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ABSTRACT

This study examines the utility of Eady-type theories as applied to understanding baroclinic instability in
coastal flows where depth variations and bottom drag are important. The focus is on the effects of non-
geostrophy, boundary dissipation, and bottom slope. The approach compares theoretically derived instability
properties against numerical model calculations, for experiments designed to isolate the individual effects
and justified to have Eady-like basic states. For the nongeostrophic effect, the theory of Stone (1966) is shown
to give reasonable predictions for the most unstable growth rate and wavelength. It is also shown that
the growing instability in a fully nonlinear model can be interpreted as boundary-trapped Rossby wave
interactions—that is, wave phase locking and westward phase tilt allow waves to be mutually amplified. The
analyses demonstrate that both the boundary dissipative and bottom slope effects can be represented by
vertical velocities at the lower boundary of the unstable interior, via inducing Ekman pumping and slope-
parallel flow, respectively, as proposed by the theories of Williams and Robinson (1974; referred to as the
Eady-Ekman problem) and Blumsack and Gierasch (1972). The vertical velocities, characterized by a friction
parameter and a slope ratio, modify the bottom wave and thus the scale selection. However, the theories have
inherent quantitative limitations. Eady—Ekman neglects boundary layer responses that limit the increase of
bottom stress, thereby overestimating the Ekman pumping and growth rate reduction at large drag. Blumsack
and Gierasch’s (1972) model ignores slope-induced horizontal shear in the mean flow that tilts the eddies to
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favor converting energy back to the mean, thus having limited utility over steep slopes.

1. Introduction

There are a variety of baroclinic currents on conti-
nental shelves or near shelf edges that can develop
baroclinic instability. Examples include shelf break jets
(Flagg and Beardsley 1978; Gawarkiewicz 1991; Lozier
and Reed 2005; Zhang and Gawarkiewicz 2015), river-fed
buoyant coastal currents (Qiu et al. 1988; Weingartner
et al. 1999; Hetland 2017), tidal mixing fronts (Badin et al.
2009; Brink 2012, 2013), upwelling fronts (Barth 1989;
Durski and Allen 2005; Brink 2016a), and boundary cur-
rents in marginal seas (Johannessen et al. 1989; Arnone
et al. 1990; Blokhina and Afanasyev 2003). Understanding
the characteristics of these baroclinically unstable flows,
including their growth rate, spatial scale, and parametric
sensitivity, has considerable importance because the
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instabilities can be a major source of hydrographic var-
iability (e.g., Fratantoni and Pickart 2003) and their
eddy fluxes can drive water column restratification (e.g.,
Spall and Thomas 2016) and cross-margin material ex-
changes (see Brink 2016b for a review).

To understand the instability properties, the Eady
model and its extensions have served as an important
theoretical foundation. Aiming at explaining the growth
and spatial scales of atmospheric cyclogenesis, Eady
(1949) successfully extracted the essence of baroclinic
instability by considering a linear stability problem for a
thermal wind-balanced flow with constant stratification,
vertical shear, and Coriolis parameter. A detailed de-
scription of the Eady model is given in section 2. Briefly,
with this simple basic flow and under the quasigeostrophic
(QG) approximation, the growth rate and wave-
length of the most unstable wave mode were derived
analytically. The Eady growth rate is governed by
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a Richardson number that is related to the isopycnal
slope and thus the amount of potential energy released
via horizontal stirring. The wavelength is around 4 times
the deformation radius. These predictions were found
generally consistent with atmospheric observations. Of
equal significance, the simplifications Eady adopted have
made the physical processes more transparent. This
has subsequently led to mechanistic interpretation of
baroclinic instability as mutual reinforcement of Rossby
waves (e.g., Bretherton 1966; Hoskins et al. 1985).

After Eady’s seminal work, there have been numer-
ous follow-up studies that incorporated additional pro-
cesses into the Eady theory. Stone (1966, 1971) extended
the problem to account for nongeostrophic effects—that
is, departures from QG due to weak stratification of the
basic flow (i.e., steep isopycnals) such that fluid motion is
not constrained to be nearly horizontal (see section 2a).
Williams and Robinson (1974) proposed a conceptual
model that allows boundary dissipation to modify the
interior instability by inducing Ekman pumping (see
also in Holopainen 1961; Stipa 2004). The effects of to-
pography were considered by Blumsack and Gierasch
(1972, hereafter BG72) and Mechoso (1981) who showed
that the boundary slopes can exert stabilizing or destabi-
lizing influences, depending upon their orientation relative
to the isopycnals. There are other extensions for specific
problems, such as adding air-sea fluxes (Spall 2007) and
linear horizontal shear to the basic flow (Barcilon and
Blumen 1995). Note that the above references only
represent a fraction of theoretical developments for
baroclinic instability. Thorough reviews and extensive
lists of references can be found in Pedlosky (1979) and
Pierrehumbert and Swanson (1995). Further descrip-
tions of the extensions of interest in this study are given
in section 2.

In the context of coastal baroclinic instability, the
Eady-type models described above have been invoked
to inform interpretation and parameterizations. For
slope effects, a number of recent studies on unstable
flow over topography have reported evidence of slope
stabilization in a manner consistent with BG72 (e.g.,
Isachsen 2011; Pennel et al. 2012). Guided by BG72, the
slope dependence was incorporated into the parame-
terizations of eddy growth rate and scale for tidal mixing
fronts (Brink 2012) and of eddy buoyancy fluxes for
boundary currents (Spall 2004). Concerning the stability
of buoyant coastal currents, Hetland (2017) simulated a
range of idealized coastal currents that have Eady-like
basic flows on a slope. He found growing baroclinic in-
stability only in a subset of the experiments, contrary to
the expectation from BG72 which predicts a finite growth
rate for all cases. This contradiction then led Hetland
(2017) to propose width limitation as an additional
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stabilizing factor. Concerning frictional effects, Brink
and Cherian (2013) found bottom drag to reduce the
eddy kinetic energy (EKE) in unstable tidal mixing
fronts. As in Williams and Robinson (1974), they hy-
pothesized that the eddy field spins down due to Ekman
pumping. This led them to develop a parameterization
of frictionally damped EKE that depends on a ratio of
eddy turnover and spindown time.

The above examples demonstrate that Eady-type
theories provide useful guidance for understanding
baroclinic instability on continental shelves. However,
the limitations of these theories have not been fully
examined. Foremost, quantitative evaluations of Eady-
type theories are rare, at least for coastal flows. It is
therefore hard to determine their limitations and why
differences may occur. The theories also made as-
sumptions that may be questionable in coastal settings
where depth variations and bottom drag are of leading-
order importance. For example, BG72 considered a mild
slope (see section 2a) over which the mean flow is as-
sumed horizontally uniform. It is not clear if depth
changes in shallow flows could induce significant hori-
zontal shear (via thermal wind; see section 5) and thus
affect the instability. To model the frictional influences,
Williams and Robinson (1974) assumed that all dissi-
pative effects in a thin bottom Ekman layer can be
represented by Ekman pumping that forces the unstable
interior flow (see section 2a). This conceptual model is
largely untested. Moreover, in shallow flows, all of the
factors described above, including bottom drag, bottom
slope, nongeostrophy, and horizontal shear, most likely
coexist (e.g., Brink and Cherian 2013). The interplays
between these factors make interpreting the responses
of baroclinic instability difficult. Hence, there is a need
to understand the individual effects before one can ap-
preciate the combined influences.

In this study we examine the utility and limitations of
Eady-type theories as applied to baroclinic instability in
coastal flows where depth changes and bottom drag are
significant. An overall goal is to better understand the
individual effects of nongeostrophy, boundary dissipa-
tion, and bottom slope. We focus on these three because
of their common presence and because their individual
effects have been previously incorporated into the Eady
model, thereby providing theoretical bases to compare
with. Combined effects are left for future studies. Here,
the approach is to test the theoretically derived in-
stability properties against calculations from numerical
experiments. The experiments are designed to isolate
the three effects on baroclinic instability, with a pa-
rameter range and basic flows guided by a separate set of
idealized simulations of unstable coastal currents. This
paper is organized as follows: In section 2, we describe
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FIG. 1. Schematics of Rossby wave interactions in the Eady model. (a),(b) The generation of boundary-trapped Rossby waves is
illustrated. (c),(d) The wave phase locking and phase relation are shown. Shown in (a) is the cross-shore structure of an Eady basic flow
that has uniformly spaced and sloped density surfaces (gray line) and a constant vertical shear. Because we examine the Eady-type
theories with applications to coastal current instability in mind, throughout this study we refer to the direction of the basic flow as the
alongshore (+x) direction and the directions perpendicular to the mean flow as the offshore (+y) and onshore (—y) directions (see Fig. 4).
With the basic flow in (a), an offshore displacement of a fluid element along the upper (lower) boundary would induce anticyclonic (AC)
[eyclonic (C)] circulation. The illustration in (b) shows that a positive buoyancy anomaly due to offshore advection, combined with
thermal wind, drives the same sense of circulation as in (a). In (c), for the top wave, the buoyancy advection by the induced circulation
leads to a shift of the buoyancy anomalies, manifested as a wave propagating toward the —x direction. An opposite pattern occurs for the
bottom wave. The counterpropagating waves (thick black arrows), advected by a vertically sheared mean flow, can achieve phase locking.
Both waves then propagate in the +x direction at the same apparent speed of U/2. When the bottom wave leads the top by /2, the induced
onshore velocity (gray solid arrow) of the top wave enhances the bottom wave trough (gray dashed arrow), and vice versa. This phase
structure allows the waves to reinforce each other. When viewed in the x—z plane as shown in (d), the structure exhibits a westward phase

tilt. See main text for details.

the methods and review the theoretical extensions of the
three effects. In addition, designs and justification of the
numerical experiments are given. In sections 3-5, we
examine the effects of nongeostrophy, boundary dissipa-
tion, and bottom slope, respectively. Section 6 provides a
summary and discussions of implications.

2. Methods

a. Background of linear stability theories

1) EADY MODEL AND NONGEOSTROPHIC EFFECTS

The Eady model of baroclinic instability is a standard
material in many geophysical fluid dynamics textbooks.
A brief review of the mathematical treatment using
conservation of quasigeostrophic potential vorticity
(QGPV)is given in appendix A. Here we concentrate on
its main results and interpretation via Rossby wave
interactions.

Following Hoskins et al. (1985), the mechanism of
baroclinic instability in the Eady model can be in-
terpreted as the mutual enhancement of two boundary-
trapped Rossby waves. The key ingredients are 1)
generation of boundary-trapped Rossby waves and 2)
wave phase locking and mutual reinforcement such that
disturbances can grow. These processes are schematized
in Fig. 1. First, Rossby (vorticity) waves can be generated

at two horizontal boundaries by cross-shore distur-
bances (in the y direction). Because Eady basic flow has
constant vertical shear, constant stratification, is hori-
zontally uniform, and is on an f plane, there is no
cross-shore gradient of background potential vorticity
[og/ay = —u,, — (f}/N*)u,, =0; an overbar refers to
alongshore mean; see appendix A], and thus cannot
support Rossby wave propagation in the interior. How-
ever, the density surfaces intersecting top and bottom
boundaries provide potential vorticity (PV) gradients
necessary for Rossby waves (Bretherton 1966). The
wave generation and propagation may be understood
via vortex stretching or buoyancy perturbations at the
boundaries. For example, in Fig. 1a, an offshore dis-
placement (toward +y) of a fluid element along the top
boundary tends to induce vortex squashing (since ver-
tical velocity w = 0 at z = H) and anticyclonic circula-
tion. Alternatively, buoyancy advection associated with
an offshore flow gives a local isopycnal depression and
thus a positive buoyancy anomaly at the top (Fig. 1b). By
thermal wind balance and by requiring the induced ve-
locity to decay toward the interior, the depression again
induces an anticyclone trapped at the top boundary.
The anticyclone advects the cross-shore buoyancy
gradient (i.e., dashed circle in Fig. 1c) and shifts the
buoyancy anomaly, manifested as a wave propagating
toward the —x direction. Along the bottom boundary, an
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opposite pattern occurs. Therefore, when the basic flow
is perturbed, there are two boundary-trapped Rossby
waves that propagate in the opposite direction: Top
wave moves toward the —x direction, relative to the
basic flow, while bottom wave moves toward the +x
direction (Fig. 1c).

