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ABSTRACT

This study examines the utility of Eady-type theories as applied to understanding baroclinic instability in

coastal flows where depth variations and bottom drag are important. The focus is on the effects of non-

geostrophy, boundary dissipation, and bottom slope. The approach compares theoretically derived instability

properties against numerical model calculations, for experiments designed to isolate the individual effects

and justified to have Eady-like basic states. For the nongeostrophic effect, the theory of Stone (1966) is shown

to give reasonable predictions for the most unstable growth rate and wavelength. It is also shown that

the growing instability in a fully nonlinear model can be interpreted as boundary-trapped Rossby wave

interactions—that is, wave phase locking and westward phase tilt allow waves to be mutually amplified. The

analyses demonstrate that both the boundary dissipative and bottom slope effects can be represented by

vertical velocities at the lower boundary of the unstable interior, via inducing Ekman pumping and slope-

parallel flow, respectively, as proposed by the theories of Williams and Robinson (1974; referred to as the

Eady–Ekman problem) andBlumsack andGierasch (1972). The vertical velocities, characterized by a friction

parameter and a slope ratio, modify the bottomwave and thus the scale selection. However, the theories have

inherent quantitative limitations. Eady–Ekman neglects boundary layer responses that limit the increase of

bottom stress, thereby overestimating the Ekman pumping and growth rate reduction at large drag. Blumsack

and Gierasch’s (1972) model ignores slope-induced horizontal shear in the mean flow that tilts the eddies to

favor converting energy back to the mean, thus having limited utility over steep slopes.

1. Introduction

There are a variety of baroclinic currents on conti-

nental shelves or near shelf edges that can develop

baroclinic instability. Examples include shelf break jets

(Flagg and Beardsley 1978; Gawarkiewicz 1991; Lozier

and Reed 2005; Zhang and Gawarkiewicz 2015), river-fed

buoyant coastal currents (Qiu et al. 1988; Weingartner

et al. 1999; Hetland 2017), tidal mixing fronts (Badin et al.

2009; Brink 2012, 2013), upwelling fronts (Barth 1989;

Durski and Allen 2005; Brink 2016a), and boundary cur-

rents in marginal seas (Johannessen et al. 1989; Arnone

et al. 1990; Blokhina andAfanasyev 2003). Understanding

the characteristics of these baroclinically unstable flows,

including their growth rate, spatial scale, and parametric

sensitivity, has considerable importance because the

instabilities can be a major source of hydrographic var-

iability (e.g., Fratantoni and Pickart 2003) and their

eddy fluxes can drive water column restratification (e.g.,

Spall and Thomas 2016) and cross-margin material ex-

changes (see Brink 2016b for a review).

To understand the instability properties, the Eady

model and its extensions have served as an important

theoretical foundation. Aiming at explaining the growth

and spatial scales of atmospheric cyclogenesis, Eady

(1949) successfully extracted the essence of baroclinic

instability by considering a linear stability problem for a

thermal wind–balanced flow with constant stratification,

vertical shear, and Coriolis parameter. A detailed de-

scription of the Eady model is given in section 2. Briefly,

with this simple basic flow and under the quasigeostrophic

(QG) approximation, the growth rate and wave-

length of the most unstable wave mode were derived

analytically. The Eady growth rate is governed byCorresponding author: Shih-Nan Chen, schen77@ntu.edu.tw
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a Richardson number that is related to the isopycnal

slope and thus the amount of potential energy released

via horizontal stirring. The wavelength is around 4 times

the deformation radius. These predictions were found

generally consistent with atmospheric observations. Of

equal significance, the simplifications Eady adopted have

made the physical processes more transparent. This

has subsequently led to mechanistic interpretation of

baroclinic instability as mutual reinforcement of Rossby

waves (e.g., Bretherton 1966; Hoskins et al. 1985).

After Eady’s seminal work, there have been numer-

ous follow-up studies that incorporated additional pro-

cesses into theEady theory. Stone (1966, 1971) extended

the problem to account for nongeostrophic effects—that

is, departures from QG due to weak stratification of the

basic flow (i.e., steep isopycnals) such that fluidmotion is

not constrained to be nearly horizontal (see section 2a).

Williams and Robinson (1974) proposed a conceptual

model that allows boundary dissipation to modify the

interior instability by inducing Ekman pumping (see

also in Holopainen 1961; Stipa 2004). The effects of to-

pography were considered by Blumsack and Gierasch

(1972, hereafter BG72) and Mechoso (1981) who showed

that the boundary slopes can exert stabilizing or destabi-

lizing influences, depending upon their orientation relative

to the isopycnals. There are other extensions for specific

problems, such as adding air–sea fluxes (Spall 2007) and

linear horizontal shear to the basic flow (Barcilon and

Blumen 1995). Note that the above references only

represent a fraction of theoretical developments for

baroclinic instability. Thorough reviews and extensive

lists of references can be found in Pedlosky (1979) and

Pierrehumbert and Swanson (1995). Further descrip-

tions of the extensions of interest in this study are given

in section 2.

In the context of coastal baroclinic instability, the

Eady-type models described above have been invoked

to inform interpretation and parameterizations. For

slope effects, a number of recent studies on unstable

flow over topography have reported evidence of slope

stabilization in a manner consistent with BG72 (e.g.,

Isachsen 2011; Pennel et al. 2012). Guided by BG72, the

slope dependence was incorporated into the parame-

terizations of eddy growth rate and scale for tidal mixing

fronts (Brink 2012) and of eddy buoyancy fluxes for

boundary currents (Spall 2004). Concerning the stability

of buoyant coastal currents, Hetland (2017) simulated a

range of idealized coastal currents that have Eady-like

basic flows on a slope. He found growing baroclinic in-

stability only in a subset of the experiments, contrary to

the expectation from BG72 which predicts a finite growth

rate for all cases. This contradiction then led Hetland

(2017) to propose width limitation as an additional

stabilizing factor. Concerning frictional effects, Brink

and Cherian (2013) found bottom drag to reduce the

eddy kinetic energy (EKE) in unstable tidal mixing

fronts. As in Williams and Robinson (1974), they hy-

pothesized that the eddy field spins down due to Ekman

pumping. This led them to develop a parameterization

of frictionally damped EKE that depends on a ratio of

eddy turnover and spindown time.

