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This paper proposes a method for constraining the control actions of third-party aggregators to ensure safe
operation of the distribution network. We design a safety constraint that limits the size of the deviations in power
that an aggregator can cause across a network. The constraint’s upper limit is the size of the minimum-sized
vector of deviations that is unsafe for the network, which is computed by solving a set of optimization problems.
We propose two versions of the safety constraint, based on the 2-norm and 1-norm, and find neither is guar-
anteed to be less conservative than the other. We also derive conditions under which an optimization problem

can be eliminated from the set of problems that are necessary to solve. We apply these conditions in a case study
and reduce the number of problems by 89% for the test network and 67% for the test network with capacitor

banks connected.

1. Introduction

Load aggregations can provide valuable services to the bulk power
system, such as frequency regulation, ramping, and spinning reserves
[1]. These balancing services will be increasingly important as the share
of intermittent renewable generation increases in the generation mix.
Residential-load aggregators are able to participate at the scale required
by wholesale markets by aggregating thousands of flexible loads, such
as air conditioners, water heaters, and electric vehicles.

Many regions in the U.S. allow third-party load aggregators to
provide balancing services. Third-party aggregators are distinct from
distribution operators and do not have access to distribution network
models or measurements. Without feedback from the operator, an ag-
gregator does not know how its control actions affect distribution op-
eration and is unable to adjust its actions to prevent operational issues.
Unsafe operation is of particular concern when a large portion of a
network’s loads are controlled by a third-party aggregator. For example,
the distribution simulation study [2] found that an aggregation of re-
sidential air conditioners, controlled to track a regulation signal, can
result in under-voltages.

The objective of this paper is to develop a method that ensures a
third-party aggregator’s control actions are safe for distribution net-
works without requiring the operator and aggregator to share private
information. We assume that, to maintain a competitive advantage,
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third-party aggregators prefer to keep their control algorithms private.
Distribution operators protect the privacy of their consumers by
keeping network models and load measurements private.

Most prior research on aggregate load control for wholesale services
either does not consider distribution network safety or does not con-
sider the privacy needs of third-party aggregators. Many proposed
strategies are “grid-agnostic”; these strategies ignore network con-
straints and cannot ensure safe distribution operation (e.g., [3,4]). A
few “grid-safe” strategies have been developed that ensure safe dis-
tribution operation. In [5], an AC-OPF is solved to safely provide load
frequency control with an aggregation of loads. In [6,7], a gradient-
based algorithm that incorporates real-time measurements from the
distribution network is proposed; the algorithm controls distributed
energy resources to track a time-varying power setpoint while re-
specting network constraints. However, the strategies in [5-7] do not
enable a third-party aggregator to use its own private control algorithm;
moreover, the strategies rely on a third-party aggregator having sub-
stantial information about the distribution network, which may not be
acceptable from a privacy and security perspective.

A few recently proposed strategies are both grid-safe and suitable
for a third-party aggregator. The optimization-based method in [8]
provides an aggregator with an inner approximation of the safe set of
real-power deviations at each bus in a network; future work is necessary
to compare the relative conservativeness of this paper’s safe set
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approximation with that of [8]. The method in [9] certifies whether a
distribution network will operate safely under any set of possible power
injections. If a network is certified safe, then any control actions by a
third-party aggregator will be safe. However, this approach leaves open
the problem for networks that cannot be certified as safe. In our prior
work [10], we propose a strategy in which a distribution operator
blocks an aggregator’s commands to loads when the commands would
result in unsafe operation. A drawback of this strategy is that the ag-
gregator is not given an explicit constraint; instead, the aggregator must
estimate the operator’s blocking behavior to improve its control per-
formance.