When the two waves are phase locked and are in
certain phase relation to allow for mutual enhancement,
the wave amplitude can grow, manifested as the devel-
opment of baroclinic instability. Phase locking simply
means that the two waves move at the same apparent
speed to sustain the mutual enhancement. With parallel
horizontal boundaries and with a constant isopycnal
slope, one expects the waves to have identical intrinsic
phase speeds. It can be shown that, if considered sepa-
rately, each boundary supports a wave whose intrinsic
phase speed is U/u [where u is a dimensionless wave-
number; see appendix A and Vallis (2017, chapter
9.7.2)]. Because the top wave is advected by the mean
flow U and the two waves have identical intrinsic phase
speed U/, the condition of phase locking is u = 2. That
is, the top wave translates at phase speed of —U/2 (i.e.,
toward —x) but is advected by mean flow U. The ap-
parent phase speed is then U/2, equal to that of the
bottom wave.

In addition to having an apparent speed of U/2
toward +x direction, the two waves must retain a certain
phase relationship, referred to as westward phase tilt
(Fig. 1d; see, e.g., Vallis 2017), so that they can amplify
each other. As illustrated in Fig. 1c, when the bottom
wave leads the top by a quarter wavelength (i.e., 7/2
phase difference), the induced onshore velocity of the
top wave (denoted by the downward gray arrow) would
align with the trough of the bottom wave, enhancing the
bottom displacement. Similarly, the induced offshore
velocity of the bottom wave (denoted by the upward
gray arrow) is at the top wave’s crest, again enhancing
the surface displacement. Viewed from the x—z plane,
the wave structure tilts westward with height (Fig. 1d;
leaned toward —x direction). It can also be shown that
the westward phase tilt favors downgradient buoy-
ancy transport, thereby allowing release of potential
energy to fuel the growth of baroclinic instability (see
Pedlosky 1979).

The solution of the Eady model reflects the wave
properties described above. Specifically, the unstable
waves translate toward the +x direction at the phase-
locking speed of U/2, and the most unstable wave mode
has a top to bottom phase difference of 77/2, as expected
for the westward phase tilt. These comparisons are de-
scribed in appendix A.

From the Eady solution, the well-known Eady growth
rate and wavelength (i.e., the most unstable mode,
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with cross-shore wavenumber / = 0; Fig. Ala) are,
respectively,

Tpaay/fy = 0-31RIT?, Mg /L, = (2m/1.61)~39. (1)

Eady
Here the grow rate o'gaqy and wavelength A g,qy are made
dimensionless by the Coriolis parameter f, and the
deformation radius L,(=NH/fy), respectively. Ri is a
Richardson number of the mean flow that governs the
Eady model:
R NN N
(UIHY  (MIf,)> M*°

©)

where M” is defined as the negative of the offshore
buoyancy gradient (= —ab/dy = constant; where b is
buoyancy), N is the buoyancy frequency, and H and U
are the height and basic state velocity scales, respectively.
From Eq. (1), we see that the growth rate varies inversely
with Ri. This can be understood by noting that Ri is related
to the isopycnal slope S. For fixed f; and M?, a smaller Ri
corresponds to a smaller N* and hence a steeper isopycnal
slope [S= —(0p/dy)/(3dp/oz) = M?/N?]. As shown by
Haine and Marshall (1998), the potential energy re-
leased by parcel rearrangement is proportional to AbAz.
For a fixed horizontal excursion Ay and constant M2, the
buoyancy variation Ab is fixed. But, a steeper isopycnal
slope (i.e., smaller Ri) allows a parcel to rise higher (i.e.,
larger Az), thereby releasing more potential energy
per unit displacement and thus resulting in a greater
growth rate.

However, Eady’s growth rate is only formally applicable
to a quasigeostrophic (QG) flow. As Ri decreases, the
small-Rossby-number assumption in QG would eventually
break down, and the Eady theory would need to be
modified to account for ‘“‘nongeostrophic” effects. Here
the nongeostrophy is due to weak stratification (i.e., steep
isopycnals) such that fluid motion is not constrained to a
nearly horizontal plane as in QG. To see this breakdown
of QG, we can express the Rossby number as an inverse
of Ri, by taking L, as the characteristic spatial scale [as
suggested by Eq. (1)]: Ro = U/(fL,) = U/(NH) = Ri~*°.
As Ri decreases to O(1), Ro also becomes O(1), and the
QG approximation is no longer valid.

Stone (1966) made nongeostrophic corrections to the
Eady theory. He found an approximate growth rate and
wavelength as

Ustone/fo ~0.304(1 + Ri)fl/z’
)‘Stone/Ld ~3.97 (1 + Rl)/Rl (3)

One can immediately see the similarities between
Egs. (1) and (3). For Ri > 1 (i.e., QG limit), (1 + Ri)
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FIG. 2. Schematics demonstrating how (a) boundary dissipation and (b) bottom slope affect the baroclinic in-
stability in the Eady problem. These models are constructed based on the theories of Williams and Robinson (1974;
Eady-Ekman) and BG72. In (a), the effect of boundary dissipation is represented by the Ekman pumping (thick
black arrow) that serves as a forcing imposed at the lower boundary of the inviscid interior [Egs. (4) and (5)]. The
domain of the linear stability problem is between z = d and H (d is the Ekman layer thickness that is assumed to be
thin as compared to the interior). In (b), the presence of a bottom slope modifies the bottom kinematic boundary
condition in the Eady problem [Egs. (8) and (9)]. A negative bottom slope (Sp = dHpl/dy) corresponds to water
depthincreasing offshore. In essence, both effects are represented by vertical velocities at the lower boundary. They
then modify the bottom wave and in turn the instability properties.

approaches Ri, and Stone’s solution approximates
Eady’s. When comparing Egs. (1) and (3), we can see
that the nongeostrophic effect tends to reduce the
growth rate and selects a longer wavelength. Nakamura
(1988) suggested that, as compared to the Eady solution,
nongeostrophic effects make the boundary-trapped
waves shallower (i.e., decay toward the interior over a
shorter vertical scale). The instability therefore tends to
select longer waves in order to maintain the vertical
coupling. These consequences will be examined in
section 3.

2) EADY-EKMAN PROBLEM: BOUNDARY
DISSIPATION EFFECTS

How would the presence of boundary dissipation
modify baroclinc instability? Williams and Robinson
(1974) considered such a problem by adding boundary
dissipation into the Eady model (termed the Eady-
Ekman problem hereafter). They assume that dissipation
due to bottom drag and turbulent stresses is concentrated
in a bottom Ekman layer that is thin compared to the
interior thickness. One may then represent the dissi-
pative effects via Ekman pumping which modifies the
lower boundary condition of the Eady model.

A conceptual interpretation of the Eady-Ekman
problem is shown in Fig. 2a. Compared to the inviscid
Eady basic flow in Fig. 1a, the uniformly sloped density
surfaces in the interior and the horizontal surface
boundary remain unchanged, meaning that the governing

equations (A1) and (A3a) are intact. There is now an
Ekman layer with thickness d at the bottom boundary.
We can study the interior flow stability by simply moving
the lower boundary to the top of the bottom Ekman
layer (z = d; dashed line in Fig. 2a) where a new
bottom boundary condition is vertical velocity w set
by Ekman pumping. If we use a linear friction fac-
tor y to relate the bottom stress with the interior
geostrophic velocity (7, 7,,) = p¥(uy, v,) (€.g., Brink
and Cherian 2013), w can be expressed in terms of in-
terior vorticity as:

w(z = d) = (y/f,)(9v'/ox — au'lay) = (YIf, )V, (4)

and buoyancy conservation at the lower boundary (z =
d) becomes

AW W Nwyeo,
<§>f°a_z Afog + TV Y =0. 5)
[where A(=M?/fy) is the thermal wind shear; see
Eq. (A2)]. In Eq. (5) we have assumed that d is suffi-
ciently thin (d/H =~ 0) such that buoyancy advection by
the mean flow is negligible [i.e., U(z = d) = Ad ~ 0].
Equations (A1), (A3a), and (5) form a new equation set
that can be solved for unstable wave modes. The solu-
tion is given in appendix A, section b. Adding linear

Ekman friction introduces a new parameter (see also in
Stipa 2004)
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A, = (flo) kIS = (dk)IS, (6)

where d = +y/fy may be thought of as a scale for Ekman
layer thickness. Below we summarize some of the key
results that will be further examined in this study.

Boundary dissipation tends to reduce the instability
growth rate and shift the most unstable mode to a longer
wavelength. Figure 3a shows the stability diagram in a
parameter space consisting of the dimensionless along-
shore wavenumber (k = kL,) and the friction parameter
Ag. The color contours are the dimensionless growth
rate [o/(fyRi“"?)]. Waves that have no cross-shore
structure (I = 0) are plotted, as they grow faster than
those with / # 0. Note that the friction parameter Ag is
linearly proportional to the friction factor y. As Ag in-
creases, the maximal growth rate found following the
black curve in Fig. 3a decreases, and the corresponding
wavenumber decreases. For example, with Ag = 0, the
stability curve reverts to the Eady model, with maximal
growth rate o/(foRi~"?) equal to 0.31 and k of 1.61 [Eq.
(1)]- When A increases to 0.5, the growth rate decreases
by more than 50% to 0.15, and k decreases to 1.5,
indicating a shift toward a longer wavelength.

The shift toward longer waves may be understood as a
response to a decrease in bottom wave phase speed. In
Fig. 3b, we plot the solution of apparent wave speed c for
the Eady—Ekman problem (see appendix A) against Ag.
Because there is no mean flow at the bottom, ¢ is equal
to the intrinsic bottom wave speed. It can be seen that
the bottom wave slows as Ag increases. Recall that,
when the top and bottom waves are considered sepa-
rately, the top wave propagates at a speed of U — U/k
(i.e., intrinsic propagation at — U/k toward —x direction,
advected by mean flow U; for [ = 0, u = k). Since the
bottom wave is slowed, the top wave (—U/k) has to
speed up to remain phase locked. The instability there-
fore tends to select a longer (smaller k) and faster wave
mode when friction is included.

We may interpret the slowdown of the bottom wave
from the perspective of buoyancy perturbations. As
described in section 2a and in Fig. 1b, buoyancy
anomaly at the boundaries induces circulation that
leads to wave propagation. At the bottom boundary,
the linearized buoyancy conservation [Eq. (5)] can be
expressed as

o M*V — N*w = M*/[1 — (Wwh)1S], (7)
where w in this case represents Ekman pumping. We can
see that an offshore displacement (v > 0) favors gen-
eration of positive buoyancy anomaly (db'/9t > 0) and
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FIG. 3. (a),(c) Stability diagrams for the Eady-Ekman and BG72
theories, respectively, illustrated in Fig. 2 and section 2a. The full
solutions are given in the appendix A. The dimensionless growth
rate [contoured; o/(fyRi~*°)] is shown as a function of di-
mensionless alongshore wavenumber (k=kLg; L, is the de-
formation radius) and a friction parameter A in (a) and a slope

ratio & in (c) [Eqgs. (6) and (10)]. The cross-shore wavenumber [ is

set to zero. The black curves indicate the most unstable mode for
each Ag and 8 value. In (c), an approximate marginal stability curve
is denoted by the gray dashed line (see section 2a). (b),(d) The
apparent wave speed ¢ normalized by the mean flow velocity scale
U for the most unstable waves. Because mean flow is zero at the
bottom, the apparent speed is equal to the bottom wave speed. The
unstable Eady wave speed is U/2.

thus cyclonic circulation along the bottom boundary
(Figs. 1a,b). However, in the presence of a bottom Ekman
layer, cyclonic circulation drives Ekman pumping
(w > 0) that favors negative buoyancy anomaly by ad-
vecting denser fluid upward. The pumping thus works
against horizontal disturbance [i.e., w/v/ > 0 in Eq. (7)],
acting to reduce the bottom buoyancy perturbations and
slow the bottom waves. Note also that, using Eq. (4) and
[ = 0, we can express the pumping velocity w as idkv’
such that (wh/)/S = i(dk/S) = iAr (where i is the unit
imaginary number). The friction parameter Ay thus
serves as a measure of pumping strength that affects the
bottom parcel trajectory (w/v') relative to the isopycnal
slope S (see section 6a for discussion).

