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A B S T R A C T   

This paper proposes a method for constraining the control actions of third-party aggregators to ensure safe 
operation of the distribution network. We design a safety constraint that limits the size of the deviations in power 
that an aggregator can cause across a network. The constraint’s upper limit is the size of the minimum-sized 
vector of deviations that is unsafe for the network, which is computed by solving a set of optimization problems. 
We propose two versions of the safety constraint, based on the 2-norm and 1-norm, and find neither is guar
anteed to be less conservative than the other. We also derive conditions under which an optimization problem 
can be eliminated from the set of problems that are necessary to solve. We apply these conditions in a case study 
and reduce the number of problems by 89% for the test network and 67% for the test network with capacitor 
banks connected.   

1. Introduction 

Load aggregations can provide valuable services to the bulk power 
system, such as frequency regulation, ramping, and spinning reserves  
[1]. These balancing services will be increasingly important as the share 
of intermittent renewable generation increases in the generation mix. 
Residential-load aggregators are able to participate at the scale required 
by wholesale markets by aggregating thousands of flexible loads, such 
as air conditioners, water heaters, and electric vehicles. 

Many regions in the U.S. allow third-party load aggregators to 
provide balancing services. Third-party aggregators are distinct from 
distribution operators and do not have access to distribution network 
models or measurements. Without feedback from the operator, an ag
gregator does not know how its control actions affect distribution op
eration and is unable to adjust its actions to prevent operational issues. 
Unsafe operation is of particular concern when a large portion of a 
network’s loads are controlled by a third-party aggregator. For example, 
the distribution simulation study [2] found that an aggregation of re
sidential air conditioners, controlled to track a regulation signal, can 
result in under-voltages. 

The objective of this paper is to develop a method that ensures a 
third-party aggregator’s control actions are safe for distribution net
works without requiring the operator and aggregator to share private 
information. We assume that, to maintain a competitive advantage, 

third-party aggregators prefer to keep their control algorithms private. 
Distribution operators protect the privacy of their consumers by 
keeping network models and load measurements private. 

Most prior research on aggregate load control for wholesale services 
either does not consider distribution network safety or does not con
sider the privacy needs of third-party aggregators. Many proposed 
strategies are “grid-agnostic”; these strategies ignore network con
straints and cannot ensure safe distribution operation (e.g., [3,4]). A 
few “grid-safe” strategies have been developed that ensure safe dis
tribution operation. In [5], an AC-OPF is solved to safely provide load 
frequency control with an aggregation of loads. In [6,7], a gradient- 
based algorithm that incorporates real-time measurements from the 
distribution network is proposed; the algorithm controls distributed 
energy resources to track a time-varying power setpoint while re
specting network constraints. However, the strategies in [5–7] do not 
enable a third-party aggregator to use its own private control algorithm; 
moreover, the strategies rely on a third-party aggregator having sub
stantial information about the distribution network, which may not be 
acceptable from a privacy and security perspective. 

A few recently proposed strategies are both grid-safe and suitable 
for a third-party aggregator. The optimization-based method in [8] 
provides an aggregator with an inner approximation of the safe set of 
real-power deviations at each bus in a network; future work is necessary 
to compare the relative conservativeness of this paper’s safe set 
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approximation with that of [8]. The method in [9] certifies whether a 
distribution network will operate safely under any set of possible power 
injections. If a network is certified safe, then any control actions by a 
third-party aggregator will be safe. However, this approach leaves open 
the problem for networks that cannot be certified as safe. In our prior 
work [10], we propose a strategy in which a distribution operator 
blocks an aggregator’s commands to loads when the commands would 
result in unsafe operation. A drawback of this strategy is that the ag
gregator is not given an explicit constraint; instead, the aggregator must 
estimate the operator’s blocking behavior to improve its control per
formance. 