In this paper, we design and compute an explicit “safety constraint”
that ensures safe distribution operation by limiting the size of the vector
of power deviations an aggregator can cause across all load buses in the
network, where deviations are with respect to a nominal operating
point. The design of the safety constraint is conservative and ensures
that the aggregator’s vector of deviations is always smaller than the
minimum-sized vector of deviations that is unsafe for the network,
where size is determined by a vector norm. We compute the safety
constraint’s limit by solving a set of optimization problems; each pro-
blem is for a particular bus in the network and finds the minimum-sized
vector of deviations that causes an unsafe voltage at that bus. The
minimum size of these minimum-sized vectors is the safety constraint’s
limit. One benefit of the proposed method is that it can be implemented
in a privacy protecting manner: the distribution operator determines
the safety constraint given its private network information, and the
aggregator ensures the outcome of its private control algorithm satisfies
the constraint.

The main contributions of this paper are as follows. First, we pro-
pose a method of constraining a third-party aggregator’s control actions
so that the actions are safe for distribution networks without pre-
scribing a particular control algorithm for the aggregator. Second,
through analysis and simulation, we compare the conservativeness of
two versions of the safety constraint — one that measures the size of the
vector of deviations with a 2-norm, and the other with a 1-norm. Third,
we propose and prove two propositions that enable a substantial re-
duction in the number of optimization problems that must be solved to
compute a safety constraint and therefore a reduction in overall com-
putation time.

2. Methods
2.1. Designing the Safety Constraint

There are four desired criteria for the safety constraint: 1) it should
ensure the aggregator’s actions will not cause unsafe distribution op-
eration, 2) it should not overly restrict the aggregator’s control actions,
3) an operator should be able to calculate the constraint without the
aggregator’s private information, and 4) the aggregator should be able
to adhere to the constraint without the operator’s private information.

We design the safety constraint to prioritize safety (criteria 1) over
the aggregator’s range of control (criteria 2). The constraint takes the
general form

AP < [lee™™]], @

where || - || represents the 1-norm or 2-norm, variable AP® is the vector
of controllable loads’ power deviations at each bus, and parameter a™"
is the minimum-sized vector of power deviations that causes unsafe
operation somewhere on the network. For brevity, we refer to a™" as
the minimum unsafe vector of deviations. The controllable loads’ power
deviations are relative to the power the aggregation would have con-
sumed in the absence of control, referred to as the aggregation’s
“baseline”.

The safety constraint (1) ensures network safety by the definition of
a™", The constraint is conservative; that is to say, some safe values of
AP° will not satisfy the constraint. The benefit of the constraint is that if
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Fig. 1. Process for computing the safety constraint’s limit. Vector a,, is equal to
the minimum-sized AP® (vector of deviations across all load buses) that causes
an under-voltage at bus m, and a4y is the minimum-sized AP® that causes an
over-voltage at bus m.

we are able to compute the minimum unsafe vector of deviations a™,
then, by definition, the constraint will guarantee safe distribution op-
eration.

2.2. Computing the Safety Constraint’s Limit

2.2.1. Overview

To determine the safety constraint’s limit, we must find the
minimum unsafe vector of deviations for a given network at a nominal
operating point. We reduce the scope of the problem by considering
only the most likely modes of unsafe operation on a network which, for
this application, are out-of-range voltage magnitudes [2]. The voltage
constraint for busiis V < V; < V, where V; is the voltage magnitude, V'
= 1.05 p.u,, and V= 0.95 p.u. Extending our methods to include all
network constraints (e.g., over-currents on lines) is future work.

Fig. 1 shows the three main steps to compute the safety constraint
limit. In step 1, we find candidates for ™™ by solving two optimization
problems for each bus. The first problem searches for a,, the minimum-
sized AP® that causes an under-voltage at bus m, where vector size is
measured by a norm, generically ||AP||. The second problem searches
for &,y the minimum-sized AP® that causes an over-voltage at bus m.
In step 2, we set a™" equal to the minimum-sized & in the set {a;, ay, ...,
a,y}. In step 3, we set the safety constraint’s limit (the right hand side
of (1)) to the value ||a™"||.

The remainder of Section 2.2 proceeds as follows. First, we define
the models that will be used in the optimization problems. Then we
formulate the optimization problems used to compute the 2-norm safety
constraint’s limit. Finally, we formulate the problems used to compute
the 1-norm safety constraint’s limit.

