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ABSTRACT

While the traditional facility location problem considers exogenous demand, in some applications, loca-
tions of facilities could affect the willingness of customers to use certain types of services, e.g., carsharing,
and therefore they also affect realizations of random demand. Moreover, a decision maker may not know
the exact distribution of such endogenous demand and how it is affected by location choices. In this pa-
per, we consider a distributionally robust facility location problem, in which we interpret the moments
of stochastic demand as functions of facility-location decisions. We reformulate a two-stage decision-
dependent distributionally robust optimization model as a monolithic formulation, and then derive ex-
act mixed-integer linear programming reformulation as well as valid inequalities when the means and
variances of demand are piecewise linear functions of location solutions. We conduct extensive computa-
tional studies, in which we compare our model with a decision-dependent deterministic model, as well
as stochastic programming and distributionally robust models without the decision-dependent assump-
tion. The results show superior performance of our approach with remarkable improvement in profit and
quality of service under various settings, in addition to computational speed-ups given by formulation
enhancements. These results draw attention to the need of considering the impact of location decisions

on customer demand within this strategic-level planning problem.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Determining facility locations has been a fundamental problem
in the design of modern transportation and logistics systems. In
a traditional setting, a decision maker chooses a subset of loca-
tions from candidate sites to open facilities, as well as assigning
exogenous customer demand to these capacitated facilities while
minimizing the total cost of building facilities and satisfying de-
mand. The customer demand plays a critical role as it is a driving
factor in determining where to open facilities. In practice, the
demand values from different customers may not be fixed but
are random variables following certain probability distributions. A
decision maker may not have the full knowledge about the true
distribution of demand. Moreover, in some applications when new
services are introduced to a certain market, locations of service
facilities have inherent impact on the willingness of customers to
use the service and thus the demand is not entirely exogenous
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but endogenous, whose probability distribution will be affected
by the facility-location decisions. For example, to use carsharing
services like Zipcar, customers can pick up and drop off vehicles
at designated parking locations and the convenience of doing so
determines the service quality. Jorge and Correia (2013) and Ciari,
Bock, and Balmer (2014) demonstrate that demand volumes of
carsharing customers are affected mainly by their travel distances
to parking locations, as their choices of whether or not to use
carsharing services largely rely on service availability within their
neighborhoods (Boldrini, Bruno, & Conti, 2016; Vine, Lee-Gosselin,
Sivakumar, & Polak, 2011). Similar impacts and endogenous
demand are also observed in problems of warehouse location
selection in supply chains (Ho & Perl, 1995).

In this paper, we integrate the decision-dependent demand
uncertainty in the strategic-planning phase of locating facilities
and propose a distributionally robust optimization (DRO) model
for locating facilities under uncertain endogenous demand, given
unknown distribution of the random demand vector whose mean
and variance values are functions of facility-location decisions.
The goal is to minimize the sum of facility-location cost and
the worst-case (maximum) expected cost of transportation and
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unsatisfied-demand penalty given any distribution of demand
from a pre-defined ambiguity set that is constructed based on the
decision-dependent moment information (i.e., mean and variance).
Note that to handle demand uncertainty, stochastic and robust
optimization approaches are widely used in the facility-location
literature (see, e.g., Alvarez-Miranda, Fernandez, & Ljubi¢, 2015; An,
Zeng, Zhang, & Zhao, 2014; Baron, Milner, & Naseraldin, 2011; Cui,
Ouyang, & Shen, 2010; Shen, Zhan, & Zhang, 2011; Snyder, 2006;
Snyder & Daskin, 2005), depending on the amount of data we
have to describe the uncertainty. Although stochastic optimization
techniques are powerful in modeling specific demand realizations
and the corresponding recourse decisions, their applicability is
limited to the assumption that the exact demand distribution
is fully known, which requires significant amounts of data to
validate. In contrast, robust facility-location models minimize the
worst-case (maximum) transportation and penalty cost for any
possible demand value in a given uncertainty set, and could lead
to over-conservative solutions and extremely high cost of building
unnecessary facilities. Our proposed DRO approach utilizes the
moment information from historical demand data to build an
ambiguity set of the unknown demand distribution, and thus
can obtain data-driven robust solutions under partial information
about the true distribution. We summarize the main contributions
of the paper below.

1. We derive a monolithic formulation for solving the DRO
model with decision-dependent demand whose moments
can be any types of functions of facility-location decisions.

2. We obtain an exact mixed-integer linear programming
(MILP) reformulation of the DRO model through duality and
convex envelopes, when demand mean and variance are
piecewise linear functions of location solutions. We develop
enhancements to strengthen the formulation, including the
derivation of valid inequalities.

3. We conduct an extensive set of numerical experiments
to demonstrate the effectiveness of the proposed distribu-
tionally robust decision-dependent approach. We develop
both in-sample computation and out-of-sample evaluation
frameworks to compare our approach with a decision-
dependent deterministic formulation, as well as the tradi-
tionally stochastic programming and DRO benchmark mod-
els neglecting the decision-dependency. Our results highlight
significant increase in profit and decrease in unmet demand,
and its robust performance under numerous problem char-
acteristics along with the computational efficiency brought
by formulation enhancements.

The remainder of this paper is organized as follows. In
Section 2, we review the most relevant studies in the facility-
location literature and in related optimization methods. In
Section 3, we present the decision-dependent distributionally ro-
bust facility location problem, its reformulations given moment-
based ambiguity sets of the unknown demand distribution, and
formulation enhancements. In Section 4, we conduct computa-
tional studies on a variety of randomly generated instances to eval-
uate the performance of our model and solution approaches under
different parameter and problem settings. Section 5 concludes the
paper and states future research directions.

2. Literature review

We review the most relevant literature in facility location
(Section 2.1), stochastic programming and distributionally ro-
bust optimization (Section 2.2), and decision-dependent uncer-
tainty modeling in stochastic and robust optimization literature
(Section 2.3).
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2.1. Facility location problem variants

The facility location problem (Melo, Nickel, & Gama, 2009;
Owen & Daskin, 1998) has been studied for a wide variety of ap-
plications to determine optimal locations of warehouses (Ozsen,
Coullard, & Daskin, 2008), distribution centers (Zhang, Berenguer,
& Shen, 2015) in supply chains, and facilities to provide emer-
gency medical services (Chen & Yu, 2016), and so on. Given the
emergence of the Internet of Things (IoT), it is also considered
for building smarter and connected cities via optimizing locations
of sensors and devices to enhance data flows (Fischetti, Ljubic, &
Sinnl, 2017). An important branch of facility location studies con-
siders uncertainties in problem parameters such as demand vol-
umes. Snyder (2006) conducts a thorough review of facility loca-
tion problems under various types of uncertainties existing in de-
mand parameter, cost parameter, or related to facility character-
istics. Specifically, An et al. (2014), Cui et al. (2010), Shen et al.
(2011), and Snyder and Daskin (2005) focus on variants of the
reliable facility location problem under random supply, demand,
cost of shipment or network disruptions, and develop mathemat-
ical models for enhancing the reliability and cost-performance of
location design, leading to advances in supply-chain risk manage-
ment. However, among all the above studies, the demand is as-
sumed to be exogenous and its distribution does not depend on
facility-location decisions.

On the other hand, the competitive facility location problem
(CFLP) involves decision games between two or multiple firms that
compete for customer demand of the same product or service in
a shared market (Berman, Drezner, Drezner, & Krass, 2009; Freire,
Moreno, & Yushimito, 2016; Mai, Lodi, & ISSN 0377-2217. URL,
2020). It extends the classical location models, including p-median
and maximum coverage, to a more complex decision-making en-
vironment, where the market is not a spatial monopoly but has
co-existing competitors and certain consumer patronage pattern.
The total demand volume is still exogenous but is split into mul-
tiple strings of customers whose choices depend on the facilities’
utilities (e.g., their locations, sizes, service prices, etc.). The max-
imum capture problem (MCP) constitutes an important class of
CFLP where a firm decides where to locate a set of new facilities to
maximize its market share, given existing facilities already set up
by its competitors and utility models that represent customer pref-
erences. Benati and Hansen (2002), Haase and Miiller (2014), and
Ljubi¢ and Moreno (2018) develop different solution approaches for
MCP, where they consider a probabilistic choice model for splitting
customer demand over multiple facilities. In this paper, we con-
sider a single-player strategic planning of facility locations under
decision-dependent demand uncertainty, while the majority of the
MCP or CFLP studies do not take into account the stochasticity of
demand, nor assume the overall demand uncertainty or its volume
change being dependent on newly open facilities.

2.2. Stochastic programming and DRO methods

Stochastic programming approaches can be applied to address
the issue of uncertain parameter once we know the full distri-
butional information. For example, Santoso, Ahmed, Goetschalckx,
and Shapiro (2005) consider a stochastic facility location problem
by sampling realizations of demand and capacity parameters from
a certain distribution, and they propose an accelerated Benders de-
composition algorithm. DRO provides an alternative approach to
solve problems under uncertainty when the decision maker has
partial information about the distribution. Although DRO yields re-
liable and low-cost solutions (as compared to the ones to stochas-
tic and robust optimization models, respectively), it is less studied
in the context of facility location. Lu, Ran, and Shen (2015) con-
sider a distributionally robust reliable facility location problem by
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minimizing the expected cost under the worst-case distribution
with given marginal disruption probabilities and information about
disruption correlations. Santivafiez and Carlo (2018) generalize the
study in Lu et al. (2015) by ensuring a minimum service level
in satisfying demand under each disruption scenario. Liu, Li, and
Zhang (2019) propose a DRO model for optimally locating emer-
gency medical service stations under uncertain demand. To ensure
the reliability of their plan, joint chance constraints are introduced
and a moment-based ambiguity set is used for describing the de-
mand uncertainty. However, these studies pose modeling limitation
by not capturing the possible impact of location decisions on de-
mand or other parameters’ uncertainty.

