restricted to CM elds of degree 2 in this paper, but one can extend the
results to CM elds of arbitrary nite degree (at the cost of extra notation).
We allow more general conductor than Greenberg, but this does not cost us
anything except some extra notation.

1.4.1. Additional approaches to closely related nonvanishing re-
sults. Among the other related nonvanishing results in the literature, the
closest appear to be D. Rohrlich s results for GLg proved in [47 50] and
the strategy introduced by F. Shahidi for Rankin Selberg products in [51].
As Rohrlich notes in the introduction to [50], it is not clear how to ex-
tend his approach employed in his deep arguments to higher rank groups.
Shahidi s idea is to use the Langlands Shahidi method (also exploited in
[26]) to realize the reciprocals of certain L-functions in the constant terms
of holomorphic Eisenstein series and conclude the nonvanishing of the L-
function from the lack of poles of a holomorphic function. While Shahidi s
approach might be adaptable to our setting, we have not attempted that
route. In yet another direction, using the theory of endoscopy, D. Jiang and
L. Zhang have recently proved related nonvanishing results under certain
conditions in [38].
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1.4.2. The algebraic meaning of nonvanishing. The reader who com-
pares [28, Propositions 3 and 4] with Proposition 3.5 will note that we con-
sider more general classes of characters but do not address the critical divisor
that appears in Greenberg s work. The critical divisor enables Greenberg to
relate the vanishing of L-functions (at Grossencharacters associated to CM
elliptic curves) to the structure of CM elliptic curves. For the Hecke char-
acters corresponding to those in his work (see Remark 3.6 for the precise
connection between his statements and ours), his claims about divisibility
by the critical divisor carry over immediately. A step toward interpreting
the algebraic meaning of our more general vanishing statements would be
to extend the realization of critical divisors in our setting.

2. Background and notation

Fix an algebraic closure Q of Q. Let K Q be a quadratic imaginary ex-
tension of Q, let Ok denote the ring of integers in K, and let p be an odd
rational prime that splits in K. Write (p) = pp for the prime factorization
of (p) in Ok. Let ¢ denote complex conjugation. Given an element a C,
we set a := c(a).

Denote by C, the completion of an algebraic closure of Q,, and let O
denote the ring of integers in C,. Fix an embedding ,:Q, C, inducing
the p-adic valuation on K, and x an embedding :Q, C.Via , (resp.

), we identify Q with its image in C, (resp. C).

2.1. Important extensions and Galois groups

Let K denote the anti-cyclotomic Zp-extension of K, so K = , ok,
with K, cyclic of degree p"™ over K and Gal(K,, Q) dihedral for all n. For
each element g Gal(K,, K), we have ¢ g ¢ '=g 1. Let K* denote
the cyclotomic Zy-extension of K, so K+ = , oK, with K cyclic of
degree p" contained in the p"*!th cyclotomic extension K ( prt1), Where
p~+1 denotes the group of p"*l-power roots of unity, and K+  K( » )
with , the group of all p-power roots of unity. Let K = K TK .So K
is the compositum of all the Zy-extensions of K. De ne :=Gal(K K),
=Gal(K K),and *=Gal(K" K).So =2, +=Zp,and =
+ = Z2. Note that for each Galois extension L K, ¢ acts on Gal(L K)
by conjugation. We have that ¢ acts (via conjugation) on 7 as the identity
and on by inverting each element. Fix a topological generator  for +

and a topological generator for
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For any modulus n, let K(n) be the maximal abelian extension of K
with conductor dividing n, and let K(n n):= ,,K(n™n) for any coprime
pair of moduli n and n. Fix a modulus m prime to p. So K K(p )
K(p m). Let G =Gal(K(p ) K)=Ilim Gal(K(p") K), and let Gn =
Gal(K(p m) K)=Ilim Gal(K(p"m) K). Wehave G =Z, Z, =
with = (Z pZ) (Z pZ) identi ed with Gal(K(p ) K ). Further-
more, we have Gy = Zp Zp = m with . a nite group
and identi ed with Gal(K(p m) K ).