2.2.2. Modeling

We model an N-bus distribution network with aggregator-controlled
loads at each bus. We use a single-phase equivalent line model, which
assumes balanced power flow and symmetric lines. The network’s
N X N conductance and susceptance matrices are denoted as G and B.
We aggregate loads at the bus-level and use a constant power model:
each bus has real and reactive power consumption P; and Q;, respec-
tively. We separate a bus’s power consumption into two components: a
controllable component (Pf, Qf) that represents aggregator-controlled
loads, and an uncontrollable component (B¢, Q") that represents all
other loads. Thus, we have that B, = P¢ + P and Q; = Qf + Q“.

We model the aggregator’s control actions in terms of bus-level
power deviations. When providing balancing, an aggregator controls
the aggregation’s total deviation from baseline such that it tracks a
balancing signal. In terms of bus-level power deviations, the aggregator
controls loads such that the sum of real-power deviations across all
buses, Ziil APf (k), tracks the balancing signal with sufficient accuracy
in every time step k. The variable AP{ is the deviation in Pf from the
bus’s baseline value }/’\,-C (i.e., APf(k) = P¢(k) — }/’;C). We assume the
controllable loads have a constant power factor {;, such that any de-
viation in real power AP is accompanied by a deviation in reactive
power given by AQS = APf tan(arccos¢)). Finally, the deviations at each
bus are naturally constrained by the physical capacities of the loads at
that bus; this constraint is given by
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Pf< (B +AP) <, @)

where Pf and P reflect the loads’ aggregate physical capacity.

2.2.3. 2-Norm Safety Constraint

In step 1, we find a,, the minimum-sized vector of deviations (as
measured by the squared 2-norm) that causes an under-voltage at bus
m. We solve this problem once for each bus in the network; here the
problem is shown for bus m:

N
minimize Z (AP,-CJZ

i=1 (3a)
subject to
V<YV, (3b)
Pe< (B +aP)<FVieN, 30)
AQf =BAPVIEN, (3d)
AC
P=APf+P +P“Vi€eN, (3e)
AC
Q=AQF+Q +Q VieN, (30
N-1
B =V ). Vi(GiycosBy + By sin€y)V i € N,
k=0 (3g)
N-1
Q=V Z Vi (G sin 6 — By cos Oy )V i € N,
k=0 (3h)
6 =0, (31
Vo = Veer. (€1)

After solving (3), we set a,, = [AP(*, APS*, ...,APy’], where * indicates
the optimal solution; note that the optimal objective value is ||, |[3. In
the above problem, the set AV is the set of all buses in the network. The
decision variables are APS, AQS, P, Q,V; V i€ N and 6y V i,k €N,
where 6y is the voltage angle difference between buses i and k.

The objective function (3a) and constraint (3b) are opposing forces
on the size of AP®: the objective function minimizes the size of the
deviations, but the deviations must be large enough such that an under-
voltage occurs at bus m. A deviation in power is necessary to create an
under-voltage at bus m because we assume that the network’s voltages
are within the operational range [V, V] at the nominal operating point.

Constraints (3¢) and (3d) model the controllable loads. Constraint
(3c) restricts the power deviation at each bus according to the con-
trollable loads’ physical capacities; the baseline value l/’\,-c is assumed
known. Constraint (3d) enforces a constant power factor for con-
trollable loads, where §3; = tan(arccos{)).

Constraints (3e)-(3f) sum the controllable and uncontrollable com-
ponents of the power consumption at each bus. The uncontrollable
components P*° and Q;"° are assumed known.

Constraints (3g)-(3j) model the power flow in the network and de-
fine the slack bus. Constraints (3g)-(3h) are the standard power flow
equations, where the real and reactive power consumption at bus i must
be balanced by the sum of all real and reactive power flows into bus i.
Constraint (3j) sets the substation bus as the reference for voltage an-
gles. Constraint (3j) fixes the substation bus’s voltage magnitude as a
constant; we assume the value of parameter Vi is set by the distribution
operator (e.g., Vit = 1.0 p.u.).

