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ABSTRACT: Lattice resonances, the collective modes supported by
periodic arrays of metallic nanoparticles, give rise to very strong and
spectrally narrow optical responses. Thanks to these properties, which
emerge from the coherent multiple scattering enabled by the periodic
ordering of the array, lattice resonances are used in a variety of
applications such as nanoscale lasing and biosensing. Here, we
investigate the lattice resonances supported by bipartite nanoparticle
arrays. We find that, depending on the relative position of the two
particles within the unit cell, these arrays can support lattice resonances
with a super- or subradiant character. While the former result in large
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values of reflectance with broad lineshapes due to the increased radiative

losses, the latter give rise to very small linewidths and maximum absorbance, consistent with a reduction of the radiative
losses. Furthermore, by analyzing the response of arrays with finite dimensions, we demonstrate that the subradiant lattice
resonances of bipartite arrays require a much smaller number of elements to reach a given quality factor than the lattice
resonances of arrays with single-particle unit cells. The results of this work, in addition to advancing our knowledge of the
optical response of periodic arrays of nanostructures, provide an efficient approach to obtain narrow lattice resonances that are

robust to fabrication imperfections.
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etallic nanostructures have become exceptional

tools to manipulate light at the nanoscale due to

their ability to support surface plasmons.' These
excitations, which emerge from the collective motion of the
conduction electrons of the nanostructure, interact strongly
with light and confine it into subwavelength volumes. As a
consequence, surface plasmons produce large field enhance-
ments” that have been exploited in a variety of applications
including solar energy harvesting,” photocatalysis,” and photo-
thermal cancer therapies.” However, due to their the large
radiative cross sections, together with the inherent non-
radiative losses of metals, the surface plasmons of individual
nanostructures usually display relatively broad lineshapes, with
quality factors (i.e., the ratio of the central wavelength of the
resonance to its width®) in the range Q < 10—20.7% Although
surface plasmons with a large bandwidth are useful for certain
applications, there are many others, such as biosensing” and
nanoscale light emission,'® that would benefit from surface
plasmons with large Q factors.

One way to obtain narrower plasmon resonances is to
exploit the interaction between the plasmon excitations
supported by individual metallic nanostructures. When
arranged in appropriate geometries, the collective plasmonic
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modes resulting from this interaction can display a super- or
subradiant character."'™*¢ Superradiant (or bright) modes are
characterized by a large net dipole moment arising from the
sum of the dipole moments of the plasmons supported by the
individual constituents. On the other hand, for subradiant (or
dark) modes, the dipole moments of the individual
constituents cancel one another, resulting in a smaller net
dipole. As a consequence, the radiative losses of subradiant
modes are significantly decreased with respect to those of the
plasmons of the individual nanostructures, thus leading to
narrower lineshapes and larger Q factors.'” ™ Oftentimes,
super- and subradiant modes spectrally overlap, giving rise to
asymmetric spectral features known as Fano resonances. -

An alternative approach to obtain strong and narrow
resonances using metallic nanoparticles involves their arrange-
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Figure 1. Sub- and superradiant lattice resonances in bipartite nanoparticle arrays. (a) Sketch of the system under study, built from the
periodic repetition of a unit cell containing two silver nanospheres (shaded area) over a square lattice with periodicity a. Particle 1 (red),
which has diameter D, is placed at the origin of the unit cell, while particle 2 (blue), with diameter D,, is located at a position (x,, y,). (b, c)
Reflectance (b) and absorbance (c) spectra for a bipartite array with a = 800 nm, D, = 200 nm, and D, = 216 nm. Green and yellow curves
correspond to y, = 0 and y, = a/2, respectively, while x, = a/2 in both cases. For comparison, we plot the reflectance and absorbance of a
single-particle array with the same periodicity a, made of particles with diameter D = 200 nm (red curve) or D = 216 nm (blue curve). Unless
otherwise noted, in all of the cases discussed in this work, we assume illumination at normal incidence with polarization along the x-axis.

ment in a periodic array. These systems support collective
modes known as lattice resonances, which arise from the
coherent multiple scattering enabled by their periodic order
and display large Q factors.”*™*" Indeed, a recent work has
measured a quality factor of ~2400 in a single-particle array.*’
Thanks to these extraordinary properties, periodic arrays of
metallic nanoparticles are being used for applications ranging
from the design of different optical elements such as light-
emitting devices,""*' 7% lenses,”" and color filters*>™>* to the
implementation of ultrasensitive sensors”> > and platforms for
exploring new physical phenomena.”®™ %>

In this paper, we explore the possibility of combining these
two approaches by investigating the lattice resonances
supported by bipartite arrays.””**"* We show that, depending
on the relative position of the two particles within the unit cell,
the lattice resonances supported by the array display a super-
or subradiant character. Not surprisingly, each of these two
behaviors leads to a very distinct optical response. Specifically,
superradiant lattice resonances produce large values of
reflectance with broad lineshapes, as expected from their
increased radiative losses. On the other hand, the significant
reduction of the radiative losses associated with the subradiant
lattice resonances gives rise to very small linewidths with
maximum absorbance. Furthermore, by analyzing the evolution
of the optical response of finite arrays with an increasingly large
number of unit cells, we demonstrate that the subradiant lattice
resonances of bipartite arrays require a much smaller number
of elements to reach a given quality factor than the lattice
resonances supported by arrays with single-particle unit cells.
This makes them less sensitive to finite-size effects and, hence,
more robust to fabrication imperfections. Therefore, in
addition to providing a comprehensive analysis of the response
of bipartite arrays of nanoparticles, our results show an
alternative path to achieve robust lattice resonances with large
quality factors, thus complementing previous works based on
the use of lattice resonances with an out-of-plane charac-
ter”®™®® or associated with higher-order plasmon modes of the
metallic nanostructures.””~””