2.2. Characters

We recall some key facts about Hecke characters. Given the embedding ,
we have that for any Hecke character on K of type Ag (as in [56]), there
is an associated continuous C,-valued character (its p-adic avatar, obtained
by shifting the component at to p), which we will also denote by
on Gi = Gal(K K). For any Hecke character on K, we de ne =
c. A type Ay Hecke character on the quadratic imaginary eld K can be
written in the form  ((av)y) = f((av)y) (@ )%a . )b onideles (ay),

Ay, with a and b integers and § a nite order character. The pair (a b) is
the in nity type of . We denote by A/ the norm Hecke character. The in nity
type of N is (1 1). Viewed as Cp-valued character on the Galois group, N’
factors through Gal((K( , )K(m)) K),is trivial on the Galois group of the
anti-cyclotomic extension, and gives the isomorphism Gal(K( , ) K)

Z,, describing the Galois-action of Gal(K( , ) K) on , , mapping
onto a nontrivial principal unit v 1+ 7Z, Z,. Note that = decomposes

)

as 4 , with NV giving an isomorphism of | Gal(K( , ) K) onto
(Z pZ) and N trivial on
A continuous character on G is anti-cyclotomicif (¢ g c¢)= (g) !

for all g Gg. So anti-cyclotomic characters on G are the ones that fac-
tor through anti-cyclotomic extensions. Equivalently, a Hecke character is
anti-cyclotomic if = !, soitsin nity typeis (a @) for some integer a.
Note that for any Hecke character is an anti-cyclotomic character.
Also, any anti-cyclotomic character of conductor dividing p m is trivial on
Gal(K( , ) K) and factors through the Galois group of the maximal anti-
cyclotomic extension inside Gal(K(p m) K). If is anti-cyclotomic with

in nity type not (0 0), then () is a nontrivial element of 1 + pZ,.

For any character on G, we write = , and for any character
on Gy, we write = .» with  denoting the restriction of to H
for any subgroup H. Note that N . = , where denotes the Teichmuller

character de ned by (a) a mod p for all a in (Z pZ) .
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2.3. Iwasawa algebras

For any pro-p group H = limn H, with H, a nite p-group, de ne p :=
Zy[H] := lim Zy[H,]. Then we identify — with the power series Z[T'y T' ]
in two variables T} T via

(2.1) 2,07, T |
T id
We have ¢= [ Jand ¢,= | m). We de ne = . Asis

conventional, given a Z,-algebra R and a character —on H, we extend
R-linearly to a functionon g 7z R.

3. Results on nonvanishing

By Equation (1.3), it su ces to consider values of the L-function at s = 0.
Correspondingly, (s; ) is a zero of the L-function L( ) if and only if

N 5t is a zero of the function L(0 ). We will use these two equivalent
perspectives interchangeably, both for the (C-valued) L-function and the
p-adic L-functions. In this section:

denotes a type Ag Hecke character of the ideles A - of the CM eld
K

denotes a cuspidal automorphic representation (which is tempered)
of a general unitary group preserving a Hermitian form on a vector
space over K

% denotes a character on the nite group m

We will be interested in pairs (%) meeting Condition 3.1:

Condition 3.1. There is a p-adic L-function interpolating values of

L(0 ) as  varies p-adically over Hecke characters such that .=
¢ with 0 critical for (). More precisely, we require that there is an ele-
ment & z, O such that for all type Ag Hecke characters on Gy
with . = @ such that 0 is critical for ()