The general DRO literature can be classified by the ambiguity
set being used to describe distributional information of uncertain-
ties. One line of research considers statistical distance-based ambi-
guity sets, which focuses on distributions within a certain distance
to a reference distribution. Some of the most studied distance mea-
sures in this area are ¢-divergence (Ben-Tal, Hertog, De Waege-
naere, Melenberg, & Rennen, 2013; Jiang & Guan, 2016), Wasser-
stein distance (Esfahani & Kuhn, 2018; Gao & Kleywegt, 2016) and
Levy-Prokhorov metric (Erdogan & Iyengar, 2006). However, these
approaches require a significant amount of historical data to derive
a reference distribution of the uncertain parameter, which might
not be available due to the lack of prior customer data during the
phase of new service introduction and facility planning. In this
paper, we consider moment-based ambiguity sets that have been
used for deriving tractable reformulations of general DRO models
(see, e.g., Delage & Ye, 2010; Tong, Sun, Luo, & Zheng, 2018). The
amount of data for obtaining reliable moment information is much
less than the one needed for deriving a reference distribution with
high confidence, and therefore the moment-based ambiguity set is
more suitable for facility planning for new services. We also as-
sume that the mean and variance of the demand vector are func-
tions of facility-location decision variables, to allow possible distri-
butions of the demand and the corresponding demand realizations
to be decision dependent.

2.3. Modeling decision-dependent uncertainty

Integrating decision-dependent uncertainties within an opti-
mization framework involves modeling challenges and computa-
tional complexities. The related literature can be categorized into
two groups. The first group focuses on decisions affecting the time
of information discovery. Goel and Grossmann (2006) propose a
mixed-integer disjunctive programming formulation for incorpo-
rating the relationship between the underlying stochastic processes
and decisions affecting the time that uncertainty is revealed. To
address the computational challenge, Vayanos, Kuhn, and Rustem
(2011) propose a decision rule approximation to ensure solu-
tion tractability. Their work is further generalized by Vayanos,
Georghiou, and Yu (2020) to handle multi-stage robust optimiza-
tion models with decision-dependent information discovery and
the authors derive a reformulation that can be directly solved by
off-the-shelf solvers via the K-adaptability approximation. Recently,
Basciftci, Ahmed, and Gebraeel (2019) study a generic mixed-
integer linear program for finite stochastic processes, and derive
structural results and approximation algorithms specifically on the
time of information discovery for capacity expansion planning.

In the second group of literature, decisions can change the
distribution of the underlying uncertainty, similar to the set-
ting in our paper. Using stochastic programming approaches,
Ahmed (2000) considers a network design problem under design-
dependent uncertainties, whereas Basciftci, Ahmed, and Gebraeel
(2020) model generators’ failure probabilities dependent on their
maintenance and operational plans. Hellemo, Barton, and Tomas-
gard (2018) conduct an overview of recent studies in this area
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by providing ways to model decision-dependent uncertainties in
stochastic programs. The decisions affecting uncertain parame-
ters’ realizations can be also incorporated into the definition of
an uncertainty set used in robust optimization (see, e.g., Zhang,
Kamgarpour, Georghiou, Goulart, & Lygeros, 2017). Nohadani and
Sharma (2018) consider robust linear programs where the un-
certainty set is a function of decision variables, and they derive
tractable reformulations for specific cases. The robust decision-
dependent optimization problems have been studied in wide appli-
cations including software partitioning (Spacey, Wiesemann, Kuhn,
& Luk, 2012), radiotherapy planning (Nohadani & Roy, 2017) and
offshore oil planning problems (Lappas & Gounaris, 2017). How-
ever, the decision dependency of uncertain parameters has not
been fully explored in the DRO framework. Among limited related
studies, Zhang, Xu, and Zhang (2016) consider generic decision-
dependent DRO problems with moment constraints and demon-
strate the stability of the optimal solutions, whereas Royset and
Wets (2017) consider these problems under a class of distance-
based ambiguity sets to derive convergence results. Ryu and
Jiang (2019) consider distributionally robust nurse staffing prob-
lem where the uncertainty in the absenteeism of nurses depends
on the staffing level decisions, and develop a separation algorithm
for solving MILP reformulations. Most recently, Noyan, Rudolf, and
Lejeune (2018) and Luo and Mehrotra (2018) provide non-convex
reformulations for DRO problems under various forms of decision-
dependent ambiguity sets. Although these studies provide alter-
native reformulations, the resulting models need further analyses
and require the development of efficient solution algorithms. Addi-
tionally, the effect of adopting decision-dependent DRO methods in
comparison to the existing stochastic or robust methodologies are
not quantitatively or numerically verified in the aforementioned
studies.

In brief, our paper proposes a novel approach in determin-
ing optimal facility-location plans via modeling the decision-
dependency of random demand in its moment information used in
the ambiguity set of a DRO model. Therefore, it addresses various
gaps in the literature of facility location and methods for optimiza-
tion under decision-dependent uncertainty.

3. Problem formulation

In the distributionally robust facility location problem, facil-
ity location decisions affect the underlying demand distribution of
each customer site. We first introduce the ambiguity set for de-
scribing the distributional information of demand in Section 3.1.
Then, we formulate the decision-dependent DRO model and
present its generic reformulation in Section 3.2. By assuming the
moments being piecewise linear functions of location variables, we
further derive a monolithic MILP reformulation in Section 3.3. To
strengthen the obtained reformulation, we provide a polyhedral
study to derive valid inequalities in Section 3.4.

3.1. Ambiguity set formulation

Consider a set of possible locations i €I for building facilities
and customer sites j € J] having uncertain demand. We define bi-
nary variables y;, i € I to indicate location decisions, such that y; is
1 if a facility is open at location i, and 0 otherwise. The demand at
each customer site j € ] is represented by a random variable d;(y)
whose distribution depends on the decision vector y = [y;, ielI]T.
We consider the case where only mean and variance information
are used for constructing the ambiguity set of the unknown de-
mand distribution.

Specifically, the true distribution of demand comes from a
set of possible distributions, where the random demand at each
customer site je] can take values from a finite support set
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K ={&1..... &} with probabilities 7j;, ..., 7 k. Therefore, the am-
biguity set U(y) of the unknown probabilities 7}y, ..., ik is given
by:

K
uy) = [{”f}jej PRI Y mi=1 Vil
k=1

K
> miy _Mj(}’)‘ <€ Vjel
P

K
@2 0) + ()T =Yy
k=1

£ = (@F )+ (UjNHE V] EJ}, (1)

where w;(y) and sz (y) are the mean and variance of site j's de-
mand being any types of functions of the location decision vector
Y, respectively. We describe specific function forms of w;(y) and
a].z(y) and justify the corresponding parameter choices in these
functions in Section 3.3. The constraints in set (1) guarantee that
(i) the probabilities at all customer sites over the support set sum
up to 1, (ii) the true mean of d;(y) is within an ¢;-based distance

e;‘ to the mean w;(y), and (iii) the true second moment of d;(y)
is bounded by the sum of (u;(y))? and a].z(y) with upper- and
lower-bound parameters satisfying 0 < g;.’ <1< Ej’ for each j e].
Parameters e;‘, g}’, ?‘J’ determine the robustness of the ambiguity
set for each customer site j e]. Specifically, if we have the per-
fect knowledge regarding the first and second moments of random
demand at site j, then e}‘ =0, and gj.’ = Ej’ = 1. Otherwise, we
can adjust these parameters to consider distributions within cer-
tain proximity to the desired moment information, which conse-

quently impacts the conservatism of facility location decisions.
3.2. DRO model and a monolithic reformulation

In addition to binary variables y;, VielI, we define continu-
ous variables x;; and s; denoting at each customer site j € J, the
amount of that site’s demand satisfied by facility i, and unsatisfied
demand of that site, respectively. Parameters f;, ¢;j, pj, r; repre-
sent the cost of opening a facility at location i, unit transportation
cost from location i to site j, penalty of each unit of unsatisfied de-
mand at site j, and revenue for satisfying each unit of demand at
site j, respectively. We assume that the unit penalty of unsatisfied
demand at each customer site is higher than the unit cost of trans-
portation from any two location pairs, ie., p; > ¢, Viel, je].
This assumption is sensible in many business settings to assure the
quality of service as high as possible, via guaranteeing customer
satisfaction.

Furthermore, instead of assuming a total capacity at each indi-
vidual facility, we consider a relaxed capacity restriction and as-
sume that the capacity at each facility is pre-divided for individ-
ual customer sites. For example, to prepare for shipments, different
sizes of vehicle fleets are pre-booked and scheduled to serve cus-
tomers in different regions. We denote the total capacity in each
location i as }_;.; G, where Gj; is the capacity at location i ded-
icated to customer site j. For notation convenience, without loss
of generality, we further simplify the case by assuming the same
amount of capacity pre-allocated to serve each customer (i.e., Gj; is
the same and equals to G for all the customer sites j).

The overall decision-dependent distributionally robust facility
location problem is formulated as:

i Y E.[h(y,d 2
o min ;ﬁyﬁrguagy() Z[h. dy)] ¢, (2)
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where h(y,d(y)) = min DY i+ Y (pjsj —rid;j(¥)) (3a)

il jeJ jel
st. Y xj+s;=d;(y) VjeJ (3b)
iel
xj<Cy; Vielje] (30)
siuxij>0 Viel jel (3d)

The objective function (2) minimizes the total cost of locat-
ing facilities and the maximum expected cost of transportation
and unmet demand minus revenue for any demand distribution
7 eU(y). We let the set ) include constraints that are solely re-
lated to facility-location decisions. Constraint (3b) ensures that de-
mand at each customer site is either satisfied by other locations
or penalized, while constraint (3c) enforces capacity restriction for
each open facility i € I.

To derive a single-level, monolithic reformulation of the above
min-max DRO model, we first show a closed-form solution to the
inner problem (3).

