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Separating Feeder Demand Into Components Using
Substation, Feeder, and Smart Meter Measurements

Gregory S. Ledva

Abstract—Real-time, feeder-level energy disaggregation seeks
to separate the measured total demand of a distribution feeder
into components (e.g., into the aggregate demand-responsive load
and remaining demand on the feeder, or into the aggregate gen-
eration and demand on the feeder). It can benefit distribution
system operators and demand response providers by providing
real-time information about balancing reserve requirements or
the aggregate demand-responsive load, among other applications.
In this work, we develop a feeder-level energy disaggregation
algorithm that uses measurements from multiple sources that are
available on different timescales. The algorithm is based on online
learning and uses sensor fusion to incorporate output equations
associated with disparate active and reactive power flow mea-
surements, complex bus voltage measurements, and residential
smart meter measurements. The algorithm also uses distribution
substation measurements. Case studies simulate a three-phase
distribution feeder model with unbalanced loads, where the active
and reactive demand of the loads are modeled as a function
of voltage and temperature. These models are parameterized
using real-world active power demand data at each time-step.
Results indicate that disaggregating three demand components
is possible using feeder head active power measurements, that
including feeder head reactive power measurements improves
disaggregation accuracy by 32% on average, and that includ-
ing intermittent real-time smart meter measurements further
improves disaggregation accuracy.

Index Terms—Distribution system, energy disaggregation,
power flow, smart meters.

I. INTRODUCTION

ISTRIBUTED energy resources (DERs) such as
Dresidential solar installations and residential demand
responsive loads are becoming more prevalent within dis-
tribution networks [1], [2]. These technologies can cause
more variability in distribution network power flows, requir-
ing additional sensing to maintain acceptable power quality to
end-users. Real-time sensing in distribution networks has tra-
ditionally been limited to within the substations [3]. However,
additional real-time sensing capabilities outside of the sub-
station, e.g., of bus voltage phasors, are becoming more
common [4]. Smart meters have also been widely deployed [2],
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and they can provide device-level power usage information via
energy disaggregation algorithms [5], but smart meter com-
munication capabilities limit the real-time availability of these
measurements. The information commonly is transmitted only
once per hour, or once per day.

In this work, we use real-time and historical measurements
from a distribution substation, a distribution feeder, and smart
meters to perform real-time, feeder-level energy disaggregation
on time-scales of seconds to minutes. Real-time, feeder-level
energy disaggregation seeks to separate the measured total
demand of a distribution feeder into components. Examples
of possible demand/generation components include the aggre-
gate demand-responsive load and the remaining demand on the
feeder, the aggregate generation and the demand on the feeder,
or the aggregate voltage-dependent load and the remaining
load. It can benefit distribution system operators and demand
response providers by providing information about 1) poten-
tial balancing reserve requirements due to changes in solar
generation, 2) the real-time aggregate demand of the demand-
responsive loads which can be used as a feedback signal
for control algorithms, and 3) the potential benefits of con-
servation voltage reduction, among other applications. For
example, [6] uses disaggregation to determine the load on a
feeder that also has substantial solar generation. Works [7], [8]
assume a feedback signal (i.e., the aggregate demand of a col-
lection of demand-responsive loads) is available for real-time
control.

In this work, we develop a feeder-level energy disaggre-
gation algorithm using an online learning algorithm that we
modify to incorporate sensor fusion, which is a method to uti-
lize data/information from disparate sources/sensors within an
estimate, e.g., see [9]. Sensor fusion allows the algorithm to
utilize real-time measurements that are available on different
timescales from a variety of sources. We use historical mea-
surements to compute demand component models that predict
the real-time demand of the components, and we adjust these
predictions using real-time measurements. Case studies dis-
aggregate the real-time feeder demand into the aggregate air
conditioner (AC) demand, the aggregate demand of non-air
conditioning loads, referred to as the other load (OL) demand,
and the network (NW) demand, i.e., the losses and capacitor
bank reactive power injections.

Related feeder-level energy disaggregation literature
includes the following: [6] uses multiple linear regres-
sion with substation apparent power measurements; [10]
and [11] use artificial neural networks with substation
apparent power (in some cases, only active power) and
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voltage measurements; [12] estimates the load based on
assumed models of the load components using substation
apparent power and voltage measurements; and our prior
work [13], [14] use online learning and substation active
power measurements.

The contributions of this work are the following:
1) we formulate a more general disaggregation problem
that includes the reactive power and the NW demand mak-
ing the algorithm more applicable to real power systems,
whereas [13], [14] include only the active demand and no
NW demand; 2) we develop the non-trivial ability to include
additional real-time heterogeneous measurements from the
feeder outside of the substation and from smart meters, and
we incorporate measurements taken on different time-scales,
both of which greatly enhance the flexibility of the algo-
rithm, whereas [6], [10]-[14] only use real-time measurements
from the substation on the same time-scales; 3) in the case
studies we explicitly model the distribution feeder, the result-
ing NW demand, and the feeder’s influence on the measured
aggregate power of the feeder, whereas [6], [10]-[14] do
not; 4) we generate case study data using real-world active
power data and realistic models to generate reactive power
data, voltage dependence, and outdoor temperature depen-
dence, whereas [10]-[12] all use artificial training and testing
data; and 5) we investigate changes in disaggregation accuracy
when including reactive power, voltage phasors, and complex
current (into aggregate models), which helps inform whether
additional sensing capabilities on a given feeder might be
beneficial or cost-effective, whereas [10] investigates reactive
power only. Contribution 2) allows the algorithm to lever-
age the diverse sensors that may exist on real radial feeders,
which often have more than just feeder head power flow mea-
surements available. We emphasize that using heterogeneous
measurements such as power flows and voltage phasors to dis-
aggregate load requires substantial non-trivial modifications
for the formulations in the literature; that is the focus of this
work.