The above examples demonstrate that Eady-type

theories provide useful guidance for understanding

baroclinic instability on continental shelves. However,

the limitations of these theories have not been fully

examined. Foremost, quantitative evaluations of Eady-

type theories are rare, at least for coastal flows. It is

therefore hard to determine their limitations and why

differences may occur. The theories also made as-

sumptions that may be questionable in coastal settings

where depth variations and bottom drag are of leading-

order importance. For example, BG72 considered amild

slope (see section 2a) over which the mean flow is as-

sumed horizontally uniform. It is not clear if depth

changes in shallow flows could induce significant hori-

zontal shear (via thermal wind; see section 5) and thus

affect the instability. To model the frictional influences,

Williams and Robinson (1974) assumed that all dissi-

pative effects in a thin bottom Ekman layer can be

represented by Ekman pumping that forces the unstable

interior flow (see section 2a). This conceptual model is

largely untested. Moreover, in shallow flows, all of the

factors described above, including bottom drag, bottom

slope, nongeostrophy, and horizontal shear, most likely

coexist (e.g., Brink and Cherian 2013). The interplays

between these factors make interpreting the responses

of baroclinic instability difficult. Hence, there is a need

to understand the individual effects before one can ap-

preciate the combined influences.

In this study we examine the utility and limitations of

Eady-type theories as applied to baroclinic instability in

coastal flows where depth changes and bottom drag are

significant. An overall goal is to better understand the

individual effects of nongeostrophy, boundary dissipa-

tion, and bottom slope. We focus on these three because

of their common presence and because their individual

effects have been previously incorporated into the Eady

model, thereby providing theoretical bases to compare

with. Combined effects are left for future studies. Here,

the approach is to test the theoretically derived in-

stability properties against calculations from numerical

experiments. The experiments are designed to isolate

the three effects on baroclinic instability, with a pa-

rameter range and basic flows guided by a separate set of

idealized simulations of unstable coastal currents. This

paper is organized as follows: In section 2, we describe
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the methods and review the theoretical extensions of the

three effects. In addition, designs and justification of the

numerical experiments are given. In sections 3–5, we

examine the effects of nongeostrophy, boundary dissipa-

tion, and bottom slope, respectively. Section 6 provides a

summary and discussions of implications.

2. Methods

a. Background of linear stability theories

1) EADY MODEL AND NONGEOSTROPHIC EFFECTS

The Eady model of baroclinic instability is a standard

material in many geophysical fluid dynamics textbooks.

A brief review of the mathematical treatment using

conservation of quasigeostrophic potential vorticity

(QGPV) is given in appendixA.Here we concentrate on

its main results and interpretation via Rossby wave

interactions.

Following Hoskins et al. (1985), the mechanism of

baroclinic instability in the Eady model can be in-

terpreted as the mutual enhancement of two boundary-

trapped Rossby waves. The key ingredients are 1)

generation of boundary-trapped Rossby waves and 2)

wave phase locking and mutual reinforcement such that

disturbances can grow. These processes are schematized

in Fig. 1. First, Rossby (vorticity) waves can be generated

at two horizontal boundaries by cross-shore distur-

bances (in the y direction). Because Eady basic flow has

constant vertical shear, constant stratification, is hori-

zontally uniform, and is on an f plane, there is no

cross-shore gradient of background potential vorticity

[›q/›y52uyy 2 (f 20/N
2)uzz 5 0; an overbar refers to

alongshore mean; see appendix A], and thus cannot

support Rossby wave propagation in the interior. How-

ever, the density surfaces intersecting top and bottom

boundaries provide potential vorticity (PV) gradients

necessary for Rossby waves (Bretherton 1966). The

wave generation and propagation may be understood

via vortex stretching or buoyancy perturbations at the

boundaries. For example, in Fig. 1a, an offshore dis-

placement (toward 1y) of a fluid element along the top

boundary tends to induce vortex squashing (since ver-

tical velocity w 5 0 at z 5 H) and anticyclonic circula-

tion. Alternatively, buoyancy advection associated with

an offshore flow gives a local isopycnal depression and

thus a positive buoyancy anomaly at the top (Fig. 1b). By

thermal wind balance and by requiring the induced ve-

locity to decay toward the interior, the depression again

induces an anticyclone trapped at the top boundary.

The anticyclone advects the cross-shore buoyancy

gradient (i.e., dashed circle in Fig. 1c) and shifts the

buoyancy anomaly, manifested as a wave propagating

toward the2x direction. Along the bottom boundary, an

FIG. 1. Schematics of Rossby wave interactions in the Eady model. (a),(b) The generation of boundary-trapped Rossby waves is

illustrated. (c),(d) The wave phase locking and phase relation are shown. Shown in (a) is the cross-shore structure of an Eady basic flow

that has uniformly spaced and sloped density surfaces (gray line) and a constant vertical shear. Because we examine the Eady-type

theories with applications to coastal current instability in mind, throughout this study we refer to the direction of the basic flow as the

alongshore (1x) direction and the directions perpendicular to themean flow as the offshore (1y) and onshore (2y) directions (see Fig. 4).

With the basic flow in (a), an offshore displacement of a fluid element along the upper (lower) boundary would induce anticyclonic (AC)

[cyclonic (C)] circulation. The illustration in (b) shows that a positive buoyancy anomaly due to offshore advection, combined with

thermal wind, drives the same sense of circulation as in (a). In (c), for the top wave, the buoyancy advection by the induced circulation

leads to a shift of the buoyancy anomalies, manifested as a wave propagating toward the2x direction. An opposite pattern occurs for the

bottomwave. The counterpropagating waves (thick black arrows), advected by a vertically sheared mean flow, can achieve phase locking.

Bothwaves then propagate in the1x direction at the same apparent speed ofU/2.When the bottomwave leads the top byp/2, the induced

onshore velocity (gray solid arrow) of the top wave enhances the bottom wave trough (gray dashed arrow), and vice versa. This phase

structure allows the waves to reinforce each other. When viewed in the x–z plane as shown in (d), the structure exhibits a westward phase

tilt. See main text for details.
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opposite pattern occurs. Therefore, when the basic flow

is perturbed, there are two boundary-trapped Rossby

waves that propagate in the opposite direction: Top

wave moves toward the 2x direction, relative to the

basic flow, while bottom wave moves toward the 1x

direction (Fig. 1c).