Proposition 1. The optimal objective value of problem (3) can be
computed by

h(.dw) =Y (p‘&’f" I {Ci*jdj(y) "L, CM)} : rjdj(y)>’
o \i=0 iel:cij<Cix;
(4)

where ¢g; := pj.

Proof. Note that the inner problem (3) can be decomposed with
respect to each location j. Therefore, we express h(y,d(y)) as

Y jerhj(,d(y)), where

h;(.d()) = min %:CUXU +pjs; = 1id;(¥) (52)

st Y xij+s;=d;(y) (5b)
iel

xj <Gy Viel (50)

s;,x; >0 Viel (5d)

Let B and v; be the dual variables associated with constraints
(5b) and (5c), respectively. We formulate the dual of model (5) as

max  fd;(y) + %:Ci%'vi (6a)
st. B+vui<g; Viel (6b)
B <p; (6¢)
v;<0 Viel (6d)

To identify the optimal objective value of model (6), we derive
the extreme points of its feasible region. To this end, we examine
two cases through counting the number of tight constraints.
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1. B =pj : In this case, for all i €I, either v; =0 or v; =¢j; —
pj. Due to (6b) and p; > ¢;;, we have v; < ¢;; — pj < 0, mak-
ing the condition v; = 0 redundant. Therefore, when 8 = p;,
v; equals to ¢;j —p; in the corresponding extreme point.
The value of the objective function then becomes p;d;(y) +
e Gyi(cij — pj)-

2. B < pj : In this case, for all i € I, either v; =0 or v; = ¢;; — B.
Additionally, there exists at least one location i* such that
U = C«j — B = 0. Therefore, at least |I| +1 constraints are
satisfied at an extreme point. Thus, 8 = ¢;-; for some i* € .
For i e I'\ {i*}, we have either v; =0 or v; = ¢;j — ;. Since
v < Cij - C,'*j and v < 0, if Cij < Ci*j’ then v = Cij - Ci*j' Oth-
erwise, v; =0 because we maximize a positive number
times v; in the objective. For a given i* location, the objec-
tive function becomes ¢;«;d;(y) + Ziel:c,»j<c,~*j Gyi(cij — Cij)-

Combining the above two cases, we obtain a closed-form ex-
pression for the optimal objective value of model (6). Since p; =
Coj > Cjj, Viel, the optimal objective value of the problem can be
expressed as

max

i#=0.1.....]1| Cijd; ) + Z Gyi(cij —cij) ¢ (7)

iel:cij<Cyxj

As the program (6) is feasible and bounded, strong duality holds
between models (5) and (6). As a result, the optimal objective
value of (5) equals to

max
#=0.1,... /1|

Cijd;(¥) + Z Gyi(cij —cij) ¢ —1;d;(¥), (8)

iel:cij<Cixj
which completes the proof. O

Theorem 1. Model (2) is equivalent to a single-level minimization
formulation given by

s TV E (cr+ 8} (00 + ') = 821,00 — )
YOO+ @)E

~V OO+ umPE ) (9a)

st. o+ (8] - 8))&+(v! —v)E2 = 0u(y) Vielk=1.. K
(9b)

yeyc{o. i}l syl 82 y2>0 Vje]. (9¢c)

where 0 (y) = Ci}fkj“?k + Ziel:cij<cﬁkj Gyieij — G j) — ri and i3
J

maximizes expression (8) with d;(y) being replaced by §&.

Proof. Following Proposition 1, we can reformulate the inner prob-
lem max ) E[h(y, d(y))] for a given y as

K
p Zzﬂjk (Ci;.kj—rj)fk-i- Z Gyi(cij — Cis, j)

max
. jelk=1,..., P iel:c,-]<ci}k,v
(10a)
K
st. Y mwi=1 Vje] (10b)

k=1

[m5G;November 26, 2020;3:44]

European Journal of Operational Research xxx (XXxx) Xxx

K

Yok < wiy) +elt Viel (10c)
k=1

K

> ik = i) — € Vjel, (10d)
k=1

K

D < (07 W) + (wi)*E Vel (10e)
k=1

K

S gl = (07 + ())ET Vel (10f)
k=1
wi>=0 Vjelk=1,....K (10g)

Let o}, 8}, 8]3, yJ.], y2 for all j €] be the dual variables associ-
ated with all the constraints in model (10). Then, we can formulate
the corresponding dual of model (10) as

3 (o5 81,00 + €4) - 315 — )

el

min
81,82, y1,y2

+ 7] @20 + (W 0)DE

SV @)+ e ) (1)

st oo+ (8] =82 &+ (v} —vP)E = 04 (y) Vielk=1.....K
(11b)

8Lyl.82.y}=0 Vjel (11c)

As a result, we can express model (2) in the form of (9). This
completes the proof. O

3.3. Moment functions and mixed-integer linear reformulation

In this section, we specify function forms for 1 ;(y) and o;(y)
for each j €], to further derive reformulations of Model (9) that
can be directly solved by off-the-shelf solvers. We consider that
the demand at site j increases from a base demand estimate /i;
when new facilities are opened in site j’s neighborhood. However,
due to the size and capacity of a market, the increase in demand
is restricted by an upper-bound value, denoted as //Lz‘-lB for each
site j, which can be estimated by considering the growth poten-
tial of a market of interest within the planning horizon. Moreover,
the highest variance of demand at a customer site occurs when
there is no available facility in its neighborhood, and we can set
it equal to an empirical variance 6}2 that can be estimated from
sample demand data. As the number of facilities in the neighbor-
hood of a customer site increases, the variance of the demand at
that site decreases. However, the variance cannot be less than a
pre-determined lower-bound value, denoted as (cijB)2 for site j,
because of the inherent uncertainty in the market.

The above assumptions are supported by Shaheen, Cohen, and
Roberts (2006) and Hernndez, Jimnez, and Martn (2010), who
demonstrate the increase in customers’ confidence based on their
past experiences with the provided service and its enhanced avail-
ability. Consequently, increased customer confidence is associated
with increase in the mean and decrease in the variance of cus-
tomer demand. We interpret the mean and variance information
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Fig. 1. Effect of the open facility locations on the moment information of demand.

using piecewise linear functions of the decision variable y as fol-
lows to indicate these relations:

wj(y) =min q @2;(1+ Z)»ﬁv}’i/), n L

i'el

0P () = max | GF(1 = Y A%y), (0f%)? (12)

i'el

In (12), the effect of the distance of different facility locations on
demand at a target customer site j is controlled by parameters
)\j.‘, A7 €0, 1], where each element )L;.‘i, and 19, correspond to
the impacts of opening location i’ for customer site j on mean and
variance, respectively. These parameters are represented in such a
way that closer locations can have higher impacts on the first and
second moments, and further locations have less effect. In practice,
historical data samples can be utilized to configure the values of
parameters [i;, G, kj“, A7, Mg’B, ojLB used in (12). Take carshar-
ing as an example and consider a problem of selecting locations
for locating Zipcars in a new service region, where residents cur-
rently use other transit systems such as buses, personal vehicles,
etc. First, we can use historical commute data to estimate the base
mean (/) and variance ((rjz) of potential carsharing users in differ-
ent locations, and the mean and variance upper- and lower-bounds
are based on the total travel demand using all transit means who
are possible to become Zipcar users. For each customer site j, we
select a subset of nearby parking locations i, to which the cus-
tomers living in j can travel quickly, and assign nonzero )L;.li- and
Ag-values to them. Furthermore, we increase the nonzero )»ﬁ- and
A}’i-values following decreasing travel distances between customer
site j and the corresponding parking location i. Moreover, we have
el k;.’l., <1 for all j €] by assumption.

We illustrate the impacts of the above decision dependency in
Fig. 1, where the first figure shows the change in the mean and
the second figure depicts the change in the variance with respect
to parameters A and A}’ . For demonstration purposes, we as-
sume the first open facility to be the closest one to customer site
j. the second open facility to be the second closest, and so on.
We highlight four different cases for these parameters such that
in Case (a), facility location decisions have no effect on demand
distribution; in Case (b) all facilities equally affect the first two
moments; in Case (c) closer facilities have higher impact; and in
Case (d) only the closest facility impacts customer demand. This
illustration demonstrates different impacts of location decisions on
customer demand, based on the dependency between moment in-
formation and customer behavior.

(8) o Facility
100 < o l e Customer
90 ° 1.5 (2) (4) 3
o
. 80 S
% 70
'g 5 17 6 101
S 60 (D) i3 X : 10
3 20 .
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0
= T .
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g 300 4 0 ) 149)
° ° (6)
= 90 ° 9) ‘g
® o i
10 i o 9
12 5 °
0 e .
0 10 20 30 40 50 60 70 &80 90 100

Locations’ x coordinates

Fig. 2. Locations of customer sites and potential facilities in a specific instance.

Also, note that the presented two-piece linear functions of mo-
ments in (12) are extendable to a more generic setting. Specifi-
cally, mean and variance information can be formulated as general
piecewise linear functions of the location decisions y as follows:

. _ ; Wy T
J25167) IG{T,‘,'},L}{GI + by},

(13)
where parameters L, [? € Z, denote the number of pieces of lin-
ear functions considered for u;(y) and sz (y), respectively; param-

eters a e R, a® e R, bt e RN po e Y correspond to
the respective baseline mean, variance values and their slopes on
each linear-function piece for 1 ;(y) and ojz ).

Model (9) involves a nonlinear objective function (9a), bi-
nary decision vector y, continuous variables «,§!,8% 1, y2,
functions w;(y) and oj(y). In the rest of the paper, we de-
rive solvable reformulations of Model (9) based on the spe-
cific forms of w;(y) and o;(y) in (12). To linearize the ob-

jective function, we assume upper bounds 87,82, y1,¥2 on
the variables 81,82, y1, ¥2, respectively. Using these bounds,
McCormick envelopes (see McCormick, 1976) can be applied for
linearizing the bilinear terms in the objective function (9a). Specifi-

cally, we define set M’(n ) involving the McCormick inequalities for
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linearizing any bilinear term w’ = nz when n € [, 7] and z € {0, 1}
and give the details as follows.

