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ABSTRACT: Biomass chars are known to be intrinsically redox-reactive toward
some organic compounds, but the mechanisms are still unclear. To address this, a
char made anoxically at 500 °C from dealkaline lignin was reacted either in the fresh
state or after 180-day aging in air with p-nitrophenol (NO,-P), p-hydroxybenzalde- '
hyde (CHO-P), phenol (H-P), or p-methoxyphenol (MeO-P). The reactions were RAS)on Shag AW W
carried out under oxic or anoxic conditions. Degradation occurred in all cases. Both \r’] S e
oxidation and reduction products were identified, with yields dependent on the R

presence or absence of air during reaction or storage. They included oligomers, ":m?d
amines, and ring-hydroxylated compounds, among others. Exposure to air suppressed ]
sorption, annihilated reducing sites, and provided a source of reactive oxygen species G““'““ G5L.L.)

that assisted degradation. Sorption suppression was due to the incorporation of

hydrophilic groups by chemisorption of oxygen, and possibly blockage of sites by

products. Fresh char has comparable electron-donating and accepting capacity,

whereas there is a preponderance of electron-accepting over donating capacity in aged char. Under anoxic conditions, both oxidation
and reduction occurred. Under oxic conditions or after aging in air, oxidation predominated, and linear free energy relationships
were found between the rate constant and the Hammett or Brown substituent electronic parameter or the standard electrode
potential of the phenol. The results demonstrate that chars possess heterogeneous redox activities depending on reaction pairs,

sl Metrics & More | o Supporting Information

Pmdur.t ,.Zb I
() o:idanm ‘,‘;-Ts* [1:]

Reactive sites

reaction conditions, and aging.

B INTRODUCTION

Chars are the residues of pyrolysis or incomplete combustion
of biomass. Fire-derived chars from wildfires and land
management practices are widely dispersed in the environ-
ment.' > Chars from pyrolysis of biomass wastes (“biochars”)
have attracted interest for use in agriculture and environmental
management " A principal focus of research on chars in these
contexts is their strong ability to sorb organic compounds. As
sorbents, chars distributed in the environment can impact the
movement and bioavailability of chemicals in soil.*~ "
Moreover, sorptivity is central to the role of biochar and
other carbonaceous materials employed in environmental
remediation of soil and water.”" >’

Researchers have become increasingly aware, however, that
chars can have inherent chemical reactivity."*~** Chars can
react with O, to produce reactive oxy%en species (ROS),
including O,"~/ HO,®, H,0,, and HO®, at electron-rich
defect sites” or persistent free radlcal (PFR) sites.*>*®
Graphite and activated carbon (AC) particles and fibers have
long been known to cause oligomerization of phenols in the
presence of air, leading to _the often-observed “irreversible”
sorption by these materials.”” Initiation of phenol oligomeriza-
tion has been attributed to ROS generated from 02 reaetmg at
defect, edge,28 2 or basic functional group sites.””*0 7% A free

© XXX American Chemical Society

< ACS Publications

radical pathway involving ROS may be responsible for the
degradation of organic compounds in biochar systems in the
presence of added peroxides.””**** Chars are also eal::able of
electrochemically donating or accepting electrons.” Elec-
tron-donating capacity (EDC) and electron-accepting capacity
(EAC) of up to 7 and 0.4 mequiv/g, respec:tlvely, have been
reported for pinewood-derived biochars.”” Chars may act as
electron shuttles between microbes and pollutants or between
microbes and minerals due to EDC and EAC, provided
electrical conductivity is sufficiently high. 3840 Lastly, direct
reactions between biochars and organic chemicals or metals
have been reported. M2 T o explain the reactions of chars
with pollutants, researchers have implicated reactive sites
(RAS), such as PFR,ZI’ZZ’?'?"4 3 1:1efe|:t,za'}’29’4 * or quinone/
hydroquinone sites.” ™’

