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a b s t r a c t 

While the traditional facility location problem considers exogenous demand, in some applications, loca- 

tions of facilities could affect the willingness of customers to use certain types of services, e.g., carsharing, 

and therefore they also affect realizations of random demand. Moreover, a decision maker may not know 

the exact distribution of such endogenous demand and how it is affected by location choices. In this pa- 

per, we consider a distributionally robust facility location problem, in which we interpret the moments 

of stochastic demand as functions of facility-location decisions. We reformulate a two-stage decision- 

dependent distributionally robust optimization model as a monolithic formulation, and then derive ex- 

act mixed-integer linear programming reformulation as well as valid inequalities when the means and 

variances of demand are piecewise linear functions of location solutions. We conduct extensive computa- 

tional studies, in which we compare our model with a decision-dependent deterministic model, as well 

as stochastic programming and distributionally robust models without the decision-dependent assump- 

tion. The results show superior performance of our approach with remarkable improvement in profit and 

quality of service under various settings, in addition to computational speed-ups given by formulation 

enhancements. These results draw attention to the need of considering the impact of location decisions 

on customer demand within this strategic-level planning problem. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Determining facility locations has been a fundamental problem 

n the design of modern transportation and logistics systems. In 

 traditional setting, a decision maker chooses a subset of loca- 

ions from candidate sites to open facilities, as well as assigning 

xogenous customer demand to these capacitated facilities while 

inimizing the total cost of building facilities and satisfying de- 

and. The customer demand plays a critical role as it is a driving 

actor in determining where to open facilities. In practice, the 

emand values from different customers may not be fixed but 

re random variables following certain probability distributions. A 

ecision maker may not have the full knowledge about the true 

istribution of demand. Moreover, in some applications when new 

ervices are introduced to a certain market, locations of service 

acilities have inherent impact on the willingness of customers to 

se the service and thus the demand is not entirely exogenous 
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ut endogenous, whose probability distribution will be affected 

y the facility-location decisions. For example, to use carsharing 

ervices like Zipcar, customers can pick up and drop off vehicles 

t designated parking locations and the convenience of doing so 

etermines the service quality. Jorge and Correia (2013) and Ciari, 

ock, and Balmer (2014) demonstrate that demand volumes of 

arsharing customers are affected mainly by their travel distances 

o parking locations, as their choices of whether or not to use 

arsharing services largely rely on service availability within their 

eighborhoods ( Boldrini, Bruno, & Conti, 2016; Vine, Lee-Gosselin, 

ivakumar, & Polak, 2011 ). Similar impacts and endogenous 

emand are also observed in problems of warehouse location 

election in supply chains ( Ho & Perl, 1995 ). 

In this paper, we integrate the decision-dependent demand 

ncertainty in the strategic-planning phase of locating facilities 

nd propose a distributionally robust optimization (DRO) model 

or locating facilities under uncertain endogenous demand, given 

nknown distribution of the random demand vector whose mean 

nd variance values are functions of facility-location decisions. 

he goal is to minimize the sum of facility-location cost and 

he worst-case (maximum) expected cost of transportation and 
onally robust facility location problem under decision-dependent 
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nsatisfied-demand penalty given any distribution of demand 

rom a pre-defined ambiguity set that is constructed based on the 

ecision-dependent moment information (i.e., mean and variance). 

ote that to handle demand uncertainty, stochastic and robust 

ptimization approaches are widely used in the facility-location 

iterature (see, e.g., Álvarez-Miranda, Fernández, & Ljubi ́c, 2015; An, 

eng, Zhang, & Zhao, 2014; Baron, Milner, & Naseraldin, 2011; Cui, 

uyang, & Shen, 2010; Shen, Zhan, & Zhang, 2011; Snyder, 2006; 

nyder & Daskin, 2005 ), depending on the amount of data we 

ave to describe the uncertainty. Although stochastic optimization 

echniques are powerful in modeling specific demand realizations 

nd the corresponding recourse decisions, their applicability is 

imited to the assumption that the exact demand distribution 

s fully known, which requires significant amounts of data to 

alidate. In contrast, robust facility-location models minimize the 

orst-case (maximum) transportation and penalty cost for any 

ossible demand value in a given uncertainty set, and could lead 

o over-conservative solutions and extremely high cost of building 

nnecessary facilities. Our proposed DRO approach utilizes the 

oment information from historical demand data to build an 

mbiguity set of the unknown demand distribution, and thus 

an obtain data-driven robust solutions under partial information 

bout the true distribution. We summarize the main contributions 

f the paper below. 

1. We derive a monolithic formulation for solving the DRO 

model with decision-dependent demand whose moments 

can be any types of functions of facility-location decisions. 

2. We obtain an exact mixed-integer linear programming 

(MILP) reformulation of the DRO model through duality and 

convex envelopes, when demand mean and variance are 

piecewise linear functions of location solutions. We develop 

enhancements to strengthen the formulation, including the 

derivation of valid inequalities. 

3. We conduct an extensive set of numerical experiments 

to demonstrate the effectiveness of the proposed distribu- 

tionally robust decision-dependent approach. We develop 

both in-sample computation and out-of-sample evaluation 

frameworks to compare our approach with a decision- 

dependent deterministic formulation, as well as the tradi- 

tionally stochastic programming and DRO benchmark mod- 

els neglecting the decision-dependency. Our results highlight 

significant increase in profit and decrease in unmet demand, 

and its robust performance under numerous problem char- 

acteristics along with the computational efficiency brought 

by formulation enhancements. 

The remainder of this paper is organized as follows. In 

ection 2 , we review the most relevant studies in the facility- 

ocation literature and in related optimization methods. In 

ection 3 , we present the decision-dependent distributionally ro- 

ust facility location problem, its reformulations given moment- 

ased ambiguity sets of the unknown demand distribution, and 

ormulation enhancements. In Section 4 , we conduct computa- 

ional studies on a variety of randomly generated instances to eval- 

ate the performance of our model and solution approaches under 

ifferent parameter and problem settings. Section 5 concludes the 

aper and states future research directions. 

. Literature review 

We review the most relevant literature in facility location 

 Section 2.1 ), stochastic programming and distributionally ro- 

ust optimization ( Section 2.2 ), and decision-dependent uncer- 

ainty modeling in stochastic and robust optimization literature 

 Section 2.3 ). 
2 
.1. Facility location problem variants 

The facility location problem ( Melo, Nickel, & Gama, 2009; 

wen & Daskin, 1998 ) has been studied for a wide variety of ap-

lications to determine optimal locations of warehouses ( Ozsen, 

oullard, & Daskin, 2008 ), distribution centers ( Zhang, Berenguer, 

 Shen, 2015 ) in supply chains, and facilities to provide emer- 

ency medical services ( Chen & Yu, 2016 ), and so on. Given the 

mergence of the Internet of Things (IoT), it is also considered 

or building smarter and connected cities via optimizing locations 

f sensors and devices to enhance data flows ( Fischetti, Ljubic, & 

innl, 2017 ). An important branch of facility location studies con- 

iders uncertainties in problem parameters such as demand vol- 

mes. Snyder (2006) conducts a thorough review of facility loca- 

ion problems under various types of uncertainties existing in de- 

and parameter, cost parameter, or related to facility character- 

stics. Specifically, An et al. (2014) , Cui et al. (2010) , Shen et al.

2011) , and Snyder and Daskin (2005) focus on variants of the 

eliable facility location problem under random supply, demand, 

ost of shipment or network disruptions, and develop mathemat- 

cal models for enhancing the reliability and cost-performance of 

ocation design, leading to advances in supply-chain risk manage- 

ent. However, among all the above studies, the demand is as- 

umed to be exogenous and its distribution does not depend on 

acility-location decisions. 

On the other hand, the competitive facility location problem 

CFLP) involves decision games between two or multiple firms that 

ompete for customer demand of the same product or service in 

 shared market ( Berman, Drezner, Drezner, & Krass, 2009; Freire, 

oreno, & Yushimito, 2016; Mai, Lodi, & ISSN 0377–2217. URL, 

020 ). It extends the classical location models, including p-median 

nd maximum coverage, to a more complex decision-making en- 

ironment, where the market is not a spatial monopoly but has 

o-existing competitors and certain consumer patronage pattern. 

he total demand volume is still exogenous but is split into mul- 

iple strings of customers whose choices depend on the facilities’ 

tilities (e.g., their locations, sizes, service prices, etc.). The max- 

mum capture problem (MCP) constitutes an important class of 

FLP where a firm decides where to locate a set of new facilities to 

aximize its market share, given existing facilities already set up 

y its competitors and utility models that represent customer pref- 

rences. Benati and Hansen (2002) , Haase and Müller (2014) , and 

jubi ́c and Moreno (2018) develop different solution approaches for 

CP, where they consider a probabilistic choice model for splitting 

ustomer demand over multiple facilities. In this paper, we con- 

ider a single-player strategic planning of facility locations under 

ecision-dependent demand uncertainty, while the majority of the 

CP or CFLP studies do not take into account the stochasticity of 

emand, nor assume the overall demand uncertainty or its volume 

hange being dependent on newly open facilities. 

.2. Stochastic programming and DRO methods 

Stochastic programming approaches can be applied to address 

he issue of uncertain parameter once we know the full distri- 

utional information. For example, Santoso, Ahmed, Goetschalckx, 

nd Shapiro (2005) consider a stochastic facility location problem 

y sampling realizations of demand and capacity parameters from 

 certain distribution, and they propose an accelerated Benders de- 

omposition algorithm. DRO provides an alternative approach to 

olve problems under uncertainty when the decision maker has 

artial information about the distribution. Although DRO yields re- 

iable and low-cost solutions (as compared to the ones to stochas- 

ic and robust optimization models, respectively), it is less studied 

n the context of facility location. Lu, Ran, and Shen (2015) con- 

ider a distributionally robust reliable facility location problem by 
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inimizing the expected cost under the worst-case distribution 

ith given marginal disruption probabilities and information about 

isruption correlations. Santiváñez and Carlo (2018) generalize the 

tudy in Lu et al. (2015) by ensuring a minimum service level 

n satisfying demand under each disruption scenario. Liu, Li, and 

hang (2019) propose a DRO model for optimally locating emer- 

ency medical service stations under uncertain demand. To ensure 

he reliability of their plan, joint chance constraints are introduced 

nd a moment-based ambiguity set is used for describing the de- 

and uncertainty. However, these studies pose modeling limitation 

y not capturing the possible impact of location decisions on de- 

and or other parameters’ uncertainty. 