In this paper, we design and compute an explicit “safety constraint” 
that ensures safe distribution operation by limiting the size of the vector 
of power deviations an aggregator can cause across all load buses in the 
network, where deviations are with respect to a nominal operating 
point. The design of the safety constraint is conservative and ensures 
that the aggregator’s vector of deviations is always smaller than the 
minimum-sized vector of deviations that is unsafe for the network, 
where size is determined by a vector norm. We compute the safety 
constraint’s limit by solving a set of optimization problems; each pro
blem is for a particular bus in the network and finds the minimum-sized 
vector of deviations that causes an unsafe voltage at that bus. The 
minimum size of these minimum-sized vectors is the safety constraint’s 
limit. One benefit of the proposed method is that it can be implemented 
in a privacy protecting manner: the distribution operator determines 
the safety constraint given its private network information, and the 
aggregator ensures the outcome of its private control algorithm satisfies 
the constraint. 

The main contributions of this paper are as follows. First, we pro
pose a method of constraining a third-party aggregator’s control actions 
so that the actions are safe for distribution networks without pre
scribing a particular control algorithm for the aggregator. Second, 
through analysis and simulation, we compare the conservativeness of 
two versions of the safety constraint – one that measures the size of the 
vector of deviations with a 2-norm, and the other with a 1-norm. Third, 
we propose and prove two propositions that enable a substantial re
duction in the number of optimization problems that must be solved to 
compute a safety constraint and therefore a reduction in overall com
putation time. 

2. Methods 

2.1. Designing the Safety Constraint 

There are four desired criteria for the safety constraint: 1) it should 
ensure the aggregator’s actions will not cause unsafe distribution op
eration, 2) it should not overly restrict the aggregator’s control actions, 
3) an operator should be able to calculate the constraint without the 
aggregator’s private information, and 4) the aggregator should be able 
to adhere to the constraint without the operator’s private information. 

We design the safety constraint to prioritize safety (criteria 1) over 
the aggregator’s range of control (criteria 2). The constraint takes the 
general form 

<P ,c min (1) 

where || · || represents the 1-norm or 2-norm, variable ΔPc is the vector 
of controllable loads’ power deviations at each bus, and parameter αmin 

is the minimum-sized vector of power deviations that causes unsafe 
operation somewhere on the network. For brevity, we refer to αmin as 
the minimum unsafe vector of deviations. The controllable loads’ power 
deviations are relative to the power the aggregation would have con
sumed in the absence of control, referred to as the aggregation’s 
“baseline”. 

The safety constraint (1) ensures network safety by the definition of 
αmin. The constraint is conservative; that is to say, some safe values of 
ΔPc will not satisfy the constraint. The benefit of the constraint is that if 

we are able to compute the minimum unsafe vector of deviations αmin, 
then, by definition, the constraint will guarantee safe distribution op
eration. 

2.2. Computing the Safety Constraint’s Limit 

2.2.1. Overview 
To determine the safety constraint’s limit, we must find the 

minimum unsafe vector of deviations for a given network at a nominal 
operating point. We reduce the scope of the problem by considering 
only the most likely modes of unsafe operation on a network which, for 
this application, are out-of-range voltage magnitudes [2]. The voltage 
constraint for bus i is V V V ,i where Vi is the voltage magnitude, V
= 1.05 p.u., and =V 0.95 p.u. Extending our methods to include all 
network constraints (e.g., over-currents on lines) is future work. 

Fig. 1 shows the three main steps to compute the safety constraint 
limit. In step 1, we find candidates for αmin by solving two optimization 
problems for each bus. The first problem searches for αm the minimum- 
sized ΔPc that causes an under-voltage at bus m, where vector size is 
measured by a norm, generically ||ΔPc||. The second problem searches 
for +m N the minimum-sized ΔPc that causes an over-voltage at bus m. 
In step 2, we set αmin equal to the minimum-sized α in the set {α1, α2, ..., 
α2N}. In step 3, we set the safety constraint’s limit (the right hand side 
of (1)) to the value ||αmin||. 

The remainder of Section 2.2 proceeds as follows. First, we define 
the models that will be used in the optimization problems. Then we 
formulate the optimization problems used to compute the 2-norm safety 
constraint’s limit. Finally, we formulate the problems used to compute 
the 1-norm safety constraint’s limit. 