The remainder of the work is organized as follows:
Section II describes the problem overview; Section III details
the energy disaggregation algorithm; Section IV describes the
aggregate modeling in the disaggregation algorithm; Section V
details the case studies; and Section VI concludes.

II. PROBLEM OVERVIEW

A power system entity, e.g., a demand response provider
or distribution system operator, seeks to estimate the real-
time aggregate demand of N demand components served by
a distribution feeder on timescales of seconds to minutes
via feeder-level energy disaggregation. Figure 1 illustrates an
example of feeder-level energy disaggregation. The entity mea-
sures the demand of (i.e., the power flow into) a distribution
feeder and estimates the feeder’s aggregate AC, OL, and NW
demands.

Fig. 2 summarizes the plant (i.e., the physical system of
interest), the disaggregation algorithm, and possible real-time
measurements. The plant contains a distribution substation, a
distribution feeder, and residences, which contain loads that
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Fig. 2. Block diagram depicting the main components within the problem

framework and the potential real-time measurements.

TABLE I
POSSIBLE REAL-TIME MEASUREMENTS

Measurement Type Frequency
Substation Measurements
Active and reactive power flow into the feeder 1 minute
Complex current flowing into the feeder 1 minute
Complex voltage at the feeder head 1 minute
Network Measurements
Active and reactive power flow within the feeder 1 minute
Complex voltage within the feeder 1 minute

Smart Meter Measurements
Active and reactive power flowing into the residence
Current magnitude flowing into the residence
Voltage magnitude at the residence
Voltage and current phase difference at the residence
Weather Measurements
Outdoor temperature

10-60 minutes
10-60 minutes
10-60 minutes
10-60 minutes

1 minute

can be separated into N — 1 components. The Nth demand
component is the NW demand.

We assume that the power system entity receives some
combination of substation, network, smart meter, and weather
measurements in real-time. Table I illustrates possible mea-
surements and their assumed frequency of availability for
the case studies of Section V. We assume that 1) substa-
tion measurements are available as substations are extensively
metered [3]; 2) network measurements, i.e., measurements at
points within the distribution feeder outside of the substation,
may be available from sensors such as micro-phasor measure-
ment units [4]; 3) smart meter measurements may be available
but only at infrequent intervals, e.g., every 10-60 minutes, due
to smart meter communication limitations [5]; and 4) weather
measurements are available from weather sensors near the
feeder.

We also assume that when smart meter measurements
are available from all residences we can directly compute
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the N demand components for the feeder by 1) applying
building-level energy disaggregation algorithms [5] to each
meter’s measurements, 2) summing the demands of the loads
that correspond to each demand component, and 3) computing
the NW demand by subtracting the total demand measured by
the smart meters from the measured feeder demand. The smart
meter capabilities enabling this include their ability 1) to mea-
sure apparent power, voltage and current magnitudes, and the
phase difference between the voltage and current; 2) to sample
measurements on timescales of seconds to minutes; and 3) to
transmit histories of measurements [5]. We also assume that
historical smart meter measurements are always available on
timescales of seconds to minutes, regardless of whether they
are transmitted in real-time.

The feeder-level energy disaggregation algorithm computes
demand component estimates for the total feeder, measured at
the distribution substation (i.e., at the feeder head). The algo-
rithm computes demand component estimates for the present
time-step by updating demand component estimates for the
previous time-step using the real-time measurements, sensor
fusion, and aggregate models (and their parameters). First, we
fuse the available real-time substation, network, and smart
meter measurements, where the modeling approach for the
measurements relies on a radial feeder structure. Next, we
compute measurement-based prediction adjustments using the
fused measurements and the demand component estimates for
the previous time-step. Then, we compute the model-based
predictions using the aggregate models, weather measure-
ments, and (possibly) substation measurements. Finally, we
estimate the demand components at the next time-step using
the new predictions and the prediction adjustment. While the
goal is disaggregation of the total demand at the feeder head,
the demand components are split over portions of the feeder
to facilitate the usage of network measurements outside of the
substation.

The case-study plant includes a three-phase distribution
feeder model with unbalanced, wye-connected (line-to-neutral)
loads. However, the aggregate models and the disaggregation
algorithm do not model coupling between the phases; they
model and disaggregate each phase individually and implic-
itly assume wye-connected loads. Therefore, for simplicity, we
exclude notation specifying the phase. This implicit assump-
tion is mild as delta-connected loads are relatively rare on
distribution systems in the United States. Extension to systems
with delta-connected loads is a subject for future research.

III. THE ENERGY DISAGGREGATION ALGORITHM

The feeder-level energy disaggregation algorithm consists
of an estimation algorithm, sensor fusion methodology, and
output equations for distribution system measurements. The
estimation algorithm incorporates these output equations via
the sensor fusion methodology, which allows the disaggrega-
tion algorithm to use measurements from multiple sources that
are available on different timescales. Section III-A summarizes
a previously developed estimation algorithm. Section III-B
summarizes the sensor fusion methodology, which builds
on the prior subsection to show how multiple measurement
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sources can be utilized within the algorithm. Section II-C
develops output equations for four measurement types within
the distribution system: power flows, squared bus voltage mag-
nitude differences, bus voltage angle differences, and smart
meter measurements. This subsection builds on the prior ones
by detailing the specific output equations for the various mea-
surements, which can then all be utilized in the estimation
algorithm via the sensor fusion methodology.

