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The ability to harness light-matter interactions at the few-photon level plays a pivotal role in quantum
technologies. Single photons—the most elementary states of light—can be generated on demand in atomic
and solid state emitters. Two-photon states are also key quantum assets, but achieving them in individual
emitters is challenging because their generation rate is much slower than competing one-photon processes.
We demonstrate that atomically thin plasmonic nanostructures can harness two-photon spontaneous
emission, resulting in giant far field two-photon production, a wealth of resonant modes enabling tailored
photonic and plasmonic entangled states, and plasmon-assisted single-photon creation orders of magnitude
more efficient than standard one-photon emission. We unravel the two-photon spontaneous emission
channels and show that their spectral line shapes emerge from an intricate interplay between Fano and
Lorentzian resonances. Enhanced two-photon spontaneous emission in two-dimensional nanostructures
paves the way to an alternative efficient source of light-matter entanglement for on-chip quantum
information processing and free-space quantum communications.
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The generation of nonclassical states of light has become
a sought-after goal in nanophotonics in recent years,
including production of single photons from atomic [1]
and solid state [2] emitters on demand and entangled photon
pairs in nonlinear crystals [3]. Two-photon spontaneous
emission (TPSE) processes [4,5] can also generate
entangled photons and have been demonstrated in atomic
[6–8], semiconductor [9], and biexciton-exciton decay in
quantum dots [10,11]. Nevertheless, the TPSE rate is
typically 8 to 5 orders of magnitude slower than competing
one-photon decay rates. Intense plasmonic electromagnetic
fields are known to enhance light emission via the Purcell
effect [12–14], and plasmon-assisted collective TPSE has
been measured in bulk semiconductors coupled to nano-
antenna arrays [15] with only a few tens of radiative
emission enhancement. On the other hand, spontaneous
decay into two-plasmon polaritons in bulk metals [16] and
graphene monolayers [17] is predicted to be more than 10
orders of magnitude larger than two-photon transitions.
Polar dielectrics have also been proposed to enable two-
phonon polariton emission faster than competing single-
phononprocesses [18].However, these conventional surface
wave polaritons yield a rather simple broadband emission
spectrum, are intrinsically nonradiative, and outcoupling
them into far field radiation by, e.g., defect engineering
while maintaining a high Purcell factor is challenging [19]
and generally leads to inefficient photon production.
Here, we show that two-dimensional plasmonic nano-

structures are an ideal material platform to harness

two-quanta emission processes from single emitters
[20], enabling emission rates significantly faster than in
monolayers and thin films. We develop a comprehensive
study of the dominant two-quanta decay channels in
finite-sized ultrathin structures with arbitrary shape and
material properties, unraveling an intricate interplay of
Fano and Lorentzian line shapes in single, dual, and even
multiband emission. We report giant emission of photon
pairs enabled by localized surface plasmons supported in
two-dimensional nanostructures, which naturally leak into
photonic modes and result in radiative TPSE several
orders of magnitude larger than via ordinary surface
plasmon polaritons. We discover a surprising TPSE effect
arising from the existence of dark plasmonic modes in
finite-sized two-dimensional plasmonic nanostructures,
which make photon production through two-quanta tran-
sitions more efficient than via standard one-photon proc-
esses. Finally, we argue that our findings can be
experimentally verified using recent advances in fabrica-
tion of ultrathin plasmonic nanostructures [21,22] and
state-of-the-art photo coincidence [9,11] and time-
resolved fluorescence spectroscopy [19,23] techniques.
Let us consider a quantum emitter placed in the prox-

imity of an arbitrarily shaped two-dimensional nanostruc-
ture (Fig. 1) and study its decay from an initial state of
energy ℏωi to a final one ℏωf via two-quanta processes
assisted by intermediate states of energy ℏωm. The TPSE
rate for an emitter at position Re with size le much smaller
than the transition wavelengths is [24,25]
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ΓðReÞ ¼
Z

ωt

0

dωγ0ðωÞ
X
a;b

tabðωÞPaðRe;ωÞPbðRe;ωt −ωÞ;

ð1Þ

where ωt ¼ ωi − ωf is the transition frequency, γ0ðωÞ ∼
ω3ðωt − ωÞ3l6e=c6 is the free-space TPSE spectral density
[29], and tabðωÞ is a tensor that depends only on the
electronic structure of the emitter. PaðRe;ωÞ is the Purcell
factor for a transition dipole moment oriented along the
direction of the unit vector êa (a ¼ 1, 2, 3) [30–32] and is
proportional to the local density of states [33] that can be
tailored with properly designed photonic environments.
The TPSE spectrum γðRe;ωÞ, i.e., the integrand in Eq. (1),
is always symmetric with respect to ωt=2 due to energy
conservation. Two-quanta spontaneous emission close to
low-loss plasmonic media is mainly driven by three unique
photon-photon, photon-plasmon, and plasmon-plasmon
relaxation channels. The contribution of these pathways
to the TPSE can be computed through the decomposition of
the Purcell factors into their radiative and nonradiative parts
[30], PaðωÞ ¼ Pa;rðωÞ þ Pa;nrðωÞ (from now on the Re

dependency is implicit). For example, the spectral photon-
photon TPSE rate is given by