RESULTS AND DISCUSSION

The system under study, which is depicted in Figure la,
consists of a periodic array built from the repetition of a unit
cell containing two silver nanoparticles (shaded area) over a
square lattice of period a. Particle 1 (red), with diameter Dy, is
placed at the origin of the unit cell r; = (0, 0), while particle 2
(blue), which has diameter D,, is located at a position r, = (x,,
y,) with x, always being a/2, as shown in the diagram. We are
interested in the optical response of the array due to the
lowest-order lattice resonance, which, under normal incidence
illumination, occurs in the spectrum at wavelengths satisfying A
> a. Therefore, assuming that the size of the nanoparticles is
much smaller than the lattice period a and, consequently, the
relevant wavelengths, we can describe the response of the
system in the dipolar limit using the coupled dipole model
(CDM).”>*””® Within this approximation, we model each of
the particles in the array as a point electric dipole with
polarizability @, which we obtain from the dipolar Mie
scattering coefficient”” using a tabulated dielectric function.*
We assume that the array is illuminated with an external field
of amplitude E,, which propagates along the z-axis (ie,
perpendicularly to the array) and is polarized along the x-axis.
Under such conditions, and due to the square symmetry of the
array, the dipole induced in the nanoparticles is also polarized
along the x-axis. Therefore, following our previous work on
arrays with multiparticle unit cells®' (see also refs. 82, 83, and
84), we can write the x-component of dipole induced in a
given nanoparticle as

2
p,= aE, + o Z Z Gij,;wp-’,,
v j=1 (1)

where we use Greek indices to denote the unit cell to which
the particle belongs and Latin ones to label each of the two
particles within the unit cell. Furthermore, the prime in the
first summation indicates that the terms v = y are excluded
from it when i = j, since a dipole does not interact with itself,
and G;;,,, is the xx-component of the dipole—dipole interaction
tensor, defined as
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Gy = k" + axax]l curves) or D = 216 nm (blue curves), we observe that the
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with T, — T, being the vector connecting the y and v unit cells
and k = 277/ the wavenumber. Thanks to the periodicity of the
array, eq 1 admits a solution in the form of Bloch waves with
amplitude (see the Methods)

[pl _Eaz_l_gn"‘glz
P, F 0’1_1 -G+ G (2)
Here, Pz(oﬁ_l_gn)(az_l_gn)_gfz and

G; = Z; Gy o is the Fourier transform of the dipole—dipole

interaction tensor, usually known as the lattice sum.””*" This
quantity, which only depends on the geometry of the array,
contains the information of the interaction between its
elements. In particular, it diverges at the Rayleigh anomalies,
which, for normal incidence, appear at wavelengths 4, = 27/1q,
with q representing the reciprocal lattice vectors of the array.
Therefore, the lattice sum determines the existence of the
lattice resonances, which emerge on the red side of the
Rayleigh anomalies, corresponding to the poles of the total
dipole induced in the unit cell p = p; + p,.">"**" As expected,
the expression of p given in eq 2 reduces to the result for an
array with a single-particle unit cell,*®”%*'

E,
-1
a =Gy, 3)
when one of the two particles is removed.
The optical response of the array can be characterized by
analyzing its reflectance, R, and absorbance, A. As shown in

the Methods, these two quantities can be written in terms of p,
for A > g, as

R = Ipl*/(211,)?,

p:

A = Im{p}/I1, — 2|P|2/(2H0)2

(4)
where I1, = a®AE,/(87*). Using these expressions, we calculate
the reflectance and the absorbance for two different bipartite
arrays. Both of them have the same period a = 800 nm and
particle sizes D; = 200 nm and D, = 216 nm. However, for one
of them, particle 2 is located at y, = 0, while, for the other, it is
placed at y, = a/2. The corresponding results are shown in
Figure 1b,c, with green curves for y, = 0 and yellow ones for y,
= a/2. They are in perfect agreement with rigorous solutions of
Maxwell’s equations obtained using a finite element method
(FEM), as shown in Figure S1 of the Supporting Information.
Clearly, both bipartite arrays support a lattice resonance;
however, their optical properties are very different. Specifically,
the lattice resonance of the array with y, = 0 gives rise to a very
large reflectance, R ~ 098, and an almost negligible
absorbance, A ~ 0.02, both with a significantly broad
lineshape. On the contrary, the bipartite array with y, = a/2
supports a very narrow lattice resonance, resulting in a
moderate reflectance, R ~ 0.29, and an absorbance that almost
saturates the theoretical limit for two-dimensional systems,
A = 0.5.*° These characteristics coincide with the behavior
expected for a super- and subradiant lattice resonance resulting
from the hybridization of the lattice resonances supported by
the two single-particle arrays into which these bipartite arrays
can be divided. Indeed, analyzing the reflectance and
absorbance of a single-particle array with the same periodicity,

width of the lattice resonances supported by these single-
particle arrays is significantly smaller than that of the bipartite
array with y, = 0, but larger than the one of the array with y, =
a/2. This is consistent with the increase and decrease of the
radiative losses expected, respectively, for a super- and a
subradiant mode.