(3.1) o) Lo = e ()LO )

with ¢ () (resp. ¢p( )) a product of an archimedean (resp. p-adic) pe-
riod and modi ed Euler factors (as predicted in [11, 12, 16] and shown in
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[20] when = is ordinary at p). We also require that there exists x with
XAxA,, = % such that 0 is critical for (7, x), L(0, 7, x) # 0, and x is not a(n
exceptional) zero of the p-adic L-function, and also that for each character
1 such that the conductor of the p-adic avatar of the unitary part of ) is
divisible by p, the p-adic L-function does not vanish at v if L(0,m,%) # 0
and 0 is critical for (m,%). (This is a very weak requirement, since for all
(m,x), with m tempered, we have that L(s,n,x) is nonzero for s > so + %,
with sg the central point. Also, we do not expect an exceptional zero at a
critical point if p divides the conductor of x.) In particular, in this paper,
we work under the following two assumptions:

e L(s,m,x) # 0 for some character xaxa,, = € and some s > s + 3.
e 7 is p-ordinary.

When (7, %) meets Condition 3.1 for each of the (finitely many) char-
acters € on A x A, we say m meets Condition 3.1.

As noted in Section 1.4, since the theorems (although not the proposi-
tions and lemmas) in this paper require nonvanishing at a critical point to
the right of the central critical point, our theorems do not naturally extend
to modular forms of weight 2 (elliptic curves), but they may extend to cer-
tain L-functions associated to other data. As mentioned in Section 1.4.1, the
case of GLj is, however, handled via analytic methods by Rohrlich (includ-
ing in [50], which notes it is not clear how to extend those arguments for
GL; to higher rank groups).

Given the dictionary between p-adic measures on I' and elements of the
Iwasawa algebra over I' (see e.g. [54, §12.1-12.2]), Condition 3.1 is equivalent
to the requirement that there is a p-adic measure i, ¢ on I' whose values (af-
ter appropriate normalization) at x, with O critical for (,x), agree with the
values of the (appropriately normalized) L-function L(0,w,x), as in Equa-
tion (3.1).

We say that m meets Condition 3.2 if:

Condition 3.2. 7 meets Condition 3.1 and the p-adic L-function has no
exceptional zeroes at (s1,x) for points s; that are critical for (m,x) and lie
to the right of the central critical point for (m,x).

Example 3.3. Cuspidal automorphic representations that are ordinary at
p satisfy Condition 3.2 by the main results of [20]. So we have an infinite
set of representations that satisfies Condition 3.2. (The nonvanishing of the
C-valued L-function at points s > sg + % follows from the fact that we work
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with tempered representations. The modi ed Euler factors away from p for
the p-adic L-function are constant volume factors, and at p, they are given
explicitly in terms of Godement Jacquet style zeta functions at p, again for
tempered representations. So for s > sg + %, the p-adic L-function also does
not vanish.) Note, though, that for the main theorem of the present paper,
it su ces, in fact, to establish nonvanishing for one representative from each
of the ( nitely many) congruences classes mod (lem(p )), rather than
for the whole set of critical points to the right of sg + %

More generally, we expect a certain larger class of (tempered) cuspi-
dal automorphic representations to satisfy Condition 3.2. See, e.g., the
Appendix.

Remark 3.4. We make a few observations about factorizations of Hecke
characters. Let  be a Hecke character of in nity type (a b), and let <7 be
an anticyclotomic character of in nity type (1 1) and conductor dividing
p . Then there exist Hecke characters 1, 2, 3, and 4 such that =

(N® with | of in nity type (0 b a), = oN? with 5 of in nity type
(@ b0), = 3%with 3ofin nity type (0 b+a),and = 4o °with

4 of in nity type (a4 b 0). More generally, any two Hecke characters of
the same in nity type di er by a nite order Hecke character. Also, if is

of in nity type (a b), then = N9’ Furthermore, if is of in nity type
a_b a+b
(a b) with @ b mod 2, we can write = ;o 2 >, with § a nite
order character on m-
Let m be the exponent of the nite group m-

Proposition 3.5. Suppose (  €) meets condition 3.1, and let  be a type
Ay Hecke character of in nity type (a b) on Gal(K(p m) K).