3) EADY PROBLEM ON A SLOPE

The effects of bottom slope can also be incorporated
into the Eady model by modifying the lower boundary
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condition. This problem was treated analytically by
BG72 and is schematized in Fig. 2b. In the presence of a
bottom slope S in the cross-shore direction, the kine-
matic bottom boundary condition is

w(z~=~0)=5,0" =5,00/ox, (8)

where Sp = dHp/dy and Hpg(y) is the topographic vari-
ation with relative to z = 0. Bottom buoyancy conser-
vation becomes

AV eren
<5) T = A NS, =, )

Again we find the growth rate of unstable wave modes
by solving Egs. (Al), (A3a), and (9) (see appendix A,
section c). Note that Sz can be positive or negative. In
this study we focus on configurations of Sz < 0 (i.e.,
depth increasing offshore) and S = M?N* > 0 (i..,
isopycnals sloped up offshore) (Fig. 2b), typical for
buoyancy-driven coastal flows. Moreover, in BG72, the
bottom slope is assumed to be mild in the sense that the
depth changes during a parcel displacement are small
compared to the mean depth (i.e., QG limit). This re-
quires Ah/H ~ SpLa/H ~ SpNIfy ~ O(Ro). The mild
slope also allows BG72 to neglect horizontal shear in the
mean flow [i.e., U = Az in Eq. (A1)]. This turns out to
have nonnegligible influences on the unstable wave
properties over a steep slope (see section 5).

The stability diagram indicates that increasing bottom
slope (more negative Sg) reduces the growth rate and
shifts the instability to a shorter wavelength. In Fig. 3c,
the dimensionless growth rate with / = 0 is plotted [using
Eq. (A8)] versus the alongshore wavenumber k and the
key dimensionless parameter

8=S,/(M*/N*)=S8,/S, (10)
which measures the bottom steepness relative to the
isopycnal slope S. The curve along 6 = 0 again corre-
sponds to the Eady model. Here we focus on the lower
half of the parameter space (8§ = 0) where the bottom
and isopycnals are sloped in the opposite direction. It
can be seen that, as |§| increases, the growth rate of the
most unstable mode (denoted by the black curve) de-
creases, and the wavenumber increases. For example,
when compared to the Eady model, at 6 = —0.5 the
growth rate reduces from 0.31 to 0.215 while the wave-
number increases from 1.61 to 2.33, indicating a shift to
shorter wave modes.

The scale selection may again be understood from a
change in bottom wave characteristics. Figure 3d shows
the response of bottom wave speed to 6 variations for
the most unstable mode. As the bottom slope steepens
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(more negative §), the bottom wave speeds up. To
maintain the phase lock, the top wave must then slow
down. The instability therefore tends to select a shorter
and slower wave mode. To understand the speedup of
the bottom waves, we return to the bottom buoyancy
conservation:

ab’

S
— M2,/ 2.0 — Ag2,) B
g—MU _SBN —MU(l_W)

=M*/'(1-4), (11)
where we have used Eq. (8) to express the bottom ver-
tical velocity. We see in Eq. (11) that, for a given cross-
shore velocity v/, increasing bottom slope enhances the
bottom buoyancy perturbations and hence the wave
speed by allowing the slope-parallel flow to cross more
isopycnals. It can be shown that, when the boundary-
trapped waves are considered separately as before, the
bottom wave speed on a slope is U(1 — 8)/k. To match
the top wave speed of U — U/k, the wavenumber needs
to increase with the slope as k=2-8 (e.g., BG72;
Pedlosky 2016). This simple relation of matching wave
speed is shown as the gray dashed line in Fig. 3c. It in-
deed approximately captures the tendency of instability
shifting toward shorter waves.

b. Numerical model

We use a primitive equation ocean model Regional
Ocean Modeling System (ROMS; Haidvogel et al. 2000;
Shchepetkin and McWilliams 2005) to test the utility of
the Eady-type theories described above. The parameter
ranges are chosen to be suited for buoyant coastal cur-
rents (see examples below), but the results are expected
to be generic. The approach is to compare the theoret-
ically derived growth rate and wave properties against
ROMS calculations. ROMS has been used to study in-
stabilities in a variety of coastal flows (see introduction).
Below we use examples of coastal current simulations to
help constrain and motivate the problem. We then de-
scribe the experiments that isolate the effects of non-
geostrophy, boundary dissipation and bottom slope.

Figures 4a—c show the structure of an unstable buoy-
ant coastal current generated by a coastal discharge. The
simulation was carried out in a 600 km (alongshore: x) X
210km (cross-shore: y) channel, with a uniform bottom
slope of 10, uniform horizontal grid spacing of 520m,
and 30 sigma levels. It was forced only by an inflow
(20 km wide centered at x = 0) with a salinity anomaly of
2 psu and freshwater flux of 4000 m*s~'. Temperature is
set constant in this study. The boundary conditions fol-
low Chen and Chen (2017). The k—e turbulence closure
was employed (see Warner et al. 2005). Throughout this
work, explicit horizontal viscosity and diffusivity are set
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FIG. 4. Snapshots of (a)-(c) three-dimensional (3D) and (d)—(f) alongshore uniform (2D) simulations of buoyant

coastal currents. The 2D basic flow in (d) is constructed by averaging the cross-shore salinity profiles around the
center of the 3D coastal current in (a) (i.e., x ~ 80 km; denoted by the vertical white line). In (a), (b), (d), and (e), the
color contour indicates surface salinity, while (c¢) and (f) show the surface cross-shore velocity v'. The snapshots in
(b), (c), (e), (f) are taken 13 days after the initial stable state. (g) Comparison of the alongshore wavenumber spectra
of detrended v' between the 3D (black) and 2D (red) cases. The spectra are computed over a 3-day window
centered at the time when the eddy kinetic energy K is maximal. (h) The cross-shore structure of basic flow in (d).
The black and gray curves denote isohaline and mean flow velocity, respectively. Linear fits are carried out for
isohalines from 30.1 to 31.9 psu, with an interval of 0.3 psu. Two examples of the fits (for isohalines 30.1 and 31.9) are

shown as the black dashed lines in (h).

to zero, but the third-order momentum advection scheme
we adopt has implicit numerical mixing to prevent nu-
merical instabilities. The model solutions are not sensitive
to the choices of numerical schemes applied (not shown).
The main point to note in Figs. 4a—c is that the coastal
current is unstable. Before ¢ = 1, (=day 9), a buoyant
coastal current propagating in the +x direction is stable
during this developing period (Fig. 4a). Afterward, in
13 days, finite-amplitude disturbances become apparent in
the surface salinity (Fig. 4b). The disturbances are partic-
ularly apparent in cross-shore velocity, which exhibits an
alternating onshore/offshore wave-like pattern (Fig. 4c).
The magnitude of fluctuating cross-shore velocity in-
creasing from essentially zero to over 0.2ms ! in 13 days,
suggesting a growing instability.

We next examine the basic flow structure and conduct
companion experiments in a reentry channel. These
analyses, shown in Figs. 4d-h, are to provide justifica-
tions for 1) the use of the Eady model as a building block
to study baroclinic instability in coastal flows, and 2) the
use of a reentry channel in the subsequent numerical
experiments.

To examine the utility of simulations in a reentry
channel, we construct a geostrophically balanced basic
state based on a representative salinity section from the
coastal current in Fig. 4a. This section is from the center
of the coastal current (white vertical lines in Fig. 4a) at
t = to when the coastal current is stable and average over
10 adjacent alongshore grid points. We then form a
uniform coastal current using this basic state and
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initialize it in a reentry channel (Fig. 4d). This setup
eliminates upstream and downstream influences of bulge
and nose recirculation in Fig. 4a, thus allowing a focus on
local processes.

The alongshore uniform coastal current develops
growing instabilities similar to those in the three-
dimensional (3D) setup. In Fig. 4e, disturbances are
apparent along the current boundary 13 days after the
initiation. Like in the three-dimensional case, the cross-
shore velocity shows a clear alternating onshore/offshore
wave-like structure (Fig. 4f). In addition, the wavelength of
the alongshore variation is similar to that of the three-
dimensional simulation. This is further confirmed by
comparing the wavenumber spectra of the perturbation
surface cross-shore velocity v (Fig. 4g). The spectra are
computed at the time of peak v2 bracketed by a 3-day
window. The three-dimensional and alongshore uniform
cases have similar spectra shapes. Both curves of spec-
tral density, between wavelengths of 3 and 30 km, nearly
overlap and have a spectral peak at a wavelength of
25km (open circles). The close correspondence suggests
that the instabilities developed using an averaged basic
state in a reentry channel can approximately represent
those in three-dimensional coastal currents. Further-
more, diagnosing the eddy kinetic energy budget in-
dicates the dominance of baroclinic instability, with the
baroclinic energy conversion being 4 times greater than
the barotropic conversion at peak v [using Egs. (B1)
and (B2) in the appendix B; not shown]. As the reentry
channel permits easier diagnoses of energy and insta-
bility properties, we will adopt this approach in the
subsequent experiments.

Next we examine the basic flow structure. There are
general similarities shared by the coastal current and the
Eady basic state. The basic flow of the coastal current
has salinity surfaces that are approximately uniformly
sloped and spaced (Fig. 4h). Linear fits of the isohaline
slope yield a tight range of (3.0 = 0.4) X 10~>. Such
salinity structure gives roughly constant N> and M in
the central region, consistent with the Eady basic state
(Fig. 1a). There are however notable differences. The
coastal current resides on a sloping bottom, has signifi-
cant horizontal shear (U denoted by the gray contour in
Fig. 4h), and is presumably subject to bottom drag due to
the shallowness. Some of these factors, as discussed in
section 2a, have been incorporated into the Eady model,
but their combined effects have not. Nevertheless, the
general similarities do provide support for the use of
Eady-type models to build understanding of coastal
baroclinic instability.

Below we lay out the numerical experiments that are
built upon the Eady basic state. The experiments are
designed to isolate the effects of nongeostrophy,
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boundary dissipation and bottom slope. They are carried
out in a 300km (alongshore) X 220km (cross-shore)
reentry channel, with uniform grid resolution of 500 m
and 30 sigma levels. The experiments are initialized
with a balanced Eady basic flow, with a constant N* and
M?. Random noise having a signal-to-noise ratio of 200
(i.e., velocity amplitude ~1mms~') is added to the
initial basic flow to help seed the instability. The simu-
lations then evolve freely. The parameter range is
guided by a set of coastal current simulations, including
that shown in Fig. 4. Table 1 summarizes three groups
of experiments. Group 1 (runs 1-6) is a set to test the
Eady model and nongeostrophic effects [section 2a(1)].
These simulations are inviscid and have a flat bottom
(see section 3). The only controlling parameter is the
Richardson number Ri [Eq. (2)], which is varied from 0.9
to 20 to cover the transition from nongeostrophic to QG
regimes. Group 2 (runs 7-21) targets boundary dissipation.
We hold Ri fixed (Ri = 10 or 15) while varying the linear
friction coefficient y to obtain different values of the
friction parameter Ag. The k—e turbulence closure is
employed. A different bottom drag parameterization
using the quadratic law was also tested (denoted by * in
Table 1). Group 3 (runs 22-34) evaluates bottom slope
effects. They have constant Ri, zero drag, but various
bottom slopes, with the slope parameter & ranging
from —0.75 to 0. Dimensionally, these experiments have
H =20-40m, N> = 0.09-2.56 X 1073 (s 72), M>* = 1-2 X
107° (s %), mean flow U = 0.2-0.34 (ms™ '), isopycnal
slope § = 0.5-11 X 103, and bottom slope Sz = 0.1-1 X
10>, This parameter range is consistent with that used
in prior modeling studies such as Hetland (2017). Note
that all experiments have a sufficiently wide (~10L,)
baroclinic zone, and we diagnose instability proper-
ties at the center so as to minimize the influences of
horizontal shear.