In order to confirm the super- and subradiant nature of the
lattice resonances supported by the bipartite arrays with y, = 0
and y, = a/2, we perform a detailed analysis of the total dipole
induced in the unit cell. Specifically, defining
p=2/(a;" +a;")and § = @, ' — a; ', we can rewrite p =
p1 + p, as (see the Methods)

! CE,
-, pl-Q. ()

where {, = (n = 1)/n, Q,=G,+ G and

n=+1+6/(4G5). In principle, this expression predicts

the existence of two lattice resonances associated with the
cancelation of the denominator of each of the two terms.
However, as shown in Figure S2 of the Supporting
Information, Re{G,} = Re{G,;} for y, = 0 and
Re{G,,} ® —Re{G,;} for y, = a/2. Then, assuming that the
two particles in the unit cell have similar sizes, i.e., |30l < 1, we
have & 1 + 6°/(8G},). This means that Re{Q_}, for y, = 0,
and Re{Q.,}, for y, = a/2, are of order
Re{5%/(8G,,)} < Re{G,,}, thus resulting in the vanishing of
the contribution of the collective interaction. Therefore, for
each array, one of the terms of eq 5 corresponds,
approximately, to the localized dipolar plasmon of the
nanoparticles and thus only the other one gives rise to a
lattice resonance. In other words, the arrays with y, = 0 and y,
= a/2 support a single lattice resonance associated with the
first (Q,) and second (£_) terms of eq S, respectively, both of
which appear in the spectrum approximately at wavelengths for
which Re{f™! — 2G,,} = 0. These lattice resonances have
very different characteristics. First of all, their amplitude is
proportional to {,, which, for 186l <« 1, results in
{,m2+ 52/(8Qf2) ~2 and {_ =~ 62/(8g122) < 1, respec-
tively. This is what one expects for a super- and subradiant
mode. Furthermore, as shown in the Methods, the imaginary
part of the denominator of these two terms can be
approximated, for |80l < 1, as

_ K 27k 52
Im{f~' - Q.}~ —?(51 + &) — a—ﬂz(l +1) F Im{gg }

(6)

where & = 6"/6"" is the ratio between the dipolar

absorption, o = 4rk(Im{a,} — 2k’la?/3), and scattering,

1

0% = 8rk*la)* /3, cross sections of particle i. Therefore, the

1
first term on the right-hand side of eq 6 corresponds to the
nonradiative losses of the lattice resonance, which are
determined by the material and geometrical properties of the
nanoparticles (see Figure S3 of the Supporting Information for
an analysis of the impact of material properties). The rest of
the terms, which depend mostly on the array geometry through
the lattice sum, can be interpreted as the radiative losses. As a
result, the lattice resonances supported by the bipartite arrays
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Figure 2. Role of particle size on the super- and subradiant lattice resonances. Spectral dependence of the reflectance (a, b), absorbance (c,
d), and imaginary part of the dipole induced in the each of the particles (e, f) for the super- (y, = 0, left column) and subradiant array (y, =
a/2, right column). We consider arrays with a = 800 nm, D, = 200 nm, and D, varying from 152 nm (leftmost curves) to 248 nm (rightmost
curves) in steps of 8 nm. In all panels, the black curves denote the case with D, = D;. In panels (e) and (f), the red and blue curves
correspond, respectively, to the dipoles induced in particles 1 and 2. Note that the results of panel (c) have been multiplied by 10 to improve

visibility.

with y, = 0 and y, = a/2 have radiative losses proportional to
4nk/a* + Im{52/(8g12)} and —Im{52/(8g12) }, respectively.
Then, comparing these expressions with the corresponding one
for a single-particle array, 2zk/a* (see the Methods), we
conclude that the radiative losses are doubled for the array with
¥, = 0 and significantly reduced for the array with y, = a/2,
since —Im{5°/(8G,,)} < 27k/a’. Again, this is the expected
behavior for super- and subradiant modes. Based on this
analysis, we conclude that the bipartite arrays with y, = 0 and
¥, = a/2 support a super- and subradiant lattice resonance,
respectively.