We previously reported that a series of biochars*' and model
chars made from pure cellulose or lignin22 are inherently
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reactive toward p-nitrophenol (NO,-P). The reaction occurs
predominantly in the sorbed-state. Aging of the model chars
for up to a month in moist air reduced but did not eliminate
their reau::l:iv.r'itg,'.22 The chars exposed to air chemisorb oxygen,
liberating a portion as H,0, when submerged in water while
simultaneously degrading the evolved H,0, to ROS. The
results showed that direct reaction of NO,-P with char
predominates over H,0,-dependent reactions and that the
majority of direct-reacting sites were non-radical in character.
However, we could not confidently establish the reaction
mechanism: both oxidation”' and reduction®” products of
NO,-P were identified, and the extent of NO,-P degradation
was correlated with the electron paramagnetic resonance
(EPR) signal intensity of char particles in one study”' but not
the other.”” We hypothesized that chars possess reducing or
oxidizing capability, or both, depending on the char, aging
period, and the redox properties of the compound.

To test this hypothesis, we selected a series of substituted
phenols differing in electrode potential and substituent
electronegativity to react with freshly-prepared chars under
either oxic or anoxic conditions. Our previous study’”
indicated that aging fresh char in air annihilated sites reactive
toward NO,-P. To further investigate the influence of char
aging on the sorption and degradation of phenols with
different electronic properties under either oxic or anoxic
conditions, we selected NO,-P (the most electronegative
phenol) and MeO-P (the most electropositive phenol) among
the four phenols as models. The data collected on reactions
conducted with these two phenols were enough to
demonstrate the influence of the aging process. Lignin was
chosen as the precursor material because it is substantially free
of transition metals that can potentially mask the involvement
of the carbon matrix and because overall, lignin char is much
more reactive than cellulose char.”

B EXPERIMENTAL SECTION

Materials. Dealkaline lignin was purchased from TCL p-
Nitrophenol (NO,-P, >99.8%), p-hydroxybenzaldehyde
(CHO-P, >99.0%), phenol (H-P, 99.5%), and p-methoxyphe-
nol (MeO-P, 99.0%) were purchased from Sigma-Aldrich.
Table S1 lists their relevant physicochemical properties. N,O-
bis(trimethylsilyl)trifluoroacetamide (BSTFA, derivatization
grade) used for gas chromatography/mass spectrometry
(GC/MS) analysis was obtained from Sigma-Aldrich.

Preparation and Storage of Chars. Lignin char was
prepared at 500 °C under N, using a method described in the
previous study (details in the Supporting Information (SI)).”
Portions of freshly-prepared chars were flame-sealed in brown
glass ampules under vacuum and labeled fresh char; due to
handling these portions had been exposed to air for about 0.5 h
before evacuation. Other portions were stored in 40 mL brown
glass vials open to room air for six months and labeled aged
char. Lignin char prepared in our previous study in the same
manner had a specific surface area of 231.4 m*/g.”*> Another
biochar prepared from rice straw at 1000 °C labeled RS10 was
used for extractive recovery experiments. Table S2 lists the
elemental content and pH of the chars.

Reaction Rates. Reactions were carried out in 8 mL glass
vials sealed with a Teflon-lined septum screw cap. A solution of
each phenol at an initial concentration of 1437 pmol/L was
prepared in deoxygenated phosphate buffer (0.1 M, pH 3 +
0.1) and stored in a glove box (O, 0 ppm; H,: 1.5-2.0%)
(COY-7000220A). Vials containing lignin char (90 mg) were

mixed with 3 mL of a test phenol solution either in or outside
the glove box to achieve either anoxic or oxic conditions,
respectively. The pH of the mixtures was 6 + 0.1. Under oxic
conditions the O, content of the vials (~46.9 umol) was more
than 10 times greater than the initial phenol content (~4.3
pmol). The sealed vials were shaken on an orbital shaker in the
dark at 20 °C. A replicate vial among those prepared was
sacrificed at 0.5, 2, 4, 6, 8, 12, 16, and 24 h; then every day
until 5 days; and finally every 5 days until the aqueous phase
concentration leveled off or approached zero. The vials were
centrifuged at 3000 rpm for 10 min, and the supernatant was
filtered through a 0.45 pm syringe filter for HPLC analysis.