The general DRO literature can be classified by the ambiguity 

et being used to describe distributional information of uncertain- 

ies. One line of research considers statistical distance-based ambi- 

uity sets, which focuses on distributions within a certain distance 

o a reference distribution. Some of the most studied distance mea- 

ures in this area are φ-divergence ( Ben-Tal, Hertog, De Waege- 

aere, Melenberg, & Rennen, 2013; Jiang & Guan, 2016 ), Wasser- 

tein distance ( Esfahani & Kuhn, 2018; Gao & Kleywegt, 2016 ) and 

evy–Prokhorov metric ( Erdo ̆gan & Iyengar, 2006 ). However, these 

pproaches require a significant amount of historical data to derive 

 reference distribution of the uncertain parameter, which might 

ot be available due to the lack of prior customer data during the 

hase of new service introduction and facility planning. In this 

aper, we consider moment-based ambiguity sets that have been 

sed for deriving tractable reformulations of general DRO models 

see, e.g., Delage & Ye, 2010; Tong, Sun, Luo, & Zheng, 2018 ). The

mount of data for obtaining reliable moment information is much 

ess than the one needed for deriving a reference distribution with 

igh confidence, and therefore the moment-based ambiguity set is 

ore suitable for facility planning for new services. We also as- 

ume that the mean and variance of the demand vector are func- 

ions of facility-location decision variables, to allow possible distri- 

utions of the demand and the corresponding demand realizations 

o be decision dependent. 

.3. Modeling decision-dependent uncertainty 

Integrating decision-dependent uncertainties within an opti- 

ization framework involves modeling challenges and computa- 

ional complexities. The related literature can be categorized into 

wo groups. The first group focuses on decisions affecting the time 

f information discovery. Goel and Grossmann (2006) propose a 

ixed-integer disjunctive programming formulation for incorpo- 

ating the relationship between the underlying stochastic processes 

nd decisions affecting the time that uncertainty is revealed. To 

ddress the computational challenge, Vayanos, Kuhn, and Rustem 

2011) propose a decision rule approximation to ensure solu- 

ion tractability. Their work is further generalized by Vayanos, 

eorghiou, and Yu (2020) to handle multi-stage robust optimiza- 

ion models with decision-dependent information discovery and 

he authors derive a reformulation that can be directly solved by 

ff-the-shelf solvers via the K-adaptability approximation. Recently, 

asciftci, Ahmed, and Gebraeel (2019) study a generic mixed- 

nteger linear program for finite stochastic processes, and derive 

tructural results and approximation algorithms specifically on the 

ime of information discovery for capacity expansion planning. 

In the second group of literature, decisions can change the 

istribution of the underlying uncertainty, similar to the set- 

ing in our paper. Using stochastic programming approaches, 

hmed (20 0 0) considers a network design problem under design- 

ependent uncertainties, whereas Basciftci, Ahmed, and Gebraeel 

2020) model generators’ failure probabilities dependent on their 

aintenance and operational plans. Hellemo, Barton, and Tomas- 

ard (2018) conduct an overview of recent studies in this area 
3 
y providing ways to model decision-dependent uncertainties in 

tochastic programs. The decisions affecting uncertain parame- 

ers’ realizations can be also incorporated into the definition of 

n uncertainty set used in robust optimization (see, e.g., Zhang, 

amgarpour, Georghiou, Goulart, & Lygeros, 2017 ). Nohadani and 

harma (2018) consider robust linear programs where the un- 

ertainty set is a function of decision variables, and they derive 

ractable reformulations for specific cases. The robust decision- 

ependent optimization problems have been studied in wide appli- 

ations including software partitioning ( Spacey, Wiesemann, Kuhn, 

 Luk, 2012 ), radiotherapy planning ( Nohadani & Roy, 2017 ) and 

ffshore oil planning problems ( Lappas & Gounaris, 2017 ). How- 

ver, the decision dependency of uncertain parameters has not 

een fully explored in the DRO framework. Among limited related 

tudies, Zhang, Xu, and Zhang (2016) consider generic decision- 

ependent DRO problems with moment constraints and demon- 

trate the stability of the optimal solutions, whereas Royset and 

ets (2017) consider these problems under a class of distance- 

ased ambiguity sets to derive convergence results. Ryu and 

iang (2019) consider distributionally robust nurse staffing prob- 

em where the uncertainty in the absenteeism of nurses depends 

n the staffing level decisions, and develop a separation algorithm 

or solving MILP reformulations. Most recently, Noyan, Rudolf, and 

ejeune (2018) and Luo and Mehrotra (2018) provide non-convex 

eformulations for DRO problems under various forms of decision- 

ependent ambiguity sets. Although these studies provide alter- 

ative reformulations, the resulting models need further analyses 

nd require the development of efficient solution algorithms. Addi- 

ionally, the effect of adopting decision-dependent DRO methods in 

omparison to the existing stochastic or robust methodologies are 

ot quantitatively or numerically verified in the aforementioned 

tudies. 

In brief, our paper proposes a novel approach in determin- 

ng optimal facility-location plans via modeling the decision- 

ependency of random demand in its moment information used in 

he ambiguity set of a DRO model. Therefore, it addresses various 

aps in the literature of facility location and methods for optimiza- 

ion under decision-dependent uncertainty. 

. Problem formulation 

In the distributionally robust facility location problem, facil- 

ty location decisions affect the underlying demand distribution of 

ach customer site. We first introduce the ambiguity set for de- 

cribing the distributional information of demand in Section 3.1 . 

hen, we formulate the decision-dependent DRO model and 

resent its generic reformulation in Section 3.2 . By assuming the 

oments being piecewise linear functions of location variables, we 

urther derive a monolithic MILP reformulation in Section 3.3 . To 

trengthen the obtained reformulation, we provide a polyhedral 

tudy to derive valid inequalities in Section 3.4 . 

.1. Ambiguity set formulation 

Consider a set of possible locations i ∈ I for building facilities 

nd customer sites j ∈ J having uncertain demand. We define bi- 

ary variables y i , i ∈ I to indicate location decisions, such that y i is

 if a facility is open at location i, and 0 otherwise. The demand at

ach customer site j ∈ J is represented by a random variable d j (y )

hose distribution depends on the decision vector y = [ y i , i ∈ I] T .

e consider the case where only mean and variance information 

re used for constructing the ambiguity set of the unknown de- 

and distribution. 

Specifically, the true distribution of demand comes from a 

et of possible distributions, where the random demand at each 

ustomer site j ∈ J can take values from a finite support set 
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 = { ξ1 , . . . , ξK } with probabilities π j1 , . . . , π jK . Therefore, the am-

iguity set U(y ) of the unknown probabilities π j1 , . . . , π jK is given 

y: 

(y ) = 

{ 

{ π j } j∈ J : π j ∈ R 

| K| 
+ , 

K ∑ 

k =1 

π jk = 1 ∀ j ∈ J, 

∣∣∣ K ∑ 

k =1 

π jk ξk − μ j (y ) 

∣∣∣ ≤ εμ
j 

∀ j ∈ J, 

(σ 2 
j (y ) + (μ j (y )) 

2 ) εσ
j ≤

K ∑ 

k =1 

π jk 

ξ 2 
k ≤ (σ 2 

j (y ) + (μ j (y )) 
2 ) εσ

j ∀ j ∈ J 

}
, (1) 

here μ j (y ) and σ
2 
j 
(y ) are the mean and variance of site j’s de-

and being any types of functions of the location decision vector 

, respectively. We describe specific function forms of μ j (y ) and 
2 
j 
(y ) and justify the corresponding parameter choices in these 

unctions in Section 3.3 . The constraints in set (1) guarantee that 

i) the probabilities at all customer sites over the support set sum 

p to 1, (ii) the true mean of d j (y ) is within an � 1 -based distance
μ
j 

to the mean μ j (y ) , and (iii) the true second moment of d j (y )

s bounded by the sum of (μ j (y )) 
2 and σ 2 

j 
(y ) with upper- and 

ower-bound parameters satisfying 0 ≤ εσ
j 

≤ 1 ≤ εσ
j , for each j ∈ J. 

arameters εμ
j 
, εσ

j 
, εσ

j determine the robustness of the ambiguity 

et for each customer site j ∈ J. Specifically, if we have the per-

ect knowledge regarding the first and second moments of random 

emand at site j, then εμ
j 

= 0 , and εσ
j 

= εσ
j = 1. Otherwise, we

an adjust these parameters to consider distributions within cer- 

ain proximity to the desired moment information, which conse- 

uently impacts the conservatism of facility location decisions. 

.2. DRO model and a monolithic reformulation 

In addition to binary variables y i , ∀ i ∈ I, we define continu-

us variables x i j and s j denoting at each customer site j ∈ J, the

mount of that site’s demand satisfied by facility i, and unsatisfied 

emand of that site, respectively. Parameters f i , c i j , p j , r j repre-

ent the cost of opening a facility at location i, unit transportation 

ost from location i to site j, penalty of each unit of unsatisfied de- 

and at site j, and revenue for satisfying each unit of demand at 

ite j, respectively. We assume that the unit penalty of unsatisfied 

emand at each customer site is higher than the unit cost of trans- 

ortation from any two location pairs, i.e., p j > c i j , ∀ i ∈ I, j ∈ J.

his assumption is sensible in many business settings to assure the 

uality of service as high as possible, via guaranteeing customer 

atisfaction. 