1) Fitky O m 1 . Suppose that 0 is critical for (), and let o
be an anticyclotomic character whose in nity type is not (0 0). Suppose

af o = €. Then either all the values L(0 *), withk 0

and k ko mod m, are zero, or only nitely many of them are zero.

2) Suppose =7
a) As waries over the C-valued characters of Gal(K  K) regarded
as Dirichlet characters of K, either all the values L(0 ) are
zero or only nitely many of them are zero.
b) As waries over the C-valued characters of Gal(K+ K) regarded
as Dirichlet characters of K, either all the values L(0 ) are
zero or only nitely many of them are zero.
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Remark 3.6. In the special case where we are on de nite unitary groups of
rank 1 (so automorphic forms are Grossencharacters) and we x =N 1,
a:=1,b:=0, m:= (1), & := -, and choose K so that h(K) =1 (where
h(K) denotes the class number of K) in Proposition 3.5, we are in the
situation of [28], and:

Item (1) recovers the rst two sentences of [28, Proposition 3], i.e. it
concerns the vanishing at the central critical point of L(s *), with
the Hecke character associated to a CM elliptic curve.

Item (2a) recovers the rst two sentences of [28, Proposition 4], i.e. it
concerns the vanishing at the central critical point of nite order anti-
cyclotomic twists of L(s ) with the Hecke character associated to
a CM elliptic curve.

Proof of Proposition 3.5. For each O -valued character on and element

f=fC+ ) O[] denef O[ [by
fFO)=f0H ) )
So setting
Y=2q¢ O[]
and noting that since &/ is anti-cyclotomic, so &/( *) =1, we have

¥ (G )=( TN )

Via the identi cation (2.1), we identify .Z ¢ with an element of O[Ty T |
and ¢ with an element of O[T ]. By the Weierstrass Preparation Theorem
([4, Chapter VII Section 4]), either ¥ O[T ] is the zero power series or

(3-2) G (T )=p (T )P(T)

where 0, u(T ) is an invertible power series in O[T |, and (T ) is
a polynomial in O[T ]. (In fact, can be chosen so that (T ) is distin-
guished, i.e. all but the leading coe cient of & lie in the maximal ideal of
O, but we do not need that fact in this paper.) So

( dNZ ¢)=9 o ) 1
=pu(e*( ) 2@ ) 1
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Since </( ) is a nontrivial principal unit in Z,, we have that «/*( )
1, <1if k= 0. Consequently, for all k£, the power series does not vanish on
/%( ) 1. Since polynomials only have nitely many zeros, we therefore
obtain Statement (1).

For (2a), write = & with &/ an anti-cyclotomic character of in nity
type (r  r) for some integer r = 0, and note that since is anti-cyclotomic

(so (F)=1),
(& )@ )=0 )Z %)

Now, &/( ) is a nontrivial principal unit in Z,, and ( ) is a p-power
root of unity in O. So ( )&( ) 1, <1. So similarly to the proof
of Statement (1), Statement (2a) now follows from the application of the
Weierstrass Preparation Theorem to ¥ evaluated at ( )</( ) 1as
ranges over nite order characters of

For (2b), write = WN" for some integer r =0, and consider
G (1)« () Of ) Now, N( )= ( )=1, N( 1) is a non-
trivial principal unit of Z,, and ( ) ranges through p-power roots of unity
in O. So the remainder of the proof of Statement (2b) is similar to the proof
of Statement (2a). O

Remark 3.7. The proof of Proposition 3.5 shows that we can obtain similar
statements for characters varying along any copy of Z, (not just *and ),
so long as the image of a topological generator lands on a nontrivial principal
unit in Z,.

Remark 3.8. In the exponent of p in Equation (3.2), we use rather than
e (the letter often used in the statement of the Weierstrass Preparation
Theorem) to remind the reader of the connection with -invariants.