We can gain further insight into the properties of these
lattice resonances by analyzing their dependence with respect
to the relative size of the two particles in the unit cell. To that
end, in Figures 2a—d, we plot the reflectance and the
absorbance of the two bipartite arrays with y, = 0 (left
column) and y, = a/2 (right column), both of which have a =
800 nm and D; = 200 nm. Each of the curves in these plots
corresponds to a different value of D,, ranging from 152 nm,
for the leftmost curve, to 248 nm, for the rightmost one,

11879

increasing in steps of 8 nm. As expected from our previous
discussion, the superradiant lattice resonances display much
broader lineshapes than their subradiant counterparts.
Furthermore, for both arrays, the increase of D, produces a
redshift of the lattice resonance. This behavior can be
understood from the condition Re{f™" — 2G,,} = 0, which
shifts to larger wavelengths, for which Re{G,,} takes smaller
values (see Figure S2 of the Supporting Information), as '
decreases. However, while the values of the reflectance and
absorbance for the superradiant array are not significantly
modified with the change of D, (R ~ 0.98 and A ~ 0.02 for
all values of D,), the subradiant lattice resonance undergoes
dramatic changes as D, approaches to D). In particular, for D,
= D, (black curve), this resonance completely disappears
because ¢ = 0, and therefore, {_ vanishes identically. At that
point, the subradiant lattice resonance becomes a perfectly
dark mode or bound state in the continuum, as recently
shown.®® It is worth noting that all of these results are obtained
assuming the arrays are excited at normal incidence. Any
deviation from this condition results in a spectral shift of the
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lattice resonance, which has a stronger impact in the case of
the subradiant lattice resonance due to its narrower lineshape,
as discussed in Figure S4 of the Supporting Information.

All of these trends are consistent with the behavior of the
dipole moment induced in the nanoparticles, which is plotted
in panels e and f. There, we use red and blue curves to denote
the imaginary part of dipole induced in particles 1 and 2,
respectively, with the black curve representing, again, the case
D, = D,. Expectedly, for the superradiant lattice resonance, the
two dipoles oscillate in phase, resulting in a stronger combined
dipole moment, which explains the large reflectance values. On
the other hand, for the subradiant array, although the dipoles
induced in the two particles have larger absolute values, which
justifies the larger absorbance, they also have opposite signs.
This means that the two dipoles oscillate in antiphase, with the
dipole of the smaller particle always pointing in the direction
opposite to the field polarization. These results, which are fully
consistent with the predictions of a hybridization model,*'
show explicitly that the subradiant nature of the lattice
resonance supported by the bipartite array with y, = a/2 is a
consequence of the mutual cancellation of the dipoles induced
in the two particles.

Interestingly, as shown in Figure 2d, the absorbance of the
subradiant lattice resonance is greatly increased on both sides
of the critical condition D, = D;. We explore this phenomenon
in more detail in Figure 3a, where we plot the value of the
reflectance (red) and absorbance (blue) at the wavelength for
which the latter is maximum. We use empty and filled dots,
respectively, for the super- and subradiant lattice resonances
investigated in Figure 2. However, in this case, we vary D, in
steps of 2 nm for increased resolution. As discussed before, the
reflectance and absorbance of the superradiant array remain
almost constant as the value of D, is varied, whereas, for the
subradiant system, we observe significant changes. In
particular, the reflectance monotonically decreases as D,
approaches D, from either side. However, the absorbance
displays two maxima at D, = 184 nm and D, = 216 nm (see the
dashed lines). At these points, the absorbance reaches 0.5,
which is the theoretical maximum value for a two-dimensional
system.85

We can understand this behavior by examining the
expression of the absorbance given in eq 4. First, to maximize
this quantity, the total induced dipole p, which, for
convenience, we write as p = Iple'”, must be purely imaginary
since any real component only serves to reduce A. With that
assumption, and taking the derivative of A with respect to Ipl,
we find that its maximum is reached at Ipl = Il for which
A =0.5. In other words, the absorbance saturates the
theoretical maximum for p = ill,. Interestingly, for that value
of p, the reflectance becomes R = 0.25, in complete agreement
with the results of previous works.®® Indeed, noticing that, for a
perfectly periodic array, the absorption and scattering
efficiencies can be assimilated to A and 2R, respectively,
this condition can be seen as a manifestation of the well-known
result that states that the maximum absorption of a dipolar
system is reached when its absorption and scattering
efficiencies become equal.®”*® In order to verify these
arguments, in Figure 3b we plot the magnitude (yellow) and
the phase (green) of p for the same systems analyzed in panel
a. Again, we use empty and filled dots for the super- and
subradiant arrays, respectively. Clearly, the magnitude of p for
the subradiant system approaches I1, and its phase becomes ¢
= /2 for D, = 184 nm and D, = 216 nm, in excellent
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Figure 3. Conditions for maximum absorbance in bipartite
nanoparticle arrays. (a) Value of the reflectance (red) and
absorbance (blue) for the lattice resonance of the sub- and
superradiant arrays, calculated at the wavelength of maximum
absorbance as a function of D,. (b) Normalized magnitude of the
total dipole (i.e., p = p, + p,) induced in the unit cell (yellow, left
scale), and its corresponding phase @ (green, right scale),
calculated at the wavelengths of panel (a). In all cases, we
consider arrays with a = 800 nm and D, = 200 nm, and vary D,
from 152 to 248 nm in steps of 2 nm. We use filled dots to display
the results for the subradiant array (i.e., y, = a/2) and empty dots
for those corresponding to the superradiant array (i.e., y, = 0). The
vertical dashed lines indicate the two values of D, (184 and 216
nm) for which the absorbance of the subradiant array reaches 0.5.

agreement with our predictions. On the other hand, for the
superradiant system, the magnitude and phase of p remain at
2I1, and 7/2, respectively. This means that, following eq 4,
both the reflectance and absorbance are independent of D, and
take values R =1 and A =0, respectively, which is in
complete consistency with the results of panel a.