2.2.2. Modeling 
We model an N-bus distribution network with aggregator-controlled 

loads at each bus. We use a single-phase equivalent line model, which 
assumes balanced power flow and symmetric lines. The network’s 
N × N conductance and susceptance matrices are denoted as G and B. 
We aggregate loads at the bus-level and use a constant power model: 
each bus has real and reactive power consumption Pi and Qi, respec
tively. We separate a bus’s power consumption into two components: a 
controllable component (P ,i

c Qi
c) that represents aggregator-controlled 

loads, and an uncontrollable component (P ,i
uc Qi

uc) that represents all 
other loads. Thus, we have that = +P P Pi i i

c uc and = +Q Q Qi i i
c uc. 

We model the aggregator’s control actions in terms of bus-level 
power deviations. When providing balancing, an aggregator controls 
the aggregation’s total deviation from baseline such that it tracks a 
balancing signal. In terms of bus-level power deviations, the aggregator 
controls loads such that the sum of real-power deviations across all 
buses, = P k( ),i

N
i1
c tracks the balancing signal with sufficient accuracy 

in every time step k. The variable Pic is the deviation in Pic from the 
bus’s baseline value P̂i

c
(i.e., =P k P k P( ) ( ) ^

i i
c c c

). We assume the 
controllable loads have a constant power factor ζi, such that any de
viation in real power Pic is accompanied by a deviation in reactive 
power given by =Q P tan(arccos )i i

c
i

c . Finally, the deviations at each 
bus are naturally constrained by the physical capacities of the loads at 
that bus; this constraint is given by 

Fig. 1. Process for computing the safety constraint’s limit. Vector αm is equal to 
the minimum-sized ΔPc (vector of deviations across all load buses) that causes 
an under-voltage at bus m, and +m N is the minimum-sized ΔPc that causes an 
over-voltage at bus m. 
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+P P P P( ^ ) ,i i i i
c c c c (2) 

where Pi
c and Pi

c reflect the loads’ aggregate physical capacity. 

2.2.3. 2-Norm Safety Constraint 
In step 1, we find αm the minimum-sized vector of deviations (as 

measured by the squared 2-norm) that causes an under-voltage at bus 
m. We solve this problem once for each bus in the network; here the 
problem is shown for bus m: 

=
Pminimize

i

N

i
1

c 2

(3a)  

V V
subject to

,m (3b)  

+P P P P i( ^ ) ,i i i i
c c c c (3c)  

=Q P i ,i i i
cc (3d)  

= + +P P P P i^ ,i i i i
c c uc (3e)  

= + +Q Q Q Q i^ ,i i i i
c c uc (3f)  

= +
=

P V V G B i( cos sin ) ,i i
k

N

k ik ik ik ik
0

1

(3g)  

=
=

Q V V G B i( sin cos ) ,i i
k

N

k ik ik ik ik
0

1

(3h)  

= 0,0 (3i)  

=V V .0 set (3j) 

After solving (3), we set = P P P[ *, *, ..., *],m N1
c

2
c c where * indicates 

the optimal solution; note that the optimal objective value is m 2
2. In 

the above problem, the set is the set of all buses in the network. The 
decision variables are P ,i

c Q ,i
c Pi, Qi, V ii and i k, ,ik

where θik is the voltage angle difference between buses i and k. 
The objective function (3a) and constraint (3b) are opposing forces 

on the size of ΔPc: the objective function minimizes the size of the 
deviations, but the deviations must be large enough such that an under- 
voltage occurs at bus m. A deviation in power is necessary to create an 
under-voltage at bus m because we assume that the network’s voltages 
are within the operational range V V[ , ] at the nominal operating point. 

Constraints (3c) and (3d) model the controllable loads. Constraint  
(3c) restricts the power deviation at each bus according to the con
trollable loads’ physical capacities; the baseline value P̂i

c
is assumed 

known. Constraint (3d) enforces a constant power factor for con
trollable loads, where = tan(arccos )i i . 

Constraints (3e)-(3f) sum the controllable and uncontrollable com
ponents of the power consumption at each bus. The uncontrollable 
components Pi

uc and Qi
uc are assumed known. 