Furthermore, instead of assuming a total capacity at each indi- 

idual facility, we consider a relaxed capacity restriction and as- 

ume that the capacity at each facility is pre-divided for individ- 

al customer sites. For example, to prepare for shipments, different 

izes of vehicle fleets are pre-booked and scheduled to serve cus- 

omers in different regions. We denote the total capacity in each 

ocation i as 
∑ 

j∈ J C i j , where C i j is the capacity at location i ded-

cated to customer site j. For notation convenience, without loss 

f generality, we further simplify the case by assuming the same 

mount of capacity pre-allocated to serve each customer (i.e., C i j is 

he same and equals to C i for all the customer sites j). 

The overall decision-dependent distributionally robust facility 

ocation problem is formulated as: 

min 
 ∈Y⊆{ 0 , 1 } | I| 

{ ∑ 

i ∈ I 
f i y i + max 

π∈ U(y ) 
E π [ h (y, d(y ))] 

} 

, (2) 
4 
where h (y, d(y )) = min 
x,s 

∑ 

i ∈ I 

∑ 

j∈ J 
c i j x i j + 

∑ 

j∈ J 
(p j s j − r j d j (y )) (3a) 

.t. 
∑ 

i ∈ I 
x i j + s j = d j (y ) ∀ j ∈ J (3b) 

x i j ≤ C i y i ∀ i ∈ I, j ∈ J (3c) 

s i , x i j ≥ 0 ∀ i ∈ I, j ∈ J. (3d) 

The objective function (2) minimizes the total cost of locat- 

ng facilities and the maximum expected cost of transportation 

nd unmet demand minus revenue for any demand distribution 

∈ U(y ) . We let the set Y include constraints that are solely re- 

ated to facility-location decisions. Constraint (3b) ensures that de- 

and at each customer site is either satisfied by other locations 

r penalized, while constraint (3c) enforces capacity restriction for 

ach open facility i ∈ I. 

To derive a single-level, monolithic reformulation of the above 

in-max DRO model, we first show a closed-form solution to the 

nner problem (3) . 

roposition 1. The optimal objective value of problem (3) can be 

omputed by 

 (y, d(y )) = 

∑ 

j∈ J 

( 

max 
i ∗=0 , 1 , ... , | I| 

{ 

c i ∗ j d j (y ) + 

∑ 

i ∈ I: c i j <c i ∗ j 

C i y i (c i j − c i ∗ j ) 

} 

− r j d j (y ) 

) 

, 

(4) 

here c 0 j := p j . 

roof. Note that the inner problem (3) can be decomposed with 

espect to each location j. Therefore, we express h (y, d(y )) as 
 

j∈ I h j (y, d(y )) , where 

 j (y, d(y )) = min 
x . j ,s j 

∑ 

i ∈ I 
c i j x i j + p j s j − r j d j (y ) (5a) 

.t. 
∑ 

i ∈ I 
x i j + s j = d j (y ) (5b) 

 i j ≤ C i y i ∀ i ∈ I (5c) 

s j , x i j ≥ 0 ∀ i ∈ I. (5d) 

Let β and υi be the dual variables associated with constraints 

5b) and (5c) , respectively. We formulate the dual of model (5) as 

ax 
,>υi 

βd j (y ) + 

∑ 

i ∈ I 
C i y i υi (6a) 

.t. β + υi ≤ c i j ∀ i ∈ I (6b) 

≤ p j (6c) 

i ≤ 0 ∀ i ∈ I (6d) 

To identify the optimal objective value of model (6) , we derive 

he extreme points of its feasible region. To this end, we examine 

wo cases through counting the number of tight constraints. 
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1. β = p j : In this case, for all i ∈ I, either υi = 0 or υi = c i j −
p j . Due to (6b) and p j > c i j , we have υi ≤ c i j − p j < 0 , mak-

ing the condition υi = 0 redundant. Therefore, when β = p j , 

υi equals to c i j − p j in the corresponding extreme point. 

The value of the objective function then becomes p j d j (y ) + ∑ 

i ∈ I C i y i (c i j − p j ) . 

2. β < p j : In this case, for all i ∈ I, either υi = 0 or υi = c i j − β .

Additionally, there exists at least one location i ∗ such that 

υi ∗ = c i ∗ j − β = 0 . Therefore, at least | I| + 1 constraints are

satisfied at an extreme point. Thus, β = c i ∗ j for some i ∗ ∈ I. 

For i ∈ I \ { i ∗} , we have either υi = 0 or υi = c i j − c i ∗ j . Since
υi ≤ c i j − c i ∗ j and υi ≤ 0 , if c i j < c i ∗ j , then υi = c i j − c i ∗ j . Oth-
erwise, υi = 0 because we maximize a positive number 

times υi in the objective. For a given i 
∗ location, the objec- 

tive function becomes c i ∗ j d j (y ) + 

∑ 

i ∈ I: c i j <c i ∗ j 
C i y i (c i j − c i ∗ j ) . 

Combining the above two cases, we obtain a closed-form ex- 

ression for the optimal objective value of model (6) . Since p j = 

 0 j > c i j , ∀ i ∈ I, the optimal objective value of the problem can be

xpressed as 

max 
 
∗=0 , 1 , ... , | I| 

{ 

c i ∗ j d j (y ) + 

∑ 

i ∈ I: c i j <c i ∗ j 

C i y i (c i j − c i ∗ j ) 

} 

. (7) 

s the program (6) is feasible and bounded, strong duality holds 

etween models (5) and (6) . As a result, the optimal objective 

alue of (5) equals to 

max 
 
∗=0 , 1 , ... , | I| 

{ 

c i ∗ j d j (y ) + 

∑ 

i ∈ I: c i j <c i ∗ j 

C i y i (c i j − c i ∗ j ) 

} 

− r j d j (y ) , (8) 

hich completes the proof. �

heorem 1. Model (2) is equivalent to a single-level minimization 

ormulation given by 

min 
,α,δ1 ,δ2 ,γ 1 ,γ 2 

f � y + 

∑ 

j∈ J 

(
α j + δ1 

j 

(
μ j (y ) + εμ

j 

)
− δ2 

j 

(
μ j (y ) − εμ

j 

)
+ γ 1 

j (σ
2 
j (y ) + (μ j (y )) 

2 ) εσ
j 

− γ 2 
j (σ

2 
j (y ) + (μ j (y )) 

2 ) εσ
j 

)
(9a) 

.t. α j + 

(
δ1 
j − δ2 

j 

)
ξk + 

(
γ 1 

j − γ 2 
j 

)
ξ 2 
k ≥ θ jk (y ) ∀ j ∈ J, k = 1 , . . . , K

(9b) 

 ∈ Y ⊆ { 0 , 1 } | I| , δ1 
j , γ

1 
j , δ

2 
j , γ

2 
j ≥ 0 ∀ j ∈ J, (9c) 

here θ jk (y ) = c i ∗
jk 
j ξk + 

∑ 

i ∈ I: c i j <c i ∗
jk 

j 
C i y i (c i j − c i ∗

jk 
j ) − r j ξk and i ∗

jk 

aximizes expression (8) with d j (y ) being replaced by ξk . 

roof. Following Proposition 1 , we can reformulate the inner prob- 

em max π∈ U(y ) E [ h (y, d(y ))] for a given y as 

max 
jk , j∈ J,k =1 , ... ,K 

∑ 

j∈ J 

K ∑ 

k =1 

π jk 

⎛ 

⎝ (c i ∗
jk 
j − r j ) ξk + 

∑ 

i ∈ I: c i j <c i ∗
jk 

j 

C i y i (c i j − c i ∗
jk 
j ) 

⎞
⎠

(10a) 

.t. 

K ∑ 

k =1 

π jk = 1 ∀ j ∈ J, (10b) 
5 
K ∑ 

k =1 

π jk ξk ≤ μ j (y ) + εμ
j 

∀ j ∈ J, (10c) 

K ∑ 

k =1 

π jk ξk ≥ μ j (y ) − εμ
j 

∀ j ∈ J, (10d) 

K ∑ 

k =1 

π jk ξ
2 
k ≤ (σ 2 

j (y ) + (μ j (y )) 
2 ) εσ

j ∀ j ∈ J, (10e) 

K ∑ 

k =1 

π jk ξ
2 
k ≥ (σ 2 

j (y ) + (μ j (y )) 
2 ) εσ

j ∀ j ∈ J, (10f) 

jk ≥ 0 ∀ j ∈ J, k = 1 , . . . , K. (10g) 

Let α j , δ
1 
j 
, δ2 

j 
, γ 1 

j 
, γ 2 

j 
for all j ∈ J be the dual variables associ- 

ted with all the constraints in model (10) . Then, we can formulate 

he corresponding dual of model (10) as 

min 
,δ1 ,δ2 ,γ 1 ,γ 2 

∑ 

j∈ J 

(
α j + δ1 

j 

(
μ j (y ) + εμ

j 

)
− δ2 

j 

(
μ j (y ) − εμ

j 

)
+ γ 1 

j (σ
2 
j (y ) + (μ j (y )) 

2 ) εσ
j 

− γ 2 
j (σ

2 
j (y ) + (μ j (y )) 

2 ) εσ
j 

)
(11a) 

.t. α j + 

(
δ1 
j − δ2 

j 

)
ξk + 

(
γ 1 

j − γ 2 
j 

)
ξ 2 
k ≥ θ jk (y ) ∀ j ∈ J, k = 1 , . . . , K, 

(11b) 

1 
j , γ

1 
j , δ

2 
j , γ

2 
j ≥ 0 ∀ j ∈ J. (11c) 

As a result, we can express model (2) in the form of (9) . This

ompletes the proof. �

.3. Moment functions and mixed-integer linear reformulation 

In this section, we specify function forms for μ j (y ) and σ j (y ) 

or each j ∈ J, to further derive reformulations of Model (9) that 

an be directly solved by off-the-shelf solvers. We consider that 

he demand at site j increases from a base demand estimate μ̄ j 

hen new facilities are opened in site j’s neighborhood. However, 

ue to the size and capacity of a market, the increase in demand 

s restricted by an upper-bound value, denoted as μUB 
j 

for each 

ite j, which can be estimated by considering the growth poten- 

ial of a market of interest within the planning horizon. Moreover, 

he highest variance of demand at a customer site occurs when 

here is no available facility in its neighborhood, and we can set 

t equal to an empirical variance σ̄ 2 
j 

that can be estimated from 

ample demand data. As the number of facilities in the neighbor- 

ood of a customer site increases, the variance of the demand at 

hat site decreases. However, the variance cannot be less than a 

re-determined lower-bound value, denoted as (σ LB 
j 

) 2 for site j, 

ecause of the inherent uncertainty in the market. 