Sorbed phenol concentration was determined by hot-solvent
extraction as in the previous study.”” After removing as much
supernatant as possible, the residue was weighed. Then
acetonitrile (6 mL per vial) was added, and the vial was
heated at 60 °C for 40 min. The extract was collected and
filtered (0.45 pm) for analysis. This procedure was repeated
several times until the test phenol concentration in the extract
was below the HPLC detection limit. The extraction method
was validated on RS10, an aged char that was presumed inert
because it lacked EPR and DMPO-OH signals. After a 2 day
equilibration period, the recovery of NO,-P at 143.8 ymol/g
initial concentration was 98.8 + 0.6%.

The impact of O, on sorption and degradation was
determined for fresh char with NO,-P and MeO-P. To keep
the mass ratio of phenol/char/water the same in every 16 mL
vial, the char/liquid ratio was held constant at 300 mg/10 mL,
240 mg/8 mL, or 120 mg/4 mL, leaving a headspace volume of
6, 8, or 12 mL of air, respectively. The NO,-P or MeO-P stock
solution was delivered to the vial either in or out of the glove
box to maintain either anoxic or oxic conditions, respectively.
After a 2 day reaction, the supernatant phase and acetonitrile
extracts of the char particles were analyzed for the test phenol
concentration.

Analytical Methods. The phenols were quantified in the
supernatant phase and acetonitrile extracts by elution through
a Cl18-silica column (3.0 mm X 150 mm, 2.7 um, Brownlee,
SPP) with 50:50 (v/v) acetonitrile—deionized water at 1.0
mL/min, and the analyte was detected with a diode array
detector at 318 (NO,-P), 280 (CHO-P), 272 (H-P), or 290
(MeO-P) nm (Shimadzu Prominence high-performance liquid
chromatography system). To identify products, acetonitrile
extracts of char particles and freeze-dried supernatant samples
were first derivatized with BSTFA and then analyzed by GC/
MS (Shimazu, QP2010) (details in the SI). PFRs and HO®
were determined by electron paramagnetic resonance (EPR)
spectroscopy on a Bruker A300-6/1 (details in the SI).

The EAC and EDC of the chars were determined by the
method of Xin et al. (eqs 1 and 2, respectively).*

char + Ti(IlI) — char,4 + Ti(IV) 1)

char + [Fe(III)(CN),I’~ — char__ + [Fe(II)(CN)]*
()

The measurements and calculations are described in the SI
(Figures S1 and S2).

The functional groups of the chars were characterized using
Fourier transform infrared spectrometry (Varian 640-IR).

C 1s X-ray photoelectron spectra (XPS) of chars were
obtained on a PHI 5000 VersaProbe-II spectrometer
(ULVAC-PHI, Japan).
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Figure 1. Degradation of phenols (time decay of total mass in the vessel) in the presence of fresh char (a, b, d, e) and aged char (¢, f). Reaction
conditions: anoxic (@) and oxic (O). Curves represent the fit to the dual-stage first-order rate law.

B RESULTS

Degradation Kinetics. Experiments were conducted with
fresh char for all four phenols and with aged char for NO,-P
and MeO-P, which, respectively, have the most electronegative
and electropositive substituent. Reaction of the test phenol was
observed in all cases. Control experiments indicate that H, in
the headspace from the glove box did not participate in
reactions: (a) NO,-P was still reduced by fresh char in anoxic
reactions without H,, and (b) no NO,-P reduction products
were found after reaction with aged char in anoxic reactions
with H,. Declines in the aqueous phase concentration (Caq)
during 120 h (aged char) or 480 h (fresh char) periods are
plotted in Figure S3. These curves show that removal is rapid
at first and then tapers off. The aqueous C,4 of all compounds
for fresh char under anoxic conditions reached zero by 360 h.
The decline in C,; was incomplete in other cases.
Interpretation of these curves was made difficult by the fact
that sorption/desorption and reaction were occurring simulta-
neously. It is thus more informative to monitor total mass in
the vessel, my, which is the sum of sorbed mass (m,) and
dissolved mass (maq), during the reaction. Independent
measurements of m, and m,, were obtained at each time-
point over the first 120 h. Figure 1 shows that the loss of my
generally proceeds in a faster stage lasting a few hours,
followed by a slower stage.