We also find «,,,y the minimum-sized vector of deviations that
causes an over-voltage at bus m. We solve this problem once for each
bus in the network; here the problem is shown for bus m:

N
minimize Z (AP,-CJZ

i=1

(4a)

Electric Power Systems Research 189 (2020) 106781

subject to constraints (3c)-(3j) and
Va2 V. (4b)

After solving (4), we set a,, .y = [AP{*, APS*, ...,APY"].

The optimization problems (3) and (4) are non-convex because of
the non-linear constraints (3g)-(3h) that model the network’s AC power
flow. In this paper, we use a non-linear programming solver to solve (3)
and (4); the solver finds locally optimal solutions, so global optimality
is not guaranteed. In future work, we plan to apply a convex relaxation
to the AC power flow equations in order to identify a lower bound on
the globally optimal objective value of the original problem; this lower
bound will make @, conservative (i.e., smaller than or equal to the
minimum-sized vector of deviations that is unsafe for bus m) but will
ensure no smaller-sized unsafe vector of deviations exists.

In step 2, we find ™™ the minimum-sized a from the set of a’s found
in step 1. We find @™ by simply comparing the problems’ optimal
objective values:
™" = arg min [let, 3,

am€EA (5)
where A = {a, &, ...,00N}.

In step 3, we set the limit of the 2-norm safety constraint:

N

> (AP?)Z < Jlaemin|3.

i=1

©

2.2.4. 1-Norm Safety Constraint

We use the same general 3-step method to compute the limit of the
1-norm safety constraint. In step 1, the optimization problem formula-
tions are identical to (3) and (4) except the objective functions are in
terms of the 1-norm. As before, we solve the under-voltage problem and
the over-voltage problem once for each bus in the network. The under-
voltage problem for bus m is given by

N
minimize ) |APf|

i=1
subject to constraints (3b) — (3), 7)

After solving this problem, we set «,,, = [AP{™, APS*, ...,APy*]; note that
||@n||1 is the optimal objective value. To improve solvability, we re-
formulate the absolute value terms in the objective function such that
the objective function is linear (see chapter IX of [11] for details). In
step 2, we set ™" = arg min ||a,, ||; with the minimization taken over all
a’s found in step 1. Finally, in step 3, we set the limit of the 1-norm
safety constraint:

N
D IAPE| < [jaminl.
i=1 8

2.3. Conservativeness of 1 and 2-Norm Safety Constraints

The less conservative of the two constraints should be used because
it will allow the aggregator more feasible control actions. However,
determining which constraint is less conservative can be a challenge.
The conservativeness of a constraint cannot be determined a priori be-
cause it depends on the minimum unsafe vector of deviations (a™im)
that has been found. Fig. 2 demonstrates this point with illustrations of
the 1-norm and 2-norm approximations of the set of safe power de-
viations for two different operating points. (Note, for illustration pur-
poses, we consider deviations in only 2 dimensions.) On the right side of
Fig. 2, both methods have found the same a™"; this is the point where
the boundaries of the approximations intersect with the boundary of the
actual set. In this case, the 2-norm constraint is uniformly less con-
servative than the 1-norm constraint. On the left side of Fig. 2, the 1-
norm and 2-norm methods have found different a™™s, which we de-
note as a™™! and a™™!, respectively. In this case, neither constraint is
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[ ] Actual safe set

l:| 2-norm approx.
1-norm approx.

| , ;"// :,// //
/ \ |APE| + |APS| = "amin,llll‘

(APH)? + (AP§)? = [Jamint|2 ‘ o

Fig. 2. Illustration of two different sets of safe deviations (gray) and approx-
imations of these sets given by the 1-norm and 2-norm constraints (purple and
blue). Left: neither the 2-norm or 1-norm approximation is uniformly less
conservative than the other. Right: the 2-norm approximation is uniformly less
conservative.

uniformly less conservative than the other.