Corollary 3.9. Fiz kg 0 m 1 , apositive integer c, and an integer
d = 0 such that 0 is critical for (N ©). Suppose the in nity type of s
not (0 0), @+2ko \[ ko(atd) ¢ =%, and ( €) meets Condition 3.1.

Then either all the values L(0 2k \f K(ath) ), withk 0 andk ko
mod m, are zero, or only nitely many of them are zero.

k
Proof. Note that @¢F2k\ klatb) ¢ — dpf e Taking o = — in
Statement (1) of Proposition 3.5, the statement follows immediately. 0
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To prove the theorems, it now su ces to prove that at least one of the
central twisted values is nonzero. In fact, Lemmas 3.10 and 3.12 provide a
stronger statement, namely that in nitely many are nonzero.

Lemma 3.10. Let and be type Ay Hecke characters of Gal(K(p m) K)
such that 0 is critical for ( ) and () and such that s cyclotomic
(resp. anti-cyclotomic) with in nity type not (0 0), and suppose L(0 )
=0 and (0 ) is not an exceptional zero for the p-adic L-function. Suppose
C ) ) meets Condition 3.1. Then

L(0 ) =0

for in nitely many nite order cyclotomic (resp. anti-cyclotomic) Hecke
characters — with =

Proof. Let € =( ) Lo Let 1 o be a sequence of linear combi-
nations of nite order cyclotomic (resp. anti-cyclotomic) characters con-
verging to . So since .Z ¢ provides a p-adic measure, lim; (& ¢) =

(Z ¢)=0. So there are in nitely many nite order cyclotomic (resp.
anti-cyclotomic) characters ; occurring in the linear combinations ; such
that (& ) =0. O

Note that we could instead have proved Lemma 3.10 simply by applying
the Weierstrass Preparation Theorem, like in the proof of Proposition 3.5.
Our proof of 3.10 actually provides us, though, with the following stronger
statement, which is much more in the spirit of (archimedean) analytic proofs
of nonvanishing results, which typically rely on showing certain sums of L-
values are nonzero in order to show that one L-value is nonzero.

Corollary 3.11 (Corollary to the proof of Lemma 3.10). Let be
a type Ay Hecke character of Gal(K(p m) K) such that 0 is critical for
(). Then

(3.3) a L0 )=0
for each O-linear combination a of mite order Hecke characters

su ciently close p-adically to . That is, there exists a positive integer N
such that Equation (3.3) holds whenever a () () pNO for all
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Lemma 3.12. Let k=0 be an integer, and let  be a type Ay Hecke
character of Gal(K(p m) K) such that 0 is critical for (N ) ford =
0k, L(k ) =0, and (k ) is not an exceptional zero for the p-adic L-
function. Suppose ( N @ m) ford =0 k meets Condition 3.1. Then

L(0 )=0

forin nitely many nite order cyclotomic Hecke characters — with =

ka

Proof. This follows immediately from Lemma 3.10 (or from Corollary 3.11).
O

Corollary 3.13. Suppose that  meets Condition 3.1. If 0 is critical for
() and there exists an integer k = 0 and nite order cyclotomic character
such that such that 0 is critical for (N %) and L(k ) =0. Then

L(0 )=0

forin nitely many nite order cyclotomic Hecke characters — with .=
N for modm 1 suchthat = k /\/’km .

Proof. Replacing the characters ; from the proof of Lemma 3.10 by i
completes the proof. O

Corollary 3.14. Suppose that meets Condition 3.1. Let sq be the central
critical point for (). If there is a critical point sy = sg and a nite order
cyclotomic character  at which L(s; ) =0 and such that (s1 )
is not an exceptional zero for the p-adic L-function, then L(sq )=0
for in nitely many nite order cyclotomic characters  such that =