When the two waves are phase locked and are in

certain phase relation to allow for mutual enhancement,

the wave amplitude can grow, manifested as the devel-

opment of baroclinic instability. Phase locking simply

means that the two waves move at the same apparent

speed to sustain the mutual enhancement. With parallel

horizontal boundaries and with a constant isopycnal

slope, one expects the waves to have identical intrinsic

phase speeds. It can be shown that, if considered sepa-

rately, each boundary supports a wave whose intrinsic

phase speed is U/m [where m is a dimensionless wave-

number; see appendix A and Vallis (2017, chapter

9.7.2)]. Because the top wave is advected by the mean

flow U and the two waves have identical intrinsic phase

speedU/m, the condition of phase locking is m5 2. That

is, the top wave translates at phase speed of 2U/2 (i.e.,

toward 2x) but is advected by mean flow U. The ap-

parent phase speed is then U/2, equal to that of the

bottom wave.

In addition to having an apparent speed of U/2

toward1x direction, the two waves must retain a certain

phase relationship, referred to as westward phase tilt

(Fig. 1d; see, e.g., Vallis 2017), so that they can amplify

each other. As illustrated in Fig. 1c, when the bottom

wave leads the top by a quarter wavelength (i.e., p/2

phase difference), the induced onshore velocity of the

top wave (denoted by the downward gray arrow) would

align with the trough of the bottom wave, enhancing the

bottom displacement. Similarly, the induced offshore

velocity of the bottom wave (denoted by the upward

gray arrow) is at the top wave’s crest, again enhancing

the surface displacement. Viewed from the x–z plane,

the wave structure tilts westward with height (Fig. 1d;

leaned toward 2x direction). It can also be shown that

the westward phase tilt favors downgradient buoy-

ancy transport, thereby allowing release of potential

energy to fuel the growth of baroclinic instability (see

Pedlosky 1979).

The solution of the Eady model reflects the wave

properties described above. Specifically, the unstable

waves translate toward the 1x direction at the phase-

locking speed of U/2, and the most unstable wave mode

has a top to bottom phase difference of p/2, as expected

for the westward phase tilt. These comparisons are de-

scribed in appendix A.

From the Eady solution, the well-known Eady growth

rate and wavelength (i.e., the most unstable mode,

with cross-shore wavenumber l 5 0; Fig. A1a) are,

respectively,

s
Eady

/f
0
5 0:31Ri21/2, l

Eady
/L

d
5 (2p/1:61)’ 3:9. (1)

Here the grow ratesEady andwavelength lEady aremade

dimensionless by the Coriolis parameter f0 and the

deformation radius Ld(5NH/f0), respectively. Ri is a

Richardson number of the mean flow that governs the

Eady model:

Ri5
N2

(U/H)2
5

N2

(M2/f
0
)2
5

N2f 20
M4

, (2)

where M2 is defined as the negative of the offshore

buoyancy gradient (52›b/›y5 constant; where b is

buoyancy), N is the buoyancy frequency, and H and U

are the height and basic state velocity scales, respectively.

From Eq. (1), we see that the growth rate varies inversely

withRi. This can be understood by noting thatRi is related

to the isopycnal slope S. For fixed f0 and M2, a smaller Ri

corresponds to a smallerN2 and hence a steeper isopycnal

slope [S[2(›r/›y)/(›r/›z)5M2/N2]. As shown by

Haine and Marshall (1998), the potential energy re-

leased by parcel rearrangement is proportional to DbDz.
For a fixed horizontal excursion Dy and constantM2, the

buoyancy variation Db is fixed. But, a steeper isopycnal

slope (i.e., smaller Ri) allows a parcel to rise higher (i.e.,

larger Dz), thereby releasing more potential energy

per unit displacement and thus resulting in a greater

growth rate.

However, Eady’s growth rate is only formally applicable

to a quasigeostrophic (QG) flow. As Ri decreases, the

small-Rossby-number assumption inQGwould eventually

break down, and the Eady theory would need to be

modified to account for ‘‘nongeostrophic’’ effects. Here

the nongeostrophy is due to weak stratification (i.e., steep

isopycnals) such that fluid motion is not constrained to a

nearly horizontal plane as in QG. To see this breakdown

of QG, we can express the Rossby number as an inverse

of Ri, by taking Ld as the characteristic spatial scale [as

suggested byEq. (1)]: Ro5U/(fLd)5U/(NH)5Ri20.5.

As Ri decreases toO(1), Ro also becomesO(1), and the

QG approximation is no longer valid.

Stone (1966) made nongeostrophic corrections to the

Eady theory. He found an approximate growth rate and

wavelength as

s
Stone

/f
0
’ 0:304(11Ri)21/2,

l
Stone

/L
d
’ 3:97

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(11Ri)/Ri

p
. (3)

One can immediately see the similarities between

Eqs. (1) and (3). For Ri � 1 (i.e., QG limit), (1 1 Ri)
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approaches Ri, and Stone’s solution approximates

Eady’s. When comparing Eqs. (1) and (3), we can see

that the nongeostrophic effect tends to reduce the

growth rate and selects a longer wavelength. Nakamura

(1988) suggested that, as compared to the Eady solution,

nongeostrophic effects make the boundary-trapped

waves shallower (i.e., decay toward the interior over a

shorter vertical scale). The instability therefore tends to

select longer waves in order to maintain the vertical

coupling. These consequences will be examined in

section 3.

2) EADY–EKMAN PROBLEM: BOUNDARY

DISSIPATION EFFECTS

How would the presence of boundary dissipation

modify baroclinc instability? Williams and Robinson

(1974) considered such a problem by adding boundary

dissipation into the Eady model (termed the Eady–

Ekman problem hereafter). They assume that dissipation

due to bottom drag and turbulent stresses is concentrated

in a bottom Ekman layer that is thin compared to the

interior thickness. One may then represent the dissi-

pative effects via Ekman pumping which modifies the

lower boundary condition of the Eady model.

A conceptual interpretation of the Eady–Ekman

problem is shown in Fig. 2a. Compared to the inviscid

Eady basic flow in Fig. 1a, the uniformly sloped density

surfaces in the interior and the horizontal surface

boundary remain unchanged, meaning that the governing

equations (A1) and (A3a) are intact. There is now an

Ekman layer with thickness d at the bottom boundary.