For cases in which the 1-norm and 2-norm methods find different
a™™s, we propose choosing the constraint that allows the larger max-
imum balancing capacity. In general, an aggregator is compensated for
the size of its capacity and would prefer the safety constraint that
maximizes its balancing capacity. We find C", the maximum balancing
capacity that the 2-norm safety constraint will allow, by maximizing the
capacity Zf\il AP subject to (6). We find that the solution must have all
deviations equal (i.e., AP = AP; V (i, j) € N). Setting both sides of
(6) equal and all deviations equal gives us the following result

Ct = IN Jlam™ ], ©

The value of C', the maximum balancing capacity that the 1-norm
constraint will allow, is clear upon inspection and is given by

C' = [lamn])y. 10)

To maximize balancing capacity, if C" > C', the 2-norm constraint
should be used; otherwise, the 1-norm constraint should be used.

2.4. Reducing Problem Size

Solving 2N optimization problems to compute a safety constraint
may be too computationally intensive for real-time operations. We
propose reducing computation time by reducing the number of buses
for which an optimization problem must be solved. We can eliminate a
problem if we can guarantee it is infeasible or its solution will not have
the minimum objective value of the full set of problems.

We propose two conditions — one for the under-voltage problem and
one for over-voltage problem — that if satisfied enable the problem to be
eliminated. To derive these conditions, we find the loading conditions
that guarantee two adjacent buses in a radial network, referred to as a
“bus-pair”, have decreasing voltage magnitudes in the downstream
direction (i.e., away from the substation). We represent a generic bus-
pair with the two-bus equivalent system in Fig. 3. (Note we use vector
notation X and polar notation X£0x interchangeably to represent a
vector in the complex plane.) In Fig. 3, E:qv is the apparent power of the
equivalent load at the downstream bus and is equal to the sum of all
loads connected to and downstream of the bus in the actual network, as
well as their associated line-losses. Variables I_/;p and I_/;n are the vol-

=
tages at the upstream and downstream buses, respectively. Parameter Z

Vap 26 Van46
up“=~up ZLHZ i dn4Ydn
I I e 3

I L I_l
SequsOs

Fig. 3. Two-bus equivalent system. Every pair of adjacent buses in a network
can be represented by this two bus system.
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=
is the line’s impedance, and I is the line’s current flow.

We derive the loading conditions that ensure V3, < V;,, as follows.
By Ohm’s law we have that IZH = I_/;p - ﬁ After a few simple op-

erations, we transform this expression into

den = Vin V{xp COS(eup — 6Oan) — ZSeqv cos(6z — 6s) (11a)

0= Vin Vup Sin(eup — Oqn) — Zseqv sin(6; — 6s), (11b)

where the voltage angle of the downstream bus has been defined as the
reference angle. By replacing the cos(6,, — 64,) term in (11a) with 1,
and given that cos(6yp, — 64n) < 1, we derive the inequality

Vc%n < Vdn Vup - Zseqv COS(GZ - GS) (12)
If the last term in (12) satisfies
ZSeqy cos(6z7 — 65) > 0, 13)

then VinVip — ZSeqv c0s(87 — 65) < Vign Vip. Combining this inequality
with (12), we have V3, < Vi, Vip and thus Vg, <V, since Vg, is positive
by definition.

We have derived the following loading condition: if (13) is satisfied,
then Vg, < V. Since the magnitudes Sy, and Z are positive by defini-
tion, (13) is satisfied if cos(8z — 6s) > 0. Thus, the loading condition
simplifies to: if

T T
- —<06;—65< —,
2 P, a4

then Vo < Vip.

We state the first of two propositions for reducing the overall pro-
blem size:

Proposition 1. If a bus-pair satisfies (14) for all possible operating points,
then the under-voltage problem for the upstream bus in the pair can be
eliminated from the set of problems that are necessary to solve.