Constraints (3g)-(3j) model the power flow in the network and de
fine the slack bus. Constraints (3g)-(3h) are the standard power flow 
equations, where the real and reactive power consumption at bus i must 
be balanced by the sum of all real and reactive power flows into bus i. 
Constraint (3j) sets the substation bus as the reference for voltage an
gles. Constraint (3j) fixes the substation bus’s voltage magnitude as a 
constant; we assume the value of parameter Vset is set by the distribution 
operator (e.g., =V 1.0set p.u.). 

We also find +m N the minimum-sized vector of deviations that 
causes an over-voltage at bus m. We solve this problem once for each 
bus in the network; here the problem is shown for bus m: 

=
Pminimize

i

N

i
1

c 2

(4a)  

V V
subject to constraints (3c)-(3j) and

.m (4b) 

After solving (4), we set =+ P P P[ *, *, ..., *]m N N1
c

2
c c . 

The optimization problems (3) and (4) are non-convex because of 
the non-linear constraints (3g)-(3h) that model the network’s AC power 
flow. In this paper, we use a non-linear programming solver to solve (3) 
and (4); the solver finds locally optimal solutions, so global optimality 
is not guaranteed. In future work, we plan to apply a convex relaxation 
to the AC power flow equations in order to identify a lower bound on 
the globally optimal objective value of the original problem; this lower 
bound will make αm conservative (i.e., smaller than or equal to the 
minimum-sized vector of deviations that is unsafe for bus m) but will 
ensure no smaller-sized unsafe vector of deviations exists. 

In step 2, we find αmin the minimum-sized α from the set of α’s found 
in step 1. We find αmin by simply comparing the problems’ optimal 
objective values: 

= arg min ,m
min

2
2

m (5) 

where = { , , ..., }N1 2 2 . 
In step 3, we set the limit of the 2-norm safety constraint: 

<
=

P .
i

N

i
1

c 2 min
2
2

(6)  

2.2.4. 1-Norm Safety Constraint 
We use the same general 3-step method to compute the limit of the 

1-norm safety constraint. In step 1, the optimization problem formula
tions are identical to (3) and (4) except the objective functions are in 
terms of the 1-norm. As before, we solve the under-voltage problem and 
the over-voltage problem once for each bus in the network. The under- 
voltage problem for bus m is given by 

=
P

b j

minimize

subject to constraints (3 ) (3 ),
i

N

i
1

c

(7) 

After solving this problem, we set = P P P[ *, *, ..., *]m N1
c

2
c c ; note that 

||αm||1 is the optimal objective value. To improve solvability, we re
formulate the absolute value terms in the objective function such that 
the objective function is linear (see chapter IX of [11] for details). In 
step 2, we set = arg min m

min
1 with the minimization taken over all 

α’s found in step 1. Finally, in step 3, we set the limit of the 1-norm 
safety constraint: 

<
=

P| | .
i

N

i
1

c min
1

(8)  

2.3. Conservativeness of 1 and 2-Norm Safety Constraints 

The less conservative of the two constraints should be used because 
it will allow the aggregator more feasible control actions. However, 
determining which constraint is less conservative can be a challenge. 
The conservativeness of a constraint cannot be determined a priori be
cause it depends on the minimum unsafe vector of deviations (αmin) 
that has been found. Fig. 2 demonstrates this point with illustrations of 
the 1-norm and 2-norm approximations of the set of safe power de
viations for two different operating points. (Note, for illustration pur
poses, we consider deviations in only 2 dimensions.) On the right side of  
Fig. 2, both methods have found the same αmin; this is the point where 
the boundaries of the approximations intersect with the boundary of the 
actual set. In this case, the 2-norm constraint is uniformly less con
servative than the 1-norm constraint. On the left side of Fig. 2, the 1- 
norm and 2-norm methods have found different αmin’s, which we de
note as αmin,I and αmin,II, respectively. In this case, neither constraint is 
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uniformly less conservative than the other. 
For cases in which the 1-norm and 2-norm methods find different 