(N F)

m*

Proof. This follows immediately from Lemma 3.10 and Corollary 3.13. [

The only way I know how to prove the existence of at least one -
nite order  so that L(sg ) =0 at the central critical point sy is by
showing the existence of in nitely many such . Interestingly, Greenberg s
proof in [28] of the existence of & 0,k 01 p 2 modp 1sothat
L( %*! k+1) =0, where is the CM Grossencharacter arising from an
ordinary CM elliptic curve over Q, also relies on showing the existence of
in nitely many such k. Both approaches, while invoking entirely di erent
methodology, rely on relating limits (archimedean limits in his case, p-adic
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in ours) of linear combinations of the L-values in question to a di erent
L-value known to be nonzero. There is no clear way to extend Greenberg s
approach, an intricate real-analytic argument involving Abel means, to our
situation. Likewise, there is no clear way to extend our approach, a p-adic
argument requiring the existence of a nonvanishing critical value to the right
of the central critical point, to his situation.

Remark 3.15. Application P. Monsky s results on the structure of p-adic
power series rings, in particular [44, Theorem 2.6, in our context gives a
more precise description of the set of zeroes of these p-adic L-functions.
While we shall not need a more precise description in the present paper, this
might be useful in attempts to combine horizontal and vertical variation to
obtain still more re ned nonvanishing statements.

We are now in a position to prove the main nonvanishing results.

Theorem 3.16. Let be a representation meeting Condition 3.2 (e.g. one
of the in nitely many representations in [20]). For each critical point s1 to
the right of the central critical point so for ()

(3.4) L(sy ~ * ®N™ * )=0

for all but nitely many nite order cyclotomic Hecke characters —of .
Moreover, for all but nitely many of those

L(SO So SINSO S1 ):0
for all but mnitely many unitary anti-cyclotomic characters  of

Note that if m = (1) (or if —n divides s9 1), then 0 SN 5 =
051 So if we restrict to conductor dividingp  (orif , divides sy  s1),
we can eliminate the character N .

Proof. By Condition 3.2, the theorem follows from Lemma 3.12, combined
with Proposition 3.5. ]

All tempered cuspidal automorphic representations ordinary at p satisfy
Condition 3.2, by the main result of [20]. Under the weaker Condition 3.1,
we obtain Theorem 3.17. Note that for tempered cuspidal automorphic rep-
resentations  on unitary groups, for each  of type Ay, L(s ) =0 for
s to the right of the central critical point for ( ). Therefore, with infor-
mation about the exceptional zeroes (equivalently, the form of the modi ed
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Euler factors) of the associated p-adic L-function, we could obtain a stronger
statement.

Theorem 3.17. For each (  €) meeting Condition 3.1 and type Ay Hecke
character — of Ay such that sg is central for () and such that N *° =
€, there is a nite order Hecke character — of  such that such that at the
central critical point so for (),

(3.5) L(sg )=0
and

L(S(] ) =0
for all but nitely many unitary cyclotomic (resp. anti-cyclotomic) char-
acters  of T (resp. ). Furthermore, for all but nitely many such
L(s ) =0 for all but nitely many unitary anti-cyclotomic (resp.
cyclotomic) characters — of (resp. ).
Proof. By Condition 3.1, L(s ) = 0 for some Hecke character on

with O critical for N %0 and such that N %0 is not a zero of
the p-adic L-function. Taking limits over linear combinations of nite order

characters on  approaching | similarly to the proof of Lemma 3.10, we
nd a nite order character  occurring in the linear combinations such
that L(sg ) = 0. The theorem then follows from Proposition 3.5. [

4. Appendix: The setting of unitary groups when p is
unrami ed

From a complex analytic perspective, when working with unitary groups, the
splitting condition imposed at p might appear unmotivated. This section
discusses the extent to which that splitting condition can be removed, in
particular sketching how to remove it in the case of signature (n n) and
explaining why that argument does not fully extend to other signatures.