We can study the interior flow stability by simplymoving

the lower boundary to the top of the bottom Ekman

layer (z 5 d; dashed line in Fig. 2a) where a new

bottom boundary condition is vertical velocity w set

by Ekman pumping. If we use a linear friction fac-

tor g to relate the bottom stress with the interior

geostrophic velocity (t0bx, t
0
by)5 r0g(u

0
g, y

0
g) (e.g., Brink

and Cherian 2013), w can be expressed in terms of in-

terior vorticity as:

w(z5 d)5 (g/f
0
)(›y0/›x2 ›u0/›y)5 (g/f

0
)=2c0 , (4)

and buoyancy conservation at the lower boundary (z 5
d) becomes

�
›

›t

�
f
0

›c0

›z
2Lf

0

›c0

›x
1

N2g

f
0

=2c0 5 0. (5)

[where L(5M2/f0) is the thermal wind shear; see

Eq. (A2)]. In Eq. (5) we have assumed that d is suffi-

ciently thin (d/H ’ 0) such that buoyancy advection by

the mean flow is negligible [i.e., U(z 5 d) 5 Ld ’ 0].

Equations (A1), (A3a), and (5) form a new equation set

that can be solved for unstable wave modes. The solu-

tion is given in appendix A, section b. Adding linear

Ekman friction introduces a new parameter (see also in

Stipa 2004)

FIG. 2. Schematics demonstrating how (a) boundary dissipation and (b) bottom slope affect the baroclinic in-

stability in the Eady problem. Thesemodels are constructed based on the theories ofWilliams andRobinson (1974;

Eady–Ekman) and BG72. In (a), the effect of boundary dissipation is represented by the Ekman pumping (thick

black arrow) that serves as a forcing imposed at the lower boundary of the inviscid interior [Eqs. (4) and (5)]. The

domain of the linear stability problem is between z5 d andH (d is the Ekman layer thickness that is assumed to be

thin as compared to the interior). In (b), the presence of a bottom slope modifies the bottom kinematic boundary

condition in the Eady problem [Eqs. (8) and (9)]. A negative bottom slope (SB 5 dHB/dy) corresponds to water

depth increasing offshore. In essence, both effects are represented by vertical velocities at the lower boundary. They

then modify the bottom wave and in turn the instability properties.
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D
E
5

�
g

f
0

�
k/S5 (dk)/S , (6)

where d 5 g/f0 may be thought of as a scale for Ekman

layer thickness. Below we summarize some of the key

results that will be further examined in this study.

Boundary dissipation tends to reduce the instability

growth rate and shift the most unstable mode to a longer

wavelength. Figure 3a shows the stability diagram in a

parameter space consisting of the dimensionless along-

shore wavenumber ( ~k5 kLd) and the friction parameter

DE. The color contours are the dimensionless growth

rate [s/(f0Ri21/2)]. Waves that have no cross-shore

structure (l 5 0) are plotted, as they grow faster than

those with l 6¼ 0. Note that the friction parameter DE is

linearly proportional to the friction factor g. As DE in-

creases, the maximal growth rate found following the

black curve in Fig. 3a decreases, and the corresponding

wavenumber decreases. For example, with DE 5 0, the

stability curve reverts to the Eady model, with maximal

growth rate s/(f0Ri21/2) equal to 0.31 and ~k of 1.61 [Eq.

(1)].WhenDE increases to 0.5, the growth rate decreases

by more than 50% to 0.15, and ~k decreases to 1.5,

indicating a shift toward a longer wavelength.

The shift toward longer waves may be understood as a

response to a decrease in bottom wave phase speed. In

Fig. 3b, we plot the solution of apparent wave speed c for

the Eady–Ekman problem (see appendix A) against DE.

Because there is no mean flow at the bottom, c is equal

to the intrinsic bottom wave speed. It can be seen that

the bottom wave slows as DE increases. Recall that,

when the top and bottom waves are considered sepa-

rately, the top wave propagates at a speed of U2U/ ~k

(i.e., intrinsic propagation at2U/ ~k toward2x direction,

advected by mean flow U; for l 5 0, m5 ~k). Since the

bottom wave is slowed, the top wave (2U/~k) has to

speed up to remain phase locked. The instability there-

fore tends to select a longer (smaller ~k) and faster wave

mode when friction is included.

We may interpret the slowdown of the bottom wave

from the perspective of buoyancy perturbations. As

described in section 2a and in Fig. 1b, buoyancy

anomaly at the boundaries induces circulation that

leads to wave propagation. At the bottom boundary,

the linearized buoyancy conservation [Eq. (5)] can be

expressed as

›b0

›t
5M2y0 2N2w5M2y0[12 (w/y0)/S] , (7)

wherew in this case represents Ekman pumping.We can

see that an offshore displacement (y0 . 0) favors gen-

eration of positive buoyancy anomaly (›b0/›t . 0) and

thus cyclonic circulation along the bottom boundary

(Figs. 1a,b).However, in the presence of a bottomEkman

layer, cyclonic circulation drives Ekman pumping

(w . 0) that favors negative buoyancy anomaly by ad-

vecting denser fluid upward. The pumping thus works

against horizontal disturbance [i.e., w/y0 . 0 in Eq. (7)],

acting to reduce the bottom buoyancy perturbations and

slow the bottom waves. Note also that, using Eq. (4) and

l 5 0, we can express the pumping velocity w as idky0

such that (w/y0)/S 5 i(dk/S) 5 iDE (where i is the unit

imaginary number). The friction parameter DE thus

serves as a measure of pumping strength that affects the

bottom parcel trajectory (w/y0) relative to the isopycnal

slope S (see section 6a for discussion).

3) EADY PROBLEM ON A SLOPE

The effects of bottom slope can also be incorporated

into the Eady model by modifying the lower boundary

FIG. 3. (a),(c) Stability diagrams for the Eady–Ekman and BG72

theories, respectively, illustrated in Fig. 2 and section 2a. The full

solutions are given in the appendix A. The dimensionless growth

rate [contoured; s/(f0Ri20.5)] is shown as a function of di-

mensionless alongshore wavenumber ( ~k5kLd; Ld is the de-

formation radius) and a friction parameterDE in (a) and a slope

ratio d in (c) [Eqs. (6) and (10)]. The cross-shore wavenumber l is

set to zero. The black curves indicate the most unstable mode for

eachDE and d value. In (c), an approximatemarginal stability curve

is denoted by the gray dashed line (see section 2a). (b),(d) The

apparent wave speed c normalized by the mean flow velocity scale

U for the most unstable waves. Because mean flow is zero at the

bottom, the apparent speed is equal to the bottomwave speed. The

unstable Eady wave speed is U/2.
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condition. This problem was treated analytically by

BG72 and is schematized in Fig. 2b. In the presence of a

bottom slope SB in the cross-shore direction, the kine-

matic bottom boundary condition is

w(z’ 0)5S
B
y0 5 S

B
›c0/›x , (8)

where SB [ dHB/dy and HB(y) is the topographic vari-

ation with relative to z 5 0. Bottom buoyancy conser-

vation becomes

�
›

›t

�
f
0

›c0

›z
2Lf

0

›c0

›x
1N2S

B

›c0

›x
5 0. (9)