3. Base case and nongeostrophic effects

We first examine the baseline experiments (Group 1
in Table 1), with the goals of evaluating the basic prop-
erties of baroclinic instability, verifying the numerical
model results, and characterizing the nongeostrophic ef-
fects. Three selected cases with Ri = 15, 2, and 0.9 are
shown in Fig. 5. We obtain different Ri by varying N> while
holding M? and f, constant [see Eq. (2); U = M?H/f, is
also constant]. As Ri and N? decrease, the isopycnal
slope steepens (Figs. 5al-a3). Both the nongeostrophic
effects and instability growth rate are expected to increase
with decreasing Ri [Eq. (3)]. To make comparisons of in-
stability structure at roughly the same stage in growth, we
normalize the time by the Stone growth rate (f = tosone )-
All three cases develop vigorous instabilities (Figs. Sb—d).
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TABLE 1. Summary of numerical experiments. The experiments are divided into three groups. Groups 1, 2, and 3 examine the effects of
nongeostrophy, boundary dissipation, and bottom slope by varying Ri [Eq. (2)], friction parameter Ax [Eq. (6)], and § slope ratio [Eq.
(10)], respectively. The terms H and U are the mean water depth and velocity scales; f; is the Coriolis parameter; M> (= —ab/dy)
characterizes the cross-shore buoyancy gradient of the mean flow [the overbar denotes alongshore average; buoyancy b = —g(p — po)/po;
po = 1027 kg m~3]; N* (= 9b/az) is the buoyancy frequency squared; and S ( = —(9p/dy)/(8p/dz) = M?/N?) is the isopycnal slope. Bottom
slope S is negative for depth increasing seaward. The term v is a linear friction factor for parameterizing the bottom stress [Eq. (4)].

Asterisks denote runs using a quadratic drag coefficient (Cd).

M? N? fo U Sg S v
H(m) (107%s7%) (107°s7%) (107*s™)) (ms™") (107 (107°) (10 *ms™") Ri Ag 5
1 20 1 0.09 1 0.2 0 11.1 0 09 0 0 Group 1: varying Ri
2 20 1 0.1 1 0.2 0 10.0 0 1 0 0
320 1 0.2 1 0.2 0 5.0 0 2 0 0
4 20 1 0.5 1 0.2 0 2.0 0 5 0 0
5 20 1 1.5 1 0.2 0 0.67 0 15 0 0
6 20 1 2.0 1 0.2 0 0.5 0 20 0 0
7 20 1 1.5 1 0.2 0 0.67 0.5 15 013 0 Group 2: varying
8 20 1 1.5 I 0.2 0 0.67 1.0 15 029 0 friction parameter
9 20 1 1.5 1 0.2 0 0.67 2.0 15 059 0
10 20 I 1.5 1 0.2 0 0.67 6.0 15 166 0
1 20 1 1.5 1 0.2 0 0.67 10.0 15 262 0
12 20 2 2.56 125 0.32 0 0.78 0 10 0 0
13 20 2 2.56 1.25 0.32 0 0.78 0.5 10 009 O
14 20 2 2.56 1.25 0.32 0 0.78 1.0 10 017 O
15 20 2 2.56 1.25 0.32 0 0.78 2.0 10 036 O
16 20 2 2.56 1.25 0.32 0 0.78 6.0 10 101 O
17 20 2 2.56 1.25 0.32 0 0.78 10.0 10 168 O
18 20 2 2.56 125 0.32 0 0.78 10* 10 057 0
19 20 2 2.56 1.25 0.32 0 0.78 20* 10 114 0
20 20 2 2.56 125 0.32 0 0.78 50%* 10 280 O
21 20 2 2.56 1.25 0.32 0 0.78 100* 10 548 0
22 40 1 0.5 1.40 0.29 0 2.0 0 10 0 0 Group 3: varying slope
2340 1 0.5 1.40 0.29 -0.2 2.0 0 10 0 -0.1
24 40 1 0.5 1.40 0.29 -04 2.0 0 10 0 =02
25 40 1 0.5 1.40 0.29 -0.5 2.0 0 10 0 -0.26
26 40 I 0.5 1.40 0.29 -0.6 2.0 0 10 0 -0.31
27 40 I 0.5 1.40 0.29 -0.8 2.0 0 10 0 -0.41
28 20 1 1.5 1 0.2 -0.1 0.67 0 15 0 -0.15
29 20 1 1.5 1 0.2 -0.2 0.67 0 15 0 -0.3
30 20 1 1.5 1 0.2 -0.5 0.67 0 15 0 -0.75
31 40 12 0.73 1.4 0.34 0 1.4 0 10 0 0
32 40 12 0.73 14 0.34 -0.5 14 0 10 0 -0.31
33 40 12 0.73 1.4 0.34 -0.8 1.4 0 10 0 -0.49
34 40 12 0.73 1.4 0.34 -1.0 1.4 0 10 0 —0.61

The case with a smaller Ri becomes unstable earlier,
consistent with the expectation of o = (1 + Ri)”"*in
Eq. (3). For example, with Ri = 15, the wave-like
disturbances are not apparent until around day 18
(Fig. 5cl). But, for Ri = 2, disturbances are already
visible at day 8. The spatial scale of the instability is also
shorter with smaller Ri, because of the shorter de-
formation radius (i.e., smaller L, for smaller N?).

The growing disturbances are driven by baroclinic
instability. Time series in Fig. Se clearly show the sharp
growth of cross-shore velocity variance v (solid curve;
overbar is alongshore mean; prime is perturbation). The
variance is computed at each cross-shore location and
then averaged across the center half of the mean flow

width to obtain a representative time series [i.e., width
(~75km here) is defined as the cross-shore span over
which N? and M? are vertically uniform; see Fig. 5al].
The standard deviation of the width average is negligibly
small. To diagnose the energy source of growing in-
stability, we evaluate the volume integrated eddy kinetic
energy K budget [Egs. (B1) and (B2) in appendix B].
Because the domain is a reentry channel and the prob-
lem is inviscid, energy flux divergences vanish after in-
tegrating over the entire domain, and dissipation is zero
by definition. This leaves the Ky tendency to be bal-
anced by baroclinic and barotropic energy conversions
[Eq. (B2)]. The tendency (black curves) is completely
governed by baroclinic energy conversion (red curves)
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FIG. 5. Comparisons of instability properties among cases with different Ri. The cases from left to right have Ri = 15, 2,
and 0.9 (cases 1, 3, and 5 in Table 1). Their basic flows have the same M, fo, H, and U, but different N2, (a) The cross-shore
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open circles) is taken at the maximum growth rate.
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in all cases, indicating the dominance of baroclinic in-
stability (Fig. 5f). Contributions of barotropic conversion
(blue curves) are negligible as the basic flows have zero
horizontal shear except near the edges. Note that v and
the K budget in Fig. 5 are only evaluated before the in-
stability reaches the channel walls to avoid boundary
influences.

Next we quantify the growth rate and dominant
wavelength of the instability. For growth rate, we fit the
time series of v2 to an exponential curve over a 3-day
moving window (e.g., Brink 2012). The estimated
growth rate, denoted by the black curves in Fig. 5g,
shows large time variations. It has a peak early in time
when the instability is of small amplitude and the energy
level is low (e.g., near day 5 in Figs. 5g2,e2). The growth
rate then drops sharply when the energy level increases
(e.g., after day 10 in Fig. 5¢2), implying saturation due to
nonlinear interactions (e.g., Fox-Kemper et al. 2008;
Radko et al. 2014). Because our objective is to examine
the utility of linear Eady-type theories, we focus on the
early stage of instability and take the peak growth rate to
represent the most unstable mode (o,,; black circle in
Fig. 5g). It can be seen that o, for Ri = 2 is greater than
that for Ri = 15, as expected from Eady/Stone theories
(see below). The growth rate estimates are not sensitive
to the moving window size that was varied between 2
and 5 days. Using K time series yield nearly identical
results as v2.

To determine the dominant wavelength, we compute
the spectra of surface v across the mean flow and obtain
the wavenumber of the spectral peak at each y location.
The wavenumbers are then weighted by the values of
spectral peak to obtain an energy-weighted mean
wavenumber k (Spall 2007; Brink 2012). The time series
of the dominant wavelength is shown as the red curve in
Fig. 5g. Again we take the wavelength at the maximal
growth rate to represent the most unstable wave mode
A (red circles). It can be seen that the wavelength is
relatively steady around A,,,, suggesting that our estimate
is reasonably robust. This relatively steady period is also
consistent with the linear stage of instability when
nonlinear cross-scale energy transfer is negligible.
Afterward, the wavelength increases sharply while the
growth rate drops. This is indicative of nonlinear
inverse energy cascade that shifts the dominant mode to
larger scales.

Opverall, the model-derived dependences of most un-
stable growth rate and wavelength on Ri agree reason-
ably well with the Stone predictions (Fig. 6). For Ri > 5
where neglecting nongeostrophic effects only amounts
to aless than 10% error and the Eady theory is valid, the
model results and the Stone and Eady theories collapse.
But, as Ri decreases, nongeostrophic effects become
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increasingly more important, and the Stone theory
gives a better estimate of growth rate and wavelength.
This is reflected in that the root-mean-square deviation
(RMSD) of the Stone solution is smaller than Eady by a
factor of 2.5 and 1.2 for growth rate and wavelength,
respectively. For Ri < 1 (indicated by the dashed line),
o, deviates from the theories due mainly to the in-
fluences of symmetric instability. For a basic flow with-
out horizontal shear, Ri < 1 corresponds to a negative
Ertel potential vorticity [e.g., see Eq. (11) in Thomas
et al. 2008], permitting symmetric instability to occur.
Indeed, from the simulation of case 1 (Ri = 0.9), we see
rolls of vertical motion in the y—z plane that are gener-
ally along isopycnal surfaces (not shown), consistent
with the slant convection triggered by symmetric in-
stability. However, this slantwise motion with a fine
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cross-shore scale (~2-3km) is only short lived (less
than a day) and is soon swamped by more cross-shore
uniform motion of baroclinic instability. The interplay
of baroclinic and symmetric instabilities is beyond the
scope of this study and thus not explored further.

The growth rate (o,,/fo) increases with decreasing Ri
in the regime dominated by baroclinic instability (Fig. 6;
Ri > 1). This is because steepening of isopycnals with
decreasing Ri allows the disturbances to extract more
potential energy (as discussed in section 2a). Moreover,
when compared with the Eady mode, the nongeostrophic
baroclinic instability has a lower growth rate and a longer
wavelength. Nakamura (1988) explained this shift toward a
longer mode by the shallowing of boundary-trapped waves
as the nongeostrophic effect increases. The analyses in the
appendix B support Nakamura’s explanation (see below).

In addition to the growth rate and wavelength, the
baroclinic instability in these cases exhibits other wave
characteristics that agree with the classic theories. The
evidence is described in appendix B. Briefly, we estimate
the wave speed ¢ and phase via cross correlations. Ver-
tical structure of the instability is diagnosed with the
root-mean-square of v’ (v),;). The results shown by
Fig. B1 provide support for 1) phase locking of coun-
terpropagating, boundary-trapped waves, with ¢ = U/2
for all cases; 2) westward phase tilt with top-bottom
phase difference near 7/2; and 3) instability (wave)
amplitude that agrees with Eady solution in QG regime
(large Ri) but becomes shallower (i.e., faster decay away
from the boundary) in nongeostrophic cases as explained
by Nakamura (1988).

Overall, the consistency between these cases (varying
Ri, inviscid, flat bottom) and the Eady/Stone theories
suggests that the Eady-type numerical experiments
provide a good test bed for studying baroclinic insta-
bility in coastal flows. It also lends support to the use of
the analysis, with quantifications of growth rate, wave-
length, phase speed, and K budget, to further explore
how the instability is affected by boundary dissipation
and bottom slope.