The proof follows. Let us assume (14) is satisfied for a given bus-pair
for all operating points. According to the loading condition, we have
Van < Vi for all operating points. Thus V3, < V;,, for the globally op-
timal solution of the under-voltage problem for the upstream bus. This
solution is also a feasible solution for the downstream bus’s under-
voltage problem because V3, < V, < V, which satisfies constraint (3b).
Thus ||ayp||, the globally optimal objective value to the under-voltage
problem for the upstream bus, must be greater than or equal to ||agy||,
the globally optimal objective value to the under-voltage problem for
the downstream bus. If ||ay|| = ||@an||, then @, is not needed as a
candidate for @™ and the under-voltage problem for the upstream bus
can be eliminated. We note that this proof relies on an assumption that
the globally optimal solution to the under-voltage problem will be
found, but this is not guaranteed since we are solving a non-convex
optimization problem using a non-linear programming solver. In future
work, we plan to extend Proposition 1 such that it applies to a convex
relaxation of the under-voltage problem; the relaxed problem will
provide lower bounds on the globally optimal objective values ||agn||
and ||

Proposition 2. If all bus-pairs on the path between bus m and the
substation satisfy (14) for all possible operating points, then the over-
voltage problem for bus m can be eliminated from the set of problems that are
necessary to solve.

The proof follows. Let us assume (14) is satisfied for all bus-pairs
between bus m and the substation. The voltage magnitude is necessarily
non-increasing along this path since V4, < V;, for all of the bus-pairs.
Thus the voltage magnitude of bus m must be less than or equal to that
of the substation. Since the voltage at the substation is regulated within
operational limits (i.e., V < V; < V), bus m’s voltage magnitude cannot
be greater than V. Thus constraint (4b) cannot be satisfied and the over-
voltage problem is infeasible for bus m. Because the problem is in-
feasible, it can be eliminated.
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3. Case Study
3.1. Study Setup

In the case study, we use a 56-bus distribution feeder model that is a
modified version of the IEEE 123-bus test feeder. The 56-bus model has
balanced loads and symmetric lines, enabling a single-phase equivalent
model. Full details of the model are provided in [12]. Fig. 4 shows the
network’s radial topology and its range of voltage magnitudes at the
nominal operating point. In most of the case study, we assume there are
no capacitor banks on the network and set the substation voltage to 1.02
p-u., which ensures that there are no under-voltage violations at the
nominal operating point. We also assume there are no voltage regulators
except at the substation. Extending the optimization problem (3) to in-
clude in-line voltage regulators is future work. We solve the proposed
optimization problems using the non-linear programming solver Ipopt.
We initialize the solver at the network’s nominal operating point.

We use the network’s nominal loading data to determine the oper-
ating points for our model’s uncontrollable and controllable loads. At
each bus, we assume 50% of the nominal real-power consumption is
controllable and set f’\ic equal to it. We assume the controllable load’s
power factor ¢; is 0.95 lagging for all buses, which is within the range of
power factors for residential and commercial loads (see Table A.2 in
[13]). At each bus, the remaining nominal power consumption is as-
signed to the uncontrollable load (B, Q"°). When the controllable
loads are at baseline, the network’s loading matches that of the nominal
data. Finally, we assume the physical capacity of the controllable loads
at each bus is = 80% of their baseline power (i.e., P{ = 0.21/’\,-C and

— AC
Pf=18P).

3.2. Demonstration of 2-Norm Method

We demonstrate step 1 of the 2-norm method by showing the op-
timal solution of the under-voltage optimization problems for a parti-
cular bus. The top plot of Fig. 5 shows the network’s voltage magni-
tudes for the optimal solution to the under-voltage, 2-norm problem for
bus 20. Voltages at and around bus 20 are close to or under the lower
voltage limit, as indicated by dark red. Fig. 5 (middle) shows the exact
voltage magnitudes at each bus. At its nominal operating point, bus 20’s
voltage is 0.957 p.u. and decreases to 0.950 p.u for the optimal solu-
tion. Because bus 20 is not a terminal bus, under-voltages also occur at
downstream buses 21-26, as well as at adjacent buses 27-32. Fig. 5
(bottom) shows the components of a,, the minimum-sized vector of
power deviations that causes an under-voltage at bus 20. Power con-
sumption increases at all load-buses: the largest increases occur at or
downstream of bus 20, and the smallest increases occur close to the
substation (buses 1-4). This pattern shows which buses’ power devia-
tions have the most influence over bus 20’s voltage, with larger de-
viations indicating larger influence.