The decay curves of Figure 1 were fitted to a dual-stage first-
order rate law given in eq 3

My

= F, e Fu 4 Eiow o Kuent

(€)

where F is the mass fraction (Fg, + Fy,,, = 1) and k is the rate
constant corresponding to the fast-reacting and slow-reacting
stage. Equation 3 assumes that sites initiating the reaction are
not depleted. The fitting parameters appear in Table S3. Table
S3 shows that the fast stage generally comprises a small
fraction of the observed degradation (<17% in all cases; <9% in
all but one case) and thus may correspond to the sites that are
more reactive or more available or both.

L ]

Rate constants assuming that the phenols react predom-
inantly in the sorbed-state were also estimated. In that case, the
elementary rate law can be expressed by

dm.

a ~ REAS) xm. @
where k,(RAS) is a rate constant (h™) that is a function of the
(time-dependent) quantity of reactive sites (RAS) on the char.
Equation 4 could not be solved analytically because the
functional relationship between m and m,, as well as how the
quantity of RAS depends on time, are unknown. The variation
of k,(RAS) with time can be calculated numerically, however
(details in SI section I). Values at short times had high
uncertainties reflecting the low percent conversion. Values at
times greater than 10 h (>four half-lives of reaction in the fast
stage) were relatively stable. Thus the average value after 10 h
was taken to represent the sorbed-state rate constant for the
slow stage, k; g,y (Table S3).

The results in Figure 1 and Table S3 show that degradation
by fresh char is more rapid and extensive when the reaction is
carried out under anoxic than oxic conditions, but that
degradation rate and extent by aged char are almost identical
under the two conditions. In addition, for the reaction of two
compounds (NO,-P and MeO-P) with aged char, the results
indicate that aging suppresses the rate and extent of
degradation under anoxic conditions, but aging has little effect
under oxic conditions. The exception is that the initial fast
stage of MeO-P oxic degradation is substantially reduced by
aging. All of these trends originate from the multiple and
interconnected roles of O,, which will be discussed in the
following sections.

Linear Free Energy Relationships (LFERs). LEERs were
tested between kg, or kg, and certain electronic free energy
parameters listed in Table S1. The Hammett 6, and Brown o,
constants reflect the ability of the substituent to withdraw
electron density affecting reactivity at the ring C or —OH
group. The o, incorporates resonance and inductive effects of
the substituent, whereas &," emphasizes resonance effects.
Although they were derived for two-electron (acid-base,
nucleophilic) reactions, they have also been applied to
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Figure 2. Linear free energy relationships between ky,,, (@) or k; 4o, (O) and electronic free energy parameters, including Hammett o, (), Brown
2 (b), and E,.° (c), for the reaction of fresh char under oxic conditions.
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Figure 3. Sorbed test phenol as a percentage of all unreacted test phenol during the reaction under anoxic (@) or oxic (O) conditions. p-
nitrophenol (NOx-P), p-hydroxybenzaldehyde (CHO-P), phenol (H-P), and p-methoxyphenol (MeO-P). Reaction system: fresh char (a, b, d, e),

aged char (¢, f).
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Figure 4. Impact of the oxygen content on sorption (a) and degradation (b) of NO,-P and MeO-P by fresh char under anoxic () or oxic (OJ)
conditions after a 48 h reaction period. Number above each black or white bar is the initial headspace O, concentration in mmol O,/g char. The
oxygen inhibitory effect i (c) on the degradation of the phenols with reaction time for fresh char.

photocatalytic decomposition™ and electrochemical reac-
tion."” The corresponding LFER is given by

kX— P

_ +
log =pX (ap oro, )

()

where X is the substituent and p is a constant reflecting
sensitivity to substituent electronic effects.