4. Influences of boundary dissipation
a. Structure and growth rate

We study the effects of bottom boundary dissipation
via examining the experiment Group 2 (run 7-21 in
Table 1). Like Fig. 5, Fig. 7 compares the spatial struc-
ture of instability, Kg, and growth rate/wavelength
among three cases (run 12, 14, 17). These cases have
identical basic flow, with Ri = 10. They only differ in the
linear friction coefficients used (y = 0, 1074103 m sfl),
and that the viscous cases have k—¢ closure turned on.
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The friction factors correspond to Ag of 0, 0.17, and 1.7
[Eq. (6)] or Ekman number E [=7v/(fyH)] of 0,0.04, and
0.4. The linear and quadratic friction coefficients tested
here span a realistic range of values for coastal flows
[y =107°~10"2 (ms ') as in Brink and Cherian (2013);
Cd =10"°~1077].

Several conclusions can be drawn from this analysis.
First, instabilities occur in all cases, as the disturbances
show clear amplification in less than 15 days (Fig. 7¢).
Including bottom drag reduces the energy level. For
example, the maximum value of v? in Fig. 7d decreases
with increasing Ag. However, a friction coefficient as
large as 10 >ms ™' does not stabilize the flow.

Second, from the Ky budget in Figs. 7e2 and 7e3,
baroclinic instability is responsible for the disturbance
growth, as the baroclinic energy conversion (red curve)
dominates the initial increase of K. Barotropic instability
is again unimportant. After the initial growth, a steady
balance between baroclinic conversion and dissipation is
reached and maintained over an extended period.

Third, unlike the inviscid case (Fig. 7f1), the time se-
ries of growth rate in the viscous cases (Figs. 7f2,f3) show
two peaks. Diagnosing the Ertel PV suggests that the
first and second peaks correspond to symmetric and
baroclinic instabilities, respectively. In the viscous cases,
symmetric instability occurs near the surface in the be-
ginning, as shown by the finescale wiggles in Figs. 7a2
and 7a3. This is because the no-flux boundary condition
forces the near-boundary isopycnals to steepen such that
local PV becomes negative. However, the symmetric
instability is short lived as the surface density adjusts
rapidly to a symmetrically stable state. This instability
has no appreciable impact on the mean density structure
(cf. Figs. 7al,a2), consistent with the findings of Brink
and Cherian (2013). After the initial adjustment, baro-
clinic instability (second peak), which requires sustained
and organized wave interactions, begins to dominate
(e.g., Haine and Marshall 1998). The second peak in
growth rate also corresponds to the sharp rise in
baroclinic conversion (cf. Figs. 7e2-{2), suggesting the
onset of baroclinic instability. Since our focus is on
baroclinic instability, we take the second peak in growth
rate and the corresponding wavelength (black and red
squares) to represent the most unstable mode.

b. Testing the Eady—Ekman theory

One main objective of this study is to evaluate
whether the Eady—Ekman theory can provide guidance
in understanding how coastal baroclinic instability re-
sponds to varying bottom drag and dissipation. To
evaluate the theory, we plot the model-derived growth
rate and wavelength against the friction parameter Ag
for different values of Ri (Figs. 8a,c). The inviscid Eady
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nondimensionalized by foRi~%>, L,, and U, respectively [scales guided by the Eady model;
Eq. (1)]. (left) The original theory, with Ax defined in Eq. (6). (right) Shown with A}, [Eq.
(13)] that includes a correction for Ekman pumping at large drag. The model-derived
quantities are the open symbols. Theory is the black curve. The horizontal dashed lines in-
dicate the Eady solution. Wave speed estimates are described in appendix B. The RMSDs for

the model-theory comparisons are given.

solution is at A = 0 [Eq. (1)]. Experiments using a
quadratic drag law are also included.

The Eady-Ekman theory captures the general re-
spons of baroclinic instability to increasing frictional
effects: The growth rate decreases, while the instability
shifts toward longer wavelength, presumably due to the
weakening of bottom buoyancy perturbations that slow
the bottom waves (Fig. 8e; see appendix B for how wave
phase speed is estimated), forcing the instability to

select a faster and longer wave mode to maintain the
coupling (e.g., Fig. 2b, section 2a; see more below).
However, the theory overestimates the reduction of
growth rate at large drag. For Ag > 0.5 the model-
derived growth rate levels off, suggesting that the
baroclinic instability becomes insensitive to further in-
creases in friction coefficient. Yet, the theory predicts a
continued growth rate reduction. At Ap = 2.8, for ex-
ample, the reduction is overestimated by the theory by
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more than 70%. The wavelength and bottom wave speed
comparisons in Figs. 8c and 8e also exhibit a large
degree of scatter.

To further evaluate the validity of the theory and to
look into the causes for the discrepancies at large drag,
we examine the assumptions of the Eady—Ekman model.
As schematized in Fig. 2a, the key assumptions are 1)
vertical segregation of inviscid interior and a boundary
layer (the instability grows in the inviscid interior, while
dissipation is concentrated in a thin boundary layer) and
2) interior instability is forced from below by Ekman
pumping (bottom stress induces Ekman transport). The
transport divergence then drives Ekman pumping that
modifies the interior instability.

Assuming separation of an energy converting interior
and a dissipative boundary layer is supported by the
model results in all cases. As an example, we show the
cross-shore structure of baroclinic energy conversion
and dissipation diagnosed from the Ky budget [Eq.
(B1)] for a simulation with large drag (y = 10 >ms™;
Ag = 1.7; Fig. 9). Both processes occur quite uniformly
across the mean flow center, and are clearly segregated
in the vertical. The energy conversion takes place above a
thin boundary layer as denoted by the horizontal line,
whereas most of the energy dissipation occurs near the
bottom. Here we use the height where v/ . has a sub-
surface maximum to define the boundary layer (see be-
low). The region above this height accounts for over 95%
of the energy conversion, whereas over 80% of the dissi-
pation is found below. Similar patterns hold for all cases.

Next we examine the vertical structure of the in-
stability and bottom Ekman flows for different values of
A (Fig. 10). The top panels show the vertical structure
of v/, at maximal o,,, averaged across the mean flow
center (over 1 L,). The presence of bottom drag greatly
reduces the near-bottom velocity, compared to the Eady
model, such that v, exhibits a subsurface secondary
maximum. The height of the v/ secondary maximum
(dashed lines) represents, on average, the zero-crossing
of stress profiles and is thus used to set the boundary
layer thickness dymax. Above dymax, the amplitude of
instability increases toward both boundaries like in the
Eady model. However, unlike the symmetric Eady
structure, v, with bottom drag is surface intensified.
This surface intensification is consistent with Fig. 2a and
Eq. (7). Ekman pumping acts to reduce the bottom
buoyancy perturbations, weakening the bottom waves
(see below).

The bottom Ekman transport is a robust feature in all
cases. In Fig. 10b, we compute the alongshore compo-
nent of the transport (— [u — u, dz) and plot it against
the predictions of 7, /(p,fo) over the entire domain. The
transport is integrated from the bottom to d,max. The
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FIG. 9. An evaluation of the conceptual Eady—Ekman model that
assumes vertical separation of an inviscid interior and a dissipative
boundary layer (see Fig. 2a).The cross-shore structure of (a) baroclinic
energy conversion and (b) energy dissipation [see Eq. (B1) in appendix
B]. We choose the case with a largest friction factor as an example
(case 17; Fig. 7a3). The structure is taken at maximal growth rate
(square symbol in Fig. 7f3). Two sloped lines indicate the surface sa-
linity minimum and maximum that define the baroclinic zone (e.g.,
Fig. 5al). The horizontal dashed lines denote the bottom boundary
layer height (see Fig. 10a and corresponding text).

comparisons mostly follow the one-to-one relationship,
suggesting the dominance of Ekman flows in the bottom
layer. Note that, for the case with large drag (Fig. 10b3),
we integrate the transport to a height 1 m above d,max
because dymax slightly underestimates the boundary
layer thickness.

While the above analyses support the assumptions of
inviscid interior and bottom Ekman flows, the Ekman
pumping formulation in the Eady-Ekman theory is
found to be problematic at large drag. The pumping
velocity at the top of a bottom Ekman layer [w(z = d)] is
proportional to the curl of bottom stress [Eq. (4)]. If we
parameterize the bottom stress using the interior ve-
locity at z = dymax, in the case of linear friction, the
vertical velocity can be written in terms of interior
vorticity w = (y/fo){ymax as in the Eady-Ekman
theory. However, our numerical simulations resolve
the boundary layer such that the bottom stress is com-
puted using the velocity at the lowest grid point (Warner
et al. 2008; Taylor and Sarkar 2008). This means that, for
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linear friction, the correct representation of Ekman
pumping is w = (y/fo){p, where {, is the near-bottom
vorticity. Hence, the use of the Ekman pumping formu-
lation in the theory [Eq. (4)] is equivalent to assuming that
the near-bottom vorticity ¢, can be approximated by the
interior value {,/max-

The assumption of {, = {ymax is rather poor at large
drag. For relatively small drag (y =2 X 10 *ms™"'), the
model-derived vertical velocity w at the top of boundary
layer (z = d,/max) 18 consistent with the Ekman pumping
predictions evaluated at the same height (Figs. 10c1,c2).
The interior vorticity is slightly greater than the near-
bottom value, but they generally follow the one-to-one
relationship (Figs. 10d1,d2). For example, in Fig. 10d1, a
linear regression gives {,ymax =~ 1.2{;, meaning that using
the interior vorticity to approximate ¢, leads to a 20%
error. By contrast, at large drag in Fig. 10c3, the Ekman
pumping predictions greatly overestimate the vertical
velocity. The regression in Fig. 10d3 suggests that the
use of {,ymax Overpredicts {, by a factor of 3. Such
symptoms also carry over to the cases with large
quadratic drag coefficients (runs 20-21 in Table 1).
As aresult, the overestimated Ekman pumping in the
theory provides too large of a boundary forcing to the
interior or too much reduction in buoyancy pertur-
bations [Fig. 2a and Eq. (7)], which in turn leads to an
overestimation of growth rate reduction at large drag
in Fig. 8a.

c. Influences of a stratified Ekman layer

The overestimation of near-bottom vorticity and thus
Ekman pumping using interior vorticity is apparent in
the velocity profiles. The difference in v/, across the
boundary layer in Fig. 10a3 (large drag) is clearly larger
than that in Fig. 10al (small drag). To investigate what
causes the velocity deficit to increase, we examine the
near-bottom structure of the flow (Fig. 11).

The observed increase in top-bottom velocity differ-
ence with increasing drag is consistent with the response
of a stratified Ekman layer. The deficit of v/ is quite
small (~1cms™ ') with y = 5 X 107° (gray curve;
Fig. 11b), but it increases to over Scms ™ ' as vy increases
to 1072 (black curve). Although the boundary layers are
thin (<3m), they remain stratified from about 0.5m
above the bottom, and their maximal N? is not far from
the basic flow value of 2.56 X 10 s~ 2 (Fig. 11a). The

vertical shear \/ (0u/az)* + (dv/oz)* generally increases
toward the bottom, but it has a notable subsurface
maximum (Fig. 11c). Here we overlay a scaling theory
proposed by Taylor and Sarkar (2008) for stratified
Ekman layer (dashed curves). The scaling relates the
shear with the classic law of the wall and overlying
stratification as

VOLUME 50

dv  Uus

dzab Kzab N’ (12)
where u..(=/7}/p, ) is the friction velocity, « is the von
Karman constant, and z,, is height above bottom.
Without coefficient tuning, the scaling of shear for a
stratified Ekman layer shows vertical structure similar to
the model results (Fig. 11c). It suggests that the down-
ward increase of shear corresponds to the structure of
logarithmic velocity profile, but the shear of log law
decays rapidly as 1/z,,. Away from the bottom, the shear
is supported by interior stratification N, thereby
showing a subsurface maximum. Indeed, the shear at
the near-bottom grid scales linearly with the log law
us/(kza0) (Fig. 11d; squares), whereas the shear over the
upper half of d,max 1S proportional to stratification N
(circles).

d. An empirical correction for the Ekman pumping

The above analyses have shown that the Eady—Ekman
theory overestimates the reduction of growth rate at
large drag due to overestimating Ekman pumping. This
occurs because, as the friction coefficient y increases, the
increased shear and boundary layer thickness, along
with finite stratification, weaken the near-bottom ve-
locity and vorticity ¢, [Eq. (12); Fig. 11]. The use of in-
terior vorticity to approximate the near-bottom value in
the theory thus leads to large errors at large drag
(Figs. 10a3,c3,d3). In other words, the baroclinic in-
stability loses sensitivity to the friction factor (Fig. 8a)
because the stratified Ekman layer tends to limit the
increases in bottom stress and Ekman pumping.