γph;phðωÞ ¼ γ0ðωÞ
X
a;b

tabðωÞPa;rðωÞPb;rðωt − ωÞ; ð2Þ

and similar expressions hold for the photon-plasmon γph;pl
and plasmon-plasmon γpl;pl emission rates. In the presence
of extended media supporting conventional surface plas-
mon polaritons, Pa;nr results in fluorescence quenching
(decreased radiative far field emission) of the emitter [34].
Furthermore, both in this case and in finite-sized two-
dimensional nanostructures supporting localized surface
plasmons, Pa;nr also accounts for nonradiative mechanisms
that could result in, e.g., entangled lossy excitations [17].
However, in low-dissipative systems such as the ones
considered here, these excitations are negligible and plas-
monic modes largely dominate the nonradiative emission

channel. Provided that there are no resonant energy levels
between ℏωi and ℏωf, then γ0ðωÞ and tabðωÞ are broad-
band and the TPSE channels inherit their main spectral
characteristics directly from Pa;r and Pa;nr. When the
electromagnetic fields radiated by the quantum emitter
and by the induced multipoles on the nanostructure are in
(out of) phase, far field constructive (destructive) interfer-
ence occurs, rendering an asymmetric Fano-like profile for
Pa;r. On the other hand, nonradiative processes are gov-
erned by absorption in the nanostructure, where the induced
fields are much stronger than those of the emitter. Hence,
emitter-multipole interferences are negligible and Pa;nr

results symmetric around resonances.
To validate the above reasoning, we calculate the

spectral line shapes of the TPSE channels by employing
a theoretical approach based on the plasmon wave function
formalism [35,36] (see Supplemental Material [25]). We
consider two-dimensional nanostructures supporting
electromagnetic modes with resonant wavelengths much
larger than their characteristic geometrical length scales
(denoted as D), in which case it is sufficient to determine
the electric field on the nanostructure in the quasistatic
limit. In this regime, the nanostructure’s plasmonic modes
and resonant frequencies (denoted as ωq) form an eigen-
system that satisfies the Poisson equation. While the field
modes and the corresponding charge density distributions
depend only on the shape of the two-dimensional structure,
the resonant frequencies are affected by both the size
D and the conductivity σðωÞ of the material. To compute
the Purcell factors, we use the identity [30]
PaðωÞ ¼ WaðωÞ=W0ðωÞ, where Wa is the total power
dissipated by a classical electric dipole da ¼ dêa, and
W0 is the corresponding dissipated power in free space.
While the nonradiative part of Pa can be computed through
the total power absorbed by the nanostructure, the radiative
component is mainly dominated by dipolar radiation [37].
A detailed derivation of the exact expressions for Pa;nr and
Pa;r near arbitrary nanostructures can be found in Ref. [25].
When the conductivity of the metallic nanostructure is
described by a low-loss Drude model, one can approximate
the Purcell factors via a superposition of spectrally local-
ized resonances. Hence,

Pa;nrðωÞ ≃
XN
q¼1

Aa;q

ω2

ð1=2τÞ2
ðω − ωqÞ2 þ ð1=2τÞ2 ; ð3Þ

which is a combination of Lorentzian line shapes sym-
metric around each of the N distinct plasmonic resonances
ωq within the TPSE spectral range, and τ is the electronic
relaxation time. The ω−2 factor is essential to describe the
TPSE spectrum near ω ¼ 0 and ω ¼ ωt; nevertheless, far
from these frequencies it is a good approximation to replace
it with ω−2

q . Similarly, the radiative Purcell factor can be
expressed as a combination of symmetric Lorentzian and
asymmetric Fano [38–40] profiles,

t

photonphoton

D

t

i

f

m

t

t
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t
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FIG. 1. Schematics of the system under study and representa-
tion of the TPSE pathways for a multilevel quantum emitter close
to a two-dimensional plasmonic nanostructure: a pair of photons
is emitted to the far field (left), a hybrid photon-plasmon state is
generated (center), or two plasmonic excitations are launched on
the nanostructure (right). In each case the two-quanta states can
be entangled in time-energy, linear, or angular momentum.
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Pa;rðωÞ ≃
XN
q¼1

Ba;qð1=2τÞ2 þ ðω − ωq þ fa;q=2τÞ2
ðω − ωqÞ2 þ ð1=2τÞ2

− ðN − 1Þ: ð4Þ

Here, fa;qðReÞ ¼ ω2
pτtha;qðReÞ=Dωq is the Fano factor,

where ωp is the plasma frequency of the material, t is the
thickness of the nanostructure, and ha;qðReÞ is a geometry-
aware function. The coefficients Aa;q, Ba;q, and fa;q contain
information about degeneracies of ωq, and the last term in
Eq. (4) arises from the nonzero overlap among the Fano
resonances. The radiative Purcell factor peaks approxi-
mately at ωq þ ð2τfa;qÞ−1 around which the Fano term
overwhelms the Lorentzian one, but near the Fano dip at
ωq − fa;q=2τ the Lorentzian term becomes relevant, pre-
venting complete inhibition of photon emission. By tailor-
ing fa;q through geometry or material properties, it is
possible to either enhance or suppress the generation of far
field radiation via γph;ph or γph;pl.
We consider next a particular geometry amenable to

analytical treatment, namely a plasmonic nanodisk [41]
close to an on-axis quantum emitter. In this case, the
eigenmodes and eigenfrequencies supported by the nano-
disk have a closed form [25,42], and only azimuthally
symmetric dark (Dq) and dipolar bright (Bq) modes can be
excited. The former ones do not radiate, while the latter
ones are able to leak into the far field by emitting dipolar
radiation [43]. Figure 2 depicts the resonant frequencies of
the six lowest energy field modes versus the diameter of a
metallic nanodisk, highlighting controlled optical response
by properly choosing the structure’s size. The associated
spatial charge distributions are also presented. The corre-
sponding TPSE spectrum is shown in Fig. 3(a), exhibiting a
wealth of strongly localized peaks precisely along the
curves for ωqðDÞ and ωt − ωqðDÞ, and its maximum value