Again we find the growth rate of unstable wave modes

by solving Eqs. (A1), (A3a), and (9) (see appendix A,

section c). Note that SB can be positive or negative. In

this study we focus on configurations of SB , 0 (i.e.,

depth increasing offshore) and S 5 M2/N2 . 0 (i.e.,

isopycnals sloped up offshore) (Fig. 2b), typical for

buoyancy-driven coastal flows. Moreover, in BG72, the

bottom slope is assumed to be mild in the sense that the

depth changes during a parcel displacement are small

compared to the mean depth (i.e., QG limit). This re-

quires Dh/H ; SBLd/H ; SBN/f0 ; O(Ro). The mild

slope also allows BG72 to neglect horizontal shear in the

mean flow [i.e., U 5 Lz in Eq. (A1)]. This turns out to

have nonnegligible influences on the unstable wave

properties over a steep slope (see section 5).

The stability diagram indicates that increasing bottom

slope (more negative SB) reduces the growth rate and

shifts the instability to a shorter wavelength. In Fig. 3c,

the dimensionless growth rate with l5 0 is plotted [using

Eq. (A8)] versus the alongshore wavenumber ~k and the

key dimensionless parameter

d5 S
B
/(M2/N2)5 S

B
/S , (10)

which measures the bottom steepness relative to the

isopycnal slope S. The curve along d 5 0 again corre-

sponds to the Eady model. Here we focus on the lower

half of the parameter space (d # 0) where the bottom

and isopycnals are sloped in the opposite direction. It

can be seen that, as jdj increases, the growth rate of the

most unstable mode (denoted by the black curve) de-

creases, and the wavenumber increases. For example,

when compared to the Eady model, at d 5 20.5 the

growth rate reduces from 0.31 to 0.215 while the wave-

number increases from 1.61 to 2.33, indicating a shift to

shorter wave modes.

The scale selection may again be understood from a

change in bottom wave characteristics. Figure 3d shows

the response of bottom wave speed to d variations for

the most unstable mode. As the bottom slope steepens

(more negative d), the bottom wave speeds up. To

maintain the phase lock, the top wave must then slow

down. The instability therefore tends to select a shorter

and slower wave mode. To understand the speedup of

the bottom waves, we return to the bottom buoyancy

conservation:

›b0

›t
5M2y0 2 S

B
N2y0 5M2y0

�
12

S
B

M2/N2

�

5M2y0(12 d) , (11)

where we have used Eq. (8) to express the bottom ver-

tical velocity. We see in Eq. (11) that, for a given cross-

shore velocity y0, increasing bottom slope enhances the

bottom buoyancy perturbations and hence the wave

speed by allowing the slope-parallel flow to cross more

isopycnals. It can be shown that, when the boundary-

trapped waves are considered separately as before, the

bottom wave speed on a slope is U(12 d)/ ~k. To match

the top wave speed of U2U/ ~k, the wavenumber needs

to increase with the slope as ~k5 22 d (e.g., BG72;

Pedlosky 2016). This simple relation of matching wave

speed is shown as the gray dashed line in Fig. 3c. It in-

deed approximately captures the tendency of instability

shifting toward shorter waves.

b. Numerical model

We use a primitive equation ocean model Regional

Ocean Modeling System (ROMS; Haidvogel et al. 2000;

Shchepetkin and McWilliams 2005) to test the utility of

the Eady-type theories described above. The parameter

ranges are chosen to be suited for buoyant coastal cur-

rents (see examples below), but the results are expected

to be generic. The approach is to compare the theoret-

ically derived growth rate and wave properties against

ROMS calculations. ROMS has been used to study in-

stabilities in a variety of coastal flows (see introduction).

Below we use examples of coastal current simulations to

help constrain and motivate the problem. We then de-

scribe the experiments that isolate the effects of non-

geostrophy, boundary dissipation and bottom slope.

Figures 4a–c show the structure of an unstable buoy-

ant coastal current generated by a coastal discharge. The

simulation was carried out in a 600km (alongshore: x)3
210 km (cross-shore: y) channel, with a uniform bottom

slope of 1023, uniform horizontal grid spacing of 520m,

and 30 sigma levels. It was forced only by an inflow

(20 kmwide centered at x5 0) with a salinity anomaly of

2 psu and freshwater flux of 4000m3 s21. Temperature is

set constant in this study. The boundary conditions fol-

low Chen and Chen (2017). The k–« turbulence closure

was employed (see Warner et al. 2005). Throughout this

work, explicit horizontal viscosity and diffusivity are set
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to zero, but the third-order momentum advection scheme

we adopt has implicit numerical mixing to prevent nu-

merical instabilities. The model solutions are not sensitive

to the choices of numerical schemes applied (not shown).

The main point to note in Figs. 4a–c is that the coastal

current is unstable. Before t 5 t0 (5day 9), a buoyant

coastal current propagating in the 1x direction is stable

during this developing period (Fig. 4a). Afterward, in

13 days, finite-amplitude disturbances become apparent in

the surface salinity (Fig. 4b). The disturbances are partic-

ularly apparent in cross-shore velocity, which exhibits an

alternating onshore/offshore wave-like pattern (Fig. 4c).

The magnitude of fluctuating cross-shore velocity in-

creasing from essentially zero to over 0.2ms21 in 13 days,

suggesting a growing instability.

We next examine the basic flow structure and conduct

companion experiments in a reentry channel. These

analyses, shown in Figs. 4d–h, are to provide justifica-

tions for 1) the use of the Eadymodel as a building block

to study baroclinic instability in coastal flows, and 2) the

use of a reentry channel in the subsequent numerical

experiments.

To examine the utility of simulations in a reentry

channel, we construct a geostrophically balanced basic

state based on a representative salinity section from the

coastal current in Fig. 4a. This section is from the center

of the coastal current (white vertical lines in Fig. 4a) at

t5 t0 when the coastal current is stable and average over

10 adjacent alongshore grid points. We then form a

uniform coastal current using this basic state and

FIG. 4. Snapshots of (a)–(c) three-dimensional (3D) and (d)–(f) alongshore uniform (2D) simulations of buoyant

coastal currents. The 2D basic flow in (d) is constructed by averaging the cross-shore salinity profiles around the

center of the 3D coastal current in (a) (i.e., x; 80 km; denoted by the vertical white line). In (a), (b), (d), and (e), the

color contour indicates surface salinity, while (c) and (f) show the surface cross-shore velocity y0. The snapshots in
(b), (c), (e), (f) are taken 13 days after the initial stable state. (g) Comparison of the alongshorewavenumber spectra

of detrended y0 between the 3D (black) and 2D (red) cases. The spectra are computed over a 3-day window

centered at the time when the eddy kinetic energyKE is maximal. (h) The cross-shore structure of basic flow in (d).