In the Eady-Ekman theory, the strength of Ekman
pumping is solely represented by the thickness d in the
friction parameter Ag [=dk/S; Eq. (6)]. This dependence
comes from w = d{ymax [Eq. (4)], where d (=v/fy) sets
the proportionality between pumping velocity and in-
terior vorticity. We have seen that d{,max Overestimates
the actual vertical velocity at large drag, and this is ex-
plained by {ymax > ¢ (Figs. 10c3,d3). However, if we
insist on expressing w in term of the interior vorticity as
w = D{ymax, the problem may be attributed to an
overestimation of the boundary layer thickness D = d =
v/fo, because, with the weakening of near-bottom ve-
locity, the bottom stress should not scale linearly with y.
A more sensible representation of the thickness may be
the stratified Ekman layer scaling D = dyyac = t+/\/Nfy
(Pollard et al. 1973; McWilliams et al. 2009), where the
thickness explicitly depends on bottom stress and in-
terior stratification N.

Based on the above argument, we make a correction
to the Ekman pumping velocity (w = dgyaidymax) and
introduce a rescaled friction parameter:
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This correction weakens the Ekman pumping at large
drag because dr < y/fo. Using this corrected friction
parameter, the model-theory discrepancy at large drag
is reduced (e.g., Fig. 8a versus Fig. 8b). The overall
agreement is also significantly improved, as the model
results tend to collapse onto the theoretical curves
(Figs. 8b,d.f), except for a few cases with largest drag.
Quantitatively, the correction reduces the root-mean-
square deviation for growth rate and bottom wave speed
by a factor of 3 and 1.7, while the deviation for wave-
length remains comparable (~0.4; around 8% of the

(13)

mean wavelength). Although the correction is empirical,
the improved agreement provides support for attributing
the instability’s loss of sensitivity to friction factor at large
drag to the boundary layer response, which tends to limit
the strength of bottom stress and Ekman pumping.

5. Influences of bottom slope
a. Structure and growth rate

Finally we investigate the effects of bottom slope
(Group 3in Table 1). Asin Figs. 5 and 7, we compare the
instability structure and time series of energy level, Kg
budget, and growth rate among three cases (Fig. 12).
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These three cases (runs 22, 24, 27) differ only in the
bottom slope (Fig. 12a). They have identical isopycnal
slopes, with Ri = 10 (same M? and N?). The basic flow
has the same width of 40 km, centered at the mean depth
of 40m. As before, we quantify the instability growth
rate and wavelength across half of the mean flow (i.e.,
centered at H = 40m). The simulations are carried out
with viscosity set to zero.

Increasing bottom slope tends to suppress the growth
of baroclinic instability (Fig. 12). The growth in K is
primarily driven by baroclinic energy conversion
(Fig. 12f), suggesting the dominance of baroclinic in-
stability as in the other cases studied. As the bottom
slope increases, the amplitude of the disturbances in
surface salinity decreases (e.g., Figs. 12c1-c3,d1-d3).
This suppression of instability is clearly reflected in
the time series where the levels of v2 and growth rate
both decrease with increasing slope (Figs. 12el-
e3,g1-g3). In particular, the growth rate of the most
unstable mode o, (black squares) decreases from
1.2 X 1077 t0 0.62 X 107> (s~ ') as the slope increases.
The corresponding wavelength A,,, also shortens from
23.8 to 18.6 (km).

b. Testing Blumsack and Gierasch’s theory

We evaluate the utility of a quasigeostrophic theory,
here the BG72 model for slope effects, by comparing the
predictions against the model results (Fig. 13). Recall
that the steepness of bottom slope is measured relative
to isopycnal slope (6 = Sp/S). The term & is negative
because these two slopes are tilted in the opposite way.

The theory captures the decrease in growth rate, shift
to shorter wavelength, and increase in bottom wave
speed with increasing slope ratio |§| (Fig. 13). Over
relatively gentle bottom slopes (i.e., |6 = 0.5), the
agreement is very good for the wave speed and wave-
length. The theory tends to overestimate the growth rate
by a mean error of around 30% (Fig. 13a). However,
overall, there is a reasonable agreement between BG72
theory and the numerical model results for |§] = 0.5.

The decrease in growth rate with increasing slope may
be understood by noting that an offshore displacement
along the lower boundary would force a buoyant water
parcel downward, unfavorable to the release of potential
energy (BG72). The instability selects a shorter wave
mode in order to counter the speedup of bottom waves
(see section 2a). However, it should be noted that the
predictability of the theory appears to deteriorate as |3|
increases. The error of growth rate estimates increases
from 14% to over 75% as & changes from 0 to —0.6
(Fig. 13a). The model-theory deviations in estimates of
wave speed and wavelength also increase for large |§|
(Figs. 13b,c), suggesting missing dynamics in the theory
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(b), the black dashed curve (k =2 — §) is an approximate marginal
stability condition obtained by matching top and bottom wave
speed (see section 2a). The RMSDs for the model-theory com-
parisons are given.

over steep slopes, which is explored further in the next
subsection.

c. Influences of horizontal shear and eddy tilting

We suggest that the decrease in predictive skill of the
theory as the bottom slope steepens is linked to the
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increase in influence of horizontal shear which was not
included in the BG72 model. We first recognize that a bal-
anced mean flow with zero bottom velocity will have in-
creased horizontal shear as the bottom slope steepens, due
simply to the depth variation [9U/dy = (M*/fy)oHldy =
—(M?If,)S5]. However, in BG72, this effect is assumed
negligible for mild slopes.

The influence of horizontal shear on the eddy field is
illustrated in Fig. 14, comparing three cases that differ
only in bottom slope. The panels from top to bottom are
the top view of fluctuating surface elevation 7/, surface
mean flow speed as a function of cross-shore distance, and
cross-shore profiles of eddy momentum fluxes w/v/ and
barotropic energy conversion in the eddy kinetic energy
budget [Eq. (B1)]. Parameter 7' is a proxy for geostrophic
eddy orientation (i.e., pressure field). Figure 14d shows
only the dominant term of the conversion that is associated
with horizontal shear (—u/v/ou/dy).

Horizontal shear at the surface clearly increases with
bottom slope (Fig. 14b). As the slope steepens, the
surface eddies are increasingly tilted in northeast—
southwest direction (toward offshore and +x) by the

mean horizontal shear (Fig. 14a). This eddy orientation
leads to predominantly positive eddy momentum fluxes
across the mean flow (Figs. 14c2,c3). The magnitude of
v increases with the tilt and hence with the bottom
slope. The positive v/ due to tilted eddies occurs mostly
over the region with dU/dy > 0. This means that the
momentum fluxes are largely upgradient, acting to
convert the eddy kinetic energy back to the mean flow
(i.e., negative energy conversion in Figs. 14d2,d3) and
therefore reducing the instability growth.

The loss of eddy kinetic energy via upgradient mo-
mentum fluxes due to tilted eddies is further supported
by diagnosis of the energy equation. In Fig. 15, we plot
the volume-integrated barotropic energy conversion
against the slope ratio 6 for all cases. To compare among
different basic states, we normalize the barotropic con-
version by the dominant (positive) eddy kinetic energy
source of baroclinic conversion. The conversion ratio is
evaluated at the time of maximal growth rate, but the
result is robust within a window of a few days before
finite-amplitude effects become significant. Barotropic
energy conversion during maximal growth is negative
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for all cases with a sloping bottom (Fig. 15). Over rela-
tively gentle slopes (|6] = 0.5), the conversion ratio
scales positively with & (as indicated by the linear fit),
meaning that the barotropic conversion becomes more
negative as the bottom slope steepens. This pattern is
consistent with the interpretation in Fig. 14, that in-
creasing eddy tilting by bottom-slope-induced horizon-
tal shear converts more eddy kinetic energy back to the
mean. In other words, the bottom-slope-induced hori-
zontal shear acts as an energy sink to suppress the in-
stability growth. Because BG72 theory did not include
this effect, the theory increasingly overestimates the
growth rate as the bottom slope steepens (Fig. 13a). The
positive relationship between conversion ratio and
8 appears to break down at steep slopes, when |8] ex-
ceeds around 0.5 (Fig. 15). Detailed analyses of routes of
energy transfer and the potential influences of baro-
tropic instability are beyond the scope of this work and
thus left for future studies.

6. Summary and discussion

The main objective of this study is to examine the
utility of the Eady-type theories in understanding
baroclinic instability in coastal buoyancy-driven flows.
We focus on the effects of nongeostrophy, boundary
dissipation, and bottom slope.

Not surprisingly, with an Eady-like basic state and in
the absence of viscosity (e.g., valid for interior flow),
bottom slope, and horizontal shear, the coastal baroclinic
instability shows growth rate and wave properties consis-
tent with the Eady theory. The governing parameter is the
Richardson number Ri [=N?f2M~*=Ro % Eq. (2)].
When the basic state is in the quasigeostrophic regime
(Ri > 5), the ROMS-derived growth rate o, and
wavelength A, for the most unstable mode agree with
Eady predictions of 0.31fyRi~"? and 3.9L, (Fig. 6). QG
or not, the growth rate varies inversely with Ri because a
steeper isopycnal associated with a smaller Ri (e.g.,
decreasing N* while holding M? and f; constant) allows a
horizontally displaced parcel to rise higher and thus
releases more potential energy [Egs. (1) and (3)]. This
study also confirms that the growing instability in the
numerical experiments can be interpreted as mutual
reinforcement of boundary-trapped Rossby waves (e.g.,
Hoskins et al. 1985). Specifically, we find evidence for
wave phase locking, with counterpropagating waves that
translate at the same apparent speed of U/2, and west-
ward phase tilt, with top—bottom phase difference near
7/2, allowing waves to be mutually amplified (Fig. B1).

As Ri decreases, the steepened isopycnal slope gives
rise to nonnegligible vertical motion and hence increases
the non-QG effects. Stone’s (1966) theory is shown to
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FI1G. 15. Volume-integrated barotropic energy conversion
against the slope ratio § for all cases with a bottom slope (cases 22
to 34). The barotropic conversion is normalized by baroclinic
conversion [—C(Kg, Ky)/C(Pg, Kg); Eq. (B2)] and is computed
at maximal growth rate. Note that the barotropic conversion is
negative for all cases with a nonzero bottom slope. The gray line is
a linear fit for 8 > —0.5 (R*> = 0.93), indicating a positive relation
between the bottom slope and barotropic energy conversion (see
section 5c¢).

give reasonably accurate nongeostrophic corrections for
Ri > 1: compared with the Eady mode, the nongeostrophic
baroclinic instability has a lower growth rate and longer
wavelength as predicted by Eq. (3) (Fig. 6). The shift to a
longer wave mode is consistent with Nakamura’s (1988)
explanation. That is, nongeostrophy makes the boundary-
trapped waves shallower (Fig. Ble). The instability thus
tends to select longer waves to maintain the vertical
coupling.

Contrary to the agreement with Stone’s nongeostrophic
theory, the model results suggest that, even under idealized
settings, the Eady—-Ekman and BG72 theories have in-
herent limitations, due to the neglect of boundary layer
responses and horizontal shear, respectively.