/!

am = {W.n2erR:n-1-27<w

<n-n(l-2),nz<w <7z}. (14)

Because variable z is binary valued, we have an exact reformu-
lation in (14) for representing the bilinear terms. Similarly, de-

fine set M/(/, )77 involving McCormick inequalities for linearizing any

trilinear term w” =nz;z; when 5 €[5, 7] such that n >0, and
21,25 € {0, 1}.

1/ _
) —

<sn-n1-z).w <n-n1-2),
W' =n(-1+2z +2),

{W' n,21,2) e R* 1 W <7z, W' < Tjzp, W'

W =n+T(2+21+2).2<1,<1,n=<n=7}.  (15)

The trilinear case in (15) involves two binary variables, and
based on existing results, we confirm that it provides an exact re-
formulation of Model (9).

Proposition 2. (Meyer & Floudas, 2004) Let 0<mn<T7. Then

M{, o) = cov({(w.n.21.22) : w = nz122, 1 € [1.7]). 21,2, € {0, 1}}).

For notation brevity, we further omit the bounds /,LS.]B and
((7].“3)2 in (12), and only consider ;(y) and ojz(y) being affine
functions of y. Note that this assumption is not restrictive in
terms of the complexity of the problem formulation. In the pres-
ence of these upper and lower bounds, one can model the mo-
ments in (12) as piecewise linear functions with additional bi-
nary variables. The arising nonlinear relationships can be further
linearized using McCormick envelopes. Following the above as-
sumptions, the ambiguity set U(y) in (1) contains nonlinear terms
in y if using mean and variance function forms defined in (12).
Specifically,

-1

(1j))* = 5 (1 F2) My Y MyE+2) Y A;ikﬁ«inyzym)

i'el el 1=1 m=1
(16a)
=
= @1+ D @M+ DDy +2) D MAl yivm ).
el 1=1 m=1
(16b)

To linearize the above expression, define a new variable
Yim :=yiym where (Y, ¥, ¥m) € M/(O.l)' To linearize the nonlinear

terms in the objective function (9a), let A;’i, = Sj?yi/, F;‘i, = yj"yi/,

\I—';‘,m = yj"y,ym, for h =1, 2. For any pair of j € J and i’ € I, denote

Ajip 1= =GPA%, + 13 (A%, + (M;)?) as the parameters specific to
the values of A#, A%, as well as empirical moment estimates for
any pair j eJ, i’ e I. Combining the above result with Theorem 1,
we derive an MILP reformulation (17) of model (9) under ambigu-

ity set (1) in the following theorem.

Theorem 2. Using specific forms of moment functions in (12), the
original problem (2) is equivalent to the following MILP model (17).

min fTy+ Y (o;+ 6} (i +€f) - 83— )
Jel
DM (A =A%) + (07 + 45) (€7 v} - €7 ))
i'el
1 1-1

2 Aw(E Tl —€fT5) + 233 5 2GS,

el 1=1 m=1
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< (€7 Wl — €7 ¥n)) (172)

st. o+ (8] = 87) &+ (v —v])&E = (cvj— 1))
+ Y Gyi(aj—cj)Virelu{0}.jelk=1... K

iel:cij<Cixj
(17b)
h h h h ! . 5

(Aﬁ/,(Sj,y,-/) eM/(o.aTJ)’ (l"ﬁ,,yj ,yi/) EM(O.W) VieJielLh=1,2
(17¢)

(Yl v Y1 ym) eM’(’Om VieJl=1,... )I,l>m  (17d)

'
yeye (o syl .87y} =0 Vje] (17e)

Proof. We linearize Model (9) obtained in Theorem 1 to derive an
MILP reformulation. We first plug in the decision-dependent mo-
ment information at each site j, u;(y) and 0].2 (y), into the objec-
tive function (9a), using definitions in (12) and (16b). As the result-
ing objective function includes bilinear and trilinear terms, we in-
troduce new variables to obtain the linear objective function (17a).
Constraint (17b) corresponds to (9b), which is also linearized. The
remaining constraints refer to definitions of the newly introduced
variables, their corresponding McCormick constraints in the forms
of (14) and (15), restrictions on the facility-location variable y, and
the non-negativity constraints on all the decision variables. This
completes the proof. O

3.4. Valid inequalities

We examine the underlying problem structure for deriving valid
inequalities to obtain a stronger formulation of the MILP reformu-
lation (17). We first present an intermediate result using the inner
problem (10). Since the dual (11) of the inner problem is decom-
posable with respect to each location j, we study the following
decomposed formulation for every j J.

o+ 8] (1) +€f') = 8 (1) — €f') + v (o7 )

1 2ln1 2
a;.8;.87.v] v

+ (i 0P)E — v (07 W) + (1 1))%)e] (18)

stooj+ (8]] - 8?)5]( + (Vj] - )/]‘Z)Ekz > jk(y) k=1,...,K,
(18b)

5.7} 8,77 = 0, (18¢)

Lemma 1. Extreme rays of the feasible set {(aj,ijl.,(S]?,yJ.],ij):
(18b), (18c)} are

1L Eméwe).0.60)+&).1.0)

2. Gu-1bw) 0. Ek-1) +w), 1.0)
3. (“§méwy- 6y + 8. 0.0, 1)

where &), ..., &) represent the ordered sequence of the support of
the random demand.
Proof. Since §; := 8} - 812. and y; = yjl - yjz are unbounded, we

can equivalently consider the following system of inequalities in
place of (18b) and (18c)

aj+8iE + V&l = 05 (y) k=1,...,K (19)
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To identify extreme rays, we solve the inequality system (20) for
m, ne{l,..., K};

o+ 8iEm+ViEn =0 (20a)
aj+ 8 +yEr=0 (20b)
o +8i&+ i€ =0 ke{l,....K}\ {m,n}. (20c)

Without loss of generality, we assume that &, < &,. Solving
the equalities (20a) and (20b), we obtain 8; = —(&m +&n)y;. and
aj =&mény;. The next step is to ensure that the inequality system
(20c) is satisfied. We study two cases with respect to the direction
y; as follows by normalizing |y;| = 1.

1. yj=1: In this case, we need to guarantee that (& —
Em) (&, —&n) = 0 for all ke {1,...,K}\ {m, n}. Consequently,
we have either & > &n and &, > &, or &, <& and &, < &,.
There are only two ways to satisfy these restrictions, re-
sulting in the following extreme ray generators of the form
(O{j, 8], }/])

s Eméa). —Eny+ér). 1
o Cu-néwy —Ex-1y) +E&w) -

2. yj =—1: In this case, we need to ensure that (§ —&m) (& —
&) <O0forall ke(l,..., K} \ {m, n}. This requires that &, <
&, < &,. To satisfy this case, we have the extreme ray gener-
ator

» (Eméwy-5a) +Ewy -

Lastly, through converting the resulting extreme ray generators
to the original variables of the form («;, 8}1., 6]2., yj], y].z) using 8}. =
max{0, §;}, 8]3 = max{0, -4}, yj1 = max{0, y;}. yjz =max{0, —y;}.
we obtain the desired result. This completes the proof. O

Then building on Proposition 1, we derive valid inequalities for
the MILP reformulation (17) as follows.

Proposition 3. The following inequalities are valid for Model (17):
Eméa) — Gay +E@) (1) - GJI»L) + (sz )+ (l/«j()’))z)gj‘I

>0 VjeJ (21a)

Ex-néa — Gany +Ew) (W) =€) + (@7 0) + (1) DE]
>0 Vje]J (21b)

—Eméao + Eay +Ea) (ki) + €)= (07 1) + (1;(1))*)e]
>0 VjeJ (21c)

Proof. First, consider the primal problem (10) and its dual prob-
lem (11). Note that the dual model (11) is always feasible as we
can let values of variables «; be arbitrarily large. To ensure the
feasibility of the primal problem, it suffices to demonstrate that
the dual problem is bounded. To this end, we consider the decom-
posed dual subproblem (18), and use the extreme ray generators
in Lemma 1 by plugging them into the objective function (18a).
The resulting inequalities (21) ensure that the dual problem (18) is
bounded, to guarantee the feasibility of (10). This completes the
proof. O

We continue to linearize nonlinear terms in (21) using
(16b) and McCormick envelopes (14). As a result, inequalities
(21) are equivalent to:

EnEa) — Eqy +Ep) (A + ) Ayy) —€) + 0] =0 Vje]
j j

i'el
(22a)
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Ex-nEw) — G-y +&a) (1;(1 + Z)»j-ﬁ/%") - Ef) +0;€]

el

>0 VjeJ (22b)
—Embu + Eqy +Ea) (i1 + ) Ayi) +€f') — 05€7
i'el
>0 VjeJ (22¢)

11
O =67+ A5+ Y Ajyr+25 ) Y Ak Vi Vie) (22d)

el =1 m=1

Yim, Yi:Yym) € Mgy Vi=1,.. |ll,I>m. (22e)

After integrating constraints (22) into the MILP reformu-
lation (17), we strengthen our formulation for the original
problem (2). Later our computational studies are based on
Model (17) with valid inequalities (22), and we further demon-
strate the efficiency of the proposed constraints in the next sec-
tion.

4. Computational results

In this section, we conduct extensive numerical studies and
demonstrate the efficacy of the proposed decision-dependent dis-
tributionally robust (DDDR) approach from various aspects. Specif-
ically, we compare its solutions and performance against different
facility location plans obtained from solving a deterministic formu-
lation with decision-dependent demand, and distributionally ro-
bust (DR) and stochastic programming (SP) formulations neglecting
decision-dependency in the demand parameter.