is at ωt=2 (2λt ∼ 940 nm). In our calculations, we consider
spherically symmetric initial and final states [24,25] in
Eq. (1) for which tabðωÞ ¼ δab=3. In this case, the spectral
enhancement line shape of each emission channel follows
directly from the Purcell factors regardless of the emitter’s
intrinsic energy level structure. Single, dual, and even
multiband emissions are possible depending on the
number of resonances below ωt. Cross talk between
bright-bright or dark-dark modes at complementary
frequencies ωq0 ðDÞ ¼ ωt − ωqðDÞ produces extreme
enhancements of the TPSE spectrum γðωÞ=γ0ðωÞ ∼ 108,
while these are much smaller at dark-bright crossings. This
results from the fact that, when the quantum emitter is on
axis, bright and dark modes are effectively decoupled since
they can only be excited by virtual transition dipole
moments parallel and orthogonal to the nanostructure,
respectively.
Figure 3(b) compares γph;ph between confined and

extended two-dimensional metallic systems, evidencing
that the finite size of the nanostructure is critical to
accomplishing giant photon-photon production rates.
Indeed, although a quantum emitter close to a metallic
film experiences increased emission into surface plasmon
polaritons, these do not directly couple to photons, result-
ing in γfilmph;ph=γ0 ∼ 1. Contrarily, enhanced two-photon

emission rates γdiskph;ph=γ
film
ph;ph ∼ 105 can be achieved in the

plasmonic nanostructure since localized bright surface
plasmons radiate into the far field. The spectral profiles
of the TPSE channels are reported in Fig. 3(c), where we
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FIG. 2. Resonant frequencies ωq for the three lowest energy
bright (Bq) and dark (Dq) modes versus the diameter D of a
bilayer Ag(111) nanodisk [21,22]. The corresponding spatial
charge distributions are shown on the right panel. We model the
optical response using a two-dimensional Drude conductivity
σðωÞ ¼ iϵ0ω2
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bulk Ag, and t is the thickness of the nanostructure.
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FIG. 3. (a) TPSE spectral density γðωÞ near a bilayer Ag
nanodisk. The emitter is a quantum dot with transition frequency
ℏωt ¼ 2.64 eV placed at ze ¼ 10 nm. (b) Photon-pair production
rates for an Ag nanodisk (solid blue and red), an Ag film (green),
and in free space (black). (c) TPSE spectral profiles for photon-
photon (top), photon-plasmon (center), and plasmon-plasmon
(bottom) decay channels. Solid (dashed) curves result from exact
(approximated) calculations (see discussion in the text). The Fano
asymmetry factor fx;q is displayed for the two bright resonances.
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observe a very good agreement between the TPSE line
shapes derived from the approximated expressions in
Eqs. (3) and (4) and those obtained with full numerical
evaluations of Eqs. (24) and (28) of the Supplemental
Material. Close to plasmonic resonances, there is a clear
interplay of Fano and Lorentzian line shapes that results in
notable differences between the spectral profiles of γph;ph
and those of the other emission mechanisms. The spectral
distinction of γph;pl and γpl;pl is more subtle: it is more
prominent near the borders of the spectrum, and fa;q can be
engineered to enhance the differences between γph;pl and
γpl;pl around ωt=2.
In order to accomplish tunable TPSE rates, we consider

the nanodisk composed of active materials whose optical
response can be dynamically controlled, e.g., graphene
[44]. Graphene not only provides the opportunity of
emitting two quanta in the mid-IR but also allows for
easier fabrication of two-dimensional nanostructures as
compared to metallic systems. Figure 4(a) reports γðωÞ for
different Fermi energies of a graphene nanodisk, showing
enhanced selective spectral emission (solid curves). This is
in stark contrast to the typical broadband spectrum
achieved in monolayers [17] (dashed curves). Giant pho-
ton-pair production in this system is also possible, with
γdiskph;ph=γ

monolayer
ph;ph ≳ 109 at the center of the spectrum (not

shown). In Fig. 4(b), we address the question as to

whether photon generation can be more efficient through
two-photon transitions than via existing ordinary
one-photon emission channels. The ratio between the
probabilities of emitting at least one photon via two-photon
transitions and of generating a single photon via a one-
photon process is presented in Fig. 4(b) for the case of the
nanodisk. These probabilities are computed through the
TPSE quantum yield QYTPSE ¼ ðγph;ph þ γph;plÞ=γ and the

single photon quantum yield QY1q ¼ γ1qph=γ
1q, where γ1qph is

the radiative contribution to the one-quantum transition rate
γ1q. Serendipitously, we find that the fundamental dark
mode D1 acts as an amplifier of the TPSE photon-plasmon
channel but as an attenuator of the photon one-quantum
pathway. For frequencies near ωD1

, one-photon generation
via TPSE is resonantly enhanced, being between 2 to 4
orders of magnitude larger than photon creation via
standard one-quantum emission. On the other hand, there
is also a broadband enhancement of QYTPSE=QY1q that
takes place within regions of frequencies below ωB1

. These
two kinds of enhancements are of a completely different
nature. The resonant enhancement arises from the TPSE
photon-plasmon emission channel that boosts QYTPSE via a
nonradiative Lorentzian resonance, while QY1q is
spectrally flat and much smaller than QYTPSE near ωD1