The black and gray curves denote isohaline and mean flow velocity, respectively. Linear fits are carried out for

isohalines from 30.1 to 31.9 psu, with an interval of 0.3 psu. Two examples of the fits (for isohalines 30.1 and 31.9) are

shown as the black dashed lines in (h).
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initialize it in a reentry channel (Fig. 4d). This setup

eliminates upstream and downstream influences of bulge

and nose recirculation in Fig. 4a, thus allowing a focus on

local processes.

The alongshore uniform coastal current develops

growing instabilities similar to those in the three-

dimensional (3D) setup. In Fig. 4e, disturbances are

apparent along the current boundary 13 days after the

initiation. Like in the three-dimensional case, the cross-

shore velocity shows a clear alternating onshore/offshore

wave-like structure (Fig. 4f). In addition, thewavelength of

the alongshore variation is similar to that of the three-

dimensional simulation. This is further confirmed by

comparing the wavenumber spectra of the perturbation

surface cross-shore velocity y0 (Fig. 4g). The spectra are

computed at the time of peak y02 bracketed by a 3-day

window. The three-dimensional and alongshore uniform

cases have similar spectra shapes. Both curves of spec-

tral density, between wavelengths of 3 and 30km, nearly

overlap and have a spectral peak at a wavelength of

25 km (open circles). The close correspondence suggests

that the instabilities developed using an averaged basic

state in a reentry channel can approximately represent

those in three-dimensional coastal currents. Further-

more, diagnosing the eddy kinetic energy budget in-

dicates the dominance of baroclinic instability, with the

baroclinic energy conversion being 4 times greater than

the barotropic conversion at peak y02 [using Eqs. (B1)

and (B2) in the appendix B; not shown]. As the reentry

channel permits easier diagnoses of energy and insta-

bility properties, we will adopt this approach in the

subsequent experiments.

Next we examine the basic flow structure. There are

general similarities shared by the coastal current and the

Eady basic state. The basic flow of the coastal current

has salinity surfaces that are approximately uniformly

sloped and spaced (Fig. 4h). Linear fits of the isohaline

slope yield a tight range of (3.0 6 0.4) 3 1023. Such

salinity structure gives roughly constant N2 and M2 in

the central region, consistent with the Eady basic state

(Fig. 1a). There are however notable differences. The

coastal current resides on a sloping bottom, has signifi-

cant horizontal shear (U denoted by the gray contour in

Fig. 4h), and is presumably subject to bottom drag due to

the shallowness. Some of these factors, as discussed in

section 2a, have been incorporated into the Eadymodel,

but their combined effects have not. Nevertheless, the

general similarities do provide support for the use of

Eady-type models to build understanding of coastal

baroclinic instability.

Below we lay out the numerical experiments that are

built upon the Eady basic state. The experiments are

designed to isolate the effects of nongeostrophy,

boundary dissipation and bottom slope. They are carried

out in a 300 km (alongshore) 3 220km (cross-shore)

reentry channel, with uniform grid resolution of 500m

and 30 sigma levels. The experiments are initialized

with a balanced Eady basic flow, with a constant N2 and

M2. Random noise having a signal-to-noise ratio of 200

(i.e., velocity amplitude ;1mms21) is added to the

initial basic flow to help seed the instability. The simu-

lations then evolve freely. The parameter range is

guided by a set of coastal current simulations, including

that shown in Fig. 4. Table 1 summarizes three groups

of experiments. Group 1 (runs 1–6) is a set to test the

Eadymodel and nongeostrophic effects [section 2a(1)].

These simulations are inviscid and have a flat bottom

(see section 3). The only controlling parameter is the

Richardson number Ri [Eq. (2)], which is varied from 0.9

to 20 to cover the transition from nongeostrophic to QG

regimes. Group 2 (runs 7–21) targets boundary dissipation.

We hold Ri fixed (Ri5 10 or 15) while varying the linear

friction coefficient g to obtain different values of the

friction parameter DE. The k–« turbulence closure is

employed. A different bottom drag parameterization

using the quadratic law was also tested (denoted by * in

Table 1). Group 3 (runs 22–34) evaluates bottom slope

effects. They have constant Ri, zero drag, but various

bottom slopes, with the slope parameter d ranging

from20.75 to 0. Dimensionally, these experiments have

H5 20–40m, N2 5 0.09–2.563 1023 (s22),M2 5 1–23
1026 (s22), mean flow U 5 0.2–0.34 (m s21), isopycnal

slope S5 0.5–113 1023, and bottom slope SB5 0.1–13
1023. This parameter range is consistent with that used

in prior modeling studies such as Hetland (2017). Note

that all experiments have a sufficiently wide (;10Ld)

baroclinic zone, and we diagnose instability proper-

ties at the center so as to minimize the influences of

horizontal shear.

3. Base case and nongeostrophic effects

We first examine the baseline experiments (Group 1

in Table 1), with the goals of evaluating the basic prop-

erties of baroclinic instability, verifying the numerical

model results, and characterizing the nongeostrophic ef-

fects. Three selected cases with Ri 5 15, 2, and 0.9 are

shown in Fig. 5.We obtain differentRi by varyingN2 while

holding M2 and f0 constant [see Eq. (2); U 5 M2H/f0 is

also constant]. As Ri and N2 decrease, the isopycnal

slope steepens (Figs. 5a1–a3). Both the nongeostrophic

effects and instability growth rate are expected to increase

with decreasing Ri [Eq. (3)]. To make comparisons of in-

stability structure at roughly the same stage in growth, we

normalize the time by the Stone growth rate (~t5 tsStone).

All three cases develop vigorous instabilities (Figs. 5b–d).
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The case with a smaller Ri becomes unstable earlier,

consistent with the expectation of s } (1 1 Ri)21/2 in

Eq. (3). For example, with Ri 5 15, the wave-like

disturbances are not apparent until around day 18

(Fig. 5c1). But, for Ri 5 2, disturbances are already

visible at day 8. The spatial scale of the instability is also

shorter with smaller Ri, because of the shorter de-

formation radius (i.e., smaller Ld for smaller N2).