A. The Estimation Algorithm

The estimation algorithm is a modified version of
Dynamic Mirror Descent (DMD), an online learning algo-
rithm developed in [15] and modified in [13]. DMD iterates
between a measurement-based update and a model-based
update. The measurement-based update computes an adjusted
state estimate via a convex optimization formulation that incor-
porates newly arrived measurements. The model-based update
advances the adjusted state estimate to the next time-step via
a possibly nonlinear model. Reference [13] modified DMD to
separate the measurement-based update from the model-based
update, allowing the use of a wider range of models within
the algorithm. R

The modified DMD algorithm computes estimates 6, € ® of
a dynamic state 6, € ® using measurements y; € ) that arrive
sequentially in time. The domain of the state @ — R% is a
bounded, closed, convex feasible set of dimension d;, and Y
R is the domain of the measurements with dimension dy. For
feeder-level energy disaggregation, 6; is a vector of aggregate
demand components for different types of loads or generation,
possibly aggregated over separate portions of a distribution
feeder. Modified DMD is as follows

Ki+1 = argmin [nS<V€,<§t,y,>, 9> +D(9Hl?t)] (H
0c®

61 = @(8) @)

Ora1 = Or1 + Rep1, 3)

where k; accumulates the measurement-based adjustment to
6, and 5, is the model-based prediction. Eq. (1) updates &, to
include the new measurement, where the first term penalizes
deviations of the model predictions from the measurements,
where the second term penalizes the accumulation of errors,
and where 1® controls the trade-off between the terms. Eq. (2)
predicts the state at the next time-step using the model ®(-),
and (3) adjusts the model-based prediction using &;. In the
above, n®* € (0, 1] is a user-defined step-size parameter, {-, -)
is the standard dot product, V¢,(-, y;) is a gradient or subgra-
dient of the user-defined loss function ¢;(-, y;) that penalizes
deviations of the predicted measurement from y, with y; fixed,
6 is the optimization variable, and D(:||-) is a user-defined
Bregman divergence that is a measure of distance between the
arguments. AWe assume that Et(@, y¢) contains a linear map-
ping from 6; to the estimated output y;, i.e., that y; = C0;,
where the matrix C; depends on the available measurements at
each time-step. We also assume that £,(6;, y;) contains an out-
put estimation error covariance matrix H?, i.e., a covariance
matrix that quantifies the accuracy of the output estimates, as
this can improve disaggregation accuracy [14].
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The models ®(-) can come from an arbitrary source (e.g.,
operator experience or data), can have arbitrary structure (e.g.,
state-space or regression models), and may be inaccurate at
times. Reference [13] used 6, as the argument of ®(-) to allow
usage of models of with different structures, and [13] and [14]
both utilize an extension of DMD from [15] that uses multiple
®(-) sets to address modeling inaccuracy. The algorithmic
developments in this work, [13], and [14] can be incorpo-
rated into an energy disaggregation algorithm simultaneously
to address modeling error and heterogeneous measurements.

B. Sensor Fusion Methodology

We summarize a sensor fusion methodology to construct C;
within modified DMD based on the newly available real-time
measurements at time ¢. Kalman filtering commonly uses sen-
sor fusion [9], but feeder-level energy disaggregation has not
used it. We assume the output equation of each measurement is

yr = Cibr + wy, 4

where w; is the measurement noise, which we assume is
a random vector with positive-definite measurement error
covariance R. Given two measurements ytl, ylz, their respective
output matrices C, Ctz, and their respective measurement error
covariances R!, Rz, we assume that the measurement noise
for separate sensors are independent, and the fused output
quantities are

51 17 . 1
o)-[fes s 2]
We assume that the estimation errors are independent of each
other and from the measurement noise and compute I1] =
C,ﬁ ,C,T + R, where m ; is the state estimation error covariance.
The sensor fusion methodology allows measurements on
different timescales to be utilized within the algorithm. For
example, if power flow measurements are available at all
time-steps and smart meter measurements are available inter-
mittently, a fused output equation and measurement noise
covariance can be computed for time-steps when both mea-
surements are available, and the power flow measurements can
be used within the algorithm for the remaining time-steps.

C. Output Equations

This subsection develops feeder-level energy disaggrega-
tion output equations for the four measurement types. We
first introduce notation and then define the output matrix and
measurement error covariance for each measurement type.
Feeder-level energy disaggregation seeks to separate the total
feeder demand, measured at the feeder head, into different
demand components aggregated over the entire feeder. Some
measurements (e.g., power flows) may provide information
about portions of the feeder (e.g., the downstream demand).
As a result, we extend the common feeder notation to describe
feeder portions, rather than describing individual feeder nodes,
allowing us to incorporate these measurements. If measure-
ments are only available at the substation or feeder head, then
this is unnecessary, and the algorithm should be formulated
for the entire feeder. We represent power flows on a radial
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Fig. 3. Example feeder and feeder portions ]-',’n (within boxes) and Fpy
(differentiated by color) for m € M = {1, 3, 4, 13}. Vertical ellipses indicate
an arbitrary downstream feeder structure. Node O is the root, indicated with
a Ccross.

feeder as sums of the downstream load and losses, and so the
output matrices are only valid for radial feeders. To simplify
notation, we exclude time indices in this subsection; how-
ever, the approach could accommodate time-varying sets and
parameters, if they and their evolution are known.

We first describe the feeder as a graph consisting of a set of
buses/nodes N and a set of power lines/edges £ connecting the
nodes in a radial/rooted-tree topology. In a radial/tree topology,
1) all nodes within the graph are reachable from any other
node via a path, or a sequence of nodes and edges, and 2) no
path exists from a node back to itself using unique edges. In a
rooted tree, one node is the root (a node within the substation
in this case), and a parent-child designation exists between the
nodes m and n connected via an edge (m, n) € £. The parent
is m (i.e., the upstream node, or the node closer to the root),
and n is the child (i.e., the downstream node). The root has no
parent, every other node has one parent, and nodes can have
multiple/no child nodes. The descendants of node n are the
nodes downstream of n (i.e., the nodes that contain n on the
path from the node of interest to the root).

If the feeder topology is known/estimated, we can define
portions of the feeder F,,, for m € M as subsets of edges
and nodes. The set M is known, and it consists of M nodes
of interest, where the nodes are either measurement points
or nodes between bus voltage magnitude/angle measurement
points. Sections III-C1-III-C4 detail the addition of nodes
into M based on the available measurements of each type.
Knowledge of the feeder topology equates to knowledge of
the adjacency matrix, which indicates the children of each
node. The distribution system operator could disclose the
feeder topology, or it could be estimated, e.g., using voltage
magnitude measurements from smart meters [16].