The above assumptions are supported by Shaheen, Cohen, and 

oberts (2006) and Hernndez, Jimnez, and Martn (2010) , who 

emonstrate the increase in customers’ confidence based on their 

ast experiences with the provided service and its enhanced avail- 

bility. Consequently, increased customer confidence is associated 

ith increase in the mean and decrease in the variance of cus- 

omer demand. We interpret the mean and variance information 
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Fig. 1. Effect of the open facility locations on the moment information of demand. 
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Fig. 2. Locations of customer sites and potential facilities in a specific instance. 
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sing piecewise linear functions of the decision variable y as fol- 

ows to indicate these relations: 

μ j (y ) = min 

{ 

μ̄ j (1 + 

∑ 

i ′ ∈ I 
λμ

ji ′ y i ′ ) , μ
UB 
j 

} 

, 

2 
j (y ) = max 

{ 

σ̄ 2 
j (1 −

∑ 

i ′ ∈ I 
λσ

ji ′ y i ′ ) , (σ
LB 
j ) 2 

} 

. (12) 

n (12) , the effect of the distance of different facility locations on 

emand at a target customer site j is controlled by parameters 
μ
j 
, λσ

j 
∈ [0 , 1] | I| , where each element λμ

ji ′ and λ
σ
ji ′ correspond to 

he impacts of opening location i ′ for customer site j on mean and 

ariance, respectively. These parameters are represented in such a 

ay that closer locations can have higher impacts on the first and 

econd moments, and further locations have less effect. In practice, 

istorical data samples can be utilized to configure the values of 

arameters μ̄ j , σ̄ j , λ
μ
j 
, λσ

j 
, μUB 

j 
, σ LB 

j 
used in (12) . Take carshar- 

ng as an example and consider a problem of selecting locations 

or locating Zipcars in a new service region, where residents cur- 

ently use other transit systems such as buses, personal vehicles, 

tc. First, we can use historical commute data to estimate the base 

ean ( ̄μ j ) and variance ( ̄σ
2 
j 
) of potential carsharing users in differ- 

nt locations, and the mean and variance upper- and lower-bounds 

re based on the total travel demand using all transit means who 

re possible to become Zipcar users. For each customer site j, we 

elect a subset of nearby parking locations i, to which the cus- 

omers living in j can travel quickly, and assign nonzero λμ
ji 
- and 

σ
ji 
-values to them. Furthermore, we increase the nonzero λμ

ji 
- and 

σ
ji 
-values following decreasing travel distances between customer 

ite j and the corresponding parking location i . Moreover, we have 
 

i ′ ∈ I λσ
ji ′ < 1 for all j ∈ J by assumption. 

We illustrate the impacts of the above decision dependency in 

ig. 1 , where the first figure shows the change in the mean and

he second figure depicts the change in the variance with respect 

o parameters λμ
j 

and λσ
j 
. For demonstration purposes, we as- 

ume the first open facility to be the closest one to customer site 

j, the second open facility to be the second closest, and so on. 

e highlight four different cases for these parameters such that 

n Case (a), facility location decisions have no effect on demand 

istribution; in Case (b) all facilities equally affect the first two 

oments; in Case (c) closer facilities have higher impact; and in 

ase (d) only the closest facility impacts customer demand. This 

llustration demonstrates different impacts of location decisions on 

ustomer demand, based on the dependency between moment in- 

ormation and customer behavior. 
6 
Also, note that the presented two-piece linear functions of mo- 

ents in (12) are extendable to a more generic setting. Specifi- 

ally, mean and variance information can be formulated as general 

iecewise linear functions of the location decisions y as follows: 

μ j (y ) = min 
l∈{ 1 , ... ,L μ} 

{ a μ
l 

+ b 
μ
l 

� 
y } , 

2 
j (y ) = max 

l∈{ 1 , ... ,L σ } 
{ a σl − b σl 

� 
y } , (13) 

here parameters L μ, L σ ∈ Z + denote the number of pieces of lin-

ar functions considered for μ j (y ) and σ
2 
j 
(y ) , respectively; param- 

ters a μ ∈ R 
L μ, a σ ∈ R 

L σ , b μ ∈ R 

L μ×| I| 
+ , b σ ∈ R 

L σ ×| I| 
+ correspond to

he respective baseline mean, variance values and their slopes on 

ach linear-function piece for μ j (y ) and σ
2 
j 
(y ) . 

Model (9) involves a nonlinear objective function (9a) , bi- 

ary decision vector y, continuous variables α, δ1 , δ2 , γ 1 , γ 2 , 

unctions μ j (y ) and σ j (y ) . In the rest of the paper, we de-

ive solvable reformulations of Model (9) based on the spe- 

ific forms of μ j (y ) and σ j (y ) in (12) . To linearize the ob-

ective function, we assume upper bounds δ1 , δ2 , γ 1 , γ 2 on 

he variables δ1 , δ2 , γ 1 , γ 2 , respectively. Using these bounds, 

cCormick envelopes (see McCormick, 1976 ) can be applied for 

inearizing the bilinear terms in the objective function (9a) . Specifi- 

ally, we define set M 
′ 
( η, η) 

involving the McCormick inequalities for 
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inearizing any bilinear term w 
′ = ηz when η ∈ [ η, η] and z ∈ { 0 , 1 }

nd give the details as follows. 

 
′ 
( η, η) = 

{
(w 

′ , η, z) ∈ R 
3 : η − (1 − z) η ≤ w 

′ 

≤ η − η(1 − z) , ηz ≤ w 
′ ≤ ηz 

}
. (14) 

ecause variable z is binary valued, we have an exact reformu- 

ation in (14) for representing the bilinear terms. Similarly, de- 

ne set M 
′′ 
( η, η) 

involving McCormick inequalities for linearizing any 

rilinear term w 
′′ = ηz 1 z 2 when η ∈ [ η, η] such that η ≥ 0 , and

 1 , z 2 ∈ { 0 , 1 } . 
 
′′ 
( η, η) = 

{
(w 

′′ , η, z 1 , z 2 ) ∈ R 
4 : w 

′′ ≤ ηz 1 , w 
′′ ≤ ηz 2 , w 

′′ 

≤ η − η(1 − z 1 ) , w 
′′ ≤ η − η(1 − z 2 ) , 

w 
′′ ≥ η(−1 + z 1 + z 2 ) , 

w 
′′ ≥ η + η(−2 + z 1 + z 2 ) , z 1 ≤ 1 , z 2 ≤ 1 , η ≤ η ≤ η

}
. (15) 

The trilinear case in (15) involves two binary variables, and 

ased on existing results, we confirm that it provides an exact re- 

ormulation of Model (9) . 

roposition 2. ( Meyer & Floudas, 2004 ) Let 0 ≤ η ≤ η. Then 

 
′′ 
( η, η) 

= con v 
({

(w, η, z 1 , z 2 ) : w = ηz 1 z 2 , η ∈ [ η, η] , z 1 , z 2 ∈ { 0 , 1 } }). 
For notation brevity, we further omit the bounds μUB 

j 
and 

σ LB 
j 

) 2 in (12) , and only consider μ j (y ) and σ
2 
j 
(y ) being affine

unctions of y . Note that this assumption is not restrictive in 

erms of the complexity of the problem formulation. In the pres- 

nce of these upper and lower bounds, one can model the mo- 

ents in (12) as piecewise linear functions with additional bi- 

ary variables. The arising nonlinear relationships can be further 

inearized using McCormick envelopes. Following the above as- 

umptions, the ambiguity set U(y ) in (1) contains nonlinear terms 

n y if using mean and variance function forms defined in (12) . 

pecifically, 

μ j (y )) 
2 = μ̄2 

j 

( 

1 + 2 
∑ 

i ′ ∈ I 
λμ

ji ′ y i ′ + 

∑ 

i ′ ∈ I 
(λμ

ji ′ ) 
2 y 2 i ′ + 2 

| I| ∑ 

l=1 

l−1 ∑ 

m =1 

λμ
jl 
λμ

jm 
y l y m 

) 

(16a) 

= μ̄2 
j 

( 

1 + 

∑ 

i ′ ∈ I 
(2 λμ

ji ′ + (λμ
ji ′ ) 

2 ) y i ′ + 2 

| I| ∑ 

l=1 

l−1 ∑ 

m =1 

λμ
jl 
λμ

jm 
y l y m 

) 

. 