αmin’s, we propose choosing the constraint that allows the larger max
imum balancing capacity. In general, an aggregator is compensated for 
the size of its capacity and would prefer the safety constraint that 
maximizes its balancing capacity. We find CII, the maximum balancing 
capacity that the 2-norm safety constraint will allow, by maximizing the 
capacity = Pi

N
i1
c subject to (6). We find that the solution must have all 

deviations equal (i.e., =P P i j( , )i j
c c ). Setting both sides of 

(6) equal and all deviations equal gives us the following result 

=C N ,II min,II
2 (9) 

The value of CI, the maximum balancing capacity that the 1-norm 
constraint will allow, is clear upon inspection and is given by 

=C .I min,I
1 (10) 

To maximize balancing capacity, if CII > CI, the 2-norm constraint 
should be used; otherwise, the 1-norm constraint should be used. 

2.4. Reducing Problem Size 

Solving 2N optimization problems to compute a safety constraint 
may be too computationally intensive for real-time operations. We 
propose reducing computation time by reducing the number of buses 
for which an optimization problem must be solved. We can eliminate a 
problem if we can guarantee it is infeasible or its solution will not have 
the minimum objective value of the full set of problems. 

We propose two conditions – one for the under-voltage problem and 
one for over-voltage problem – that if satisfied enable the problem to be 
eliminated. To derive these conditions, we find the loading conditions 
that guarantee two adjacent buses in a radial network, referred to as a 
“bus-pair”, have decreasing voltage magnitudes in the downstream 
direction (i.e., away from the substation). We represent a generic bus- 
pair with the two-bus equivalent system in Fig. 3. (Note we use vector 
notation X and polar notation X∠θX interchangeably to represent a 
vector in the complex plane.) In Fig. 3, Seqv is the apparent power of the 
equivalent load at the downstream bus and is equal to the sum of all 
loads connected to and downstream of the bus in the actual network, as 
well as their associated line-losses. Variables Vup and Vdn are the vol
tages at the upstream and downstream buses, respectively. Parameter Z

is the line’s impedance, and I is the line’s current flow. 
We derive the loading conditions that ensure V Vdn up as follows. 

By Ohm’s law we have that =V V I Zdn up . After a few simple op
erations, we transform this expression into 

=V V V ZScos( ) cos( )dn
2

dn up up dn eqv Z S (11a)  

= V V ZS0 sin( ) sin( ),dn up up dn eqv Z S (11b) 

where the voltage angle of the downstream bus has been defined as the 
reference angle. By replacing the cos( )up dn term in (11a) with 1, 
and given that cos( ) 1,up dn we derive the inequality 

V V V ZS cos( ).dn
2

dn up eqv Z S (12) 

If the last term in (12) satisfies 

ZS cos( ) 0,eqv Z S (13) 

then V V ZS V Vcos( )dn up eqv Z S dn up. Combining this inequality 
with (12), we have V V Vdn

2
dn up and thus V V ,dn up since Vdn is positive 

by definition. 
We have derived the following loading condition: if (13) is satisfied, 

then V Vdn up. Since the magnitudes Seqv and Z are positive by defini
tion, (13) is satisfied if cos( ) 0Z S . Thus, the loading condition 
simplifies to: if 

< <
2 2

,Z S (14) 

then V Vdn up. 
We state the first of two propositions for reducing the overall pro

blem size: 

Proposition 1. If a bus-pair satisfies (14) for all possible operating points, 
then the under-voltage problem for the upstream bus in the pair can be 
eliminated from the set of problems that are necessary to solve. 

The proof follows. Let us assume (14) is satisfied for a given bus-pair 
for all operating points. According to the loading condition, we have 
V Vdn up for all operating points. Thus V Vdn up for the globally op
timal solution of the under-voltage problem for the upstream bus. This 
solution is also a feasible solution for the downstream bus’s under- 
voltage problem because V V V ,dn up which satisfies constraint (3b). 
Thus ||αup||, the globally optimal objective value to the under-voltage 
problem for the upstream bus, must be greater than or equal to ||αdn||, 
the globally optimal objective value to the under-voltage problem for 
the downstream bus. If ||αup|| ≥ ||αdn||, then up is not needed as a 
candidate for αmin and the under-voltage problem for the upstream bus 
can be eliminated. We note that this proof relies on an assumption that 
the globally optimal solution to the under-voltage problem will be 
found, but this is not guaranteed since we are solving a non-convex 
optimization problem using a non-linear programming solver. In future 
work, we plan to extend Proposition 1 such that it applies to a convex 
relaxation of the under-voltage problem; the relaxed problem will 
provide lower bounds on the globally optimal objective values ||αdn|| 
and ||αup||. 