So far, we have focused on bipartite arrays in which the
second particle in the unit cell is placed at either y, =0 or y, =
a/2. These systems, as shown above, support a single lattice
resonance due to the fact that Re{G,,} = Re{G,;} for y, = 0
and Re{G),} & —Re{G,;} for y, = a/2. However, this is not
the expected behavior for arbitrary values of y, lying between
these two limits. In these cases, eq S predicts the existence of
two different lattice resonances whose optical properties are
largely determined by the interplay between G,, and 6. This is
confirmed in Figure 4, where we analyze the spectral position
and optical properties of the lattice resonances supported by
arrays with arbitrary values of y,. Specifically, panels a—c and
d—f display, respectively, the wavelength of the peaks in the
absorbance and reflectance spectra as a function of y,. We
consider arrays with a = 800 nm, D; = 200 nm, and different
values of D, as indicated in the labels. In all cases, the area of
the circles is proportional to the value of the absorbance or
reflectance at the corresponding peak, while their color
encodes the function y =Ip — p,l/lp, + p,|. This function

serves to characterize the nature of the lattice resonance, since
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Figure 4. Transition from super- to subradiant lattice resonances in bipartite nanoparticle arrays. We plot the wavelength of the absorbance
(a—c) and reflectance (d—f) peaks as a function of y,. The area of the circles is proportional to the corresponding value of the absorbance or
the reflectance at that wavelength, while their color encodes the function y = |pl - pzl/ |p1 + pzl, following the scale in the middle. In all

cases, we consider arrays with a = 800 nm and D, = 200 nm, whereas the value of D, is, respectively, 184, 216, and 200 nm for panels (a, d),

(b, e), and (q, f).

its value ranges from zero for a perfectly superradiant mode
with p; = p, to large numbers for subradiant modes, for which
P~ = P

Exploring the results plotted in Figure 4, we observe that, for
the two cases with D, # D,, there are two lattice resonances
whose spectral positions coalesce as the value y, approaches a/
4. This can be understood by noticing that, as shown in Figure
S2 of the Supporting Information, Re{G,,} < Re{G,,} for y,
= a/4, which results in ©, and €_ having similar values. It is
worth mentioning that the wavelengths of the peaks of the
absorbance and reflectance spectrum do not exactly coincide,
which is consistent with the fact that the reflectance is directly
proportional to Ipl* while the absorbance depends on the
interplay between Imf{p} and Ipl’, as shown in eq 4.
Interestingly, the results of panels a, b and d, e show that,
for values of y, below a/4, the lattice resonance located at
longer wavelengths has a superradiant character, as inferred
from the large reflectance and the vanishing value of . On the
other hand, the lattice resonance closer to the Rayleigh
anomaly (i.e, A = a) exhibits large values of absorbance and ,
thus corresponding to a subradiant mode. This trend is
completely reversed for y, above a/4. In this case, the

resonance appearing at longer wavelengths displays the
subradiant character, while the one at shorter wavelengths
corresponds to the superradiant mode. As expected from the
analysis of eq 5, the subradiant mode becomes completely dark
and hence disappears from both the absorbance and
reflectance spectra when the two particles are identical (i.c,
D, =D,).

A distinct feature of the lattice resonance supported by the
subradiant bipartite array is its reduced lineshape as compared
with its superradiant counterpart. Consequently, the subradiant
lattice resonance displays a much larger quality factor Q, as
shown in Figure Sa. There, we use green and yellow dots,
respectively, to plot Q for the super- and subradiant arrays as a
function of D,. We consider systems with a = 800 nm and D, =
200 nm, and vary D, from 152 to 248 nm, in steps of 2 nm, as
in Figure 3. For simplicity, and to enable a later comparison
with finite arrays, we always calculate the quality factor from
the spectrum of the extinction efficiency. For infinite arrays,
within the dipolar approximation, this quantity is defined as
& = Im{p}/II, (see the Methods). Examining the results of
Figure Sa, we observe that the quality factor of the superradiant
lattice resonance is always below 100 for the values of D,
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Figure 5. Analysis of the quality factor of the lattice resonances. (a)
Quality factor for the lattice resonance of the super- and
subradiant arrays, plotted as a function of D,. We assume D; =
200 nm and use green (yellow) dots to display the results for the
array with y, = 0 (y, = a/2). (b) Quality factor for the lattice
resonance of the subradiant array plotted as a function of D, for
different ratios D,/D), as indicated in the legend. For comparison,
we plot the results for a single-particle array with D = D, using
black dots. The dashed gray line indicates a scaling of ~(a/D)°. (c)
Analysis of the convergence to the infinite array limit. The yellow
dots show Q for the lattice resonance of a subradiant array (i.e., y,
= a/2) with a finite number of particles, as indicated by the
horizontal axis. The array has D; = 200 nm and D, = 216 nm. For
comparison, we plot Q for a single-particle array with D = 156 nm
(green dots), D = 200 nm (red dots), and D = 216 nm (blue dots).
The dashed lines represent the value of Q for the corresponding
infinite array. As in the rest of the paper, we assume a = 800 nm for
all the arrays.