To evaluate a location plan y (given by either DDDR, DR, SP, or
the deterministic model), we conduct out-of-sample tests by using
model (23) (see below) to evaluate solution performance. We em-
ploy the Monte Carlo sampling and Sample Average Approximation
method (see Kleywegt, Shapiro, & Mello, 2002) for generating real-
izations of customer demand. Specifically, we generate a set of de-
mand realizations, denoted by d;" (), for each scenario w € Q and
customer site j € J. These realizations (or equivalently, the out-of-
sample test scenarios) are generated based on a given solution j
using the mean and variance information defined in (12). For each
scenario w, let p®, x;‘]? and s‘;’ be the probability of realizing the
scenario, the amount of demand at customer site j satisfied by fa-
cility at location i, and the unsatisfied demand at customer site j,
respectively. A solution evaluation model is given by:

min . > fdi+ )b <Z docixi+ Y (pisy —ridy @)))

iel we2 iel jeJ jeJ
(23a)
st. Y X045 =d9(F) VjelweQ (23b)
iel
xj <Gy Vieljelweg (23¢)
P x2>0 Viel,je]weQ. (23d)

i %ij

Here the objective function (23a) minimizes the total expected
cost of facility location, transportation, and unmet demand minus
the revenue obtained. Constraint (23b) ensures that demand is ei-
ther satisfied or penalized across all the scenarios while constraint



JID: EOR
B. Basciftci, S. Ahmed and S. Shen

(23c) guarantees that the capacity of each facility location is not vi-
olated. For an independently and identically distributed set of sce-
narios, model (23) is decomposable by scenario when the value y
is given. In this case, model (23) can be solved separately for each
scenario subproblem.

In the remainder of the section, we first discuss experimental
settings used in our numerical studies in Section 4.1. Then we pro-
vide a comprehensive analysis of the proposed approach on vari-
ous test cases in Section 4.2 including different (i) variability levels
of demand, (ii) unit penalty costs, (iii) robustness levels, (iv) lim-
its on the number of open facilities, (v) decision-dependent dis-
tribution types, and (vi) models with decision-dependent parame-
ter. Finally, we highlight the computational efficiency of the DDDR
model by conducting experiments using different sizes of instances
in Section 4.3.

4.1. Experimental setup

We randomly generate a set of potential facility locations and
customer sites. We first present the default settings for all the
problem parameters, which remain the same throughout all the
numerical studies, unless otherwise stated. Euclidean distance is
used to represent the distance between each candidate facility
location and customer site. These distance values are assumed
to directly affect transportation cost parameters, namely c;; for
all iel, je]. The parameters for the fixed opening cost, f;, and
capacity, G;, for all i eI are sampled from Uniform distributions
U (5000, 10,000) and U (10, 20), respectively. For each j € J, we set
unit penalty, p;, for the unmet demand as 225, and revenue pa-
rameter r; as 150 for each customer site j € J.

We sample the empirical mean of demand at each customer
site j €], fij, from a Uniform distribution U(20, 40). Then, we let
0j = f1j, implying the coefficient of variation equaling to 1. We de-
fine the moment-based ambiguity set by letting e?‘ =0, and g}’ =

Ej? = 11in (1), for all customer sites j € J. The support size of de-

mand values at each customer site, namely K, is taken as 100 and
thus the values &4, ..., &g are in the range {1, ..., 100}.

For establishing decision dependency between demand distri-
bution and facility location decisions, we select the parameters )Lﬁ
and )»;.’,. for all iel, je] using the distance between each facil-
ity location and customer pair. We consider them as a decreasing
function of the corresponding distance, specifically exp(—c;;/25).
Consequently, the effect of a facility located at i on the demand
at customer site j is higher when the facility is closer to the cus-
tomer. Next, the sums of the vectors A%, A9 are normalized for
each customer site j €] to adjust the effect of the location deci-
sions on demand. Note that if )»5.‘1. and )L;.’i values are set to 0 for
all j eJand i el in the moment functions in (12), then the current
setting reduces to a decision-independent form, i.e., a traditional
distributionally robust optimization model.

To assess the performance of the proposed optimization frame-
work by taking into account various choices of model parameters
and underlying demand distribution, we provide an extensive set
of numerical studies over the proposed and existing optimization
approaches. We implement all the optimization models in Python
using Gurobi 7.5.2 as the solver on an Intel i5-3470T 2.90 gigahertz
machine with 8 gigabytes RAM.

4.2. Numerical results and analyses

We first examine how facility location decisions are affected
by parameter choices, robustness levels, and modeling of decision-
dependency in DDDR and other benchmark approaches. In partic-
ular, we consider location solutions given by SP, DR, and DDDR
models over a set of diverse instances. For obtaining in-sample lo-
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cation solutions of an SP model (23) where we replace the fixed
y by decision variables y, we generate training samples with 20
or 100 scenarios following a Normal distribution with mean and
variance of the demand at each customer site j €] being fi; and
6]2, respectively. As scenarios are uniformly sampled from the Nor-
mal distribution following the Monte Carlo sampling method, the
probability of realizing each scenario w, i.e., p®, is taken as 1/|€2|.
We refer to instances of the two SP models with different training
sample sizes as SP(20) and SP(100), respectively. We also utilize
model (17) to develop a regular distributionally robust facility lo-
cation model by setting )\;‘, and A9 values to 0 for all jeJ and
i €l to obtain in-sample location solutions under the DR setting.
For evaluating the performance of different location solutions, we
generate random samples with 1000 test scenarios for the out-of-
sample test. In particular, given a solution y, we first obtain the
values of the moment functions w;(y) and a].z()?) for each cus-
tomer site j €] using (12), and generate test scenarios based on
these values following a certain distribution. In the default setting,
we test our results by considering Normal distribution as the true
underlying demand distribution but vary the distribution types in
one set of tests later.

Table 1 presents the average solution performance, in terms of
the objective value and unmet demand of solutions given by dif-
ferent approaches over 10 replications of out-of-sample tests us-
ing (23) for five different sizes of instances. Specifically, we con-
sider |I| =5,..., 10, and |J| = 2|I|. Since we minimize the total cost
minus revenue, smaller objective values are preferred. The results
demonstrate the superior performance of DDDR solutions over the
ones of SP and DR with decision-independent demand. For in-
stance, the DDDR approach provides, on average, 18% and 12% im-
provements in profit, and 99% and 96% reduction in unmet de-
mand, as compared to SP and DR approaches over instances with
10 facilities, respectively. Consequently, SP and DR approaches ob-
tain less profit and lower quality of service by not fully satisfying
the demand.

We further provide detailed results on a specific instance with
|Il =10 and |J| = 20, for which we visualize all the 20 customer
sites and 10 possible facility locations in Fig. 2. The customer sites
are marked by circles, and the possible facility locations are de-
noted by squares.

In Table 2, we present the results of DDDR, DR, and SP ap-
proaches under the default setting, where the average, standard
deviation and percentile values of each solution’s out-of-sample
objective value (i.e., the net profit) and unmet demand are de-
tailed. Overall, the DDDR approach yields the best results in terms
of profit and unmet demand. DR is better than SP in terms of
percentile values of the total profit and unmet demand. Both
SP(20) and SP(100)’s solutions show similar out-of-sample perfor-
mance. The results also demonstrate the importance of considering
the decision-dependency in demand parameters, as the DDDR ap-
proach outperforms DR in terms of profit and unmet demand (i.e.,
quality of service).

4.2.1. Effect of the variability in demand

Next, we show how solutions produced by different models are
affected by the variability of the underlying demand data. Fig. 3
shows average out-of-sample performance of profit and unmet de-
mand in all the 1000 test scenarios, where the coefficient of varia-
tion is used for representing the demand variability.

In Fig. 3, as the coefficient of variation (defined as the ratio of

52
.. . (¢ . .
empirical variance and mean, namely M—f at each customer site j)
J

increases, the corresponding demand variability increases, assum-
ing that the empirical mean is kept constant. Consequently, the
distributionally robust approaches (DR and DDDR) become more
suitable as compared to SP under higher variability as they obtain
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Table 1
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Average out-of-sample profit and unmet demand values given by different models’ solu-

tions for different instance sizes.

Il SP(20) SP(100) DR DDDR
Average profit 5 —12806.7 —-12763.3 —7618.55 —22554.2
6 —21460.7 —21483.7 —16425.1 —30298.1
7 —28201.8 —27810.6 —24911.6 —36608.5
8 —40914.9 —39206.7 —35810.4 —48027.2
9 —48247.1 —48790.2 —51503.5 —59816.9
10 —63281.7 —63337.3 —67084.4 —75164.8
Average unmet demand 5 95.4 95.9 128.2 15.1
6 75.7 74.7 110.6 3.9
7 71.7 751 86.2 0.0
8 568 67.8 82.1 0.1
9 58.1 539 38.7 0.2
10 47.0 46.9 111 0.4
104
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Fig. 3. Effect of the demand variability on solutions given by different approaches.

Table 2
Statistics of the out-of-sample profit and unmet-demand results given by solutions
of SP, DR and DDDR models for a specific instance shown in Fig. 2.

Table 3
Statistics of profit and unmet demand given by SP, DR and DDDR solutions tested
in Gamma-distribution-based out-of-sample scenarios.