4.1. The signi cance of the assumption that p splits completely
and recent progress toward removing it

We begin by highlighting the ways in which the condition that p splits
completely manifests itself in the p-adic theory employed here, including in
20, 23]:
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Nonemptiness of the ordinary locus. Hida s theory of p-adic automor-
phic forms ([35]) is built over the ordinary locus of the moduli space
over which the automorphic forms used to construct our L-functions
lie. When p splits completely, the ordinary locus of is nonempty. More
generally, though, the nonordinary locus is empty. Very recently, a
substitute was built over the -ordinary locus (which is nonempty
whenever p is unrami ed and agrees with the ordinary locus when p
splits [55]). Extension of Hida s approach to p-adic automorphic forms
was introduced in [14, 15, 21|, which also extend crucial earlier work
on di erential operators [19, 22| to this setting. Further, essential re-
sults on Hecke operators and Hida s ordinary projector were extended
to this setting in [5, 32].

Choice of a Siegel section at p that is amenable to computation of
Fourier coe cients at p as well as the local zeta integrals arising from
the doubling method. The strategy for computing local integrals arising
in the doubling method is always to reduce them to integrals computed
by Godement and Jacquet, which are only worked out for GL,, in
[36] and certain other cases (neither unitary nor symplectic groups)
in [27].2 When the doubling method is being applied in the case of a
general linear group, the reduction to the case of Godement Jacquet
is completed in [46, Section 5]. Then [46, Section 6] explains how to
carry out local doubling integrals for particular choices in the case of
symplectic groups, by reducing to a calculation over the Levi subgroup,
which is isomorphic to a general linear group, thus allowing reduction
once again to Godement Jacquet integrals for general linear groups.

In the case where p splits completely, the unitary group is isomorphic
to a general linear group. The calculations of the local zeta integrals
in [20] (which relate the zeta integrals to Euler factors of standard
Langlands L-functions) and the calculations of the Fourier coe cients
of Eisenstein series in [23] (which enables p-adic interpolation) both
use a change of variables that relies on an isomorphism of the unitary
group with a general linear group.

2As an aside, we note that the Godement and Jacquet s assessment of their
own work in the last full paragraph on [27, p. V] is prescient: No doubt that the
results developed here will someday disappear in the general theory of Euler products
associated to automorphic forms. No doubt also that this work is, at the moment,
incomplete. But we feel that its present publication could be of some use to the
mathematical community. Indeed, other cases were later needed and developed,
using [27] as a solid foundation and inspiration.
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On the other hand, at primes that do not split completely, the uni-
tary group is not isomorphic to a general linear group. Computations
of local doubling integrals for choices similar to those in [46, Section 6]
were completed for unitary groups of signature (n n) at inert primes
in [40, Section 3] by reduction to the computations similar to those
carried out in the symplectic case in [46, Section 6] (using the close
relationship between GSpg, and unitary groups of signature (n n)).

While the choices in [40, Section 3] are not well-suited to p-adic
interpolation, appropriate choices were made for symplectic groups in
[3, 41, 42]. Similarly to the approach [40, Section 3|, those sections can
then be adapted to the case of unitary groups of signature (n n), and
continuing to use the close relationship between GSp2, and unitary
groups of signature (n n), those sections also enable the p-adic inter-
polation of the Fourier coe cients necessary to construct the p-adic
L-functions.

4.2. Sketch of how to extend the p-adic L-functions to inert
primes p for unitary groups of signature (n n) and why this
approach does not immediately extend to other signatures

The developments from Section 4.1 enable construction of p-adic L-functions
whenever p is unrami ed, so long as the signature of the unitary group is
(n m): As noted above (and observed in [40, Section 3]), for inert primes and
a unitary group G signature (n n), the unitary case is su ciently close to
the symplectic case that similar choices (of local data at p) to those in [41,
Section 5] and [42, Section 2.8] can be used to compute local zeta integrals
arising from the doubling method, as well as to construct an Eisenstein
measure on a unitary group of signature (2n 2n).