analyzed. On the contrary, for the subradiant lattice resonance,
Q is beyond 1000 for D, in the range 174—220 nm, reaching
two local maxima of ~2400 for D, = 192 nm and ~2000 for D,
= 208 nm. Interestingly, these values of D, are not far from the
ones that maximized the absorbance, D, = 184 nm and D, =
216 nm, for which Q is ~1700 and ~1300, respectively.
Importantly, as we show below, the quality factor of the
subradiant bipartite array is also larger than that of a single-

particle array with similar period and particle size. In a previous
work,*® we demonstrated that the quality factor of the lattice
resonance of a single-particle array with period a and particle

size D scales as Q ~ (A /a — 1)/% in the limit D < a. In
this expression, Ay is the lattice resonance wavelength, which,
in the same limit, satisfies 4;/a — 1 ~ (D/a)®, thus resulting
in Q ~ (a/D)’ (see the Methods for more details). Therefore,
by using single-particle arrays with decreasing D/a, it is
possible to obtain lattice resonances with increasingly large
quality factors.”” This can be seen in Figure Sb, where the
black dots represent the value of Q for the lattice resonance of
a single-particle array with period a = 800 nm and particle
diameter D = D,.

However, for a given value of D, it is possible to construct a
subradiant bipartite array supporting a lattice resonance with a
Q larger than that of a single-particle array with the same
periodicity. See, for instance, the yellow dots in Figure Sb,
which show the quality factor for the lattice resonance of a
subradiant array with D,/D; = 1.100. By decreasing this ratio,
it is possible to further increase the quality factor, as shown by
the other colored dots. Interestingly, for the largest sizes under
consideration, all of the ratios D,/D; result in a value of Q that
is almost 1 order of magnitude larger than that of the single-
particle array. However, as D, decreases, it is necessary to use
an increasingly smaller ratio to see the same improvement.

It is important to remark that all of the results discussed so
far are based on calculations for infinite arrays. However, in a
practical implementation, the arrays necessarily have a finite
size. This imposes some important limitations on the actual
performance of these systems.89_94 For instance, although, as
explained above, the quality factor of a single-particle array can
be made arbitrarily large by decreasing the ratio D/a, this
requires, in practice, an increasingly large system. The reason is
that, following eq 3, the decrease of D/a results in a smaller
particle polarizability and thus a larger Re{a ™'}, which, in turn,
demands a larger value of the lattice sum Re{G,,}, as discussed
in our previous work.*>® For an infinite array, it is possible to
obtain an arbitrarily large value of Re{G,,}, since the value of
this quantity diverges at the Rayleigh anomaly, that is, as 4
approaches a from the red side (see Figure S2 in the
Supporting Information). However, for a finite array, the value
of Re{G,,} is constrained by the number of particles in the
array that can coherently interact, which, in a practical
implementation, is obviously limited by the size of the array.

Interestingly, from the discussion of eq 5, we concluded that
the lattice resonance of the subradiant bipartite array appears

at wavelengths for which Re{f™' —2G,,} 0. Since

p = (" +a;")/2 and, for the systems under inves-
tigation, @, =& a,, this means that this subradiant resonance
requires a value of Re{G,,} that is effectively half of the value
necessary for the lattice resonance of the single-particle array.
Therefore, for similar periodicity and particle size, the
subradiant bipartite array is expected to be more robust to
finite-size effects than a single-particle array, thus requiring a
smaller number of elements to reach the infinite array limit.
Incidentally, for the same reason, the lattice resonance of the
subradiant bipartite array is also expected to be more robust to
inhomogeneities in the dielectric environment surrounding the
array. When large enough, such inhomogeneities have been
shown to hinder the collective interactions between the
elements of the array, suppressing the lattice resonances of the
system.9>
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In Figure Sc, we analyze the quality factor for different finite
arrays as a function of their total number of elements. In all
cases, we consider arrays with a period a = 800 nm and, as in
panels a and b, calculate Q from the extinction efficiency. This
quantity is given, for a finite array with N particles and N unit
cells under normal illumination, by & = Zfi Im{P}/ (NTT,),
where P, represents the self-consistent dipole moment induced
in particle i of the finite array”” (see the Methods). The yellow
dots in Figure Sc represent the value of Q for a finite
subradiant bipartite array (i.e., y, = a/2), with D; = 200 nm and
D, = 216 nm. Examining the results, we observe that, for N =
7200, Q has already reached ~66% of the value of the
corresponding infinite array, which is indicated by the dashed
line of the same color. This is in sharp contrast with the
behavior of a single-particle array with D = 156 nm, whose
results are shown by the green dots. We chose this particular
value of D because it results in practically the same Q as the
subradiant bipartite array in the infinite array limit (notice the
overlapping green and yellow dashed lines). However, for a
similar number of particles (N = 7225), the quality factor of
this array is only 11% of the infinite array limit, thus confirming
our predictions. To complete our analysis, we also plot the
evolution of Q for another two single-particle arrays with D =
200 nm (red dots) and D = 216 nm (blue dots). The larger
particle diameter makes these systems converge faster to the
infinite array limit but, at the same time, results in a drastic
reduction of the value of Q as compared with the subradiant
bipartite array. All of these results demonstrate that the lattice
resonance of a subradiant bipartite array is more robust to
finite-size effects than those supported by single-particle arrays
with similar dimensions.