(16b) 

To linearize the above expression, define a new variable 

 lm 
:= y l y m where (Y lm 

, y l , y m ) ∈ M 
′ 
(0 , 1) 

. To linearize the nonlinear

erms in the objective function (9a) , let �h 
ji ′ := δh 

j 
y i ′ , �h 

ji ′ := γ h 
j 
y i ′ ,

h 
jlm 

:= γ h 
j 
y l y m , for h = 1 , 2 . For any pair of j ∈ J and i ′ ∈ I, denote

ji ′ := −σ̄ 2 
j 
λσ

ji ′ + μ̄2 
j 
(2 λμ

ji ′ + (λμ
ji ′ ) 

2 ) as the parameters specific to 

he values of λμ, λσ , as well as empirical moment estimates for 

ny pair j ∈ J, i ′ ∈ I. Combining the above result with Theorem 1 ,

e derive an MILP reformulation (17) of model (9) under ambigu- 

ty set (1) in the following theorem. 

heorem 2. Using specific forms of moment functions in (12) , the 

riginal problem (2) is equivalent to the following MILP model (17) . 

in f � y + 

∑ 

j∈ J 

(
α j + δ1 

j 

(
μ̄ j + εμ

j 

)
− δ2 

j 

(
μ̄ j − εμ

j 

)
+ μ̄ j 

∑ 

i ′ ∈ I 
λμ

ji ′ 
(
�1 

ji ′ − �2 
ji ′ 
)

+ 

(
σ̄ 2 

j + μ̄2 
j 

)(
εσ
j γ

1 
j − εσ

j γ
2 
j 

)

+ 

∑ 

i ′ ∈ I 
� ji ′ 

(
εσ
j �

1 
ji ′ − εσ

j �
2 
ji ′ 
)

+ 2 ̄μ2 
j 

| I| ∑ 

l=1 

l−1 ∑ 

m =1 

λμ
jl 
λμ

jm 
7 
×
(
εσ
j �

1 
jlm 

− εσ
j �

2 
jlm 

))
(17a) 

.t. α j + 

(
δ1 
j − δ2 

j 

)
ξk + 

(
γ 1 

j − γ 2 
j 

)
ξ 2 
k ≥

(
c i ∗ j − r j 

)
ξk 

+ 

∑ 

i ∈ I: c i j <c i ∗ j 

C i y i 
(
c i j − c i ∗ j 

)∀ i ∗ ∈ I ∪ { 0 } , j ∈ I, k = 1 , . . . , K 

(17b) 

�h 
ji ′ , δ

h 
j , y i ′ 

)
∈ M 

′ (
0 , δh 

j 

), 
(
�h 

ji ′ , γ
h 
j , y i ′ 

)
∈ M 

′ (
0 , γ h 

j 

) ∀ j ∈ J, i ′ ∈ I, h = 1 , 2 

(17c) 

�h 
jlm 

, γ h 
j , y l , y m 

)
∈ M 

′′ (
0 , γ h 

j 

) ∀ j ∈ J, l = 1 , . . . , | I| , l > m (17d) 

 ∈ Y ⊆ { 0 , 1 } | I| , δ1 
j , γ

1 
j , δ

2 
j , γ

2 
j ≥ 0 ∀ j ∈ J. (17e) 

roof. We linearize Model (9) obtained in Theorem 1 to derive an 

ILP reformulation. We first plug in the decision-dependent mo- 

ent information at each site j, μ j (y ) and σ
2 
j 
(y ) , into the objec-

ive function (9a) , using definitions in (12) and (16b) . As the result- 

ng objective function includes bilinear and trilinear terms, we in- 

roduce new variables to obtain the linear objective function (17a) . 

onstraint (17b) corresponds to (9b) , which is also linearized. The 

emaining constraints refer to definitions of the newly introduced 

ariables, their corresponding McCormick constraints in the forms 

f (14) and (15) , restrictions on the facility-location variable y, and 

he non-negativity constraints on all the decision variables. This 

ompletes the proof. �

.4. Valid inequalities 

We examine the underlying problem structure for deriving valid 

nequalities to obtain a stronger formulation of the MILP reformu- 

ation (17) . We first present an intermediate result using the inner 

roblem (10) . Since the dual (11) of the inner problem is decom- 

osable with respect to each location j, we study the following 

ecomposed formulation for every j ∈ J. 

min 
j ,δ

1 
j 
,δ2 

j 
,γ 1 

j 
,γ 2 

j 

α j + δ1 
j 

(
μ j (y ) + εμ

j 

)
− δ2 

j 

(
μ j (y ) − εμ

j 

)
+ γ 1 

j 

(
σ 2 

j (y ) 

+ (μ j (y )) 
2 
)
εσ
j − γ 2 

j 

(
σ 2 

j (y ) + (μ j (y )) 
2 
)
εσ
j (18a) 

.t. α j + (δ1 
j − δ2 

j ) ξk + (γ 1 
j − γ 2 

j ) ξ
2 
k ≥ θ jk (y ) k = 1 , . . . , K, 

(18b) 

1 
j , γ

1 
j , δ

2 
j , γ

2 
j ≥ 0 . (18c) 

emma 1. Extreme rays of the feasible set { (α j , δ
1 
j 
, δ2 

j 
, γ 1 

j 
, γ 2 

j 
) :

18b) , (18c) } are 

1. (ξ(1) ξ(2) , 0 , ξ(1) + ξ(2) , 1 , 0) 

2. (ξ(K−1) ξ(K) , 0 , ξ(K−1) + ξ(K) , 1 , 0) 

3. (−ξ(1) ξ(K) , ξ(1) + ξ(K) , 0 , 0 , 1) 

here ξ(1) , . . . , ξ(K) represent the ordered sequence of the support of 

he random demand. 

roof. Since δ j := δ1 
j 
− δ2 

j 
and γ j := γ 1 

j 
− γ 2 

j 
are unbounded, we 

an equivalently consider the following system of inequalities in 

lace of (18b) and (18c) 

j + δ j ξk + γ j ξ
2 ≥ θ jk (y ) k = 1 , . . . , K. (19) 



B. Basciftci, S. Ahmed and S. Shen European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; November 26, 2020;3:44 ] 

T

m

α

α

α

t

α
(

γ

 

t  

m  

w

t

P

ξ

ξ

P

l  

c

f

t

p

i

T

b

p

(

(

ξ

ξ

�

(

l

p

M

s

t

4

d

t

i

f

l

b

d

t

m

p

m

i

m  

c

s

u

s

s

c

r

m

s

x

s

c

t

t

o identify extreme rays, we solve the inequality system (20) for 

, n ∈ { 1 , . . . , K} ; 
j + δ j ξm + γ j ξ

2 
m 

= 0 (20a) 

j + δ j ξn + γ j ξ
2 
n = 0 (20b) 

j + δ j ξk + γ j ξ
2 
k ≥ 0 k ∈ { 1 , . . . , K} \ { m, n } . (20c) 

Without loss of generality, we assume that ξm < ξn . Solving 
he equalities (20a) and (20b) , we obtain δ j = −(ξm + ξn ) γ j , and 

j = ξm ξn γ j . The next step is to ensure that the inequality system 

20c) is satisfied. We study two cases with respect to the direction 

j as follows by normalizing | γ j | = 1 . 

1. γ j = 1 : In this case, we need to guarantee that (ξk −
ξm )(ξk − ξn ) ≥ 0 for all k ∈ { 1 , . . . , K} \ { m, n } . Consequently,
we have either ξk ≥ ξm and ξk ≥ ξn , or ξk ≤ ξm and ξk ≤ ξn . 
There are only two ways to satisfy these restrictions, re- 

sulting in the following extreme ray generators of the form 

(α j , δ j , γ j ) : 
• (ξ(1) ξ(2) , −(ξ(1) + ξ(2) ) , 1) ; 
• (ξ(K−1) ξ(K) , −(ξ(K−1) + ξ(K) ) , 1) . 

2. γ j = −1 : In this case, we need to ensure that (ξk − ξm )(ξk −
ξn ) ≤ 0 for all k ∈ { 1 , . . . , K} \ { m, n } . This requires that ξm ≤
ξk ≤ ξn . To satisfy this case, we have the extreme ray gener- 

ator 
• (−ξ(1) ξ(K) , ξ(1) + ξ(K) , −1) . 

Lastly, through converting the resulting extreme ray generators 

o the original variables of the form (α j , δ
1 
j 
, δ2 

j 
, γ 1 

j 
, γ 2 

j 
) using δ1 

j 
=

ax { 0 , δ j } , δ2 j = max { 0 , −δ j } , γ 1 
j 

= max { 0 , γ j } , γ 2 
j 

= max { 0 , −γ j } ,
e obtain the desired result. This completes the proof. �

Then building on Proposition 1 , we derive valid inequalities for 

he MILP reformulation (17) as follows. 

roposition 3. The following inequalities are valid for Model (17) : 

(1) ξ(2) − (ξ(1) + ξ(2) )(μ j (y ) − εμ
j 
) + (σ 2 

j (y ) + (μ j (y )) 
2 ) εσ

j 

≥ 0 ∀ j ∈ J (21a) 

(K−1) ξ(K) − (ξ(K−1) + ξ(K) )(μ j (y ) − εμ
j 
) + (σ 2 

j (y ) + (μ j (y )) 
2 ) εσ

j 

≥ 0 ∀ j ∈ J (21b) 

− ξ(1) ξ(K) + (ξ(1) + ξ(K) )(μ j (y ) + εμ
j 
) − (σ 2 

j (y ) + (μ j (y )) 
2 ) εσ

j 

≥ 0 ∀ j ∈ J (21c) 

roof. First, consider the primal problem (10) and its dual prob- 

em (11) . Note that the dual model (11) is always feasible as we

an let values of variables α j be arbitrarily large. To ensure the 

easibility of the primal problem, it suffices to demonstrate that 

he dual problem is bounded. To this end, we consider the decom- 

osed dual subproblem (18) , and use the extreme ray generators 

n Lemma 1 by plugging them into the objective function (18a) . 

he resulting inequalities (21) ensure that the dual problem (18) is 

ounded, to guarantee the feasibility of (10) . This completes the 

roof. �

We continue to linearize nonlinear terms in (21) using 

16b) and McCormick envelopes (14) . As a result, inequalities 

21) are equivalent to: 

(1) ξ(2) − (ξ(1) + ξ(2) )( ̄μ j (1 + 

∑ 

i ′ ∈ I 
λμ

ji ′ y i ′ ) − εμ
j 
) + � j ε

σ
j ≥ 0 ∀ j ∈ J 

(22a) 
8 
(K−1) ξ(K) − (ξ(K−1) + ξ(K) )( ̄μ j (1 + 

∑ 

i ′ ∈ I 
λμ

ji ′ y i ′ ) − εμ
j 
) + � j ε

σ
j 

≥ 0 ∀ j ∈ J (22b) 

− ξ(1) ξ(K) + (ξ(1) + ξ(K) )( ̄μ j (1 + 

∑ 

i ′ ∈ I 
λμ

ji ′ y i ′ ) + εμ
j 
) − � j ε

σ
j 

≥ 0 ∀ j ∈ J (22c) 

j = σ̄ 2 
j + μ̄2 

j + 

∑ 

i ′ ∈ I 
� ji ′ y i ′ + 2 ̄μ2 

j 

| I| ∑ 

l=1 

l−1 ∑ 

m =1 

λμ
jl 
λμ

jm 
Y lm 

∀ j ∈ J (22d) 

Y lm 
, y l , y m ) ∈ M 

′ 
(0 , 1) ∀ l = 1 , . . . , | I| , l > m. (22e) 

After integrating constraints (22) into the MILP reformu- 

ation (17) , we strengthen our formulation for the original 

roblem (2) . Later our computational studies are based on 

odel (17) with valid inequalities (22) , and we further demon- 

trate the efficiency of the proposed constraints in the next sec- 

ion. 