Given M, we first define preliminary feeder portions as
F = {Nn, En} for m € M, where the set N, consists of
node m plus its descendants and &, is the set of edges down-
stream from m plus the edge connecting m to its parent node.
Then, to ensure that the feeder portions have no nodes/edges
in common, we remove any preliminary feeder portions that
are downstream from F,,, i.e., Fy = F,,\{\UepnF,}, where
-\ is the set minus operator, \U is the set union operator, and
D™ contains any elements of M that are descendants of m.

Example: Figure 3 depicts an example feeder and forms F),
and F,, for M = {1, 3,4, 13}. The boxes each contain an

F/, and the node/edge color indicates the corresponding F,.
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For nodes 3 and 13, 73 = F} and Fi3 = F|; as there are
no downstream nodes within M. Node 13 is downstream of
node 4, and so F4 = F;\F};. Nodes 3, 4, and 13 are all
downstream of node 1, and so Fy = F{\{F; U F; U F|;}.
Node 0 is the root, indicated with a cross, and is excluded
from feeder portions as it is unused in the calculations for
each measurement type.

We now introduce the state vector 8 and the general output
equation. For feeder-level energy disaggregation, 6 consists of
the active and reactive power consumption of the N demand
components for the feeder portions F,, € M:

T
N T T T T
9 = |:P-Fm1meMQfleme:| s (6)

where my, ..., my are the elements of M, and where ()T
denotes the transpose. The elements of Px, € RV and Qf, €
RN are the active and reactive power consumption of the N
demand components aggregated over J,, which is detailed in
Section III-C1. The general output equation is
y=0C0=[ch - ch dy ---db 16, )

m my “my my

where clY, dY for m € M are N-element row vectors.

1) Active and Reactive Power Flow Measurements: Next,
we develop output equations for measurements of the active
and reactive power flow out of a node. We do this by manip-
ulating the DistFlow equations from [17] into sums of the N
demand components over feeder portions, i.e., into sums over
elements of 6. Reference [18] approximates the power flows
as sums of the net load (i.e., demand minus generation) at
the downstream nodes; we extend this to include active and
reactive losses.

The reactive power flow Q,, , out of node m towards n is

N—1
Onn=Y. Onk+ ), O+ 0™ +xpnin, (8
k:(n,k)e€ =1

where Qf( is the reactive power consumption of demand com-
ponent / at node &, Q;ap is the capacitor bank power injection
at node k, x,,, is the reactance of edge (m, n), and i,z,m is
the squared current magnitude on edge (m, n). In (8), the first
term computes the power flows out of node 7, the second and
third terms compute the reactive power consumption at node
n, and the last term computes the reactive losses on (m, n).

We now manipulate (8) into the form of (7):

N—1
DI EIDIN DIV ARNC)

Qm,n =
keN, I=1 keN, (g,h)EEN
= > 105, (10)
ke{D"Un}

where 1 is a column-vector of ones. In (9), we reformulate
Qm.n into sums over sets of nodes and edges. In (10), we
reformulate O, , into sums of the N demand components
within Qr, for k € {D" U n}, i.e., over the feeder por-
tions needed to form the sets N, and &,. Specifically, we
compute the elements of Q, for the N — 1 load types as
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O = Yien(r) @ for 1 =1,...,N — 1, where N'(F,,) is
the set of nodes in the feeder portion. We compute the ele-
ment of O -corresponding to the reactive NW demand as
0% = Yhen(Fn) Qi T Lot (Fy) Yol pr Where E(Fn)
is the set of edges in the feeder portion. We compute an active
power flow P, , using equations similar to (8)—(10) without
the capacitor bank term and replacing x,,, with resistance
Tm.n- We include in M the downstream node of any power
flow measurement, e.g., n for Oy, ,.

Example (continued): To illustrate (10), we continue the
example in Fig. 3. Assume that we have Pg 1, Qo.1, P13,
and Q)3 measurements from (0, 1) and (1,3). Therefore,
nodes 1 and 3 are included in M. Assume nodes 4 and 13 are
also included in M because they correspond to other mea-
surements, discussed in the next sections. According to (9),
Po1 (Qo.1) is the sum of the active (reactive) power con-
sumption at all non-root nodes in the feeder and the active
(reactive) losses along all lines. According to (10), {D' U1} =
{{3,4, 13} U1} = {1, 3, 4, 13}, and we compute Py ; (Qo.1) as
the sum of the N active (reactive) demand components aggre-
gated over each feeder portion in {Fj, F3, F4, Fi3}. Node 3
has no downstream nodes in M, and so {D? U 3} = {3}, and
we compute P; 3 and Q1 3 using F3 only.

Equation (10) is the output equation for reactive power
flows. To put it in the desired form (7), we set ckN =07
for all k and @ = 1T for k € {D" U n}, where 0 is a
column-vector of zeros. For active power flows, ckN =17
for k € {D" U n} and d¥ = 0T for all k. We assume that
power flow measurements are accurate, and so the correspond-
ing measurement noise covariance is R'Q ~ 0. In cases with
inaccurate power flow measurements, we can handle measure-
ment noise by increasing RFQ, which is accounted for in the
measurement-based update of DMD.

2) Squared Voltage Magnitude Difference Measurements:
We now develop an output equation for measurements of the
difference in squared voltage magnitude between two nodes
along a path. We first summarize the linear Distflow equation
approximating the difference in squared voltage magnitudes
for two nodes connected via an edge then via a path. The
approximation of this difference over an edge (m, n) is [17]

Vy%l’n ~ 2("m,an,n + xm,an,n)v (11

where V2, =12, — v2, and where v2, is the squared voltage

magnitude at node m. For a path from node f to s consisting
of nodes M¥M and edges £YM, Vz_ , sums (11) over each edge

in EYM [18]:

Vie= X

(m,n)eEVM

(zrm,an,n + 2xm,an,n)- (12)

In [18], Py and Q,, , are computed from the net loads at
each node, ignoring losses. Here we include the losses, allow-
ing us to capture the impact of losses on the squared voltage
magnitude difference.