.
The broadband enhancement results from the fact that
QY1q and QYTPSE have spectrally aligned resonant
responses along the fundamental bright mode B1, and as
one moves to lower frequencies the former decreases faster
than the latter.
Graphene nanostructures can also disrupt the usual

unbalance between the total one-quantum and two-quanta
emission rates, making the latter competitive with the
former through tailoring the mobility μ or the Fermi energy
EF of graphene. For example, for a hydrogen emitter
initially prepared in its 4s state, Γ4s→3s ≃ 1.9 × 108 s−1,
while the fastest competing one-quantum electric dipole
transition gives γ1q4s→3p≃1.2×108 s−1 for a graphene nano-
disk at a distance ze¼10nm from the emitter (D ¼ 40 nm,
EF ¼ 0.69 eV, and ultrahigh mobility μ ¼
104 cm2V−1 s−1) [45,46]. In Figs. 4(c) and 4(d), we
compare the TPSE rate for the 4s → 3s transition in a
hydrogen emitter with the competing one-quantum emis-
sion pathways. For ze ≲ 20 nm, the quantum efficiency
QE ¼ Γ4s→3s=ðΓ4s→3s þ γ1q4s→3p þ γ1q4s→2pÞ reaches values
∼30%, which are much higher than in graphene mono-
layers [17]. Also, for distances ze ≲ 80 nm, the total TPSE
rate is larger in graphene nanostructures than in mono-
layers, highlighting that the finite size of the system is
pivotal to achieving giant emission rates. For any disk
diameter, the QE can also be controlled by changing the
Fermi energy, with optimized performance when
ωB1

ðDÞ ¼ ωt=2, [dotted curve in the ðEF;DÞ plane in
Fig. 4(d)]. For EF ≲ ℏωt=2, interband transitions in

FIG. 4. (a) Spectral TPSE for a D ¼ 40 nm graphene nanodisk
(solid) and a graphene monolayer (dashed). The emitter
(ℏωt ¼ 0.66 eV) is located at ze ¼ 10 nm. Graphene’s conduc-
tivity is modeled using intraband and interband contributions,
mobility is μ ¼ 2500 cm2 V−1 s−1, and temperature isT ¼ 300 K.
(b) Ratio of quantum yields between two-quanta and one-quantum
processes for the nanodisk. (c) Quantum efficiency (QE) versus
distance for the TPSE 4s → 3s transition in hydrogen (μ is in units
of cm2 V−1 s−1). Inset: TPSE rate versus ze for the nanodisk (solid)
and monolayer (dashed). (d) QE as a function of EF and D. The
numbers near each QE profile show the photon-photon Purcell
factor Γph;ph=Γ0, where μ ¼ 104 cm2 V−1 s−1 and Γ0 is the free-
space TPSE rate.
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graphene lead to the generation of entangled electron-hole
pairs, which dominate over plasmonic excitations and
suppress the total TPSE (leftmost two peaks).
Experimental setups such as those of Refs. [10,11] can

be employed to measure the TPSE at near-infrared frequen-
cies from quantum dots with biexciton-exciton transitions.
Recently developed synthesis techniques [21,22] can be
employed to fabricate ultrathin noble metal nanostructures
on a SiO2-GaAs membrane with an embedded emitter
layer. For an InGaAs quantum dot located on axis
near an Ag nanodisk (t ¼ 1.65 nm, D ¼ 62 nm, SiO2

thickness ¼ 30 nm), for example, the fundamental bright
mode is excited at [47] ωB1

¼ ωt=2 ≃ 1.4 eV, resulting in
two-photon enhancements ≳104. Such a giant enhance-
ment is well above existing experimental sensitivities and
should be easily detected (much smaller values ∼10 have
already been measured in Ref. [11]). High-resolution
(∼1 μeV) spectrometers can be used to scan the far field
TPSE spectral density and probe some of the predicted
Fano and Lorentzian features. For instance, the Fano
asymmetry factor can be obtained by reconstructing the
two-photon spectrum via hyperspectral photon coincidence
measurements [9,11] using near-infrared monochromators
and photo detectors. Lorentzian signatures present in the
hybrid photon-plasmon channel can be probed via fre-
quency-resolved photoluminescence detection. Finally,
these experiments combined with time-resolved fluores-
cence measurements [19,23] of the emitter’s dynamics
allow one to extract the full TPSE rate Γ in Eq. (1) and
the individual decay probabilities for the three emission
channels.
In summary, we have investigated two-dimensional

plasmonic nanostructures as a new platform for tailoring
and enhancing TPSE. The strongly localized surface
plasmons in these systems boost the TPSE beyond what
is feasible in monolayers and three-dimensional structures.
The observation of the herein predicted TPSE effects is
within experimental reach, and production rates of
entangled photons much higher than those achieved
through parametric down-conversion or spontaneous decay
of bulk semiconductor emitters should be possible. We
developed a comprehensive theoretical toolbox to unravel
the dominant emission channels, valid for finite-sized two-
dimensional systems with arbitrary geometric and material
properties. We envision that our discovery of enhanced
generation of photons via two-quanta decay in comparison
to one-photon processes may lead to new nano-optics
technologies. Altogether, our findings highlight the poten-
tial that TPSE in two-dimensional plasmonic nanostruc-
tures have for photonics. This includes the active control of
single-to-multiband emission spectra for sensing and spec-
troscopy functionalities and rapid generation of two-photon
hyperentangled states [48] for quantum cryptography, as
well as opportunities to develop novel infrared two-quanta
sources with high quantum efficiencies.
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I. TWO-PHOTON SPONTANEOUS EMISSION RATE

Here we present a short derivation of the two-photon spontaneous emission (TPSE) rate. The Hamiltonian of the system is
given by H = HA + HF + Hint, where HA and HF are the emitter’s and field’s free Hamiltonians, respectively, and Hint

accounts for the emitter-field interaction. We assume that the dominant transition wavelengths are much larger than the emitter
dimensions, so that one can describe the emitter within the electric dipole approximation. In this case 1

Hint = −d ·E(Re) = −i
∑
β

√
~ωβ
2ε0

[
aβd ·Aβ(Re)−a†βd ·A

∗
β(Re)