. Computational results 

In this section, we conduct extensive numerical studies and 

emonstrate the efficacy of the proposed decision-dependent dis- 

ributionally robust (DDDR) approach from various aspects. Specif- 

cally, we compare its solutions and performance against different 

acility location plans obtained from solving a deterministic formu- 

ation with decision-dependent demand, and distributionally ro- 

ust (DR) and stochastic programming (SP) formulations neglecting 

ecision-dependency in the demand parameter. 

To evaluate a location plan ˆ y (given by either DDDR, DR, SP, or 

he deterministic model), we conduct out-of-sample tests by using 

odel (23) (see below) to evaluate solution performance. We em- 

loy the Monte Carlo sampling and Sample Average Approximation 

ethod (see Kleywegt, Shapiro, & Mello, 2002 ) for generating real- 

zations of customer demand. Specifically, we generate a set of de- 

and realizations, denoted by d ω 
j 
( ̂  y ) , for each scenario ω ∈ � and

ustomer site j ∈ J. These realizations (or equivalently, the out-of- 

ample test scenarios) are generated based on a given solution ˆ y 

sing the mean and variance information defined in (12) . For each 

cenario ω, let p ω , x ω 
i j 

and s ω 
j 

be the probability of realizing the 

cenario, the amount of demand at customer site j satisfied by fa- 

ility at location i, and the unsatisfied demand at customer site j, 

espectively. A solution evaluation model is given by: 

in 
x,s 

∑ 

i ∈ I 
f i ̂  y i + 

∑ 

ω∈ �
p ω 

( ∑ 

i ∈ I 

∑ 

j∈ J 
c i j x 

ω 
i j + 

∑ 

j∈ J 

(
p j s 

ω 
j − r j d 

ω 
j ( ̂  y ) 

)) 

(23a) 

.t. 
∑ 

i ∈ I 
x ω i j + s ω j = d ω j ( ̂  y ) ∀ j ∈ J, ω ∈ � (23b) 

 
ω 
i j ≤ C i ̂  y i ∀ i ∈ I, j ∈ J, ω ∈ � (23c) 

 
ω 
i , x 

ω 
i j ≥ 0 ∀ i ∈ I, j ∈ J, ω ∈ �. (23d) 

Here the objective function (23a) minimizes the total expected 

ost of facility location, transportation, and unmet demand minus 

he revenue obtained. Constraint (23b) ensures that demand is ei- 

her satisfied or penalized across all the scenarios while constraint 
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23c) guarantees that the capacity of each facility location is not vi- 

lated. For an independently and identically distributed set of sce- 

arios, model (23) is decomposable by scenario when the value ˆ y 

s given. In this case, model (23) can be solved separately for each 

cenario subproblem. 

In the remainder of the section, we first discuss experimental 

ettings used in our numerical studies in Section 4.1 . Then we pro- 

ide a comprehensive analysis of the proposed approach on vari- 

us test cases in Section 4.2 including different (i) variability levels 

f demand, (ii) unit penalty costs, (iii) robustness levels, (iv) lim- 

ts on the number of open facilities, (v) decision-dependent dis- 

ribution types, and (vi) models with decision-dependent parame- 

er. Finally, we highlight the computational efficiency of the DDDR 

odel by conducting experiments using different sizes of instances 

n Section 4.3 . 

.1. Experimental setup 

We randomly generate a set of potential facility locations and 

ustomer sites. We first present the default settings for all the 

roblem parameters, which remain the same throughout all the 

umerical studies, unless otherwise stated. Euclidean distance is 

sed to represent the distance between each candidate facility 

ocation and customer site. These distance values are assumed 

o directly affect transportation cost parameters, namely c i j for 

ll i ∈ I, j ∈ J. The parameters for the fixed opening cost, f i , and

apacity, C i , for all i ∈ I are sampled from Uniform distributions 

(50 0 0 , 10 , 0 0 0) and U(10 , 20) , respectively. For each j ∈ J, we set

nit penalty, p j , for the unmet demand as 225, and revenue pa- 

ameter r j as 150 for each customer site j ∈ J. 

We sample the empirical mean of demand at each customer 

ite j ∈ J, μ̄ j , from a Uniform distribution U(20 , 40) . Then, we let

¯ j = μ̄ j , implying the coefficient of variation equaling to 1. We de- 

ne the moment-based ambiguity set by letting εμ
j 

= 0 , and εσ
j 

= 

σ
j = 1 in (1) , for all customer sites j ∈ J. The support size of de-

and values at each customer site, namely K, is taken as 100 and 

hus the values ξ1 , . . . , ξK are in the range { 1 , . . . , 100 } . 
For establishing decision dependency between demand distri- 

ution and facility location decisions, we select the parameters λμ
ji 

nd λσ
ji 

for all i ∈ I, j ∈ J using the distance between each facil-

ty location and customer pair. We consider them as a decreasing 

unction of the corresponding distance, specifically exp (−c i j / 25) . 

onsequently, the effect of a facility located at i on the demand 

t customer site j is higher when the facility is closer to the cus- 

omer. Next, the sums of the vectors λμ
j 
, λσ

j 
are normalized for 

ach customer site j ∈ J to adjust the effect of the location deci- 

ions on demand. Note that if λμ
ji 

and λσ
ji 

values are set to 0 for 

ll j ∈ J and i ∈ I in the moment functions in (12) , then the current

etting reduces to a decision-independent form, i.e., a traditional 

istributionally robust optimization model. 

To assess the performance of the proposed optimization frame- 

ork by taking into account various choices of model parameters 

nd underlying demand distribution, we provide an extensive set 

f numerical studies over the proposed and existing optimization 

pproaches. We implement all the optimization models in Python 

sing Gurobi 7.5.2 as the solver on an Intel i5-3470T 2.90 gigahertz 

achine with 8 gigabytes RAM. 

.2. Numerical results and analyses 

We first examine how facility location decisions are affected 

y parameter choices, robustness levels, and modeling of decision- 

ependency in DDDR and other benchmark approaches. In partic- 

lar, we consider location solutions given by SP, DR, and DDDR 

odels over a set of diverse instances. For obtaining in-sample lo- 
9 
ation solutions of an SP model (23) where we replace the fixed 

ˆ  by decision variables y, we generate training samples with 20 

r 100 scenarios following a Normal distribution with mean and 

ariance of the demand at each customer site j ∈ J being μ̄ j and 

¯ 2 
j 
, respectively. As scenarios are uniformly sampled from the Nor- 

al distribution following the Monte Carlo sampling method, the 

robability of realizing each scenario ω, i.e., p ω , is taken as 1 / | �| .
e refer to instances of the two SP models with different training 

ample sizes as SP(20) and SP(100), respectively. We also utilize 

odel (17) to develop a regular distributionally robust facility lo- 

ation model by setting λμ
ji 

and λσ
ji 

values to 0 for all j ∈ J and 

 ∈ I to obtain in-sample location solutions under the DR setting. 

or evaluating the performance of different location solutions, we 

enerate random samples with 10 0 0 test scenarios for the out-of- 

ample test. In particular, given a solution ˆ y , we first obtain the 

alues of the moment functions μ j ( ̂  y ) and σ
2 
j 
( ̂  y ) for each cus- 

omer site j ∈ J using (12) , and generate test scenarios based on 

hese values following a certain distribution. In the default setting, 

e test our results by considering Normal distribution as the true 

nderlying demand distribution but vary the distribution types in 

ne set of tests later. 

Table 1 presents the average solution performance, in terms of 

he objective value and unmet demand of solutions given by dif- 

erent approaches over 10 replications of out-of-sample tests us- 

ng (23) for five different sizes of instances. Specifically, we con- 

ider | I| = 5 , . . . , 10 , and | J| = 2 | I| . Since we minimize the total cost

inus revenue, smaller objective values are preferred. The results 

emonstrate the superior performance of DDDR solutions over the 

nes of SP and DR with decision-independent demand. For in- 

tance, the DDDR approach provides, on average, 18% and 12% im- 

rovements in profit, and 99% and 96% reduction in unmet de- 

and, as compared to SP and DR approaches over instances with 

0 facilities, respectively. Consequently, SP and DR approaches ob- 

ain less profit and lower quality of service by not fully satisfying 

he demand. 

We further provide detailed results on a specific instance with 

 I| = 10 and | J| = 20 , for which we visualize all the 20 customer

ites and 10 possible facility locations in Fig. 2 . The customer sites 

re marked by circles, and the possible facility locations are de- 

oted by squares. 

In Table 2 , we present the results of DDDR, DR, and SP ap-

roaches under the default setting, where the average, standard 

eviation and percentile values of each solution’s out-of-sample 

bjective value (i.e., the net profit) and unmet demand are de- 

ailed. Overall, the DDDR approach yields the best results in terms 

f profit and unmet demand. DR is better than SP in terms of 

ercentile values of the total profit and unmet demand. Both 

P(20) and SP(100)’s solutions show similar out-of-sample perfor- 

ance. The results also demonstrate the importance of considering 

he decision-dependency in demand parameters, as the DDDR ap- 

roach outperforms DR in terms of profit and unmet demand (i.e., 

uality of service). 

.2.1. Effect of the variability in demand 

Next, we show how solutions produced by different models are 

ffected by the variability of the underlying demand data. Fig. 3 

hows average out-of-sample performance of profit and unmet de- 

and in all the 10 0 0 test scenarios, where the coefficient of varia- 

ion is used for representing the demand variability. 