We demonstrate step 2 of the method by selecting the minimum-
sized a from the set of a’s found in step 1. We select the a,, that cor-
responds to the optimization problem whose optimal objective value
||@n|| is the least of all of the problems with feasible solutions. Fig. 6
shows the optimal objective value of each under-voltage problem for
the network. Problem 32 has the minimum objective value, and cor-
responds to bus 32, a terminal bus far from the substation. For buses
close to the substation, no feasible solution is found, and likely none
exists, because of the controllable loads’ physical capacity limits (see
(30)). In addition, no feasible solutions were found for any of the over-
voltage problems, which is unsurprising since there are no positive
power injections in the network (e.g., from capacitor banks or photo-
voltaic systems). Among all of the problems with feasible solutions, the
under-voltage problem for bus 32 has the minimum optimal objective
value, so we set ™" = a,. The last step of the method is simply to set
the limit of the 2-norm safety constraint such that .
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Fig. 4. 56-Bus distribution network used in case study. Voltage magnitudes are
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Fig. 5. Solution to the under-voltage, 2-norm problem for bus 20. Top and
middle plots: the voltage at bus 20 is exactly at the lower limit (0.95 p.u.);
voltages downstream of bus 20 are below the limit. Bottom plot: Each load-bus
contributes some change in real power to achieve the under-voltage at bus 20;
change is relative to the nominal operating point.
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Fig. 6. Optimal objective values for all 2-norm, under-voltage problems.
Minimum value is at bus 32. No feasible solutions are found for buses closer to
the substation, i.e., buses 1-10 and 40-55 (see Fig. 4 for numbering).

3.3. Comparing and Testing the 1-Norm and 2-Norm Methods

We compare the 1-norm and 2-norm methods for the under-voltage
optimization problems. First, we consider an example problem, again
the under-voltage problem at bus 20. Fig. 7 shows the two solutions
(ay) found by both the 1-norm and 2-norm problems, with deviations
reported as a percentage of the nominal operating point at each bus. As
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Fig. 7. Comparison of 1-norm and 2-norm solutions to the under-voltage pro-
blem for bus 20. The 1-norm and 2-norm methods find different optimal so-
lutions. Note the physical capacity limit of controllable loads is 80% of their
baseline for all buses.

the figure shows, the two solutions are strikingly different. The solu-
tions differ because of the methods’ different objective functions. The 2-
norm objective function penalizes an incremental increase to a large
deviation more than to a small deviation; this preference for small
deviations causes the 2-norm problem to distribute the deviations
across all load-buses. In contrast, the 1-norm objective function pena-
lizes all incremental increases equally; this causes the 1-norm problem
to concentrate the deviations among buses with the largest influence
over the constrained bus’s voltage.

Next, we compare the maximum balancing capacities that the two
methods allow. For both methods, the under-voltage problem for bus 32
has the minimum optimal objective value; the values are
llamin2 = 0.0013 MW? and [la™™!||; = 0.163 MW for the 2-norm and
1-norm methods, respectively. Using (9) and (10), we find that the
maximum balancing capacities for the 2-norm and 1-norm methods are
C" = 0.260 MW and C' = 0.163 MW, respectively. Thus, for this oper-
ating point, the 2-norm method is preferred because it allows for a
larger balancing capacity.