Proposition 2. If all bus-pairs on the path between bus m and the 
substation satisfy (14) for all possible operating points, then the over- 
voltage problem for bus m can be eliminated from the set of problems that are 
necessary to solve. 

The proof follows. Let us assume (14) is satisfied for all bus-pairs 
between bus m and the substation. The voltage magnitude is necessarily 
non-increasing along this path since V Vdn up for all of the bus-pairs. 
Thus the voltage magnitude of bus m must be less than or equal to that 
of the substation. Since the voltage at the substation is regulated within 
operational limits (i.e., V V V0 ), bus m’s voltage magnitude cannot 
be greater than V . Thus constraint (4b) cannot be satisfied and the over- 
voltage problem is infeasible for bus m. Because the problem is in
feasible, it can be eliminated. 

Fig. 2. Illustration of two different sets of safe deviations (gray) and approx
imations of these sets given by the 1-norm and 2-norm constraints (purple and 
blue). Left: neither the 2-norm or 1-norm approximation is uniformly less 
conservative than the other. Right: the 2-norm approximation is uniformly less 
conservative. 

Fig. 3. Two-bus equivalent system. Every pair of adjacent buses in a network 
can be represented by this two bus system. 
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3. Case Study 

3.1. Study Setup 

In the case study, we use a 56-bus distribution feeder model that is a 
modified version of the IEEE 123-bus test feeder. The 56-bus model has 
balanced loads and symmetric lines, enabling a single-phase equivalent 
model. Full details of the model are provided in [12]. Fig. 4 shows the 
network’s radial topology and its range of voltage magnitudes at the 
nominal operating point. In most of the case study, we assume there are 
no capacitor banks on the network and set the substation voltage to 1.02 
p.u., which ensures that there are no under-voltage violations at the 
nominal operating point. We also assume there are no voltage regulators 
except at the substation. Extending the optimization problem (3) to in
clude in-line voltage regulators is future work. We solve the proposed 
optimization problems using the non-linear programming solver Ipopt. 
We initialize the solver at the network’s nominal operating point. 

We use the network’s nominal loading data to determine the oper
ating points for our model’s uncontrollable and controllable loads. At 
each bus, we assume 50% of the nominal real-power consumption is 
controllable and set P̂i

c
equal to it. We assume the controllable load’s 

power factor ζi is 0.95 lagging for all buses, which is within the range of 
power factors for residential and commercial loads (see Table A.2 in  
[13]). At each bus, the remaining nominal power consumption is as
signed to the uncontrollable load (P ,i

uc Qi
uc). When the controllable 

loads are at baseline, the network’s loading matches that of the nominal 
data. Finally, we assume the physical capacity of the controllable loads 
at each bus is   ±  80% of their baseline power (i.e., =P P0.2 ^

i i
c c

and 
=P P1.8 ^

i i
c c

). 

3.2. Demonstration of 2-Norm Method 

We demonstrate step 1 of the 2-norm method by showing the op
timal solution of the under-voltage optimization problems for a parti
cular bus. The top plot of Fig. 5 shows the network’s voltage magni
tudes for the optimal solution to the under-voltage, 2-norm problem for 
bus 20. Voltages at and around bus 20 are close to or under the lower 
voltage limit, as indicated by dark red. Fig. 5 (middle) shows the exact 
voltage magnitudes at each bus. At its nominal operating point, bus 20’s 
voltage is 0.957 p.u. and decreases to 0.950 p.u for the optimal solu
tion. Because bus 20 is not a terminal bus, under-voltages also occur at 
downstream buses 21-26, as well as at adjacent buses 27-32. Fig. 5 
(bottom) shows the components of α20, the minimum-sized vector of 
power deviations that causes an under-voltage at bus 20. Power con
sumption increases at all load-buses: the largest increases occur at or 
downstream of bus 20, and the smallest increases occur close to the 
substation (buses 1-4). This pattern shows which buses’ power devia
tions have the most influence over bus 20’s voltage, with larger de
viations indicating larger influence. 