We include the nodes from MYM that appear as child
nodes within £YM in M and reformulate (12) into sums over
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elements of 6:

Vie= > (2w ), 1Pg
(m,n)eEVM ke(D"\Un)
2 Y, 1707 | (13)
ke(D"\Un)
-2 X 2r(g,h))1 PF,
meM \ (g,h)eU™
+ Y (w105, | a4
(g.m)eum

where U™ is the set of edges upstream from node m within
EYM_ Tn (13), we use (10) and its active power analog to
express the power flows as sums of the demand components
over feeder portions. In (14), we rearrange the sums to collect
the resistances and reactances for each feeder portion.

Example (continued): To illustrate (12)—(14), we continue the
example using Fig. 3. Assume we have a measurement Vg’ 4
with MYM = {0, 1,4} and EYM = {(0, 1), (1, 4)}. Therefore,
we need to include nodes 1 and 4 in M, which already con-
tains nodes 1 and 3 (from power flow measurements). Assume
M also includes 13 (which corresponds to another measure-
ment, discussed in the next section). Using (12), Vg’ 4=
(Zro,lp(),] + Zxo)lQ())]) + (21’],4P1,4 + 2x1,4Q1,4). Using (13),
Po,1 = 1"(Px, +Px, +Pr,+Px,;), and similarly for the other
power flows; 17 sums the demand components to compute the
total demand measured at the substation/feeder head. In (14),
Ut = U = {(0,1),(1,4)} and U' = U* = {(0,1)}, and
so (14) sums the resistance and reactance of lines (0, 1) and
(1,4) for m = {4, 13} and sums the resistance and reactance
of (0, 1) for m = {1, 3}.

Finally, we put (14) into the desired form (7) by setting
o = D nyem 2rigm)1t and di = 3, 1 (2% )1
for m e M. If we only have knowledge of the feeder topol-
ogy, not the resistances and reactances, we can estimate the
parameters in the output matrix using multiple linear regres-
sion on historical values of szs and estimates of 6, where
estimates of 6 are detailed in Section I1I-C4. We compute RVM
as the covariance of the errors between the historical VJ% , mea-
surements and the predicted values using the parameterized
output matrix. Measurement noise arises from the approxima-
tions used in (11), and from errors in estimating the output
matrix and 6.

3) Voltage Angle Difference Measurements: Here we
develop an output equation for measurements of the difference
in voltage angles between two nodes along a path containing
nodes M Y2 and edges £VA. Similar to the previous subsection,
we add the nodes from M YA that appear as child nodes within
EVA into M. From [18], the linear equation approximating
8m.n across edge (m, n), is

5)

(Sm,n ad xm,an,n - rm,an,n-

3285

This is similar to (11), where the resistance and reactance are
swapped, the resistance is made negative, and the right-hand
side is scaled by 0.5. The voltage angle difference equation for
a path has the same form as (14), where the sums of resistances
and reactances are swapped and scaled by 0.5, the resistances
are made negative, and the set /" contains the upstream edges
in EYM. To put the voltage angle analog of (14) into the
desired form (7), we either set d = 2 (g.n)eun (—T(g.n)) and
N = 2(g,n)etim (X(g.n)) for m € M or use the matrix parame-
ters identified in Section III-C2 while swapping, scaling, and
making them negative as detailed above.

Example (continued): To illustrate the voltage angle ana-
log of (14), we continue the example using Fig. 3. Assume
we have measurement 8o 13 with MVA = {0, 1,4, 13} and
EVA = {(0,1), (1,4), (4, 13)}. Therefore, we need to include
nodes 1, 4, and 13 into M, which already contains nodes 1, 3,
and 4 from previous measurements. The resistance/reactance
sums for Pz, and O, with m € M were identified for (14).
Therefore, we 1) scale all identified parameters by 0.5, 2) swap
the identified parameters corresponding to sums of resistances
with those corresponding to sums of reactances, and 3) make
negative the parameters corresponding to sums of resistances.

We compute RYA  the measurement noise covariance
for voltage angle measurements, using the historical accu-
racy of the measured angle difference versus the predicted
angle difference given historical estimates of 6 (detailed in
Section III-C4), and the corresponding output matrix. The
measurement noise arises from approximations used in (15)
and from errors in estimating € and the parameters in C.

4) Smart Meter Measurements: Here we develop an out-
put equation for real-time smart meter active and reactive
power measurements. The smart meter measurements do not
affect M and 6. As described in Section II, during time-steps
when smart meter measurements are available in real-time,
we assume that we can compute estimates of the N demand
components for the entire feeder using building-level energy
disaggregation. Furthermore, we can estimate the N demand
components for portions of the feeder, i.e., for elements in 6.
Assuming we do not have measurements of NW demand in
each feeder portion, we can approximate the NW demand in
each feeder portion by scaling the total feeder NW demand
using the number of edges within the feeder portion. For exam-
ple, PI}H = PNIE(F13)I(IE])~" where PV is the total NW
demand of the feeder, and where || is used to denote the car-
dinality of the argument set. Therefore, the output equation in
the form (7) is

y= [1]9, (16)
where [ is an appropriately-sized identity matrix. We assume
that any inaccuracies in disaggregating the smart meter data
at the household level are negligible when summing the dis-
aggregated demand components across houses to compute
the feeder-level measurement and so the measurement noise
covariance for smart meter measurements is RSM ~ 0. Also,
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without measurements of the NW demand in each feeder
portion, we cannot quantify the NW demand approximation
error.