SP(20) SP(100) DR DDDR SP(20) SP(100) DR DDDR
Average profit 535810 534682 614437  —64375.0 Average profit 519622 516272 605750 —64268.5
Std. dev. 6457.3 6712.0 6613.8 4917.8 Std. dev. 5779.2 5951.9 6145.7 4694.6
95% _424480 426438 504748  —558452 95% _424959  _413837 -50788.8  —56590.5
90% _44968.7 44505 —529440 —58082.6 90% _443286  —43867.8 529157  —58320.5
75% _49367.8 489397 570569 —61178.4 75% _481102  —47766.7  —56590.1  —61069.6
50% 539576  -53666.1 —61504.1 —64362.4 50% _51858.0 519607 605250 —64306.2
Average unmet demand  59.0 61.3 3.0 0.3 Average unmet demand ~ 70.7 711 8.2 1.0
Std. dev. 35.1 356 6.8 23 Std. dev. 475 46.8 16.8 5.0
95% 124.4 122.8 18.3 0.0 95% 160.1 157.2 38.0 5.4
90% 105.6 107.9 114 0.0 90% 137.4 136.3 239 0.0
75% 80.2 81.9 26 0.0 75% 97.3 98.7 95 0.0
50% 54.4 58.0 0.0 0.0 50% 61.2 62.8 0.0 0.0

location plans that are more reliable to various demand patterns  1able 3 provides the corresponding results in comparison to

in the out-of-sample test scenarios. SP is more sensitive to the de-
mand variability as the performance of its solutions monotonically
worsens as demand variance increases. As the coefficient of vari-
ation decreases, the demand variability decreases and the perfor-
mance of stochastic and distributionally robust solutions become
similar. Moreover, the DDDR approach performs significantly bet-
ter in all the settings, highlighting the importance of considering
decision dependency in parameter uncertainty quantification.
Next, we analyze the effect of misspecifying the true de-
mand distribution by constructing a new set of test scenarios for
the out-of-sample test. For each solution y, instead of using the
Normal distribution we follow a Gamma distribution to gener-
ate test scenarios, where the scale parameter é}’ :012(}7)//Lj()7)

and the shape parameter IAc}’ =u;(@ /é]?’ for each customer site j.

10

Table 2 (where scenarios were sampled following a Normal distri-
bution). As Gamma distributions are more skewed, the percentile
results worsen for all approaches. Moreover, SP cannot capture
the changes in the underlying distribution, whereas DR and DDDR
are not much impacted by these changes. The proposed DDDR
approach again yields the best results in terms of average, stan-
dard deviation and percentile values of the total profit and unmet
demand.

4.2.2. Effect of unit penalty for unmet demand

We examine the effect of the parameter setting for penal-
izing each unit of unmet demand. Table 4 shows the facility
location plans given by different approaches with unit penalty
cost p; =150, 225, 300 for all jeJ. The case with p; =225
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Fig. 4. Effect of the penalty parameter on solutions given by different approaches.

Table 4
Facility location solutions given by different approaches for dif-
ferent pj-values.

Open facility locations

pj = 150 pj =225 pj = 300
SP(20)  1,57,10 1,5,7,10 1,5,6,7,10
SP(100)  1,57,10 1,5,7,10 1,5,6.7,10

DR 1,7,10 1,3,56,7,10 1,3,4,5,6,7,10
DDDR 1456710 124567910 124567910

corresponds to facility location solutions in Table 2, and p; = 150
represents the case when the penalty parameter is equal to the
revenue amount per unit. In a decision-dependent approach, the
mean of the underlying demand increases as we open new facili-
ties. Consequently, the DDDR model enforces opening more facil-
ity locations yielding higher demand and thus higher profit. Fur-
thermore, as unit penalty gets higher, it becomes more undesir-
able to have unmet demand. Thus, all approaches open more fa-
cilities when unit penalty cost increases. When we examine the
actual locations of the open facilities in Fig. 2, we observe that the
DDDR model opens more locations close to certain customer sites.
On the other hand, SP and DR approaches open fewer locations
and they are not necessarily close to the customer sites as both
approaches neglect the possible boosting demand affected by loca-
tion decisions.

Fig. 4 shows how the average profit and unmet demand values
in the out-of-sample test are affected by unit penalty cost. As the
unit penalty parameter increases, the amount of unmet demand
decreases for all approaches, as expected. When penalty parameter
takes its smallest value, DR has the worst performance both in the
profit and unmet demand results, for which we provide a detailed
explanation as follows. The DR approach compares two unfavorable
cases: (i) opening many locations but having few customers, and
(ii) not opening many locations and missing potential customers.
By favoring the latter case, the DR solution loses customers by not
having enough facilities open and neglecting the increase in the
demand caused by the opening of new facilities. This effect can
be also seen in Table 4 as the DR approach opens fewer locations
under small penalty values. On the other hand, the DDDR approach
outperforms DR and SP in all settings, resulting in higher profit and
less unmet demand.

4.2.3. Effect of the robustness level of the ambiguity set
In this section, we examine the effect of the robustness level
of the ambiguity set (1) on facility location solutions. We adjust

the parameters ej‘, gj.’, €; for each customer site je]. Recall

that, in the default setting, ej.‘ =0, and gf

?j’ =1 under the

1

Table 5
Out-of-sample profit and unmet demand
level of robustness k = 20%.

values of different solutions when the

SP(20) SP(100) DR DDDR
Average profit —51974.0 —52404.0 -60819.5 —63572.2
Std. dev. 6783.4 6819.6 7295.4 5101.9
95% —40260.9  -41266.0 —48492.4  -54978.0
90% —42887.1 —43644.5  -51692.9 —56970.0
75% —47460.6 —47809.1 -55968.8  —60213.8
50% —52170.1 —52780.4  —60927.2 —63639.1
Average unmet demand  61.6 63.5 3.6 0.5
Std. dev. 36.6 34.1 7.4 34
95% 129.0 127.0 20.8 1.3
90% 112.7 111.9 14.0 0.0
75% 82.7 84.7 3.9 0.0
50% 56.7 59.9 0.0 0.0

assumption of having the perfect knowledge about the underlying
mean and variance for each customer site. By adjusting these pa-
rameter choices, we construct models that are robust to different
levels of uncertainty in the distribution parameters.

We consider a different procedure for generating out-of-sample
test scenarios to evaluate different solutions. We first compute
nj(¥) and 01.207) for each customer site je] given a location
solution j. Then, we sample the mean and variance parame-
ters from the ranges [(1 —ej‘)p,j()?), ( +e]’,‘)uj(}7)] and [(1-—
g;’)o]? . +?]7)012 ()], respectively. After that, we generate 100
Normally distributed scenarios using the sampled mean and vari-
ance parameters. We repeat this procedure ten times to construct
the set of test scenarios of size 1000, where each subset of scenar-
ios has its own distribution.

Table 5 shows the performance of different solutions for « =
20% level of robustness, where the level of robustness parameter
0 <« <1 implies e]’.‘ =Kuiy), g? =1-«, and?? =1+« for ev-
ery customer site j. Therefore, the larger « is, a wider range of
ambiguity we consider in the unknown distribution and become
more conservative. As a result, distributionally robust approaches
(i.e., DR and DDDR) become more cautious to the increased am-
biguity. On the other hand, SP solutions are not affected by these
changes as they are trained with the same data and procedures.
Consequently, DR and DDDR solutions perform better than the one
of SP given higher k-values. Furthermore, the DDDR’s results are
less affected by the increased robustness, in terms of both profit
and unmet demand values, as compared to x =0 in the default
setting with results shown in Table 2.

As we continue to increase the level of robustness, the set
of test scenarios includes more variability. Due to this increased
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Fig. 5. Effect of varying budget for opening facilities.

variability, all approaches have higher standard deviations and
worsen percentile values for the optimal objective and unmet
demand values over all test scenarios. Despite of this, the distribu-
tionally robust approaches (DR and DDDR) under « = 5% and 10%
have the same facility location plans as in the case of k = 20%.

4.2.4. Effect of the budget for opening facilities

We compare solutions of DDDR, DR, and SP given a limit on the
total number of facilities to open. We add a constraint to the opti-
mization models, specifically to the set ), which restricts the total
number of locations that can be selected. Fig. 5 summarizes the
out-of-sample performance of each approach’s solution in terms
of average profit and unmet demand given different budgets. As
the DDDR approach considers demand increase given by opening
more facilities, adding such a limit hinders its capability of doing
so. Consequently, the performance of DDDR, DR, SP solutions be-
comes similar if we only have very small budget to open few facil-
ities. On the other hand, as we relax this limitation, the DDDR ap-
proach outperforms the others, whereas SP is not affected by the
relaxation.

4.2.5. Effect of the forms of decision-dependency

We examine how DDDR results are affected by how we model
the decision-dependency of random demand. Recall that, in the de-
fault setting, we consider )‘71 A;’i for each pair of customer site j
and facility location i as decreasing functions of the distance be-
tween them. Alternatively, we propose a clustering-based decision-
dependency for modeling the ambiguity set. In particular, in our P-
means approach, the demand at customer site j is equally affected
by the closest p facilities in its neighborhood. Let Pj.’ be the set of
p facility locations that are closest to customer site j; define )Ljé =
g
locations i e I\P;.’ do not affect the demand at customer site j,
their corresponding )\j,‘— and }»;.’—values are set to zero.

We present the location solutions given by different approaches
in Table 6. The distance-based approach corresponds to the default
setting, and p-means approach is examined under different p val-
ues. As all possible facility locations are considered in the distance-
based approach with inversely proportional values with respect to
their corresponding distances, most facilities are opened in this
setting. For p-means approaches, the set of facilities to be open
are affected by the choice of p. As p gets larger, distances between
customer and location pairs start to impact the demand less, and
other factors such as opening cost of the locations may become
more important. We note that p = 10 corresponds to an extreme
case where all facilities equally affect the demand at any customer
site.

% for each customer site j € J and facility location i € Pf. As
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Table 6
Facility location solutions of DDDR under different
location-dependency patterns.

Decision-dependency form  Open facility locations

Distance-based 1,2,4,5,6,79,10
p- p=1 1,4,5,6,7,8,10
means 2 1,2,3,4,5,7,10
3 1,2,3,5,6,7,10
5 1,2,3,4,5,7,10
10 1,3,4,5,6,7,10

4.2.6. Effect of decision-dependency in alternative formulations

We investigate the effect of opening locations on customer de-
mand in a deterministic decision-dependent formulation, which re-
places the demand parameter d in the original model (2) by its
decision-dependent mean value p(y). Furthermore, we obtain an
MILP reformulation that can be solved in off-the-shelf solvers by
replacing w;(y) for each site j with its counterpart in (12) and
omitting the upper-bound value. We utilize the distance-based re-
lationship to represent the impact of open locations on demand of
each customer site, and adopt the base model assumptions, dis-
cussed earlier in this section. Once we obtain the optimal facility-
location solution of the deterministic counterpart over the instance
shown in Fig. 2, we evaluate its out-of-sample performance based
on the 1000 test scenarios, to generate which we follow a Normal
distribution and compute the mean and variance of demand based
on the solution. We present the resulting statistics of the profit and
unmet demand values in Table 7, and note that the open facility
locations are 1, 2, 5, 6, 7 and 10 under this setting.