-P

The standard electrode potential E,° for the half-reaction,
Ar—OH — Ar—0° + e + H, reflects the thermodynamic
ability of phenol to donate an electron to an oxidant site or
species. The appropriate LFER with E.” is given by

log kx_p = aEg + f§ (6)

where a and f are regression coeflicients. The ability to accept
an electron from a reducing site or species is difficult to test
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Figure 5. (a) Electron-accepting capacity (EAC, white region) and electron-donating capacity (EDC, gray region) of fresh char (M) and aged char
(O). (b) EPR signals of fresh char (blue line) and aged char (red line). (c) EPR signals of DMPO-OH adducts (%) in fresh char (blue line) and
aged char (red line) reaction systems under oxic (A, B) or anoxic conditions (C, D).

using an analogous LFER because E.’ (Ar—OH/Ar—OH™)
values are unavailable.

Correlations based on eqs 5 and 6 for the slow stage under
oxic conditions are strong (Figure 2): log ky,,, decreases with
substituent electron-withdrawing ability (o, or ¢,7), or
increases with E_C, as expected for an cﬂndatlve pathway
predominating under oxic conditions. Assigning all degradation
to molecules in the sorbed-state (k, ,,) gives similar trends as
ko although the correlations are not as good (Figure 2).

By contrast, LFERs for kg, under both oxic and anoxic
conditions or for ky,, under anoxic conditions are generally
poor (Figure S6). The poor correlations for kg, may be simply
a consequence of the high inaccuracy of data during the fast
stage due to low percent conversion. The poor correlations for
kgow under anoxic conditions may be attributed to the
occurrence of both oxidation and reduction reactions taking
place, as we propose later based on the products and other
evidence.

Influence of Oxygen. Oxygen is found to play several
interconnected roles. First, its chemisorption suppresses the
sorption of the test phenols. Figure 3 plots sorbed mass (m,,
determined by solvent extraction) as a percentage of remaining
(unreacted) mass of the phenol (my) during degradation. The
ratio m,/mr, reflects the partitioning of the phenol between
water and char at specific times during degradation. Exposure
of the char to air, either by aging in air or including air in the
headspace during degradation, generally inhibits sorption of
the test phenols (Figure 3). The greatest effect appears to be
on MeO-P sorption. Figure 4ab show the results of O,
gradient experiments on fresh char for the two phenols with
the most and least electronegative substituent (NO,-P and
MeO-P). The volume of air in the vial headspace was adjusted
to achieve 0, 0.19, 0.31, or 0.94 mmol O,/g char. Figure 4a
shows that, relative to the anoxic control (black bars), sorption
is suppressed in proportion to headspace O, content for both
compounds.

One likely explanation for the suppressive effect of O, on
sorption is that oxygen chemisorption increases the hydrophilic
character of the char surface. The O content is higher and the
C content is lower in aged char compared to fresh char (Table
S2). The Fourier transform infrared (FT-IR) spectra indicate
oxygenation of the char surface after aging (Figure S7). The C
1s XPS spectra show an increase in the abundance of hydroxyl
and carboxyl groups after aging in air, whereas no change was
observed in the absence of air (Figure S8). Water molecules
cluster around polar functional groups in carbonaceous solids
by hydrogen bonding, thereby reducing the surface area and
pore volume available for the sorption of organic com-

pounds.’*>*> Molecular simulations of porous carbons show
crowding out of methane by water as sites on pore walls
become populated with polar groups.”**” In a study of carbon
spheres, removal of polar groups favored H-P sn:rrlz’l:in:m.:“S

Oxygen plays a second role by scavenging reducing sites and
PER sites that are potentially redox-reactive toward the test
phenols. The molecular sizes of O, O,"7, and H,0, are
smaller than those of the phenols, so they have better access to
reducing sites and consequently can compete with the phenol
for electrons. Figure 4b shows that, relative to the anoxic
control, the percent degraded declines in proportion to the
headspace O, content for NO,-P, but is unaffected by O,
(even slightly enhanced) for MeO-P. Given that O, inhibits
sorption of both compounds (Figures 3 and 4a), Figure 4b
suggests that O, has opposing effects: it reduces the sorbed
concentration, which limits the reaction with active sites, while
at the same time altering the redox function of the char. Redox
function is altered by the annihilation of reducing sites. Oxygen
suppression of NO,-P reduction by chemical reagents is well
known.”” —” Annihilation of reactlve sites of lignin char by O,
was shown in our previous study.”> Such annihilation is further
demonstrated here by the electrochemical analysis shown in
Figure 5a, which reveals that fresh char has both EDC and
EAC in comparable amounts, whereas aging causes a decrease
in the EDC commensurate with an increase in the EAC. Figure
5b shows that aging causes ~75% decline in the PFR
concentration as measured by the EPR signal intensity. The
previous study”” showed about a 60% (lignin char) or 20%
(cellulose char) decline in the PFR concentration after the first
few hours of aging in moist air, followed by a leveling off over
the subsequent 30 days.