For boundary dissipation, the analyses support the
conceptual model put forth by the Eady—Ekman theory,
but there are problems at large drag. Dissipation con-
centrates in a thin boundary layer which affects the in-
stability via inducing Ekman pumping at the lower
boundary of the interior flow (Fig. 10). The theory
introduces a bottom friction parameter Ag [Eq. (6)],
which assumes that the strength of pumping w increases
linearly with the friction factor y [Eq. (4)]. Qualitatively,
the Eady—-Ekman theory captures the general tendency
of decreasing growth rate and increasing wavelength
when bottom friction Az increases (Figs. 8a,c). How-
ever, the theory overestimates the growth rate reduction
atlarge Ag (e.g., by 70% at Ar = 2.8). The problem lies in
that the bottom stress does not increase linearly with .
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Instead, the increased vertical shear and boundary
layer thickness, along with the presence of stratification,
weakens the near-bottom velocity [Fig. 11 and Eq. (11)].
This boundary layer response buffers the increase of
bottom stress, which in turn limits Ekman pumping and
the slowdown of bottom waves [Eq. (7)]. An empirical
correction of Ekman pumping in A [Eq. (13)] significantly
improves the model-theory comparison (Figs. 8b,d,f),
highlighting the key role of Ekman pumping in modifying
the instability properties.

For bottom slope, BG72 theory provides reasonable
predictability over gentle slopes. However, agreement
between the simulations and theory decreases as the
bottom slope increases, and the slope-induced horizon-
tal shear in the basic state, which is not accounted for in
the theory, becomes significant. A key parameter here is
the slope ratio 8 [Eq. (10)], for which we consider only
negative values with the bottom and isopycnals tilted in
opposite directions. Over a relatively gentle bottom
slope (|6] < 0.5), as |8] increases, the observed decrease
in wavelength and increase in bottom wave speed are
well represented by BG72 (Figs. 13b,c). The theory also
captures the reduction in growth rate.

Bottom slope induces horizontal shear in the basic
state via the thermal wind relation. This shear increases
with bottom slope. As |8] increases, the sheared flow tilts
the eddies and increasingly favors converting K ¢ back to
the mean flow (Fig. 14). The slope-induced horizontal
shear therefore acts as an energy sink to suppress the
instability, leading to the increased theory-model
discrepancies.

a. Interpreting the friction and slope parameters and
scale selection

We now expand on the implications and limitations of
this work. The analyses in this study clearly show the
dependence of instability properties on the friction pa-
rameter Az and slope ratio 6. In addition to their links to
bottom buoyancy perturbations (section 2a), the physi-
cal meaning of these two parameters may be further
illuminated from a geometric (or potential vorticity)
perspective. Using Egs. (4), (7), and (11), we find, for flat
bottom with friction,

[((wWh)IS]|,_, = iA, = i(dkIS), (14a)
and, for sloping bottom with zero friction,
[((Wh)IS]],_g =8 =S,/S. (14b)

These expressions make explicit the fact that, in terms of
scales, A and 8 both represent the slope of the bottom
parcel trajectory (w/v'), relative to the isopycnal slope S.
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The importance of parcel trajectory can be understood
in the context of vortex stretching/squashing. Recall
from Fig. 1a that the generation of boundary-trapped
waves in the Eady model can be interpreted via
stretching/squashing of a vortex element. An offshore
displacement along the lower boundary tends to induce
stretching and cyclonic circulation, leading to wave
propagation in the +x direction (Fig. 1c).

We suggest, using geometric arguments, that when the
friction effect is included, Ekman pumping reduces
vortex stretching due to the upward-seaward bottom
parcel movement (w > 0, v/ > 0; thick arrow in Fig. 2a).
Conversely, the presence of a bottom slope enhances the
stretching by requiring the parcel to move parallel to
the topography (w < 0,7 > 0 in Fig. 2b). Therefore, in
the case of friction (bottom slope with 6 = 0), the parcel
movements effectively reduce (enhance) the background
PV gradients and thus decrease (increase) the bottom
wave speed (Figs. 3b,d). The slowdown (speedup) of the
bottom wave then forces the instability to select a longer
(shorter) wave mode to maintain the phase lock
(Figs. 3a,c).

While Az and 6 can both be interpreted as slope ratios,
we cannot make a quantitative analogy between the
friction and bottom slope effects. Based on the above
PV argument, bottom Rossby waves will not exist when
the slope ratio becomes one, because a horizontally
displaced vortex element cannot be stretched/squashed.
Without the bottom wave to interact and resonate with
the top wave, an instability will not grow. Indeed, we find
that the instability growth rate vanishes with 6 = 1 as
shown in Fig. 3c.

However, such a behavior cannot be seen for the
frictional effects. In Fig. 3a, there is still finite growth
rate with Ag = 1. The main difference may lie in that, in
the case of bottom friction, w and v’ are 90° out of phase
[Eq. (14a)]. This relation simply reflects that the maxi-
mum pumping occurs where the spatial gradient of v/
and thus divergence of Ekman transport is maximal.
Therefore, the maximal w and v’ are staggered in both
space and time, contrary to the collocated w and v/
extrema over a sloping bottom.

b. Linkage with prior studies

The findings of this work have clear linkages with
prior studies. For example, Brink and Cherian (2013)
and Hetland (2017) both invoked frictional spindown as
key processes in their modeling studies on the baroclini-
cally unstable tidal mixing fronts and coastal currents.
Brink and Cherian (2013) proposed a scaling for fric-
tionally damped eddy kinetic energy, based on a mismatch
of spindown and eddy turnover time scales. Hetland (2017)
used similar time-scale mismatch arguments to isolate the
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cases where frictional processes are negligible. The
presence of spindown is clearly supported by this study.
Not surprisingly, bottom Ekman transport is a robust
feature in all frictional cases (Fig. 10), and the nearly in-
viscid interior is forced by Ekman pumping. However, this
study points out further that the frictional influence on the
instability does not increase proportionally with the fric-
tion factors (linear or quadratic; Figs. 8a,c.e). The in-
creased vertical shear across the boundary layer tends to
weaken the near-bottom flow, thereby limiting the in-
crease in bottom stress and Ekman pumping. This buff-
ering effect of the boundary layer may explain why the
eddy length scales became insensitive to the linear friction
factor as reported by Brink and Cherian (2013, their
Fig. 7). Moreover, we expect the weakening in sensitivity
to the friction factor to be a generic process in coastal flows.
Thus, parameterizations for eddy fluxes that are based on
Eady-type linear theories [e.g., following Stone’s (1972)
approach] will likely need different friction-factor de-
pendences at least for small and large drag regimes.

For bottom slope effects, several recent studies have
incorporated bottom slope dependence into the scalings
for eddy length scales, growth rate, and buoyancy fluxes
(e.g., Brink 2012; Zhang and Gawarkiewicz 2015; Spall
2004). The general form for some of the scalings may be
deduced directly from the BG72 theory. For example,
Brink (2012) scaled the eddy length and growth rate of
baroclinically unstable tidal mixing fronts as A/L; ~
1/(1 + bys) and o/(foRi~ %) ~1/(1 + bys), respectively,
where s = —SgN/fyis the slope Burger number and by, b,
are empirical constants. Zhang and Gawarkiewicz (2015)
applied similar scalings to characterize unstable shelfbreak
fronts. We can see immediately from the above functional
form that bottom slope Sy exerts a stabilizing effect and
makes the most unstable waves shorter (s > 0), consistent
with BG72 (Fig. 13). If we use BG72’s approximate
marginal stability condition (i.e., matching top and
bottom wave speed; section 2a) of k = 2@/A)Ly =2~ 8
and note that § = SyN?/M? = —s+/Ri, we obtain A/L,; =
#/[1 + (Ri"?/2)s], yielding a similar functional form as
above. The consistency thus provides a theoretical basis
for the prior scalings.

Note however that our study also emphasizes the
limitations of BG72. As the bottom slope steepens, the
slope-induced horizontal shear leads to increasing and
nonnegligible differences between ROMS-derived and
BG72 growth rates. This result therefore suggests cau-
tion in applying the existing scalings to systems with
steep topography. Taking |6| = 0.5 as a limit (Fig. 13)
and Ri = 5 for nearly QG basic flows, we may expect
BG72 theory to be applicable for s = 0.2, beyond which
the slope-induced horizontal shear would lead to sig-
nificant errors (Fig. 13a).
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The tight coupling between the bottom slope and
horizontal shear shown in this study also has implica-
tions for coastal current stability. In a recent attempt to
understand why unstable coastal currents were rarely
reported in the literature, Hetland (2017) proposed that,
due to the proximity to a coastal boundary, the width of
the coastal currents may be too narrow for baroclinic
eddies to develop. This conclusion was drawn primarily
from ROMS simulations showing instabilities being in-
hibited over a range of parameters, which contradicts
the finite growth rate predicted by BG72 (e.g., finite
o for |8] = 2 in Fig. 3c). Considering that, even without
invoking effects such as bottom drag, nongeostrophy,
and width, the slope-induced horizontal shear alone can
reduce BG72-predicted growth rate by more than 50%
at |8] ~ 0.5 (Fig. 13a), it seems plausible that some of the
inhibited growth in Hetland (2017) may be attributed to
horizontal shear. However, the width dependence and
horizontal shear are hard to separate as they are both
scaled by the coastal current width. Nevertheless, the
coupling of slope and horizontal shear is another stabi-
lizing factor that requires further consideration.

It is worth noting that horizontal shear stabilization is
well established in the atmospheric science literature
(referred to as the ““barotropic governor”). James (1987)
suggested that the eddy energy transfer from potential
to mean kinetic energy that strengthens the atmospheric
eddy-driven jets can be hindered when the horizontal
shear of a barotropic jet becomes large enough to reduce
the meridional coherence of the eddy field. There ap-
pears to be differences between the barotropic governor
and slope-induced horizontal shear. The former is part
of a nonlinear feedback loop (e.g., Nakamura 1993),
whereas the latter can operate at the linear stage of in-
stability growth (Fig. 13). Yet, their mechanisms are the
same: horizontal shear affects the eddy orientation and
thus the eddy energy conversion rate [Eq. (B2)].
Therefore, insights gained from the barotropic governor
effect could benefit further investigations on the slope—
shear coupling.

Finally, this study has focused on individual effects,
aiming to solidify our fundamental understanding of
baroclinic instability over continental shelves. The com-
bined effects of bottom drag, bottom slope, nongeostrophy,
and horizontal shear are left largely unaddressed
(except for some limited analyses on slope-horizontal
shear coupling). When these effects are combined to
represent more realistic basic flows (Fig. 4h), it is clearly
important to identify the parameter regimes over which
one particular effect may dominate. Also, combining the
effects could potentially introduce additional processes
that merit further investigation. For example, consid-
ering bottom drag over a sloping bottom allows bottom
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stress to adjust via buoyancy shutdown (e.g., MacCready
and Rhines 1991; Brink and Lentz 2010). This may further
limit Ekman pumping and thereby modify the interior
instability. The mixed barotropic-baroclinic and sym-
metric instabilities could come into play when horizon-
tal shear and nongeostrophy are included (e.g., Allen
and Newberger 1998; Wenegrat et al. 2018). Addi-
tionally, forcing by wind and tides is expected to
modify the coastal baroclinic instability through mixing
and supplying/removing available potential energy. In
view of the scope of the full problem, this study represents
a small step toward a comprehensive understanding of
instabilities over continental shelves.
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APPENDIX A

Eady-Type Models

a. Eady model (inviscid problem without
topography)

The Eady problem is briefly reviewed here. We closely
follow the notation of Vallis (2017). Skipping the lineari-
zation of the quasigeostrophic potential vorticity conser-
vation equation, we go straight to an equation set
applicable to Eady’s simple basic flow. For detailed deri-
vations, refer to Vallis [2017, chapter 9, Eqgs. (9.62)-(9.78)].