The growing disturbances are driven by baroclinic

instability. Time series in Fig. 5e clearly show the sharp

growth of cross-shore velocity variance y02 (solid curve;

overbar is alongshore mean; prime is perturbation). The

variance is computed at each cross-shore location and

then averaged across the center half of the mean flow

width to obtain a representative time series [i.e., width

(;75km here) is defined as the cross-shore span over

which N2 and M2 are vertically uniform; see Fig. 5a1].

The standard deviation of the width average is negligibly

small. To diagnose the energy source of growing in-

stability, we evaluate the volume integrated eddy kinetic

energy KE budget [Eqs. (B1) and (B2) in appendix B].

Because the domain is a reentry channel and the prob-

lem is inviscid, energy flux divergences vanish after in-

tegrating over the entire domain, and dissipation is zero

by definition. This leaves the KE tendency to be bal-

anced by baroclinic and barotropic energy conversions

[Eq. (B2)]. The tendency (black curves) is completely

governed by baroclinic energy conversion (red curves)

TABLE 1. Summary of numerical experiments. The experiments are divided into three groups. Groups 1, 2, and 3 examine the effects of

nongeostrophy, boundary dissipation, and bottom slope by varying Ri [Eq. (2)], friction parameter DE [Eq. (6)], and d slope ratio [Eq.

(10)], respectively. The terms H and U are the mean water depth and velocity scales; f0 is the Coriolis parameter; M2 (52›b/›y)

characterizes the cross-shore buoyancy gradient of the mean flow [the overbar denotes alongshore average; buoyancy b52g(r2 r0)/r0;

r0 5 1027 kgm23]; N2 (5 ›b/›z) is the buoyancy frequency squared; and S (52(›r/›y)/(›r/›z)5M2/N2) is the isopycnal slope. Bottom

slope SB is negative for depth increasing seaward. The term g is a linear friction factor for parameterizing the bottom stress [Eq. (4)].

Asterisks denote runs using a quadratic drag coefficient (Cd).

H (m)

M2

(1026 s22)

N2

(1023 s22)

f0
(1024 s21)

U

(m s21)

SB
(1023)

S

(1023)

g

(1024 m s21) Ri DE d

1 20 1 0.09 1 0.2 0 11.1 0 0.9 0 0 Group 1: varying Ri

2 20 1 0.1 1 0.2 0 10.0 0 1 0 0

3 20 1 0.2 1 0.2 0 5.0 0 2 0 0

4 20 1 0.5 1 0.2 0 2.0 0 5 0 0

5 20 1 1.5 1 0.2 0 0.67 0 15 0 0

6 20 1 2.0 1 0.2 0 0.5 0 20 0 0

7 20 1 1.5 1 0.2 0 0.67 0.5 15 0.13 0 Group 2: varying

friction parameter8 20 1 1.5 I 0.2 0 0.67 1.0 15 0.29 0

9 20 1 1.5 1 0.2 0 0.67 2.0 15 0.59 0

10 20 I 1.5 1 0.2 0 0.67 6.0 15 1.66 0

11 20 1 1.5 1 0.2 0 0.67 10.0 15 2.62 0

12 20 2 2.56 1.25 0.32 0 0.78 0 10 0 0

13 20 2 2.56 1.25 0.32 0 0.78 0.5 10 0.09 0

14 20 2 2.56 1.25 0.32 0 0.78 1.0 10 0.17 0

15 20 2 2.56 1.25 0.32 0 0.78 2.0 10 0.36 0

16 20 2 2.56 1.25 0.32 0 0.78 6.0 10 1.01 0

17 20 2 2.56 1.25 0.32 0 0.78 10.0 10 1.68 0

18 20 2 2.56 1.25 0.32 0 0.78 10* 10 0.57 0

19 20 2 2.56 1.25 0.32 0 0.78 20* 10 1.14 0

20 20 2 2.56 1.25 0.32 0 0.78 50* 10 2.80 0

21 20 2 2.56 1.25 0.32 0 0.78 100* 10 5.48 0

22 40 1 0.5 1.40 0.29 0 2.0 0 10 0 0 Group 3: varying slope

23 40 1 0.5 1.40 0.29 20.2 2.0 0 10 0 20.1

24 40 1 0.5 1.40 0.29 20.4 2.0 0 10 0 20.2

25 40 1 0.5 1.40 0.29 20.5 2.0 0 10 0 20.26

26 40 I 0.5 1.40 0.29 20.6 2.0 0 10 0 20.31

27 40 I 0.5 1.40 0.29 20.8 2.0 0 10 0 20.41

28 20 1 1.5 1 0.2 20.1 0.67 0 15 0 20.15

29 20 1 1.5 1 0.2 20.2 0.67 0 15 0 20.3

30 20 1 1.5 1 0.2 20.5 0.67 0 15 0 20.75

31 40 1.2 0.73 1.4 0.34 0 1.4 0 10 0 0

32 40 1.2 0.73 1.4 0.34 20.5 1.4 0 10 0 20.31

33 40 1.2 0.73 1.4 0.34 20.8 1.4 0 10 0 20.49

34 40 1.2 0.73 1.4 0.34 21.0 1.4 0 10 0 20.61

12 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 50



FIG. 5. Comparisons of instability properties among cases with different Ri. The cases from left to right have Ri5 15, 2,

and 0.9 (cases 1, 3, and 5 in Table 1). Their basic flows have the sameM2, f0,H, andU, but differentN2. (a) The cross-shore

basic flow and salinity structure. (b)–(d) The top view of salinity taken at ~t5 tsStone 5 8, 12, and 15 [i.e., time normalized by

the Stone growth rate in Eq. (3)]. (e),(f) The time series of y02 and the KE budget [Eq. (B2)]. (g) The time series of

estimated growth rate (black) and energy-weighted wavelength (red). The most unstable mode (sm and lm; denoted by

open circles) is taken at the maximum growth rate.
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in all cases, indicating the dominance of baroclinic in-

stability (Fig. 5f). Contributions of barotropic conversion

(blue curves) are negligible as the basic flows have zero

horizontal shear except near the edges. Note that y02 and
the KE budget in Fig. 5 are only evaluated before the in-

stability reaches the channel walls to avoid boundary

influences.