IV. AGGREGATE MODELS FOR ENERGY DISAGGREGATION

We create separate aggregate load models for the N demand
components in each feeder portion (i.e., for the elements of
6;) using multiple linear regressions and historical smart meter
and feeder measurements. The regression models predicting
the active and reactive demand for load component / on feeder
portion F,, respectively f’f’" and @ﬁ’m, are

meMandl=1,...,N
meMandl=1,...,N

pl.m Lmpyl
P = gD,
AN.m Lmpl
Qt =Y Dz

where B and y“™ are row vectors of regression param-

a

eters for F,,. The input features are defined as Dﬁ =

A7)
(18)

T
[Di,CAL Di,WEA Di,NW] _ where D;,CAL, Dg,WEA, and Di,NW
are row vectors of calendar-based, weather-based, and

substation- and network-based features, respectively. To per-
form the regression, we assume that historical input feature
data are available, and that we can compute historical 6;
measurements/estimates.

V. CASE STUDIES

We perform case studies with one-minute time-steps to
evaluate the performance of the disagregation algorithm and
aggregate models using scenarios of real-time measurement
availability. The power system entity disaggregates the dis-
tribution feeder demand into the aggregate AC demand, the
aggregate OL demand, and the NW demand. Note that we
do not include distributed generation or storage in the case
studies. Section V-A presents the method of generating the
ground-truth data of the case studies, i.e., the plant data,
which is based on real-world data. Sections V-B and V-C
detail the disaggregation algorithm and the models used within
the disaggregation algorithm, respectively. Offline model com-
putation and algorithm tuning for the case studies rely on
17 days of historical data, which is not a large amount of
data for the input features of the models, e.g., time of day.
Sections V-D, V-E, and V-F respectively detail the cases,
the performance evaluation, and the results. The case stud-
ies illustrate how the availability of heterogeneous real-time
measurements influences disaggregation accuracy.

A. Case Study Plant

The plant consists of a feeder model and load models
that incorporate both outdoor temperature and active power
demand data from [19]. The feeder model is the 13-node
test feeder [20], a three-phase feeder with unbalanced loads;
Fig. 4 depicts the single-line feeder diagram, where we have
added node 651 to indicate the secondary side of the voltage
regulator. We assume that i) all loads are wye-connected; ii)
the switch is closed; iii) the line parameters from node 671
to 692 are identical to the line from node 692 to 675; iv)
node 680 contains a load of (290 + j212.0), (170 + j80.0),
and (128 + j86.0) kW for phases A, B, and C, respectively;
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Fig. 4. Single-line diagram of the IEEE 13-node test feeder.

v) the capacitor banks are always connected; and vi) tap
changes have a lockout time of five minutes for each phase.
To transform specified delta-connected loads to wye-connected
loads, we connect the line-to-line loads (X-Y) as line-to-
neutral loads (X-N), where X and Y are arbitrary phases and
N is neutral. We linearly interpolate the hourly weather data
down to one-minute time-steps, the frequency of the demand
data. We connect houses to each node and phase by ran-
domly sampling with replacement from the houses in Austin,
TX, USA in [19] until the total average active power demand
for August 31, 2017 is greater than the corresponding feeder
model load. This results in 2,388 houses, each with an AC,
connected to the feeder. While we use the loads specified in
the test feeder to connect houses to the feeder, the data for
each house varies throughout the case studies. Therefore, the
realized load will deviate from the specified feeder values, but
the average realized load values are near the specified values.

The plant contains models of the AC demand, P',l’AC +
ij’AC, connected to each node n. The AC demand model is
based on the “performance model” from [21], [22], which has
a voltage- and temperature-dependent reactive demand compo-
nent and a temperature-dependent active demand component.
The “performance model” was developed for transmission
systems, but it is appropriate for this work as we are interested
in the aggregate, steady-state AC demand at each node within
a distribution network. Each time-step sets the model param-
eters by first computing P?’AC = DjegnAc Pﬂ‘AC, where PQ’AC
is the active power demand data of AC j at time ¢ from [19],
and J n.AC s the set of ACs connected to node n. The data
H’AC is temperature dependent, and the performance model’s
active demand component is independent of voltage at normal
voltage levels [22]. The model’s reactive component, which
was developed in [21], is

n,AC

PAC _ by 4 +b3(v) — bo) + ba(vi —bo),  (19)

2
(vi' = bo)
where by, by, bz, and by are parameters that depend on the
outdoor temperature, and where b; is a parameter the depends

n P;”Ac. We compute the parameters offline to resemble the
curves of [22, Fig. 16].

The plant also computes the OL demand, P + jorOF,
connected to each node n using voltage-dependent polyno-
mial constant impedance (Z), constant current (I), and constant
power (P) models, i.e., ZIP models, for the different OL loads
within the data. The OL demand at each node is the sum of
the demand of the OL loads connected to that node. At each
time-step, we set the rated active power demand of each ZIP
model to the measured demand from [19] of the load, and
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the remaining ZIP model parameters are from [23], [24]. The
coffee maker, fan, lighting, microwave, refrigerator, and water
heater loads use parameters from [24]. The drier heater, drier
tumbler, freezer, heat pump, office equipment, and washing
machine loads use parameters from [23]. We assume light-
ing loads are incandescent, water heaters are resistive heaters,
furnaces/heaters are heat pumps, and kitchen plugs containing
small appliances correspond to a coffee maker. We sum the
remaining OL loads in the data of each house into a miscella-
neous ZIP model that uses the “residential stratum F” model
parameters from [24].

The simulation computes the complex voltages and complex
currents within the feeder using the feeder model and the load
models within the backward-forward sweep algorithm [25].
At each time-step in the simulation, the voltages at the feeder
nodes are initially assumed to be at their rated values, and
the backward-forward sweep algorithm iterates to compute the
complex voltages and complex currents. The load models are
initialized with the rated voltage and their parameters, and the
models update the voltage and resulting demand after each
iteration. The backward-forward sweep algorithm converges
if the voltage changes less than 1.0x 10~ in per-unit voltage
at node 671 during an iteration. After convergence, the volt-
age magnitude is checked at node 671, where the allowable
voltage bandwidth is 121-123 V (for a 120 V base), and tap
positions change if necessary. If the tap position changes, the
backward-forward sweep algorithm is restarted with the new
tap positions and the process repeats. If the tap position is
unchanged, the simulation advances to the next time-step.