We demonstrate step 2 of the method by selecting the minimum- 
sized α from the set of α’s found in step 1. We select the αm that cor
responds to the optimization problem whose optimal objective value 
||αm|| is the least of all of the problems with feasible solutions. Fig. 6 
shows the optimal objective value of each under-voltage problem for 
the network. Problem 32 has the minimum objective value, and cor
responds to bus 32, a terminal bus far from the substation. For buses 
close to the substation, no feasible solution is found, and likely none 
exists, because of the controllable loads’ physical capacity limits (see  
(3c)). In addition, no feasible solutions were found for any of the over- 
voltage problems, which is unsurprising since there are no positive 
power injections in the network (e.g., from capacitor banks or photo
voltaic systems). Among all of the problems with feasible solutions, the 
under-voltage problem for bus 32 has the minimum optimal objective 
value, so we set =min

32. The last step of the method is simply to set 
the limit of the 2-norm safety constraint such that . 

3.3. Comparing and Testing the 1-Norm and 2-Norm Methods 

We compare the 1-norm and 2-norm methods for the under-voltage 
optimization problems. First, we consider an example problem, again 
the under-voltage problem at bus 20. Fig. 7 shows the two solutions 
(α20) found by both the 1-norm and 2-norm problems, with deviations 
reported as a percentage of the nominal operating point at each bus. As 

Fig. 4. 56-Bus distribution network used in case study. Voltage magnitudes are 
shown for the nominal operating point. 

Fig. 5. Solution to the under-voltage, 2-norm problem for bus 20. Top and 
middle plots: the voltage at bus 20 is exactly at the lower limit (0.95 p.u.); 
voltages downstream of bus 20 are below the limit. Bottom plot: Each load-bus 
contributes some change in real power to achieve the under-voltage at bus 20; 
change is relative to the nominal operating point. 

Fig. 6. Optimal objective values for all 2-norm, under-voltage problems. 
Minimum value is at bus 32. No feasible solutions are found for buses closer to 
the substation, i.e., buses 1-10 and 40-55 (see Fig. 4 for numbering). 

S.C. Ross and J.L. Mathieu   Electric Power Systems Research 189 (2020) 106781

5



the figure shows, the two solutions are strikingly different. The solu
tions differ because of the methods’ different objective functions. The 2- 
norm objective function penalizes an incremental increase to a large 
deviation more than to a small deviation; this preference for small 
deviations causes the 2-norm problem to distribute the deviations 
across all load-buses. In contrast, the 1-norm objective function pena
lizes all incremental increases equally; this causes the 1-norm problem 
to concentrate the deviations among buses with the largest influence 
over the constrained bus’s voltage. 

Next, we compare the maximum balancing capacities that the two 
methods allow. For both methods, the under-voltage problem for bus 32 
has the minimum optimal objective value; the values are 

= 0.0013min,II
2
2 MW2 and = 0.163min,I

1 MW for the 2-norm and 
1-norm methods, respectively. Using (9) and (10), we find that the 
maximum balancing capacities for the 2-norm and 1-norm methods are 

=C 0.260II MW and =C 0.163I MW, respectively. Thus, for this oper
ating point, the 2-norm method is preferred because it allows for a 
larger balancing capacity. 

We numerically test the 1-norm and 2-norm safety constraints with 
the optimal solutions of the other method. The 2-norm safety constraint 
should exclude the set of α’s found by the 1-norm problem, and the 1- 
norm safety constraint should exclude those found by the 2-norm pro
blem. Fig. 8 shows the results of these tests. The y-axis values are cal
culated by evaluating the objective function of the method being tested 
at the optimal solutions (i.e., set of α’s) found by the other method. As 
shown in the left plot of Fig. 8, the 1-norm safety constraint passes its 
test: all of the 2-norm method’s solutions lie outside of the safe region 
defined by the 1-norm safety constraint. Similarly, as shown in the right 
plot of Fig. 8, the 2-norm safety constraint passes its test. 