In Fig. 3 , as the coefficient of variation (defined as the ratio of 

mpirical variance and mean, namely 
σ̄ 2 
j 

μ̄ j 
at each customer site j) 

ncreases, the corresponding demand variability increases, assum- 

ng that the empirical mean is kept constant. Consequently, the 

istributionally robust approaches (DR and DDDR) become more 

uitable as compared to SP under higher variability as they obtain 
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Table 1 

Average out-of-sample profit and unmet demand values given by different models’ solu- 

tions for different instance sizes. 

| I| SP(20) SP(100) DR DDDR 

Average profit 5 −12806 . 7 −12763 . 3 −7618 . 55 −22554 . 2 

6 −21460 . 7 −21483 . 7 −16425 . 1 −30298 . 1 

7 −28201 . 8 −27810 . 6 −24911 . 6 −36608 . 5 

8 −40914 . 9 −39206 . 7 −35810 . 4 −48027 . 2 

9 −48247 . 1 −48790 . 2 −51503 . 5 −59816 . 9 

10 −63281 . 7 −63337 . 3 −67084 . 4 −75164 . 8 

Average unmet demand 5 95.4 95.9 128.2 15.1 

6 75.7 74.7 110.6 3.9 

7 71.7 75.1 86.2 0.0 

8 56.8 67.8 82.1 0.1 

9 58.1 53.9 38.7 0.2 

10 47.0 46.9 11.1 0.4 

Fig. 3. Effect of the demand variability on solutions given by different approaches. 

Table 2 

Statistics of the out-of-sample profit and unmet-demand results given by solutions 

of SP, DR and DDDR models for a specific instance shown in Fig. 2 . 

SP(20) SP(100) DR DDDR 

Average profit −53581 . 0 −53468 . 2 −61443 . 7 −64375 . 0 

Std. dev. 6457.3 6712.0 6613.8 4917.8 

95% −42448 . 0 −42643 . 8 −50474 . 8 −55845 . 2 

90% −44 96 8 . 7 −44505 . 1 −52944 . 0 −58082 . 6 

75% −49367 . 8 −48939 . 7 −57056 . 9 −61178 . 4 

50% −53957 . 6 −53666 . 1 −61504 . 1 −64362 . 4 

Average unmet demand 59.0 61.3 3.0 0.3 

Std. dev. 35.1 35.6 6.8 2.3 

95% 124.4 122.8 18.3 0.0 

90% 105.6 107.9 11.4 0.0 

75% 80.2 81.9 2.6 0.0 

50% 54.4 58.0 0.0 0.0 

l

i

m

w

a

m

s

t

d

m

t

N

a

a

Table 3 

Statistics of profit and unmet demand given by SP, DR and DDDR solutions tested 

in Gamma-distribution-based out-of-sample scenarios. 

SP(20) SP(100) DR DDDR 

Average profit −51962 . 2 −51627 . 2 −60575 . 0 −64268 . 5 

Std. dev. 5779.2 5951.9 6145.7 4694.6 

95% −42495 . 9 −41383 . 7 −50788 . 8 −56590 . 5 

90% −44328 . 6 −43867 . 8 −52915 . 7 −58320 . 5 

75% −48110 . 2 −47766 . 7 −56590 . 1 −61069 . 6 

50% −51858 . 0 −51960 . 7 −60525 . 0 −64306 . 2 

Average unmet demand 70.7 71.1 8.2 1.0 

Std. dev. 47.5 46.8 16.8 5.0 

95% 160.1 157.2 38.0 5.4 

90% 137.4 136.3 23.9 0.0 

75% 97.3 98.7 9.5 0.0 

50% 61.2 62.8 0.0 0.0 

T

T

b

r

t

a

a

d

d

4

i

l

c  
ocation plans that are more reliable to various demand patterns 

n the out-of-sample test scenarios. SP is more sensitive to the de- 

and variability as the performance of its solutions monotonically 

orsens as demand variance increases. As the coefficient of vari- 

tion decreases, the demand variability decreases and the perfor- 

ance of stochastic and distributionally robust solutions become 

imilar. Moreover, the DDDR approach performs significantly bet- 

er in all the settings, highlighting the importance of considering 

ecision dependency in parameter uncertainty quantification. 

Next, we analyze the effect of misspecifying the true de- 

and distribution by constructing a new set of test scenarios for 

he out-of-sample test. For each solution ˆ y , instead of using the 

ormal distribution we follow a Gamma distribution to gener- 

te test scenarios, where the scale parameter ˆ θγ
j 

= σ 2 
j 
( ̂  y ) /μ j ( ̂  y ) 

nd the shape parameter ˆ k 
γ
j 

= μ j ( ̂  y ) / ̂  θ
γ
j 

for each customer site j. 
10 
able 3 provides the corresponding results in comparison to 

able 2 (where scenarios were sampled following a Normal distri- 

ution). As Gamma distributions are more skewed, the percentile 

esults worsen for all approaches. Moreover, SP cannot capture 

he changes in the underlying distribution, whereas DR and DDDR 

re not much impacted by these changes. The proposed DDDR 

pproach again yields the best results in terms of average, stan- 

ard deviation and percentile values of the total profit and unmet 

emand. 

.2.2. Effect of unit penalty for unmet demand 

We examine the effect of the parameter setting for penal- 

zing each unit of unmet demand. Table 4 shows the facility 

ocation plans given by different approaches with unit penalty 

ost p j = 150 , 225 , 300 for all j ∈ J. The case with p j = 225
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Fig. 4. Effect of the penalty parameter on solutions given by different approaches. 

Table 4 

Facility location solutions given by different approaches for dif- 

ferent p j -values. 

Open facility locations 

p j = 150 p j = 225 p j = 300 

SP(20) 1,5,7,10 1,5,7,10 1,5,6,7,10 

SP(100) 1,5,7,10 1,5,7,10 1,5,6,7,10 

DR 1,7,10 1,3,5,6,7,10 1,3,4,5,6,7,10 

DDDR 1,4,5,6,7,10 1,2,4,5,6,7,9,10 1,2,4,5,6,7,9,10 
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Table 5 

Out-of-sample profit and unmet demand values of different solutions when the 

level of robustness κ = 20% . 

SP(20) SP(100) DR DDDR 

Average profit −51974 . 0 −52404 . 0 −60819 . 5 −63572 . 2 

Std. dev. 6783.4 6819.6 7295.4 5101.9 

95% −40260 . 9 −41266 . 0 −4 84 92 . 4 −54978 . 0 

90% −42887 . 1 −43644 . 5 −51692 . 9 −56970 . 0 

75% −47460 . 6 −47809 . 1 −55968 . 8 −60213 . 8 

50% −52170 . 1 −52780 . 4 −60927 . 2 −63639 . 1 

Average unmet demand 61.6 63.5 3.6 0.5 

Std. dev. 36.6 34.1 7.4 3.4 

95% 129.0 127.0 20.8 1.3 

90% 112.7 111.9 14.0 0.0 

75% 82.7 84.7 3.9 0.0 

50% 56.7 59.9 0.0 0.0 
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orresponds to facility location solutions in Table 2 , and p j = 150 

epresents the case when the penalty parameter is equal to the 

evenue amount per unit. In a decision-dependent approach, the 

ean of the underlying demand increases as we open new facili- 

ies. Consequently, the DDDR model enforces opening more facil- 

ty locations yielding higher demand and thus higher profit. Fur- 

hermore, as unit penalty gets higher, it becomes more undesir- 

ble to have unmet demand. Thus, all approaches open more fa- 

ilities when unit penalty cost increases. When we examine the 

ctual locations of the open facilities in Fig. 2 , we observe that the

DDR model opens more locations close to certain customer sites. 

n the other hand, SP and DR approaches open fewer locations 

nd they are not necessarily close to the customer sites as both 

pproaches neglect the possible boosting demand affected by loca- 

ion decisions. 

Fig. 4 shows how the average profit and unmet demand values 

n the out-of-sample test are affected by unit penalty cost. As the 

nit penalty parameter increases, the amount of unmet demand 

ecreases for all approaches, as expected. When penalty parameter 

akes its smallest value, DR has the worst performance both in the 

rofit and unmet demand results, for which we provide a detailed 

xplanation as follows. The DR approach compares two unfavorable 

ases: (i) opening many locations but having few customers, and 

ii) not opening many locations and missing potential customers. 

y favoring the latter case, the DR solution loses customers by not 

aving enough facilities open and neglecting the increase in the 

emand caused by the opening of new facilities. This effect can 

e also seen in Table 4 as the DR approach opens fewer locations 

nder small penalty values. On the other hand, the DDDR approach 

utperforms DR and SP in all settings, resulting in higher profit and 

ess unmet demand. 

.2.3. Effect of the robustness level of the ambiguity set 

In this section, we examine the effect of the robustness level 

f the ambiguity set (1) on facility location solutions. We adjust 

he parameters εμ
j 
, εσ

j 
, εσ

j for each customer site j ∈ J. Recall 

hat, in the default setting, εμ
j 

= 0 , and εσ
j 

= εσ
j = 1 under the
11 
ssumption of having the perfect knowledge about the underlying 

ean and variance for each customer site. By adjusting these pa- 

ameter choices, we construct models that are robust to different 

evels of uncertainty in the distribution parameters. 

We consider a different procedure for generating out-of-sample 

est scenarios to evaluate different solutions. We first compute 

j ( ̂  y ) and σ 2 
j 
( ̂  y ) for each customer site j ∈ J given a location 

olution ˆ y . Then, we sample the mean and variance parame- 

ers from the ranges [(1 − εμ
j 
) μ j ( ̂  y ) , (1 + εμ

j 
) μ j ( ̂  y )] and [(1 −

σ
j 
) σ 2 

j 
( ̂  y ) , (1 + εσ

j ) σ
2 
j 
( ̂  y )] , respectively. After that, we generate 100

ormally distributed scenarios using the sampled mean and vari- 

nce parameters. We repeat this procedure ten times to construct 

he set of test scenarios of size 10 0 0, where each subset of scenar-

os has its own distribution. 