B. Disaggregation Algorithm Implementation

This subsection details the implementation of the disag-
gregation algorithm used within the case studies. We define
0;, select the user-defined functions in (1), and summa-
rize the parameter settings. We define 6; using two feeder
portions based on nodes 651 and 671 in Fig. 4—6, =
[Pfﬁsl Pra, ‘QFes Q].-m]—where Presi» PFgs QFesis
OFy € R° each contain three demand components—the
AC, OL, and NW demand. We consider 650 as the root
node, and nodes 651 and 671 are measuremelln points detailed

in Section V-D. We set D(0|k;) = %Hﬁ:f(Q - /?,)Il% and
~ 1 ~ = .

£:(6r, y;) = %H(H,y)*i(C,G, — y,)||%. We compute I1, using

prediction errors of the disaggregation algorithm aggregate

models for simulated data from August 14-30, 2017. The
resulting closed form of (1) is

K1 = I + flsﬁtCzT(th)il ()’t - Ct§t>~ (20)

We apply the algorithm to simulations for August 31, 2017
to tune the parameters within (20). We roughly tune the param-
eters to minimize the disaggregation error when applied to this
training data. Specifically, we incremented n® in steps of 0.05
and ran the algorithm on the training data to determine the
setting that resulted in the lowest error. Slight improvements
in accuracy could be achieved via more precise tuning, but
this should not influence the results trends. We set n* = 0.5
when using model set M"™ and n* = 0.2 when using model
set M€, where M™ and M°€ are defined in Section V-C. We
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TABLE II
CASE STUDY REAL-TIME MEASUREMENT SCENARIO DEFINITIONS

Scenario  Models  Real-Time Measurements Purpose

1 MR None Evaluate the prediction accu-
racy of M™

2 M€ Substation complex current Evaluate the prediction accu-
racy of M°

3 Mne Substation active power Benchmark these results against

those in [13], [14], which use a
similar measurement scenario
4 ME, M" Substation apparent power; sub- Evaluate the disaggregation ac-
station complex current curacy with reactive power
measurements
Scenario 4 measurements; volt- Evaluate the disaggregation ac-
age phasors at nodes 650 and curacy with additional voltage
671 phasor measurements.

set the measurement noise covariances RFQ and RM to o1,
where [ is an appropriately-sized identity matrix in each case,
and where o = 1 x 1078, We compute R¥M and RVA using
historical data from August 14-30, 2017.

C. Disaggregation Algorithm Aggregate Model Details

We use two sets of aggregate AC, OL, and NW demand
models in the disaggregation algorithm. In each set, we com-
pute six models, one model for each of the three demand
components in each of the two feeder portions. We com-
pute the regression parameters using historical data obtained
by simulating the plant with data from August 14-30, 2017.
The first set of models, denoted M°, includes input fea-
tures based on substation complex current measurements. The
input features are D/C = [x1° || real(i?) imag(i?) T;)]T,
DNV = DO = [xod |i0] real(i?) imag(i‘t))]T. The row vec-
tor x'°d indicates the time of day; |-|, real(-), and imag(-)
are the magnitude, real component, and imaginary compo-
nent of the argument, respectively; i? is the complex current
measurement; and 77 is the outdoor temperature. The sec-
ond set of models, denoted M"™, excludes current-based

. 5 T
input features. The input features are D¢ = [xi°d 7?]" and
DNW _ DOL — xtOd

t t t -

D. Case Definitions

We define cases using five scenarios of real-time measure-
ment availability, real-time smart meter measurement avail-
ability, and the model set used within the algorithm. Table II
defines the real-time measurement availability scenarios and
the applicable model sets. Note that we used the phasor mea-
surement points in Scenario 5 to construct 6; in Section V-B.
We assume that 1) measurements available in real-time are
also available historically, and 2) historical substation demand
and smart meter apparent power measurements are always
available, which allows computation of M" in any sce-
nario. If real-time smart meter measurements are available,
we add a measurement scenario suffix indicating the minutes
between their availability For example, scenario 3-30 indicates
scenario 3 with real-time smart meter measurements every 30
minutes.

E. Performance Evaluation

To evaluate disaggregation algorithm performance, we apply
the algorithm while simulating the plant using data from
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TABLE III
DEMAND COMPONENT RMSE (KW/KVAR/KVA) IN DIFFERENT CASES

Scenario Models Demand Component

AC-P AC-Q AC-S OL-P OL-Q OL-S NW-P NW-Q NW-S
1 M 1814 454 187.0 1792 527 186.8 50.0 157.0 1654
2 Me 64.1 160 66.1 680 200 709 5.6 8.2 9.9
3 M 129.6 - - 114.0 - - 23.0 - -
3-60 M 715 - - 63.0 - - 16.8
3-30 M 69.6 - - 55.7 - - 13.8
3-15 M 6l - - 47.0 - - 10.9 - -
4 M™ 1035 259 1067 97.0 331 1025 87 214 231
4 ME 64.1 160 66.1 648 196 677 57 8.2 10.0

4-60 Me 469 117 483 487 156 511 5.6 7.7 9.5
4-30 M€ 457 114 471 475 149 498 52 7.1 8.8
4-15 ME 412 103 424 431 134 452 5.0 6.4 8.1
5 M€ 61.7 154 63.6 622 202 654 6.1 13.6  15.1

September 1-4, 2017. The RMS error (RMSE) of the esti-
mated AC, OL, and NW demand quantifies the performance.
The RMSE for complex-valued predictions/estimates v, and
the true values v, over N® = 4321 time-steps is RMSE =

\/ Zf’;l [y — |2 /NS. We evaluate the disaggregation accu-
racy at the feeder head, and so the disaggregation error over
the entire feeder is ¥ — Vi = X,c 0 (V" — ¥7") for me M.