CONCLUSIONS

In summary, we have provided a comprehensive analysis of the
lattice resonances supported by bipartite nanoparticle arrays.
Using a rigorous coupled dipole model, we have shown that it
is possible to obtain lattice resonances with either a super- or
subradiant character, depending on the relative position of the
two particles within the unit cell, which exhibit very different
optical responses. In particular, superradiant lattice resonances
are characterized by the dipole moments of the two particles
oscillating in phase, thus resulting in increased radiative losses
that lead to large reflectance values and broad lineshapes. In
sharp contrast with this, subradiant lattice resonances display
much narrower lineshapes, and therefore much higher quality
factors, as well as large values of the absorbance, all of which
are consistent with the decrease of the radiative losses caused
by the partial cancellation of the dipoles induced in the two
particles. In addition, we have found that, while the relative size
of the two particles has a minimal impact on the response of
the superradiant array, the optical response of the subradiant
one undergoes a dramatic transformation as the particle size is
changed, making it possible to reach perfect absorbance while
maintaining large quality factors. Furthermore, we have
demonstrated that the lattice resonance of a subradiant
bipartite array is more robust to finite-size effects than the
lattice resonance supported by a single-particle array with
similar period and particle size and, therefore, a subradiant
bipartite array requires a smaller number of elements to
achieve a given quality factor. Our results shed light on the
optical response of bipartite arrays of nanoparticles and
provide a simple path to achieve lattice resonances with large

quality factors that are robust to finite-size effects and,
therefore, fabrication imperfections.

METHODS
Derivation of eqs 2—6 Using the Coupled Dipole Model.

Thanks to the periodicity of the array, eq 1 can be rewritten in terms
of Bloch waves as p = a,.[EO + Z;Qgpl], where p; represents the

amplitude of the dipole induced in the particle i of every unit
cell.*”**%! The explicit solution of this equation,

[ﬂ] _ 0’1_1 - G -G
P, - Gn 0’2—1 -G

leads directly to eq 2. Notice that, here, we have used the fact that
Gy, = Gy, and G, = Gy,. The total dipole induced in the unit cell

can then be written as

al_l + %—1 +2(G, — G,1) E
(a7 =G - G) -Gh °

which clearly reduces to the usual result for a single-particle array
given in eq 3 when one of the particles is removed from the unit cell.
Following simple algebraic manipulations, the expression above can
be split into the two terms of eq 5.

Once the total dipole induced in the unit cell is known, we can
calculate the reflectance, transmittance, and absorbance of the array
from the field that it scatters. For the illumination conditions used in
our investigation, and assuming A > g4, all of the diffracted beams
except the zero-order are evanescent and consequently vanish in the
far-field. Therefore, the amplitude of the scattered field can be simply

written as E,., = 27ikp/a%*"**®" Using this result, the total intensity

—1
EO
EO

p=ptp =

reflected by the array is given by Ig = cIE,*/(27), while the total
intensity transmitted reads I = c[Eq + |E, *+2E,Re{E, .}/ (27).
Then, the reflectance, transmittance, and absorbance of the array are
R =1Ig/ly, T =1s/I;, and A=1—R — T, with I, = cE}/(2x)
being the incident intensity. Simplifying these expressions, we obtain
eq 4.

qunally, to derive eq 6, we need to compute the imaginary parts of
p7" and Q.. The former is given by

Im{e;} Im{a,} 2K°

Im{p™") = -

2 2
2l 2la,|

k3
= _?(51 + éz) -

where £, and &, are ratios between the dipolar absorption and
scattering cross sections for particles 1 and 2 defined in the main text.
Moreover, for A > a, we can use the Weyl identity® to obtain
Im{Qi’.} = 27k/a® — 2k35i]./3 (with 5,-j being the Kronecker delta

function), as shown in ref 81. Therefore,
- K 27k
Im{f™' - Q,} = —?(51 +&) - — F Im{Gn}
a

Then, taking the limit of I38] < 1, in which  ~ 1 + §/(8G1,), this
expression reduces to eq 6.

Quality Factor of a Single-Particle Unit Cell Array. As
demonstrated in ref 38, the quality factor of the first lattice resonance
supported by a single particle array scales as

QN (@ ~ 1)—3/2

a

in the limit in which the period of the array, 4, is much larger than the
particle size D. Here, Ay is the wavelength of the lattice resonance,
which is approximately defined by the condition Re{a™ — G,;} = 0.
Away from the localized plasmon resonance of the particle Re{a™'}~
D3, while, as shown in refs 27 and 38, Re{G,,} ~ a3(A/a - 1)71/2.
Therefore, (Aig/a — 1) ~ (D/a)5, which allows us to finally write
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Q ~ (a/D)’. The validity of this scaling is confirmed by the gray
dashed line in Figure Sb.