]
, (1)

where d is the dipole moment operator, aβ and a†β are the field’s annihilation and creation operators, Re = re + zeẑ is
the emitter’s position, and {Aβ} is a complete set of solutions of the Helmholtz equation subjected to appropriate boundary
conditions. The TPSE rate can be calculated via second-order perturbation theory2,3. By considering that initially the emitter is
in an excited state |i〉 and the field in the vacuum state, and that the final state corresponds to an emitter in a lower energy state
|f〉 with the field in a two-photon state, one obtains4

Γ(Re) =
π

4ε20~2
∑
β,β′

ωβωβ′ |Aβ(Re) · D(ωβ , ωβ′) ·Aβ′(Re)|2δ(ωβ + ωβ′ − ωt) . (2)

Here, ωt = (Ef − Ei)/~ is the transition frequency between the initial and final states and we defined the tensor

D(ωβ , ωβ′) :=
∑
m

[
dimdmf
ωim − ωβ

+
dmfdim
ωim − ωβ′

]
, (3)

with dmm′ := 〈m|d|m′〉, ωmm′ := (Em − Em′)/~, and the summation extends over all the emitter’s intermediate states
(m 6= i, f ). We can also conveniently express the TPSE rate in Eq. (2) in terms of the Green’s tensor G(R,R′;ω) of the
Helmholtz’s equation by using its spectral representation5,

ImG(R,R′;ω) =
πc2

2ω

∑
β

Aβ(R)A∗β(R′)δ(ω − ωβ), (4)

which leads to

Γ(Re) =

∫ ωt

0

dω
µ2
0

π~2
ω2(ωt − ω)2ImGil(Re,Re;ω)ImGjk(Re,Re;ωt − ω)Dij(ω, ωt − ω)D∗lk(ω, ωt − ω). (5)

This expression for the TPSE rate is valid regardless of the base of choice to express the Green function.
We will now relate the TPSE spectral density γ(Re, ω)(the integrand of Eq. (5)) to the local density of states (LDOS). This

is possible by noting that ImG(Re,Re;ω) is a real and symmetric matrix6, therefore it can be diagonalized. For systems where
the basis {êa} (a = 1, 2, 3) which diagonalizes ImG(Re,Re;ω) is the same at complementary frequencies ω and ωt − ω, we
have ImGab(Re,Re;ω) = ImGaa(Re,Re;ω)δab, therefore

γ(Re, ω) =

(
6πc

ω

)2

γ0(ω)
∑
a,b

tab(ω)ImGaa(Re,Re;ω)ImGbb(Re,Re;ω), (6)



2

where we defined tab(ω) = |Dab(ω, ωt − ω)|2/|D(ω, ωt − ω)|2 with |D(ω, ω0 − ω)|2 = Dab(ω, ω0 − ω)D∗ab(ω, ω0 − ω). Also,
γ0(ω) = µ2

0ω
3(ω0 − ω)3|D(ω, ω0 − ω)|2/36π3~2c2 is the free-space spectral density. Once we recall the relation between the

Purcell factor for a dipole moment oriented along the êa-direction, namely5

Pa(Re, ω) =
6πc

ω
ImGaa(Re,Re;ω), (7)

we obtain

γ(Re, ω) = γ0(ω)
∑
a,b

tab(ω)Pa(Re, ω)Pb(Re, ωt − ω). (8)

Equations (8) and (7) establish an explicit relation between the TPSE and the local density of photonic states, which is propor-
tional to the Purcell factor.

II. EIGENMODE EXPANSION AND PLASMON WAVE FUNCTION FORMALISM

We follow the plasmon wave function (PWF) formalism presented in Refs. 7,8 in order to obtain the charge distribution
induced on a ultrathin metallic nanostructure due to an external electric field Eext(R, ω). This approach assumes a large
mismatch between the characteristic size (D) of the metallic nanostructures and their resonant wavelengths (λα), in which case
the optical response of the system can be described in the electrostatic regime. In this limit, the parallel component of the electric
field over the surface of the nanostructure satisfies

E‖(r, ω) = Eext‖ (r, ω) +
iσ(ω)

4πε0ω
∇r

∫
d2r′

|r− r′|
∇r′ · f(r′)E‖(r

′, ω). (9)

Here, σ(ω) is the surface conductivity of the nanostructure and f(r) is a filling function which is equal to 1 when the in-plane
2D position vector r lies within the nanostructure and 0 elsewhere. It is convenient to re-write the above equation in terms of the
dimensionless variable u = r/D and of E(u, ω) = D

√
f(Du)E‖(Du, ω), namely

E(u, ω) = Eext(u, ω) + η(ω)

∫
d2u′M(u,u′) · E(u′, ω), (10)

where

η(ω) =
iσ(ω)

4πε0ωD
and M(u,u′) =

√
f(u)f(u′)∇u∇u

1

|u− u′|
. (11)

M(u,u′) is a real and symmetric operator which depends only on the geometry of the nanostructure. Therefore, M admits a
complete set of eigenmodes Vα(u) and real eigenvalues 1/ηα defined by∫

d2u′M(u,u′) ·Vα(u′) =
1

ηα
Vα(u) . (12)

The eigenmodes are the solutions of Eq. (10) in the absence of an external electromagnetic field, and give the electric field
profile over the surface of the nanostructure. They also satisfy the following closure and orthogonality relations, respectively∑

α

V∗α(u)⊗Vα(u′) = δ(u− u′)I2 and
∫
d2uV∗α(u) ·Vα′(u) = δαα′ . (13)

By expanding E and Eext in terms of Vα(u) and using Eq. (10) one obtains

E(u, ω) =
∑
α

cα
1− η(ω)/ηα

Vα(u), (14)

where

cα =

∫
d2uV∗α(u) · Eext(u, ω) . (15)