As we compare these results with the corresponding ones
reported in Table 2, we observe that the solution of the decision-
dependent deterministic approach has higher variance of the total
profit over the set of 1000 test scenarios as compared to SP, DR
and DDDR approaches, whereas on average, it performs better than
the decision-independent SP and DR approaches. As we examine
the unmet demand values, we observe that the decision-dependent
deterministic approach outperforms SP, whereas the solutions of
DR and DDDR approaches result in less unmet demand on average
with also better worst-case performance. Although the determin-
istic approach takes into account the decision-dependency issue in
the demand parameter, it does not focus on finding the best so-
lution under the worst-case as opposed to distributionally robust
optimization, resulting in such a less resilient performance. On the
other hand, since the decision-dependent deterministic approach
considers the effect of increased demand with enhanced availabil-
ity of the open locations, it prefers to open the same number of
locations as the SP and DR approaches (see Table 4 for
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Statistics of the out-of-sample profit and unmet demand values of optimal solutions to the decision-

dependent deterministic model.

Percentile values

Mean Std. dev.  95% 90% 75% 50%
Profit —62985.4  6810.3 -51590.9  -53827.2  -58120.9 -63325.1
Unmet demand 8.8 12.8 354 25.8 135 29
Table 8
Effect of the valid inequalities on CPU time.
< Ul
5x10 6x12 7x14 8x16 9x18 10x20
DDDR average run time (in seconds)  2.15 3.81 8.88 17.46 46.82 111.36
Speed-up (times) 1.04 1.19 1.09 1.12 1.03 1.15
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Fig. 6. Run time comparison between different approaches.

comparison), however, fewer locations than DDDR. These re-
sults highlight the efficacy of the DDDR approach by integrating
decision-dependency within a distributionally robust optimization
framework, to obtain facility-opening plans with better profit and
higher quality of service, while further outperforming all the other
approaches in terms of the worst-case performance.

4.3. Results of computational time

Lastly, we compare the computational time of SP, DR and DDDR
approaches for different instance sizes. Fig. 6 provides the run time
for cases having |I| =5, ..., 10, and |J| = 2|I|. The run time denotes
the average CPU time over 10 different randomly generated repli-
cations of each instance. In these replications, the default param-
eter configurations and moment-based ambiguity sets are used as
described in Section 4.2. The distributionally robust approaches are
more computationally expensive, whereas SP is the fastest. Further-
more, run time of the DDDR approach is more sensitive to the size
of instances. Also, the computational time of DDDR model (17) de-
pends on the upper bounds of the dual variables, which are set to
100 for all experiments.

Next we examine the effect of the inclusion of valid inequalities
(21) to Model (17). Table 8 provides the average run time com-
parison of two formulations over 10 randomly generated instances
of different sizes. We present the speed-ups in comparison to the
formulation (17) without the valid inequalities (22a)-(22c¢) and the
corresponding additional variables and constraints (22d) and (22e).
These results illustrate the speed-up due to the proposed inequal-
ities in the order of 3%-19% for different instances.
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5. Conclusion

In this paper, we propose a novel framework for modeling the
facility location problem under distributionally robust decision-
dependent demand distributions. We consider a moment-based
ambiguity set of the unknown demand distributions, using which
we can formulate a monolithic model for solving the problem. We
study the case when mean and variance of stochastic demand at
each customer site are piecewise linear functions of facility loca-
tion decisions. We benefit from linear programming duality and
convex envelopes to obtain exact MILP reformulation of the mono-
lithic model and derive valid inequalities to strengthen it. An ex-
tensive set of instances are tested to assess the performance of
the proposed approach depending on various problem characteris-
tics. Our studies indicate superior performance of the proposed ap-
proach, which results in consistently higher profit and less unmet
demand, as compared to existing stochastic programming and dis-
tributionally robust methods. We also present the computational
efficiency of the proposed valid inequalities with up to 19% speed-
up for different instances. We believe that our study leverages a
novel line of research by providing insights for the facility location
and optimization under uncertainty literature, and highlighting the
need to represent the dependency between customer demand and
planner’s decisions within various business settings.

One of the future research directions is to further extend the
piecewise linear function forms for the mean and variance values
used in the ambiguity set to other types of nonlinear functions,
and then examine the corresponding reformulations and their nu-
merical performance.

Acknowledgment

The authors thank the Associate Editor and six reviewers for
the constructive feedback and helpful suggestions. The authors are
grateful to the support of United States National Science Founda-
tion Grants CMMI-1727618, CCF-1709094, and CMMI-1633196 for
this project.

References

Ahmed, S. (2000). Strategic planning under uncertainty: Stochastic integer program-
ming approaches. Ph.D. thesis University of Illinois at Urbana-Champaign.

Alvarez-Miranda, E., Fernandez, E., & Ljubi¢, 1. (2015). The recoverable robust facility
location problem. Transportation Research Part B: Methodological, 79, 93-120.

An, Y., Zeng, B., Zhang, Y., & Zhao, L. (2014). Reliable p-median facility location prob-
lem: Two-stage robust models and algorithms. Transportation Research Part B:
Methodological, 64, 54-72. ISSN 0191-2615

Baron, O., Milner, J., & Naseraldin, H. (2011). Facility location: A robust optimization
approach. Production and Operations Management, 20(5), 772-785.

Basciftci, B., Ahmed, S., & Gebraeel, N. (2019). Adaptive two-stage stochastic pro-
gramming with an application to capacity expansion planning. https://arxiv.org/
abs/1906.03513.


https://doi.org/10.13039/100000001
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0004
https://arxiv.org/abs/1906.03513

ARTICLE IN PRESS

JID: EOR
B. Basciftci, S. Ahmed and S. Shen

Basciftci, B., Ahmed, S., & Gebraeel, N. (2020). Data-driven maintenance and
operations scheduling in power systems under decision-dependent uncer-
tainty. IISE Transactions, 52(6), 589-602. https://doi.org/10.1080/24725854.2019.
1660831. URL https://doi.org/10.1080/24725854.2019.1660831

Ben-Tal, A., Hertog, D. d., De Waegenaere, A., Melenberg, B., & Rennen, G. (2013).
Robust solutions of optimization problems affected by uncertain probabilities.
Management Science, 59(2), 341-357.

Benati, S., & Hansen, P. (2002). The maximum capture problem with random util-
ities: Problem formulation and algorithms. European Journal of Operational Re-
search, 143(3), 518-530.

Berman, O., Drezner, T., Drezner, Z., & Krass, D. (2009). Modeling competitive
facility location problems: New approaches and results. In chapter 8 (pp.
156-181). URL https://pubsonline.informs.org/doi/abs/10.1287/educ.1090.0062.
10.1287/educ.1090.0062

Boldrini, C., Bruno, R., & Conti, M. (2016). Characterising demand and usage pat-
terns in a large station-based car sharing system. In Proceedings of the 2016
IEEE conference on computer communications workshops (INFOCOM WKSHPS)
(pp. 572-577).

Chen, A. Y., & Yu, T. (2016). Network based temporary facility location for the
emergency medical services considering the disaster induced demand and the
transportation infrastructure in disaster response. Transportation Research Part
B: Methodological, 91, 408-423.

Ciari, F, Bock, B., & Balmer, M. (2014). Modeling station-based and free-floating
carsharing demand: Test case study for berlin. Transportation Research Record,
2416(1), 37-47.

Cui, T, Ouyang, Y., & Shen, Z. M. (2010). Reliable facility location design under the
risk of disruptions. Operations Research, 58(4-part-1), 998-1011.

Delage, E., & Ye, Y. (2010). Distributionally robust optimization under moment un-
certainty with application to data-driven problems. Operations Research, 58(3),
595-612.

Erdogan, E., & Iyengar, G. (2006). Ambiguous chance constrained problems and ro-
bust optimization. Mathematical Programming, 107(1), 37-61.

Esfahani, P. M., & Kuhn, D. (2018). Data-driven distributionally robust optimization
using the Wasserstein metric: Performance guarantees and tractable reformula-
tions. Mathematical Programming, 171(1), 115-166.

Fischetti, M., Ljubic, I, & Sinnl, M. (2017). Redesigning benders decomposition for
large-scale facility location. Management Science, 63(7), 2146-2162.

Freire, A. S., Moreno, E., & Yushimito, W. F. (2016). A branch-and-bound algo-
rithm for the maximum capture problem with random utilities. European Jour-
nal of Operational Research, 252(1), 204-212. https://doi.org/10.1016/j.ejor.2015.
12.026. ISSN 0377-2217. URL http://www.sciencedirect.com/science/article/pii/
S0377221715011650.

Gao, R, & Kleywegt, A. ]. (2016). Distributionally robust stochastic optimization with
Wasserstein distance. https://arxiv.org/abs/1604.02199.

Goel, V., & Grossmann, I. E. (2006). A class of stochastic programs with decision
dependent uncertainty. Mathematical Programming, 108(2), 355-394. Sep

Haase, K., & Miiller, S. (2014). A comparison of linear reformulations for multino-
mial logit choice probabilities in facility location models. European Journal of
Operational Research, 232(3), 689-691.

Hellemo, L., Barton, P. I., & Tomasgard, A. (2018). Decision-dependent probabilities
in stochastic programs with recourse. Computational Management Science, 15(3),
369-395.