FE. Results

Table III summarizes the RMSEs averaged over the three
phases for the demand components. The “Models” column
indicates the model set used. The AC-P, AC-Q, and AC-S
entries correspond to the active, reactive, and apparent power
of the AC demand; the OL and NW demand have similar
entries. We exclude -Q and -S entries in Scenario 3 and its
variants as the disaggregation algorithm does not include reac-
tive power in these cases. Figure 5 depicts time series of the
realized demand component magnitudes for phase A along
with their predictions in Scenarios 1 and 2. The execution
time for the algorithm was 0.0025 seconds per time-step on
average.

We evaluate the impact of real-time substation current mea-
surements on prediction accuracy by comparing Scenarios 1
and 2, which use M" and M€, respectively. Average RMSEs
across the three demand components for Scenario 2 are 73.1%
lower than Scenario 1. The RMSEs of AC-P, OL-P, and
NW-P are respectively reduced by 64.7%, 62.1%, and 88.8%.
Figure 5 depicts these accuracy improvements. These results
indicate that real-time substation current measurements can
significantly improve the prediction accuracy of the aggregate
models used within the disaggregation algorithm.

We evaluate the impact of substation reactive power mea-
surements by comparing Scenarios 3 and 4 using M".
RMSEs of AC-P, OL-P, and NW-P decrease from Scenario 3
to 4 by 20.1%, 14.9%, 62.2%, respectively. These results
indicate that substation reactive power measurements can sig-
nificantly improve disaggregation accuracy, which [10] also
found.

We evaluate the impact of real-time smart meter measure-
ments at increasing frequencies by comparing i) Scenarios
3, 3-60, 3-30, and 3-15 and ii) Scenarios 4 using M€, 4-
60, 4-30, and 4-15. RMSEs averaged across AC-P, OL-P,
and NW-P decrease 37.3%, 45.8%, and 54.7% from Scenario
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Scenario 1 and 2 predictions. The superscripts denote the scenarios.

3 to 3-60, 3-30, and 3-15, respectively. Average RMSEs
across all demand components decrease 18.1%, 21.9% and
28.8% from Scenario 4 to 4-60, 4-30, and 4-15, respectively.
These results indicate that disaggregation accuracy improves
as real-time smart meter measurements are available more
frequently.

We evaluate the impact of real-time voltage phasor measure-
ments by comparing Scenarios 4 and 5. The RMSE decreases
3.7% and 4.0% from Scenario 4 to 5 for AC-P and OL-P,
respectively, while the RMSE for NW-P increases 7.0%. These
results indicate that voltage phasor measurements may be
beneficial, but more accurate output matrices, excluding capac-
itor bank power injections from the NW demand, and better
NW demand estimates for feeder portions may make the
measurements more useful.

Note that [13], [14] include case studies to explore the
impact of model accuracy, parameter tuning, and the choice
of functions used in the disaggregation algorithm for measure-
ment Scenario 3, where the only available measurement is the
active power at the feeder head. We do not present additional
case studies exploring these impacts in this work, as the results
for the various scenarios follow similar trends as in these prior
case studies.

VI. CONCLUSION

This work developed an energy disaggregation algorithm
to separate the measured, real-time demand of a distribution
feeder into N components, where one component consisted
of the network losses and capacitor bank power injections.
The algorithm used a modified version of DMD with sen-
sor fusion to allow measurements from multiple sources
on different timescales to be used within the algorithm.
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Output matrices were developed to allow fusion of active and
reactive power flows, differences in squared bus voltage mag-
nitudes, differences in bus voltage angles, and smart meter
measurements. Aggregate models were also developed that
utilize real-time substation current measurements. Case stud-
ies sought to disaggregate the real-time feeder demand into
the AC demand, the OL demand, and the NW demand within
a plant consisting of a three-phase, unbalanced distribution
feeder.

Results indicated that 1) incorporating real-time substa-
tion measurements into the disaggregation algorithm aggre-
gate models can significantly improve the models’ prediction
accuracy, 2) real-time substation reactive power measure-
ments can improve disaggregation accuracy, 3) real-time
smart meter measurements at higher frequencies increas-
ingly improves the energy disaggreation algorithm’s accu-
racy, and 4) measurements of the complex voltage at points
within the feeder and at the substation can further improve
accuracy.

The disaggregation algorithm is highly scalable. In real-
time, it requires evaluating the models, rather than optimizing
over the models, and therefore relies on simple computa-
tions, e.g., matrix/vector multiplication. The size of these
computations increases with the number of available mea-
surement locations and the number of demand components
being disaggregated. The algorithm can run in parallel on
separate feeders, which limits the size of the problem. To
obtain individual appliance measurements/estimates requires
submetering or household energy disaggregation on smart
meter data, where the latter could be computationally
heavy. However, again, parallel processing can be used as
needed.

Furthermore, the type of data available to the aggregator
depends on its affiliation, i.e., whether it is part of the util-
ity or is a third-party aggregator. Closer ties to the utility
would result in greater access to measurements and capa-
bilities of the disaggregation algorithm. However, if all of
the data is not available to the aggregator, the flexibility of
the algorithm allows it to incorporate whatever information is
available.

Future work should 1) incorporate delta-connected loads;
2) include estimated/identified resistances and reactances;
3) determine whether capacitor bank switching can be detected
and removed from the NW demand; 4) investigate methods
to better approximate the losses in feeder portions using line
lengths and possibly line parameters; 5) modify the algorithm
to make it applicable to meshed networks; 6) incorporate dis-
tributed generation; 7) simultaneously disaggregate demand
responsive load, distributed generation, and energy storage;
and 8) perform disaggregation while sending external control
signals to resources.
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