Table 5 shows the performance of different solutions for κ = 

0% level of robustness, where the level of robustness parameter 

 ≤ κ ≤ 1 implies εμ
j 

= κμ j (y ) , ε
σ
j 

= 1 − κ, and εσ
j = 1 + κ for ev-

ry customer site j. Therefore, the larger κ is, a wider range of 

mbiguity we consider in the unknown distribution and become 

ore conservative. As a result, distributionally robust approaches 

i.e., DR and DDDR) become more cautious to the increased am- 

iguity. On the other hand, SP solutions are not affected by these 

hanges as they are trained with the same data and procedures. 

onsequently, DR and DDDR solutions perform better than the one 

f SP given higher κ-values. Furthermore, the DDDR’s results are 

ess affected by the increased robustness, in terms of both profit 

nd unmet demand values, as compared to κ = 0 in the default 

etting with results shown in Table 2 . 

As we continue to increase the level of robustness, the set 

f test scenarios includes more variability. Due to this increased 
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Fig. 5. Effect of varying budget for opening facilities. 
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Table 6 

Facility location solutions of DDDR under different 

location-dependency patterns. 

Decision-dependency form Open facility locations 

Distance-based 1,2,4,5,6,7,9,10 

ρ- 

means 

ρ = 1 1,4,5,6,7,8,10 

2 1,2,3,4,5,7,10 

3 1,2,3,5,6,7,10 

5 1,2,3,4,5,7,10 

10 1,3,4,5,6,7,10 

4

m

p

d

M

r

o

l

e

c

l

s

o

d

o

u

l

r

d

p  

a

t

t

d

D

w

i

t

l

o

o

c

i

l

ariability, all approaches have higher standard deviations and 

orsen percentile values for the optimal objective and unmet 

emand values over all test scenarios. Despite of this, the distribu- 

ionally robust approaches (DR and DDDR) under κ = 5% and 10% 

ave the same facility location plans as in the case of κ = 20% . 

.2.4. Effect of the budget for opening facilities 

We compare solutions of DDDR, DR, and SP given a limit on the 

otal number of facilities to open. We add a constraint to the opti- 

ization models, specifically to the set Y, which restricts the total 

umber of locations that can be selected. Fig. 5 summarizes the 

ut-of-sample performance of each approach’s solution in terms 

f average profit and unmet demand given different budgets. As 

he DDDR approach considers demand increase given by opening 

ore facilities, adding such a limit hinders its capability of doing 

o. Consequently, the performance of DDDR, DR, SP solutions be- 

omes similar if we only have very small budget to open few facil- 

ties. On the other hand, as we relax this limitation, the DDDR ap- 

roach outperforms the others, whereas SP is not affected by the 

elaxation. 

.2.5. Effect of the forms of decision-dependency 

We examine how DDDR results are affected by how we model 

he decision-dependency of random demand. Recall that, in the de- 

ault setting, we consider λμ
ji 
, λσ

ji 
for each pair of customer site j

nd facility location i as decreasing functions of the distance be- 

ween them. Alternatively, we propose a clustering-based decision- 

ependency for modeling the ambiguity set. In particular, in our P - 

eans approach , the demand at customer site j is equally affected 

y the closest ρ facilities in its neighborhood. Let P 
ρ
j 
be the set of 

facility locations that are closest to customer site j; define λμ
ji 

= 

σ
ji 

= 
1 
ρ for each customer site j ∈ J and facility location i ∈ P 

ρ
j 
. As

ocations i ∈ I \ P ρ
j 

do not affect the demand at customer site j,

heir corresponding λμ
j 
- and λσ

j 
-values are set to zero. 

We present the location solutions given by different approaches 

n Table 6 . The distance-based approach corresponds to the default 

etting, and ρ-means approach is examined under different ρ val- 

es. As all possible facility locations are considered in the distance- 

ased approach with inversely proportional values with respect to 

heir corresponding distances, most facilities are opened in this 

etting. For ρ-means approaches, the set of facilities to be open 

re affected by the choice of ρ . As ρ gets larger, distances between 

ustomer and location pairs start to impact the demand less, and 

ther factors such as opening cost of the locations may become 

ore important. We note that ρ = 10 corresponds to an extreme 

ase where all facilities equally affect the demand at any customer 

ite. 
12 
.2.6. Effect of decision-dependency in alternative formulations 

We investigate the effect of opening locations on customer de- 

and in a deterministic decision-dependent formulation, which re- 

laces the demand parameter d in the original model (2) by its 

ecision-dependent mean value μ(y ) . Furthermore, we obtain an 

ILP reformulation that can be solved in off-the-shelf solvers by 

eplacing μ j (y ) for each site j with its counterpart in (12) and 

mitting the upper-bound value. We utilize the distance-based re- 

ationship to represent the impact of open locations on demand of 

ach customer site, and adopt the base model assumptions, dis- 

ussed earlier in this section. Once we obtain the optimal facility- 

ocation solution of the deterministic counterpart over the instance 

hown in Fig. 2 , we evaluate its out-of-sample performance based 

n the 10 0 0 test scenarios, to generate which we follow a Normal 

istribution and compute the mean and variance of demand based 

n the solution. We present the resulting statistics of the profit and 

nmet demand values in Table 7 , and note that the open facility 

ocations are 1, 2, 5, 6, 7 and 10 under this setting. 

As we compare these results with the corresponding ones 

eported in Table 2 , we observe that the solution of the decision- 

ependent deterministic approach has higher variance of the total 

rofit over the set of 10 0 0 test scenarios as compared to SP, DR

nd DDDR approaches, whereas on average, it performs better than 

he decision-independent SP and DR approaches. As we examine 

he unmet demand values, we observe that the decision-dependent 

eterministic approach outperforms SP, whereas the solutions of 

R and DDDR approaches result in less unmet demand on average 

ith also better worst-case performance. Although the determin- 

stic approach takes into account the decision-dependency issue in 

he demand parameter, it does not focus on finding the best so- 

ution under the worst-case as opposed to distributionally robust 

ptimization, resulting in such a less resilient performance. On the 

ther hand, since the decision-dependent deterministic approach 

onsiders the effect of increased demand with enhanced availabil- 

ty of the open locations, it prefers to open the same number of 

ocations as the SP and DR approaches (see Table 4 for 
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Table 7 

Statistics of the out-of-sample profit and unmet demand values of optimal solutions to the decision- 

dependent deterministic model. 

Percentile values 

Mean Std. dev. 95% 90% 75% 50% 

Profit −62985 . 4 6810.3 −51590 . 9 −53827 . 2 −58120 . 9 −63325 . 1 

Unmet demand 8.8 12.8 35.4 25.8 13.5 2.9 

Table 8 

Effect of the valid inequalities on CPU time. 

| I| × | J| 
5 × 10 6 × 12 7 × 14 8 × 16 9 × 18 10 × 20 

DDDR average run time (in seconds) 2.15 3.81 8.88 17.46 46.82 111.36 

Speed-up (times) 1.04 1.19 1.09 1.12 1.03 1.15 

Fig. 6. Run time comparison between different approaches. 
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omparison), however, fewer locations than DDDR. These re- 

ults highlight the efficacy of the DDDR approach by integrating 

ecision-dependency within a distributionally robust optimization 

ramework, to obtain facility-opening plans with better profit and 

igher quality of service, while further outperforming all the other 

pproaches in terms of the worst-case performance. 

.3. Results of computational time 

Lastly, we compare the computational time of SP, DR and DDDR 

pproaches for different instance sizes. Fig. 6 provides the run time 

or cases having | I| = 5 , . . . , 10 , and | J| = 2 | I| . The run time denotes

he average CPU time over 10 different randomly generated repli- 

ations of each instance. In these replications, the default param- 

ter configurations and moment-based ambiguity sets are used as 

escribed in Section 4.2 . The distributionally robust approaches are 

ore computationally expensive, whereas SP is the fastest. Further- 

ore, run time of the DDDR approach is more sensitive to the size 

f instances. Also, the computational time of DDDR model (17) de- 

ends on the upper bounds of the dual variables, which are set to 

00 for all experiments. 

Next we examine the effect of the inclusion of valid inequalities 

21) to Model (17) . Table 8 provides the average run time com- 

arison of two formulations over 10 randomly generated instances 

f different sizes. We present the speed-ups in comparison to the 

ormulation (17) without the valid inequalities (22a) –(22c) and the 

orresponding additional variables and constraints (22d) and (22e) . 

hese results illustrate the speed-up due to the proposed inequal- 

ties in the order of 3%–19% for different instances. 
13 
. Conclusion 

In this paper, we propose a novel framework for modeling the 

acility location problem under distributionally robust decision- 

ependent demand distributions. We consider a moment-based 

mbiguity set of the unknown demand distributions, using which 

e can formulate a monolithic model for solving the problem. We 

tudy the case when mean and variance of stochastic demand at 

ach customer site are piecewise linear functions of facility loca- 

ion decisions. We benefit from linear programming duality and 

onvex envelopes to obtain exact MILP reformulation of the mono- 

ithic model and derive valid inequalities to strengthen it. An ex- 

ensive set of instances are tested to assess the performance of 

he proposed approach depending on various problem characteris- 

ics. Our studies indicate superior performance of the proposed ap- 

roach, which results in consistently higher profit and less unmet 

emand, as compared to existing stochastic programming and dis- 

ributionally robust methods. We also present the computational 

fficiency of the proposed valid inequalities with up to 19% speed- 

p for different instances. We believe that our study leverages a 

ovel line of research by providing insights for the facility location 

nd optimization under uncertainty literature, and highlighting the 

eed to represent the dependency between customer demand and 

lanner’s decisions within various business settings. 

One of the future research directions is to further extend the 

iecewise linear function forms for the mean and variance values 

sed in the ambiguity set to other types of nonlinear functions, 

nd then examine the corresponding reformulations and their nu- 

erical performance. 
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