Oxygen plays a third role by reacting with reducing sites to
form ROS that can attack the phenol. Generation of ROS is
verified by the appearance of the DMPO-OH adduct in
solution with both fresh and (to a lesser extent) aged char
under oxic conditions, but no DMPO-OH adduct under anoxic
conditions (Figure Sc). The results of the oxygen gradient
experiments in Figure 4 can be interpreted to mean that, while
degradation is inhibited by the sorption suppression generally,
degradation of the most electronegative phenol (NO,-P) is
further inhibited by O, scavenging of reducing sites, whereas
degradation of the most electropositive phenol (MeO-P) is
counterbalanced by creation of EAC sites or generation of
ROS from O,. Finally, it is noted after the comparison of fresh
char and aged char in Figures 1, 3, and S3 that aging of chars in
air diminishes the net impact of O, on sorption and
degradation.
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Figure 6. Initial degradation products of phenols: (a) p-nitrophenol (NO,-P), (b) p-hydroxybenzaldehyde (CHO-P), (c) phenol (H-P), and (d) p-

methoxyphenol (MeO-P).

To put the overall impact of oxygen on the degradation of
the phenols by fresh char into a more quantitative perspective,
an oxygen inhibitory effect () was defined by using data taken
from Figure 1.

= (fraction degraded  _ — fraction degraded )

/fraction degraded (7)

The values of i for fresh char are compared in Figure 4c over a
120 h reaction period. Data before ~ S h are erratic due to
large errors in the measurement. After that time, several key
features of Figure 4c are identified. (1) Between ~5 and ~70 h,
O, inhibits degradation in the same order of the electron-
withdrawing capability of the substituent: NO,-P > CHO-P >
H-P >»> MeO-P. This is consistent with the role of O, as a
scavenger of reducing sites such that O, becomes less
competitive for reducing sites along this series of phenols.
The general upward trend in y with substituent electro-
negativity over this period for all but H-P most likely reflects
the decreasing role of reducing sites in degradation. Why the
H-P curve inflects is unclear at this time. (2) Oxygen has an
accelerating effect on MeO-P degradation up to ~50 h, and an
inhibitory effect thereafter. The curve for MeO-P crosses over
the curve for H-P at ~65 h, at which point MeO-P falls out of
order among the phenols based on substituent electronic
effects. The differing effect of oxygen on the phenols can be
explained by the participation of HO® under oxic conditions
and by the effects of oxygen chemisorption on test phenol
sorption. The generatmn of HO" falls off rapidly after exposure
of fresh char to air.”” The falloff contributes to the increasing
value of i with reaction time except in the case of H-P. Having
the most electropositive substituent, MeO-P is the most
reactive of the test phenols toward HO® [ky.op = 26 X 10,
kcor = 12.1 X 10%, kyp = (6.6—11.8) x 10°, kyoap = 3.8 X
10° M~! s71].°%°" This fact explins the stimulatory effect of
O, on MeO-P degradation before ~50 h (ie., the negative
value of ). It also explains the greater positive slope of the y
curve for MeO-P than for other phenols, since the decline in
HO® would have a larger negative impact on MeO-P
degradation under oxic conditions compared to the other
phenols. A second fact explains the deviation of MeO-P from
the abovementioned order in phenol reactivity at longer times:
Figures 3 and 4a both show that MeO-P sorption is the most
sensitive to oxygen chemisorption among phenols. The cause
of greater sorption inhibition of MeQO-P requires further
investigation. It is possible that reaction products block

oxidative sites more so for MeO-P than for the other phenols.
Dimers were identified for both H-P and MeO-P, and a trimer
was found for MeO-P (Figures S9, S10, and S11). Xie et al.
detected dimer, trimer, and even tetramer products of MeO-P
when 1t reac:ted with reduced graphene in the presence of
oxygen.”” Grant and King proposed that oxidative-coupling
products could block sites and/or micropores of AC. Among
the test phenols in their study, which included all four of the
test compounds here, MeO-P was the most reactive in
oxidative-coupling reactions with AC under cmc conditions
and showed the greatest “irreversible” sorption.*”