Eq. (14) establishes that for any external field Eext the electric field over the nanostructure is a superposition of the eigenmodes
Vα. Each eigenmode can be excited if the frequency of the external field matches one of the resonance frequencies of the



3

system, given by Re[η(ωα)] = ηα. Once one knows the field over the surface of the nanostructure, one can use Ohm’s law,
K(r, ω) = σ(ω)f(r)E‖(r, ω), together with the continuity equation, iωρ2D(r, ω) = ∇r ·K(r, ω), to derive an expression for
the charge density distribution. Hence,

ρ2D(r, ω) =
4πε0
D

∑
α

cα
1/ηα − 1/η(ω)

vα(u), (16)

where we defined the plasmon wavefunction vα(u) = ∇u ·
√
f(u)Vα(u), which corresponds to the normalized charge distribu-

tion of the plasmon mode α. By taking the divergence of
√
f(u) times Eq. (12) one can show that the plasmon wave functions

satisfy the Poisson equation:

∇2
u

∫
d2u′

vα(u′)

|u− u′|
= η−1α vα(u). (17)

Also, it follows from the previous equation that Vα can be cast in terms of the corresponding PWF as

Vα(u) =
√
f(u)ηα

∫
d2u′

vα(u′)(u− u′)

|u− u′|3
, (18)

and by taking into consideration the orthogonality condition for the eigenmodes, given in Eq. (13), one can then show that the
PWFs must obey the following relation: ∫

d2u

∫
d2u′

vα(u)vα′(u′)

|u− u′|
= −δαα

′

ηα
. (19)

III. PURCELL FACTORS DUE TO A METALLIC NANOSTRUCTURE

The Purcell factor Pa(Re, ω) can be calculated with the aid of the identity5 Pa(Re, ω) = Wa(Re, ω)/W0(ω), where
Wa(Re, ω) is the total power dissipated by a classical dipole da = daêa oscillating with frequency ω at position Re near
the nanostructure, and W0(ω) is the corresponding dissipated power in free space. As a consequence, one can write5

Pa(Re, ω) = Pa,nr(Re, ω) + Pa,r(Re, ω) , (20)

where

Pa,nr(Re, ω) =
6πε0c

3

ω4|da|2

∫
d3R′Re{J∗(R′, ω) ·E(R′, ω)} ,

Pa,r(Re, ω) =
6πε0c

3

ω4|da|2

∫
R′→∞
dA′ · Re{E(R′, ω)×H∗(R′, ω)} (21)

correspond to the contribution of non-radiative and radiative decay channels to the Purcell factor (LDOS), respectively.
We start by calculating the non-radiative contribution. By inserting J(R′, ω) = K(r′, ω)δ(z′) = σ(ω)f(r′)E‖(r

′, ω)δ(z′)
into equation (21) and using the orthogonality relation in Eq. (13), we derive

Pa,nr(Re, ω) =
6πε0c

3

ω4|da|2
Re[σ(ω)]

∑
α

∣∣∣∣ cα
1− η(ω)/ηα

∣∣∣∣2. (22)

The external field over the nanostructure, which is given by the electric field generated by the dipole, can be approximated
by Eext(R′, ω) = 1

4πε0
∇da · ∇|Re − R′|−1 in the near-field regime. By using this expression in eq. (15), we obtain cα =

da · F∗α(Re)/4πε0D
2, where

Fα(Re) =

∫
d2u′

vα(u′)(Re/D − u′)

|Re/D − u′|3
(23)

corresponds to the field generated at position Re by the α-th PWF mode. This result allows us to write Eq. (22) as

Pa,nr(Re, ω) =
3c3

2D3ω3
Im
∑
α

êa ·
Fα(Re)⊗ F∗α(Re)

1/η(ω)− 1/ηα
· êa. (24)



4

In the regime D � λα, the radiative contribution to the Purcell factor is due to the system’s emitted dipolar radiation, which can
be well approximated by9

Pa,r(Re, ω) ' |da + da,ind(Re, ω)|2

|da|2
, (25)

where

da,ind(Re, ω) =

∫
d2r rρ2D(r, ω) =

∑
α

ζα ⊗ F∗α(Re)

1/η(ω)− 1/ηα
· da (26)

is the dipole moment induced in the nanostructure by the field of the dipole da, and

ζα =

∫
d2uuvα(u) (27)

corresponds to the dipole moment of the plasmon α. Therefore,

Pa,r(Re, ω) =

∣∣∣∣êa +
∑
α

ζα ⊗ F∗α(Re)

1/η(ω)− 1/ηα
· êa
∣∣∣∣2. (28)

It is important to note that Eqs. (24) and (28) are exact (within the dipole approximation for the nanostructure) expressions for
the non-radiative and radiative Purcell factors, and can be numerically evaluated for any material once the PWFs for a given
geometry are known.