For unitary groups G, there is a subtlety that does not arise for sym-
plectic groups: We need to interpolate the pullback of an Eisenstein series
constructed over GU (2n 2n) (used to construct the L-functions in the dou-
bling method) to G G (a copy of two unitary groups) inside GU (2n 2n).
The interpolation only is carried out over the ordinary locus. As explained
above, we can extend interpolation to the -ordinary locus (necessarily em-
ploying the associated notion of P-ordinariness, in place of ordinariness, as
de ned in [5, 34, 42]), but the -ordinary locus for G G intersects the

-ordinary locus for GU(2n 2n) if and only if G is of signature (n n). Con-
sequently, in the inert case, without substantial additional work, the above
methods only extend the construction of the p-adic L-functions to signature
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Each of [18 20, 23] relies on the assumption that each prime above p
in the maximal totally real eld K* of the CM eld K splits in K, and
in those papers, a choice of CM type for K is identi ed with with a set of
primes (one from each complex conjugate pair) of K above the primes in
KT over p. To set ourselves up to handle the more general case where p is
merely required to be unrami ed, we now provide careful bookkeeping that
will serve as a replacement for that identi cation from the split case.

Since K is a CM eld, each embedding : KT, Q extends in exactly
two ways to an embedding K, Q. We let be a CM type. That is,
is a set consisting of embeddings K, Q such that for each : KT, Q,
exactly one of the two extensions of to K isin . So, letting g+ denote
the set of embeddings : KT, Q (and, more generally, letting  denote
the set of embeddings : L, Q for any number eld L), we have a bijection

K+

K+

Each embedding , : K, C,determines a valuation on K corresponding
to a prime of Ok, which we denote by p . That is,

Let

Note that if ¢ is the nontrivial involution of K in Gal (K KT), then

(4.1) cp)=p ¢

So for each prime ideal p in Og+ over p, , contains exactly one prime in
Ok over p. Note also that

p
p

is always surjective, but it is bijective if and only if p splits completely in
K. De ne
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So

\ =
= K

p p= ppisaprime ideal over p in O

Observe that , is in bijective correspondence with

p K+ = P pisa prime ideal over p in O+
via
P p K+
b b\ Ok

Likewise, we have a bijection

P p K+
poop\ Ok~
Note that ,\ , = if and only if each prime over p in O+ splits in

K. By Equation (4.1), we see that ,, contains the set of primes in Ok de-
termined by the embeddings in . So we also have that the set of valuations
determined by  and the set of valuations determined by  are disjoint if
and only if every prime in O+ over p splits in K.

Following the convention of [20, Section 5.2], let

X, =lmK K 7 U,

T

U= O 7 (1+p0 7, K Z

and identify X, with the Galois group of the maximal abelian extension of
K unrami ed away from p.
Consider a Hecke character
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of type Ap with in nity type = Since is of type Ag, there are
integers k and  such that each is of the form

We may write

po»p p =p

The component of at p is a character
pi (K ) C
which we can decompose as a product over primes 3 in O+ that divide p

P B

with characters
B : OK 7 0K+ B (C

where O+ ¢ denotes the completion of Og+ at B. For each prime ideal 3
in Og+ that divides p, we de ne

qg: OK ZOKJrqg (Cp

where

Ok ZOKJMB Cp

is the continuous character de ned for all z K relatively prime to p by
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We de ne the p-adic avatar

((av),) = v(ay) p ((ap))

v p primes in Ok p p primes in O,

p(ap) == y(ap) (ap)
p =p

Now, with the bookkeeping from above, the choice of data and Fuler
factors at primes in , g+ that split in K are treated as in [20], while
(following the observation of [40, Section 3] that at inert places, the unitary
group of signature (n n) can be handled similarly to a symplectic group)
the choice of data and Euler factors at inert places in , g+ are treated
similarly to those in [41, Section 5] (and, more generally, for the P-ordinary
case, following the generalization in [42, Section 2]).
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