The linearized QGPV equation below describes pure
alongshore (zonal) advection of QGPV perturbations

f(z) 82 lb/

(o) (22

where the term in the first parentheses is an advection
operator [mean flow 71(z) = Az; z = 0 at the bottom], and
the second is the QGPV perturbation ¢’ due to relative
vorticity and vortex stretching, with ¢ being the pertur-
bation streamfunction, (¢, v') = (—ad//dy, o//dx). An
overbar refers to an alongshore mean and a prime
denotes a perturbation. Equation (Al) incorporates the
simplifications associated with the Eady basic flow. The
purely alongshore mean flow  is balanced and horizontally

(A1)
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uniform, has constant vertical shear, constant stratifi-
cation, constant depth, and is on an f plane (Fig. 1a).
Hence, the following parameters are all constant: buoy-
ancy frequency N (N> = db/dz; where b is buoyancy),
cross-shore buoyancy gradient (M? = —ab/dy), Coriolis
parameter f,, thermal wind shear (A = M?/f), and the
isopycnal slope (S = M?*/N?). Note also that the cross-
shore advection of the background PV gradient
(v'9q/dy) does not appear in Eq. (A1). This is followed
from ag/dy = —u,, — (f3/N*)u,, =0 (subscripts denote
partial derivatives) as the linearly sheared mean flow has
zero curvature.

In a reentry channel, plane-wave solutions of the form
¢/ = Re®(z) sinlye* =) for Eq. (A1) can be found
[imposing #/(y = 0, L) = 0]. The waves have an expo-
nential structure in the vertical. The general solution is
®(z) = A cosh(pz) + Bsinh(uz), where A and B are un-
determined coefficients, Z(=z/H) is a scaled height, and
n (=VKk2+[2L,) is the horizontal wavenumber nor-
malized by the deformation radius L, (=NH/fy). The
top and bottom boundary conditions are w(z = H) =
w(z = 0) = 0. In Eady-type models, the boundary condi-
tions come in through linearized buoyancy conservation

6 b+ bv +N*w=0,
at ax ay

where the buoyancy perturbation b’ can be expressed as
fody//9z via the hydrostatic relation. The boundary
conditions are

(A2)

LI AW W
w(z=0)=0: (a[) jlad ali fO% - 0. (A3b)

with the velocity scale U = AH. Plugging ' =
Re[(A coshuz + Bsinhuz)sinlye*>=<0] into Eq. (A3)
and nondimensionalizing velocity by U, spatial scale
by L, and time scale by L,/U, we find that the di-
mensionless phase speed ¢(=c/U) for nontrivial solu-
tions (i.e., A, B # 0) is given by

12

4 coth(uw) (A4)
M

The phase speed (¢ = ¢, *+ i¢;) is complex. A wave mode
with alongshore wavenumber lg(:de) will grow expo-
nentially with time at a rate of k¢; if the imaginary part of
the phase speed ¢; is nonzero. Because our focus is on the
fastest growing baroclinic instability, throughout this work
we assume perturbation variables are uniform in cross-
shore direction (I — 0; u = k). The growth rate is then
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FIG. Al. The Eady solution properties (for / = 0). (a) Growth rate and (c) phase speed are
plotted against the dimensionless alongshore wavenumber k, according to Egs. (A4) and
(A5). In (a), the growth rate (¢ = kc;) is made dimensionless by fyRi~%>. The most unstable
(Eady) mode, with o = 0.31f,Ri" and k = kL, = 1.61 [Eq. (1)], is indicated by the dashed
lines. In (c), the solid and dashed curves are the real and imaginary part of the wave speed. (b),
(d) The vertical structure of wave phase and amplitude for the most unstable mode. For the
most unstable mode, the wave speed of U/2 in (c), top-bottom phase difference of 7/2 in (b),
and boundary-intensified wave amplitude in (d) are consistent with Hoskins et al.’s (1985)
Rossby wave resonance interpretation (see section 2a).

& = ké, = [kcoth(k) — 1 — k*/4]'"”. (A5)
Using Eq. (A3b), we rewrite ® = [cosh(kZ)—
(¢k) ' sinh(kz)]A. The vertical structure of wave am-
plitude and phase can be readily determined by (CID(ID"‘)N2
and tan~ '[Im(®)/Re(®P)], respectively (see below).
The properties of the Eady solution are shown in
Fig. Al (for /[ = 0). The most unstable mode has a
maximum & of 0.31 at k ~ 1.61 (Fig. Ala). Dimension-
ally, this corresponds to the Eady growth rate o = kc; =
0.31f,Ri~ % and wavelength A = (277/1.61)L, = 3.9L, [as
in Eq. (1); o is scaled by U/L, = fyRi~*°]. In Fig. Ala,
there is a well-known short-wave cutoff at k = 2.4, be-
yond which the boundary-trapped waves cannot main-
tain phase locking (as the intrinsic phase speed is too
slow) and their vertical coupling diminishes as wave-
number increases (i.e., ® decays exponentially as kz).
Over the unstable range (k <2.4), the waves propagate
in the +x direction at half of the mean flow speed (¢/U =
0.5 in Fig. Alc), satisfying the phase-locking condition.
The most unstable mode has the bottom wave leading
the top by #/2 (Fig. Alb) and is boundary-intensified
(Fig. A1d). These features are consistent with Hoskins

et al’s (1985) interpretation of baroclinic instability in
terms of Rossby wave interactions. This wave in-
terpretation is described in section 2a of the main text.

b. Boundary dissipation effect (Eady—Ekman model)

As described in section 2a(2), in the Eady-Ekman
model the boundary dissipative effect is represented by
Ekman pumping that forces the inviscid interior at its
lower boundary (i.e., top of the Ekman layer; Fig. 2a).
The lower boundary condition of the original Eady
problem [Eq. (A3b)] is replaced by Eq. (5). Following
the same solution procedure, the phase speed becomes
(again for [ = 0)

2
1 . coth(k)| 1
c=—[1—lAE i ]ii

. h(k
5 [1 - zAE%p]

12

—4(1-iA,) [‘“’”}('g) - i] ,

i 2 (A6)

where the friction parameter Ag [Eq. (6)] is a di-
mensionless measure of Ekman pumping strength.
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The vertical structure function is ® = [cosh(kz) — (1 —
iA)(¢k) " sinh(kZ)]A. This solution gives the inviscid
Eady solution when A = 0. We can calculate the growth
rate ké; (as plotted in Fig. 3a) and vertical profiles of
amplitude and phase with ®(Z) as described above.

c. Bottom slope effect (BG72)

As with boundary dissipation, the bottom slope ef-
fect is incorporated into the Eady model through the
lower boundary condition [see section 2a(3)]. Equa-
tion (A3b) is now replaced by Eq. (9). The phase
speed is

2

s
1/2
S {sz(k) - k1] ’ (A7)

where 6 [Eq. (10)] measures the steepness of a bottom
slope relative to the isopycnal slope, and the
vertical structure is given by ® =[cosh(kz)— (1 —
8)(¢k) ' sinh(kz)]A. The growth rate is

o

ké, = {(1 - 8)[Kk coth(k) — 1] — [k — & coth(k)]/4}"",
(A8)

identical to the solution of BG72 [their Eq. (3.11)]. The
growth rate in k-8 space is plotted in Fig. 3c. It is worth
noting the similarity between the Eady-Ekman and
BG72 models. Their lower boundary conditions and
governing parameters have similar forms [Eqgs. (5)—(7)
versus Eqgs. (9)—(11)] such that the solutions of phase
speed [Egs. (A6) and (A7)] are nearly identical (i.e.,
replacing iAg by 8). This analogy will be elaborated on
further in section 6a.

APPENDIX B

Metrics for Analyses

We evaluate the properties of Eady-type theories
against the numerical model results using the follow-
ing metrics: the most unstable growth rate, wave-
length, vertical structure of wave speed, phase, and
amplitude. In addition, the energetics is examined via
the volume-integrated eddy kinetic energy budget.
Calculations of growth rate and wavelength have been
described in the main text. Here we use an example
to illustrate how the other metrics are defined and
calculated.
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The wave speed and phase are estimated by computing
cross correlations in time and in the vertical coordinate,
respectively. For wave speed, we take an alongshore
profile of the perturbation cross-shore velocity v at a y
location and find the spatial lag Ax that has the maximum
correlation between v'(x, 7) and v/'(x, t + Af) (At = 12h; v/ is
normalized to have an amplitude of 1). The phase speed is
Ax/At. We make estimates over a time period of 3 days
centered at the maximal growth rate (e.g., same as o, in
Fig. 5¢) and for y locations that span 1/4 of the mean flow
center. These estimates are then averaged to obtain a
representative value.

A similar procedure is applied to determine the ver-
tical wave phase. At the time of maximum growth rate,
we computed the x lag (Ax) of maximum correlation
between v/ at the surface and v/ at all other depths. We
also estimate the wavelength as 2 times the distance
between maximum and minimum x-lagged correlations
in v'. The wave phase in radians is then 27Ax/A. The
vertical structure of wave amplitude is the root-mean-
square of v’ (i.e., in the alongshore direction) and is then
averaged over a 3-day window and across the mean flow
center (e.g., Fig. 10a).

Figure B1 provides an example for the above calcu-
lations. It also serves as a comparison to the Eady
theory. For wave speed, Figs. Bla and Blb are
the Hovmoller diagrams of the top and bottom v’ at the
mean flow center for a case with Ri = 15 (Fig. 5al). The
contour tilts clearly indicate wave propagation in the +x
direction. The contour slope at the surface (Fig. Bla) is
steeper than a reference slope for mean flow advection
(black line), indicating that the top wave propagates in
the —x direction, relative to the mean flow. Cross-
correlation estimates show that the apparent wave
speed is U/2, regardless the value of Ri (Fig. B1f; cases
2-5). The unstable waves in the model are therefore
consistent with Eady’s solution and Hoskins et al.’s
(1985) interpretation. Counterpropagating top and
bottom waves riding on the mean flow propagate at a
phase-locking speed of U/2.

For wave phase, a snapshot of v along the x—z plane
shows a clear westward phase tilt (cf. Fig. Blc and
Fig. 1d). Cross-correlation calculations in Fig. Bld
yield a phase structure (black curve) that agrees well
with Eady’s most unstable mode (gray). This phase re-
lation thus allows waves to amplify each other, manifested
as growing instability.

In addition, the wave amplitude v, shows a boundary
intensified structure consistent with the Eady solution
(Fig. Ble). When Ri decreases, v/, decays toward the
interior at a shorter vertical scale. This behavior is
consistent with the increasing nongeostrophic influences
proposed by Nakamura (1988).



JANUARY 2019 CHEN ET AL. 31

(a) top Vv’
18 P T
16
15

bottom v’
18 =
17 | w//
16 m"' ( /\/v

! I\A(fAij\l ! N I(‘”A//\ | !

15 :
100 110 120 130 140 150 160 170 180 190 200
along-shore distance (km)

time (day)

?

v’ (Ri = 15) (d)
0
Eady
-0.5
Ri=15
—1 -1
0 0 0.5 1 1.5
along shore distance (km phase
f
0 U -
o Ri=t
— 2
== 5
— 15
-0.5 Eady
-1
02 04 06 08 1 0 0.5 1
normalized v’ rms c/U

FI1G. B1. Model estimates of unstable wave properties and comparisons with the Eady
solutions. (a),(b) The Hovmoller diagram of the top and bottom wave signals v/, taken in
a 3-day window centered at the time of maximal growth rate (case 5 in Table 1; Ri = 15;
Fig. 5al). The black reference line indicates the advective distance of the mean flow U.
(c) A snapshot of v/ in the x—z plane, taken at maximal growth rate and along the mean
flow center, for Ri = 15 that exhibits a westward phase tilt. Color shading represents the
magnitude and direction of v'. (d)—(f) The vertical structure of wave phase, amplitude,
and apparent phase speed. The model results are labeled by different Ri values. The Eady
solution is the thick gray curve. The model estimates of the wave properties are described
in appendix B. Note in (e) that the case with a smaller Ri exhibits a shallower wave
structure, consistent with Nakamura (1988). In (f), the unstable waves for all Ri values
satisfy the phase-locking condition of ¢ = U/2.

Finally, to diagnose the energy source of the in- ak, Ty B A ——
stability, we examine the volume integrated eddy ot AR CURRE { u(u2+v2)} +V-pu
kinetic energy Ky budget. The derivation and nota- = [—p, W - Vi — p YW - V3] + [—g p'W]
tion follow von Storch et al. (2012). The balance barotropic conversion baroclinic
equation for the eddy kinetic energy per volume + [MW*‘W)/&Z—S], (B1)

ke[=p0(u’2 + UIZ)/Z] is dissipation