IV. SPECTRAL LINE-SHAPE OF TWO-PHOTON DECAY CHANNELS

Following the main text, we assume that the excited and ground states can be well described by s− orbital wavefunctions, in
which case, Eq. (8) simplifies to γ(Re, ω)/γ0(ω) =

∑
a Pa(Re, ω)Pa(Re, ωt − ω)/3. Note that this quantity is agnostic with

respect to the emitter’s electronic structure, and it depends on the emitter properties only through the transition frequency ωt. By
taking advantage of Eq. (20), we can identify the spectral enhancements associated to the plasmon-plasmon, photon-plasmon,
and photon-photon decay channels of the two-quanta decay process, namely

γpl,pl(Re, ω)

γ0(ω)
=

1

3

∑
a

Pa,nr(Re, ω)Pa,nr(Re, ωt − ω), (29)

γph,pl(Re, ω)

γ0(ω)
=

1

3

∑
a

[Pa,nr(Re, ω)Pa,r(Re, ωt − ω) + Pa,r(Re, ω)Pa,nr(Re, ωt − ω)] , (30)

γph,ph(Re, ω)

γ0(ω)
=

1

3

∑
a

Pa,r(Re, ω)Pa,r(Re, ωt − ω). (31)

In order to investigate the line-shape of these spectral enhancements, we consider that the conductivity of the nanostructure is
well described by a Drude model σ(ω) = iε0ω

2
pt/(ω + i/τ), where ωp is the bulk plasma frequency, t is the thickness of the

nanostrucutre, and τ (� 1/ωp) accounts for dissipation in the system. The resonant frequencies ωα of the nanostructure are

determined through Re[1/ηα − 1/η(ωα)] = 0, resulting in ωα '
√
−ω2

pt/4πDηα in our problem. Using this expression in Eq.
(24) we find that the non-radiative Purcell factor can be written as

Pa,nr(Re, ω) =
N∑
q=1

3c3ω2
pt

8πD4ω2τ

∑gq
j=1 |êa · Fq,j(Re)|2

(ω2 − ω2
q )2 + ω2/τ2

, (32)

where we have split the summation over modes α into a sum in q over all the N resonances present in the TPSE spectrum, and
a sum in j over the degenerate modes. In Eq. (32) gq is the degree of degeneracy of the q-th resonance.

In the regime of small dissipation, the overlap between different resonances is negligible, and we can expand each term in the
above sum around the corresponding ωq , leading to

Pa,nr(Re, ω) '
N∑
q=1

Aa,q
ω2

(1/2τ)2

(ω − ωq)2 + (1/2τ)2
, (33)
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where

Aa,q =
3c3ω2

ptτ

8πD4ω2
q

gq∑
j=1

|êa · Fq,j(Re)|2 . (34)

We kept the prefactor 1/ω2 since it comes from the normalization by the free space spectral density and determines the spectrum
behaviour near ω = 0 and ω = ωt. It should be noticed, however, that far from ω = 0 (and ω = ωt) it is a good approximation to
replace 1/ω2 by 1/ω2

q . Note that any eigenmode supported by the system provides a Lorentzian line-shape for the non-radiative
part of the spectrum regardless of the geometry of the nanostructure. Also, precisely at a given plasmon resonance ωq′ , the
non-radiative Purcell factor reduces to Pa,nr(Re, ωq′) = (6πc3η2q′τ/D

2ω2
pt)
∑gq
j=1 |êa · Fq′,j(Re)|2. We comment that the

particular case of graphene can be obtained by replacing ω2
pt → e2EF /πε0~2 and τ → EFµ/ev

2
F , where vF is the Fermi

velocity, EF is the Fermi energy, and µ is the charge carrier’s mobility. This gives a non-radiative contribution at resonance
proportional to µ/D2, being independent of EF .

Now we will do the same analysis for the radiative contribution given by Eq. (28). To write Pa,r as a sum over resonances
is more subtle than the previous case since lim

ω→∞
Pa,r → 1, which means that there is always an overlap between different

resonances due to the free space contribution. Therefore, in order to write Pa,r as a sum of functions which accurately describe
each resonance near its own resonance frequency, we must subtract the contribution from all otherN −1 resonant terms. Hence,

Pa,r(Re, ω) '
N∑
q=1

∣∣∣∣êa +
ω2
pt

4πD

∑gq
j=1 êa · F∗q,j(Re)⊗ ζq,j

ω2 − ω2
q + iω/τ

∣∣∣∣2 − (N − 1). (35)

Expanding the denominator of each resonant term around its corresponding ωq yields

Pa,r(Re, ω) =
N∑
q=1

∣∣∣∣(ω − ωq + i/2τ)êa +
ω2

pt

8πDωq

∑gq
j=1 êa · F∗q,j(Re)ζq,j

∣∣∣∣2
(ω − ωq)2 + (1/2τ)2

− (N − 1). (36)

Finally, we express ζq,j in terms of its components parallel and perpendicular to the dipole moment, ζq,j = ζ
‖
a;q,j+ζ⊥a;q,j , where

ζ
‖
a;q,j = (ζq,j · êa)êa and ζ⊥a;q,j = ζq,j − (ζq,j · êa)êa. This results in

Pa,r(Re, ω) = 1 +
N∑
q=1

(ω − ωq + fa,q/2τ)2 +Ba,q × (1/2τ)2

(ω − ωq)2 + (1/2τ)2
−N, (37)

where

fa,q =
ω2
pτt

4πDωq

gq∑
j=1

Re
[
êa · F∗q,j(Re)ζ

‖
a;q,j

]
(38)

is the Fano asymmetry parameter of the q-th radiative resonance, and

Ba,q =

1 +
ω2
pt

8πDωq

gq∑
j=1

Im
[
êa · F∗q,j(Re)ζ

‖
a;q,j

]2

+

∣∣∣∣ ω2
pt

8πDωq

gq∑
j=1

êa · F∗q,j(Re)ζ
⊥
a;q,j

∣∣∣∣2 (39)

is the amplitude of the Lorentzian resonance. Therefore, by using Eqs. (33) and (37) in Eqs (29)-(31) we are able to fully
describe the line-shape of the spectral enhancements for each decay channel in the TPSE process.