Degradation Products. Different degradation products
were detected in anoxic and oxic systems with fresh char and
aged char. The major initial products are shown in Figure 6.
The chromatograms are shown in Figure S9 and the mass
spectra of the trimethylsilyl derivatives are shown in Figures
§10—S14. All products appeared only in the presence of a
phenol except benzene-1,2-diol (catechol), which appeared in
control samples, usually at a lower concentration (Figure S15).
It is known that catechol is produced in significant yield in the
pyrolysis of alkali lignin at 500 °C.%

Products from NO,-P included benzene-1,4-diol (hydro-
quinone), 4-aminophenol, and 2-hydroxy-4-nitrophenol. Prod-
ucts from CHO-P included hydroquinone, 4-hydroxybenzyl
alcohol, 2,4-dihydroxybenzaldehyde, and 4-hydroxybenzoic
acid. Products from H-P included catechol, hydroquinone,
and two dimers. Products from MeO-P included catechol,
hydroquinone, 2-hydroxy-4-methoxyphenol, a dimer, and a
trimer.

Reduction products (p-aminophenol from NO,-P and p-
hydroxybenzyl alcohol from CHO-P) were detected only for
phenols with strongly electronegative substituents, only in
anoxic systems, and only for fresh char. By contrast, oxidation
products of all four compounds were detected under both
anoxic and oxic conditions and at much lower concentrations
in aged than in fresh char. Dimers, trimers (only for MeO-P),
or their hydroxylated products were detected only for H-P and
MeOQ-P. The molecular weights of these oligomers followed a
pattern of nM — 2(n — 1), where n is an integer, and are likely
formed via radical-radical coupling reactions. 296455 The
oligomers appeared under both anoxic and oxic conditions,
for both fresh and aged chars, and predominantly in solid-
phase extracts.

Bl DISCUSSION

The overall mechanism based on the results here and our
previous rnapn:rrtsu’22 is shown schematically in the abstract
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graphic. The phenol is oxidized or reduced by RAS on the char
or is oxidized by ROS present in pores or bulk solution that
originate from the reaction of O, with RAS. Issues that have
been addressed in this study include whether and under what
circumstances reduction or oxidation predominates, whether
reaction occurs predominantly with RAS or in solution, the
influence of molecular oxygen, and the nature of RAS.

The phenols react under all tested conditions. Generally, the
reaction is faster under anoxic than oxic conditions for fresh
char, but the rates are about equal for aged char. Reduction
products appear only under anoxic conditions and only with
fresh char, while oxidation products appear under both anoxic
and oxic conditions for both fresh and aged chars. It is possible
that reduction products formed under oxic conditions were
subsequently oxidized by ROS,”” but we found no evidence for
this. The reaction rate constant for fresh char under oxic
conditions correlates strongly with substituent electronic
parameters or electrode potential of the phenol, consistent
with oxidation predominating under oxic conditions, By
contrast, under anoxic conditions, correlations between the
rate constant and the substituent electronic parameters are
poor, reflecting the fact that both oxidation and reduction
occur under anoxic conditions. Electrochemical experiments
show that EDC and EAC were present in similar amounts in
fresh char, whereas EAC was present in large excess relative to
EDC in aged char (Figure Sa). Thus, air reduces EDC and
increases EAC. This may explain why fresh char under anoxic
conditions acts as both an oxidant and reductant, while aged
char or fresh char under oxic conditions acts predominantly as
an oxidant toward phenols. We thus propose that the reactive
sites on char are diverse in their redox potential, exhibiting
oxidizing and reducing capability depending on the degree of
aging of the chars and the redox properties of the phenols.