Extinction Efficiency for Infinite and Finite Arrays. The
extinction efficiency allows us to compare the properties of infinite
and finite arrays in a consistent way. For a finite square array with N
particles and N unit cells, under the illumination conditions used
throughout this work, this quantity is defined as

4rk 1 <
E= Im{P} = Im{P
Naong (8} Nnog ()

Here, P; represents the x-component of the self-consistent dipole
induced in particle i of the finite array, which is obtained from the self-
consistent solution of

N
P=aF&+a) GP
j=1

with G = [k* + VV]e"""™/Ir, — x| being the dipole—dipole inter-
action tensor that describes the coupling between the dipoles of
particles i and j. Similarly, for an infinite array, this quantity is defined
as

2

&= 47k zlm{p} _ Im{p}

2 i
a EO i=1 1_IO

where now p; is the amplitude of the Bloch wave describing the dipole
induced in the particle i of every unit cell in the array.
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Comparison of the Coupled Dipole Model with Fully Numerical Calculations

In order to benchmark the results from the coupled dipole model (CDM), we compare it
against rigorous numerical solutions of Maxwell’s equations obtained using a finite element
method (FEM) approach implemented in the commercial software COMSOL Multiphysics
(see Fig. S1). In all of the cases, the nanoparticle arrays are located in the zy-plane and
illuminated with an incident plane wave propagating along the positive z-axis and polarized
along the z-direction. Under these conditions, there is a fourfold reflection symmetry that
allows us to restrict the simulation domain to one quarter of the array unit cell. We choose
the boundaries of the simulation domain parallel to the yz- and xz-planes as perfect elec-

tric and perfect magnetic conductors, respectively. Furthermore, to truncate the simulation
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Figure S1: Comparison of the coupled dipole model (CDM, solid curves) with rigorous solu-
tions of Maxwell’s equations obtained using a finite element method approach (FEM, dashed
curves). We plot the reflectance (a) and absorbance (b) for the same arrays investigated in
Figure 1. Specifically, the green and yellow curves display the results for a bipartite array
with period ¢ = 800nm and particle diameters D; = 200nm and Dy = 216 nm. In both
cases, Ty = a/2, while y is either 0 (green curve) or a/2 (yellow curve). Similarly, the red
and blue curves show the results for a single-particle array with the same periodicity a, made
of particles with diameter D; (red curve) or Dy (blue curve). In all cases, we assume illu-
mination at normal incidence with polarization along the z-axis. These results demonstrate
the accuracy of the CDM.

domain in the z-direction, we use perfectly matched layers (PML). Upon solving Maxwell’s
equations, we obtain the value of the electric and magnetic fields at all points in the simu-
lation domain. Using these solutions, we calculate the absorbance of the array as the ratio
between the total power dissipated in the unit cell and the incident power. Similarly, we ob-
tain the transmittance and reflectance from the power leaving the simulation domain along
the positive and negative z-axis, normalized to the incident power. All of the calculations
are checked for convergence with respect to the size of the simulation domain as well as the

mesh size.
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Figure S2: Spectral dependence of the real part of the lattice sums Re{G1} and Re{Gi2}.
In all cases, we consider arrays with periodicity a = 800 nm, and assume normal incidence.
Dashed curves are used to display Re{G1} (red curve) and —Re{G11} (blue curve), whereas
solid curves indicate the value of Re{Ga} for yo = 0 (green curve), y» = a/4 (gray curve),
and yo» = a/2 (yellow curve). These results show that Re{Gi2} ~ Re{Gi} for y» = 0,
Re{G12} < Re{G11} for yo = a/4, and Re{Gi2} =~ —Re{G11} for yo = a/2.
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Figure S3: Analysis of the effect of the material properties of the lattice resonances supported
by bipartite arrays. We plot the reflectance (a) and absorbance (b) for bipartite arrays with
period ¢ = 800nm made of silver (solid curves) or gold (dashed curves) nanoparticles.
Green and yellow curves display the results corresponding to the super- (i.e., yo = 0) and
subradiant (i.e., y2 = a/2) arrays, respectively. In all cases, the diameter of particle 1 is
D; = 200nm, while Dy = 216 nm for the silver array and Dy = 236 nm for the gold one.
These diameters are chosen such that the subradiant array displays maximum absorbance.
We assume illumination at normal incidence with polarization along the xz-axis. Both silver
and gold arrays display similar values of reflectance and absorbance, although the larger
material losses of gold as compared with silver result in broader lineshapes.
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Figure S4: Analysis of the effect of oblique incidence on the lattice resonances supported by
bipartite arrays. We plot the reflectance (a) and absorbance (b) for bipartite arrays with
period a = 800 nm made of nanoparticles with D; = 200nm and Dy = 216 nm. Green and
yellow curves display the results corresponding to the super- (i.e., yo = 0) and subradiant
(i.e., yo = a/2) arrays, respectively. We analyze the response of these arrays under normal
(i.e., 8 = 0°, solid lines) and oblique incidence with # = 0.5° (dashed curves), as indicated
in the inset. In all cases, the polarization of the incident field is along the z-axis. Due to its
extremely narrow lineshape, the subradiant lattice resonance is shifted by approximately its
linewidth when the angle of incidence is tilted by 0.5°. This limits the numerical aperture
of the excitation beam to be < 1072,
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