V. PLASMON WAVE FUNCTIONS MODES FOR A NANODISK

In this section we obtain the PWFs directly from equation (17) for the case of a nanodisk. The PWFs in polar coordinates can
be written as a radial function Rln(u) times an angular function of the form eilφ. We also expand the term |u − u′|−1 in terms
of Bessel functions, namely10

1

|u− u′|
=

∫ ∞
0

dp
∞∑

m=−∞
J|m|(up)J|m|(u

′p)eim(φ−φ′). (40)
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In this way, equation (17) reduces to

2π∇2
u

∫ 1/2

0

du′u′
∫ ∞
0

dpJ|l|(up)J|l|(u
′p)Rln(u′)eilφ =

1

ηln
Rln(u)eilφ. (41)

In order to deal with the Laplacian, we write the right-hand side of the previous equation as 1
ηln

∫ 1/2

0
du′u′Rln(u′) δ(u

′−u)
u′ eilφ

and then recall that the Green’s function of the radial part of the Poisson equation in cylindrical coordinates satisfies∇2
uGl(u, u

′)eilφ =

− δ(u
′−u)
u′ eilφ. Hence,∫ 1/2

0

du′u′
∫ ∞
0

dpJ|l|(up)J|l|(u
′p)Rln(u′) = − 1

2πηln

∫ 1/2

0

du′u′Rln(u′)Gl(u, u
′). (42)

The radial part of the PWFs can be further expanded as

Rln(u) = (2u)|l|
∑
m′

alnm′P
(|l|,0)
m′ (1− 8u2), (43)

where alnm′ are to be determined and P (α,β)
m (x) are the Jacobi Polynomials. Multiplying both sides by (2u)|l|+1P

(|l|,0)
m (1−8u2),

making the change of variables x = 2u, x′ = 2u′, and p→ 2p, and using the relations11∫ 1

0

dxx|l|+1P (|l|,0)
m (1− 2x2)J|l|(px) =

J|l|+2m+1(p)

p
, (44)∫ ∞

0

dp
J|l|+2m+1(p)J|l|+2m′+1(p)

p2
=

(−1)m−m
′+1

π[4(m−m′)2 − 1][|l|+m+m′ + 1/2][|l|+m+m′ + 3/2]
, (45)

allows us to immediately solve the left-hand side (LHS) of equation (42) once we integrate in x. We have

LHS =
1

2

∑
m′

Klmm′alnm′ , (46)

where

Klmm′ =
(−1)m−m

′+1

π[4(m−m′)2 − 1](|l|+m+m′ + 1/2)(|l|+m+m′ + 3/2)
, m,m′ = 0, 1, 2, 3... (47)

The right-hand side (RHS) of equation (42) can be solved in the same way once we plug the expression for Gl(u, u′) and use
the orthogonality relation11 ∫ 1

0

dxx2|l|+1P
(|l|,0)
i (1− 2x2)P

(|l|,0)
j (1− 2x2) =

δij
2(|l|+ 2j + 1)

. (48)

For l 6= 0, Gl(u, u′) = 1
2|l| [(uu

′)|l| + (u</u>)|l|], where u> = max(u, u′) and u< = min(u, u′). Therefore, after integration
over x, we obtain

RHS = − 1

8πηln

∑
m′

Glmm′alnm′ , (49)

where

Glmm′ =
δm0δm′0

8|l|(|l|+ 1)2
+

δmm′

4(|l|+ 2m′)(|l|+ 2m′ + 1)(|l|+ 2m′ + 2)
+

δm+1,m′

8(|l|+ 2m+ 1)(|l|+ 2m+ 2)(|l|+ 2m+ 3)

+
δm,m′+1

8(|l|+ 2m′ + 1)(|l|+ 2m′ + 2)(|l|+ 2m′ + 3)
, m,m′ = 0, 1, 2, 3... (50)

For l = 0, Gl(x, x′) = −ln(x>) and the calculations are not as straightforward10. The result is the same as for l 6= 0, but the
matrix Gl does not have the first term (m,m′ 6= 0) of the RHS of the previous equation. Finally, by combining Eqs. (46) and
(49), we obtain an eigenvalue equation for the vector aln = {alnm},

Glaln = −4πηlnKlaln . (51)
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We solved this eigenvalue equation numerically for up to m,m′ = 300, obtaining satisfactory convergence. The normalization
of aln is obtained by enforcing Eq. (19) to be satisfied, resulting in a normalization factor given by

√
8/πalnGlaln.

Finally, several of the results we demonstrated before for the TPSE admit simple semi-analytical expressions in the case of
the nanodisk. In particular,

Fln(Re) = πD∇Ree
ilφe

∑
m

alnm

∫ ∞
0

dp

p
e−2pze/DJ|l|

(
2rep

D

)
J|l|+2m+1(p). (52)

For the case analyzed in the main text of a dipole placed on the symmetry axis of the nanodisk, the integral above can be solved
analytically, resulting in

Fln,x(ze) = πδ|l|1

∞∑
m=0

a1nm

(√
4z2e
D2 + 1− 2ze

D

)2(m+1)

√
4z2e
D2 + 1

= −iFln,y(ze),

Fln,z(ze) = −2πδl0

∞∑
m=1

a0nm

(√
4z2e
D2 + 1− 2ze

D

)2m+1

√
4z2e
D2 + 1

. (53)

Also,

ζln :=
π

32
δ|l|1a

1n
0 (x̂ + sgn(l)iŷ) (54)

and

da,ind(ze, ω) =
π

16

∑
n

a1n0 F1n,x(ze)

1/η1n − 1/η(ω)
[da − (da · ẑ)ẑ], (55)

which gives us a straightforward way to compute the radiative and non-radiative contributions for the spontaneous emission rate
in this situation. We point that it is clear from these expressions that only the dipole modes (l = 1) contribute to the x and y
Purcell factors and only the dark modes (l = 0) contribute to the z Purcell factor, which has a radiative part equal to 1.
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