Our previous studies showed that degradation of NO,-P
under oxic conditions correlates with the sorbed concen-
tration.””” The present study reinforces this conclusion by
finding that under oxic conditions, the rate constants of
sorbed-state phenol (k; ) correlate in an expected manner
with substituent electronic parameters and redox potential of
the phenol. Nevertheless, under oxic conditions, oxidation may
occur with ROS as well Hydroxyl radicals under oxic
conditions have been identified by EPR spectroscopy in
many systems,””””*> as well as in the present study (Figure
Sc). They presumably are generated by the reaction of H,0,
within char pores. Detection of HO® does not necessarily mean
it plays a major role in degradation. Due to their high and
indiscriminate reactivity, most HO® likely react with pore walls
within a short diffusion distance. Those that survive
annihilation can react with dissolved molecules in water-filled
meso- or macropores or in bulk solution. The previous study™
found that ROS oxidation of NO,-P played a minor role
(probably <30%) in its degradation. However, it is likely that
ROS plays a more important role in oxic degradation of
phenols having more electropositive substituents, such as
MeO-P. Clearly, oxidation of the phenols by chars in the
absence of O, must have occurred with the direct-reacting sites
since no O,-derived ROS would be available.

In contrast with oxidation, reduction of phenols under
anoxic conditions, whether with fresh or aged char, must have
occurred almost exclusively on particles since no O, was
present to generate ROS, and the liquid phase probably lacked
dissolved electron carrier species that could lead to phenol
reduction in solution. We thus conclude that the degradation

of phenols under anoxic conditions is determined mainly by
the abundance and accessibility of RAS on the char.

The present study does not shed any light on the
identity(ies) of the RAS. It has previously been proposed
that PFRs are derived from hydroquinone/quinone-like
structures on the char and that they function as a one-electron
oxidant or reductant. We concluded previously”” that PFR
plays a minor role in the reaction of NO,-P with lignin and
cellulose chars. The quantitative role of PFR may depend on
the phenol, the electrode potential of the phenol, and
conditions. The PFR concentration is diminished considerably
but not eliminated by storage in air. In principle, PFR can react
with sorbed molecules as a one-electron oxidant or reductant.
The PFR can subsequently be regenerated by transferring its
acquired electron to an oxidant such as O,, if present, or by
accepting an electron from a suitable reductant, which would
have to be added if it is not naturally present. Further work is
needed to identify these reactive moieties.

Oxygen destroys reducing sites and suppresses sorption,
both of which can lower the reaction rate. Destruction of
reducing sites is evident by the effects of O, on the product
distribution (Figures 6 and S9) and reaction rate (Figures 1
and 4b), and by the decline in EDC with aging (Figure 5a).
Sorption inhibition in oxygen-exposed situations is clear from
the data in Figures 3 and 4a and is most likely due to the
formation of a more hydrophilic surface.

This study is the first to provide insight into the relationship
between the redox properties of substituted phenols and their
degradation by chars. It also defines the impact of oxygen on
the reactivity of the char-containing system to different
phenols, including its negative effect on sorption. In addition,
it explains why both oxidation and reduction of NO,-P by
chars take place.””” In many other studies, reduction of
nitroaromatic compounds with carbonaceous materials re-
quired the addition of an extemal reductant (e.g, nZVI,
borohydride, H,S, and Na,S). In contrast, the present study
indicates that fresh char itself can act as a reductant toward
some easily-reduced compounds, such as NO,-P and CHO-P.
In addition, we observed that chars generally possess oxidizing
ability toward a wider variety of compounds. Particularly, fresh
char can induce ROS reactions easily in the presence of
oxygen, avoiding the need for an extra oxidant (e.g, H,0,) as
for other carbonaceous materials. Therefore, the fate and risk
of organic chemicals, especially phenolic compounds, should
be carefully investigated in the black carbon-rich environments.
Our study also illustrates that chars have potential remediation
functions for polluted soil or water. During application, the
abundance and properties of redox sites on char can be
manipulated through modification of reaction conditions
according to the redox properties of the target compounds.
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