We numerically test the 1-norm and 2-norm safety constraints with
the optimal solutions of the other method. The 2-norm safety constraint
should exclude the set of a’s found by the 1-norm problem, and the 1-
norm safety constraint should exclude those found by the 2-norm pro-
blem. Fig. 8 shows the results of these tests. The y-axis values are cal-
culated by evaluating the objective function of the method being tested
at the optimal solutions (i.e., set of a’s) found by the other method. As
shown in the left plot of Fig. 8, the 1-norm safety constraint passes its
test: all of the 2-norm method’s solutions lie outside of the safe region
defined by the 1-norm safety constraint. Similarly, as shown in the right
plot of Fig. 8, the 2-norm safety constraint passes its test.

3.4. Reducing Problem Size

We apply Propositions 1 and 2 to reduce the problem size for the 56-
bus network, as well as a modified version of the network. The modified
network has capacitor banks located at buses 26, 28, 29, and 30 that
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Fig. 8. Verification of safety constraints. The 1-norm safety constraint correctly
excludes the solutions (i.e., set of a’s) found by the 2-norm method (left); the 2-
norm safety constraint passes a similar test (right).
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Fig. 9. Loading conditions for each bus-pair. Bus-pairs with 8; — 65 > /2 do
not satisfy (14). Fewer optimization problems can be eliminated when this
condition is not met.

cause a voltage rise along the line from bus 19 to 26 (see [12] for de-
tails). Because of this voltage rise, fewer problems for the modified
network should qualify for elimination. For Propositions 1 and 2 to hold
for a given bus-pair, constraint (14) must be satisfied by both the
minimum and maximum possible values of 65 for the bus-pair. In this
analysis, we evaluate (14) at two extreme operating points that ap-
proximate the operating points that minimize and maximize 6s. These
extreme points are: 1) “maximum loading” in which the controllable
loads consume maximum power and 2) “minimum loading” in which
they consume minimum power. Finding the actual operating points
with maximum and minimum 0Os is future work.

Fig. 9 shows which bus-pairs satisfy (14) and indicates which pro-
blems can be eliminated. Points that lie above the /2 limit indicate
bus-pairs that do not satisfy the constraint. In the original network, all
of the bus-pairs satisfy the constraint. By Proposition 1, we can elim-
inate the under-voltage problems for the upstream bus of each of these
bus-pairs; after this elimination, only under-voltage problems for the
network’s 11 terminal buses remain. By Proposition 2, we can eliminate
all over-voltage problems because voltages are always decreasing. In
the modified network, eight bus-pairs do not satisfy (14). As expected,
these buses are where the voltage rise occurs due to capacitor banks. By
Proposition 1, we can eliminate under-voltage problems for all non-
terminal buses except for the identified eight upstream buses; after the
allowed eliminations, under-voltage problems for 11 terminal buses
and 8 non-terminal buses remain. (Note that here we apply Proposi-
tion 1 despite not having a guarantee of global optimality.) To apply
Proposition 2 to the modified network, we identify bus 18 as the
downstream bus closest to the substation for which (14) is not satisfied.
By Proposition 2, all buses — except for bus 18 and those downstream of
18 - can be eliminated. Thus, the over-voltage problem must be solved
for 15 buses.

Using the proposed reduction techniques, we are able to drastically
reduce the size of the overall problem. For the original network, the
number of total optimization problems decreased from 104 to 11 for the
original network and from 104 to 34 for the modified network.

4. Conclusion

We have proposed a method for constraining a load aggregator’s
control actions to ensure the safe operation of the distribution network.
The proposed safety constraint can be computed by a distribution op-
erator and adhered to by a third-party aggregator with minimal sharing
of private information between the two entities. The safety constraint
is, by design, conservative. We compared two versions of the constraint
to determine if one was uniformly less conservative than the other.
Although we were unable to draw general conclusions, in a case study
we found that the 2-norm constraint allowed for a larger balancing
capacity than the 1-norm constraint. To reduce the time it takes to
compute the safety constraint, we proposed two conditions under which
optimization problems can be eliminated from the set of necessary
problems. In the case study, we found this reduction technique to be
very effective. Because the method’s conservatism and computational
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intensity is network dependent, some networks will be better suited for
the safety-constraint method than others.
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