3.4. Reducing Problem Size 

We apply Propositions 1 and 2 to reduce the problem size for the 56- 
bus network, as well as a modified version of the network. The modified 
network has capacitor banks located at buses 26, 28, 29, and 30 that 

cause a voltage rise along the line from bus 19 to 26 (see [12] for de
tails). Because of this voltage rise, fewer problems for the modified 
network should qualify for elimination. For Propositions 1 and 2 to hold 
for a given bus-pair, constraint (14) must be satisfied by both the 
minimum and maximum possible values of θS for the bus-pair. In this 
analysis, we evaluate (14) at two extreme operating points that ap
proximate the operating points that minimize and maximize θS. These 
extreme points are: 1) “maximum loading” in which the controllable 
loads consume maximum power and 2) “minimum loading” in which 
they consume minimum power. Finding the actual operating points 
with maximum and minimum θS is future work. 

Fig. 9 shows which bus-pairs satisfy (14) and indicates which pro
blems can be eliminated. Points that lie above the π/2 limit indicate 
bus-pairs that do not satisfy the constraint. In the original network, all 
of the bus-pairs satisfy the constraint. By Proposition 1, we can elim
inate the under-voltage problems for the upstream bus of each of these 
bus-pairs; after this elimination, only under-voltage problems for the 
network’s 11 terminal buses remain. By Proposition 2, we can eliminate 
all over-voltage problems because voltages are always decreasing. In 
the modified network, eight bus-pairs do not satisfy (14). As expected, 
these buses are where the voltage rise occurs due to capacitor banks. By 
Proposition 1, we can eliminate under-voltage problems for all non- 
terminal buses except for the identified eight upstream buses; after the 
allowed eliminations, under-voltage problems for 11 terminal buses 
and 8 non-terminal buses remain. (Note that here we apply Proposi
tion 1 despite not having a guarantee of global optimality.) To apply 
Proposition 2 to the modified network, we identify bus 18 as the 
downstream bus closest to the substation for which (14) is not satisfied. 
By Proposition 2, all buses – except for bus 18 and those downstream of 
18 – can be eliminated. Thus, the over-voltage problem must be solved 
for 15 buses. 

Using the proposed reduction techniques, we are able to drastically 
reduce the size of the overall problem. For the original network, the 
number of total optimization problems decreased from 104 to 11 for the 
original network and from 104 to 34 for the modified network. 

4. Conclusion 

We have proposed a method for constraining a load aggregator’s 
control actions to ensure the safe operation of the distribution network. 
The proposed safety constraint can be computed by a distribution op
erator and adhered to by a third-party aggregator with minimal sharing 
of private information between the two entities. The safety constraint 
is, by design, conservative. We compared two versions of the constraint 
to determine if one was uniformly less conservative than the other. 
Although we were unable to draw general conclusions, in a case study 
we found that the 2-norm constraint allowed for a larger balancing 
capacity than the 1-norm constraint. To reduce the time it takes to 
compute the safety constraint, we proposed two conditions under which 
optimization problems can be eliminated from the set of necessary 
problems. In the case study, we found this reduction technique to be 
very effective. Because the method’s conservatism and computational 

Fig. 7. Comparison of 1-norm and 2-norm solutions to the under-voltage pro
blem for bus 20. The 1-norm and 2-norm methods find different optimal so
lutions. Note the physical capacity limit of controllable loads is 80% of their 
baseline for all buses. 

Fig. 8. Verification of safety constraints. The 1-norm safety constraint correctly 
excludes the solutions (i.e., set of α’s) found by the 2-norm method (left); the 2- 
norm safety constraint passes a similar test (right). 

Fig. 9. Loading conditions for each bus-pair. Bus-pairs with > /2Z S do 
not satisfy (14). Fewer optimization problems can be eliminated when this 
condition is not met. 
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intensity is network dependent, some networks will be better suited for 
the safety-constraint method than others. 
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