Hernndez, B., Jimnez, ]., & Martn, M. J. (2010). Customer behavior in electronic com-
merce: The moderating effect of e-purchasing experience. Journal of Business Re-
search, 63(9), 964-971.

Ho, P, & Perl, J. (1995). Warehouse location under service-sensitive demand. Journal
of Business Logistics, 16(1), 133.

Jiang, R, & Guan, Y. (2016). Data-driven chance constrained stochastic program.
Mathematical Programming, 158(1), 291-327.

Jorge, D., & Correia, G. (2013). Carsharing systems demand estimation and defined
operations: A literature review. European Journal of Transport and Infrastructure
Research, 13(3), 201-220.

Kleywegt, A., Shapiro, A., & Mello, T. H.-d. (2002). The sample average approxima-
tion method for stochastic discrete optimization. SIAM Journal on Optimization,
12(2), 479-502.

Lappas, N. H., & Gounaris, C. E. (2017). Robust optimization for decision-making un-
der endogenous uncertainty. http://www.optimization-online.org/DB_FILE/2017/
06/6105.pdf.

Liu, K, Li, Q,, & Zhang, Z. (2019). Distributionally robust optimization of an emer-
gency medical service station location and sizing problem with joint chance
constraints. Transportation Research Part B: Methodological, 119, 79-101.

Ljubig, 1., & Moreno, E. (2018). Outer approximation and submodular cuts for maxi-
mum capture facility location problems with random utilities. European Journal
of Operational Research, 266(1), 46-56.

14

m5G;November 26, 2020;3:44

European Journal of Operational Research xxx (XXxx) Xxx

Lu, M., Ran, L., & Shen, Z. M. (2015). Reliable facility location design under uncertain
correlated disruptions. Manufacturing & Service Operations Management, 17(4),
445-455.

Luo, F, & Mehrotra, S. (2018). Distributionally robust optimization with decision de-
pendent ambiguity sets. https://arxiv.org/abs/1806.09215.

Mai, T, Lodi, A., & ISSN 0377-2217. URL, u. (2020). A multicut outer-approximation
approach for competitive facility location under random utilities. European Jour-
nal of Operational Research, 284(3), 874-881. https://doi.org/10.1016/j.ejor.2020.
01.020.

McCormick, G. P. (1976). Computability of global solutions to factorable nonconvex
programs: Part [-Convex underestimating problems. Mathematical Programming,
10(1), 147-175.

Melo, M., Nickel, S., & Gama, F. S. d. (2009). Facility location and supply chain man-
agement - A review. European Journal of Operational Research, 196(2), 401-412.

Meyer, C. A., & Floudas, C. A. (2004). Trilinear monomials with mixed sign do-
mains: Facets of the convex and concave envelopes. Journal of Global Optimiza-
tion, 29(2), 125-155. Jun

Nohadani, 0., & Roy, A. (2017). Robust optimization with time-dependent uncer-
tainty in radiation therapy. IISE Transactions on Healthcare Systems Engineering,
7(2), 81-92.

Nohadani, O., & Sharma, K. (2018). Optimization under decision-dependent uncer-
tainty. SIAM Journal on Optimization, 28(2), 1773-1795.

Noyan, N., Rudolf, G., & Lejeune, M. (2018). Distributionally robust optimization
with decision-dependent ambiguity set. http://www.optimization-online.org/
DB_FILE/2018/09/6821.pdf.

Owen, S. H., & Daskin, M. S. (1998). Strategic facility location: A review. European
Journal of Operational Research, 111(3), 423-447.

Ozsen, L., Coullard, C. R, & Daskin, M. S. (2008). Capacitated warehouse location
model with risk pooling. Naval Research Logistics (NRL), 55(4), 295-312.

Royset, J., & Wets, R. (2017). Variational theory for optimization under stochastic
ambiguity. SIAM Journal on Optimization, 27(2), 1118-1149.

Ryu, M., & Jiang, R. (2019). Nurse staffing under absenteeism: A distributionally ro-
bust optimization approach. https://arxiv.org/abs/1909.09875.

Santivafiez, J. A., & Carlo, H. ]. (2018). Reliable capacitated facility location problem
with service levels. EURO Journal on Transportation and Logistics, 7(4), 315-341.

Santoso, T., Ahmed, S., Goetschalckx, M., & Shapiro, A. (2005). A stochastic program-
ming approach for supply chain network design under uncertainty. European
Journal of Operational Research, 167(1), 96-115.

Shaheen, S., Cohen, A. P., & Roberts, ]. D. (2006). Carsharing in north america: Mar-
ket growth, current developments, and future potential. Transportation Research
Record, 1986(1), 116-124.

Shen, Z. M., Zhan, R. L., & Zhang, J. (2011). The reliable facility location problem: For-
mulations, heuristics, and approximation algorithms. INFORMS Journal on Com-
puting, 23(3), 470-482.

Snyder, L. V. (2006). Facility location under uncertainty: A review. IIE Transactions,
38(7), 547-564.

Snyder, L. V., & Daskin, M. S. (2005). Reliability models for facility location: The
expected failure cost case. Transportation Science, 39(3), 400-416.

Spacey, S. A., Wiesemann, W., Kuhn, D., & Luk, W. (2012). Robust software partition-
ing with multiple instantiation. INFORMS Journal on Computing, 24(3), 500-515.

Tong, X., Sun, H., Luo, X.,, & Zheng, Q. (2018). Distributionally robust chance con-
strained optimization for economic dispatch in renewable energy integrated
systems. Journal of Global Optimization, 70, 131-158.

Vayanos, P, Georghiou, A, & Yu, H. (2020). Robust optimization with decision-
dependent information discovery. ArXiv preprint arXiv:2004.08490.

Vayanos, P, Kuhn, D., & Rustem, B. (2011). Decision rules for information discovery
in multi-stage stochastic programming. In Proceedings of the 50th IEEE conference
on decision and control and european control conference (pp. 7368-7373).

Vine, S. L, Lee-Gosselin, M., Sivakumar, A., & Polak, ]. (2011). Design of a strate-
gic-tactical stated-choice survey methodology using a constructed avatar. Trans-
portation Research Record, 2246(1), 55-63.

Zhang, ]., Xu, H., & Zhang, L. (2016). Quantitative stability analysis for distribution-
ally robust optimization with moment constraints. SIAM Journal on Optimization,
26(3), 1855-1882.

Zhang, X., Kamgarpour, M., Georghiou, A., Goulart, P, & Lygeros, ]. (2017). Ro-
bust optimal control with adjustable uncertainty sets. Automatica, 75, 249-
259. https://doi.org/10.1016/j.automatica.2016.09.016. ISSN 0005-1098.URL http:
//lwww.sciencedirect.com/science/article/pii/S0005109816303600.

Zhang, Z., Berenguer, G., & Shen, Z. M. (2015). A capacitated facility location model
with bidirectional flows. Transportation Science, 49(1), 114-129.


https://doi.org/10.1080/24725854.2019.1660831
https://doi.org/10.1080/24725854.2019.1660831
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0008
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0008
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0008
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0008
https://pubsonline.informs.org/doi/abs/10.1287/educ.1090.0062
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0011
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0011
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0011
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0011
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0015
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0015
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0015
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0015
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0017
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0017
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0017
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0017
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0017
https://doi.org/10.1016/j.ejor.2015.12.026
http://www.sciencedirect.com/science/article/pii/S0377221715011650
https://arxiv.org/abs/1604.02199
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0021
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0021
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0021
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0021
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0026
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0026
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0026
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0026
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0027
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0027
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0027
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0027
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0027
http://www.optimization-online.org/DB_FILE/2017/06/6105.pdf
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0030
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0030
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0030
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0030
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0031
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0031
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0031
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0031
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0031
https://arxiv.org/abs/1806.09215
https://doi.org/10.1016/j.ejor.2020.01.020
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0034
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0034
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0035
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0035
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0035
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0035
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0035
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0036
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0036
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0036
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0036
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0036
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0037
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0037
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0037
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0037
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0038
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0038
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0038
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0038
http://www.optimization-online.org/DB_FILE/2018/09/6821.pdf
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0040
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0040
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0040
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0040
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0041
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0041
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0041
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0041
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0041
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0042
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0042
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0042
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0042
https://arxiv.org/abs/1909.09875
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0044
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0044
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0044
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0044
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0045
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0045
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0045
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0045
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0045
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0045
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0046
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0046
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0046
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0046
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0046
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0047
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0047
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0047
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0047
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0047
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0048
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0048
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0049
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0049
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0049
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0049
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0050
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0050
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0050
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0050
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0050
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0050
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0051
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0051
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0051
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0051
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0051
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0051
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0053
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0053
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0053
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0053
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0053
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0054
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0054
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0054
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0054
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0054
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0054
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0055
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0055
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0055
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0055
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0055
https://doi.org/10.1016/j.automatica.2016.09.016
http://www.sciencedirect.com/science/article/pii/S0005109816303600
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0057
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0057
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0057
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0057
http://refhub.elsevier.com/S0377-2217(20)30944-9/sbref0057

	Distributionally robust facility location problem under decision-dependent stochastic demand
	1 Introduction
	2 Literature review
	2.1 Facility location problem variants
	2.2 Stochastic programming and DRO methods
	2.3 Modeling decision-dependent uncertainty

	3 Problem formulation
	3.1 Ambiguity set formulation
	3.2 DRO model and a monolithic reformulation
	3.3 Moment functions and mixed-integer linear reformulation
	3.4 Valid inequalities

	4 Computational results
	4.1 Experimental setup
	4.2 Numerical results and analyses
	4.2.1 Effect of the variability in demand
	4.2.2 Effect of unit penalty for unmet demand
	4.2.3 Effect of the robustness level of the ambiguity set
	4.2.4 Effect of the budget for opening facilities
	4.2.5 Effect of the forms of decision-dependency
	4.2.6 Effect of decision-dependency in alternative formulations

	4.3 Results of computational time

	5 Conclusion
	Acknowledgment
	References