Next we quantify the growth rate and dominant

wavelength of the instability. For growth rate, we fit the

time series of y02 to an exponential curve over a 3-day

moving window (e.g., Brink 2012). The estimated

growth rate, denoted by the black curves in Fig. 5g,

shows large time variations. It has a peak early in time

when the instability is of small amplitude and the energy

level is low (e.g., near day 5 in Figs. 5g2,e2). The growth

rate then drops sharply when the energy level increases

(e.g., after day 10 in Fig. 5g2), implying saturation due to

nonlinear interactions (e.g., Fox-Kemper et al. 2008;

Radko et al. 2014). Because our objective is to examine

the utility of linear Eady-type theories, we focus on the

early stage of instability and take the peak growth rate to

represent the most unstable mode (sm; black circle in

Fig. 5g). It can be seen that sm for Ri5 2 is greater than

that for Ri 5 15, as expected from Eady/Stone theories

(see below). The growth rate estimates are not sensitive

to the moving window size that was varied between 2

and 5 days. Using KE time series yield nearly identical

results as y02.
To determine the dominant wavelength, we compute

the spectra of surface y0 across the mean flow and obtain

the wavenumber of the spectral peak at each y location.

The wavenumbers are then weighted by the values of

spectral peak to obtain an energy-weighted mean

wavenumber k (Spall 2007; Brink 2012). The time series

of the dominant wavelength is shown as the red curve in

Fig. 5g. Again we take the wavelength at the maximal

growth rate to represent the most unstable wave mode

lm (red circles). It can be seen that the wavelength is

relatively steady around lm, suggesting that our estimate

is reasonably robust. This relatively steady period is also

consistent with the linear stage of instability when

nonlinear cross-scale energy transfer is negligible.

Afterward, the wavelength increases sharply while the

growth rate drops. This is indicative of nonlinear

inverse energy cascade that shifts the dominant mode to

larger scales.

Overall, the model-derived dependences of most un-

stable growth rate and wavelength on Ri agree reason-

ably well with the Stone predictions (Fig. 6). For Ri. 5

where neglecting nongeostrophic effects only amounts

to a less than 10% error and the Eady theory is valid, the

model results and the Stone and Eady theories collapse.

But, as Ri decreases, nongeostrophic effects become

increasingly more important, and the Stone theory

gives a better estimate of growth rate and wavelength.

This is reflected in that the root-mean-square deviation

(RMSD) of the Stone solution is smaller than Eady by a

factor of 2.5 and 1.2 for growth rate and wavelength,

respectively. For Ri , 1 (indicated by the dashed line),

sm deviates from the theories due mainly to the in-

fluences of symmetric instability. For a basic flow with-

out horizontal shear, Ri , 1 corresponds to a negative

Ertel potential vorticity [e.g., see Eq. (11) in Thomas

et al. 2008], permitting symmetric instability to occur.

Indeed, from the simulation of case 1 (Ri5 0.9), we see

rolls of vertical motion in the y–z plane that are gener-

ally along isopycnal surfaces (not shown), consistent

with the slant convection triggered by symmetric in-

stability. However, this slantwise motion with a fine

FIG. 6. (a) Themost unstable growth rate and (b) wavelength as a

function of Ri. The circles are model-derived sm and lm. Black and

gray curves are the Stone and Eady predictions [Eqs. (3) and (1)].

The QG regime is toward the right (e.g., Ri 5 Ro22), whereas the

symmetric instability can occur whenRi, 1. The RMSDs between

model-derived values and theoretical predictions) are given.
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cross-shore scale (;2–3 km) is only short lived (less

than a day) and is soon swamped by more cross-shore

uniform motion of baroclinic instability. The interplay

of baroclinic and symmetric instabilities is beyond the

scope of this study and thus not explored further.

The growth rate (sm/f0) increases with decreasing Ri

in the regime dominated by baroclinic instability (Fig. 6;

Ri . 1). This is because steepening of isopycnals with

decreasing Ri allows the disturbances to extract more

potential energy (as discussed in section 2a). Moreover,

when compared with the Eady mode, the nongeostrophic

baroclinic instability has a lower growth rate and a longer

wavelength.Nakamura (1988) explained this shift toward a

longermode by the shallowing of boundary-trappedwaves

as the nongeostrophic effect increases. The analyses in the

appendix B support Nakamura’s explanation (see below).

In addition to the growth rate and wavelength, the

baroclinic instability in these cases exhibits other wave

characteristics that agree with the classic theories. The

evidence is described in appendix B. Briefly, we estimate

the wave speed c and phase via cross correlations. Ver-

tical structure of the instability is diagnosed with the

root-mean-square of y0 (y0rms). The results shown by

Fig. B1 provide support for 1) phase locking of coun-

terpropagating, boundary-trapped waves, with c 5 U/2

for all cases; 2) westward phase tilt with top–bottom

phase difference near p/2; and 3) instability (wave)

amplitude that agrees with Eady solution in QG regime

(large Ri) but becomes shallower (i.e., faster decay away

from the boundary) in nongeostrophic cases as explained

by Nakamura (1988).

Overall, the consistency between these cases (varying

Ri, inviscid, flat bottom) and the Eady/Stone theories

suggests that the Eady-type numerical experiments

provide a good test bed for studying baroclinic insta-

bility in coastal flows. It also lends support to the use of

the analysis, with quantifications of growth rate, wave-

length, phase speed, and KE budget, to further explore

how the instability is affected by boundary dissipation

and bottom slope.

4. Influences of boundary dissipation

a. Structure and growth rate

We study the effects of bottom boundary dissipation

via examining the experiment Group 2 (run 7–21 in

Table 1). Like Fig. 5, Fig. 7 compares the spatial struc-

ture of instability, KE, and growth rate/wavelength

among three cases (run 12, 14, 17). These cases have

identical basic flow, with Ri5 10. They only differ in the

linear friction coefficients used (g5 0, 1024, 1023m s21),

and that the viscous cases have k–« closure turned on.

The friction factors correspond to DE of 0, 0.17, and 1.7

[Eq. (6)] or Ekman numberEk [5g/(f0H)] of 0, 0.04, and

0.4. The linear and quadratic friction coefficients tested

here span a realistic range of values for coastal flows

[g5 1025;1023 (m s21) as in Brink and Cherian (2013);

Cd 5 1023;1022].

Several conclusions can be drawn from this analysis.

First, instabilities occur in all cases, as the disturbances

show clear amplification in less than 15 days (Fig. 7c).

Including bottom drag reduces the energy level. For

example, the maximum value of y02 in Fig. 7d decreases

with increasing DE. However, a friction coefficient as

large as 1023m s21 does not stabilize the flow.

Second, from the KE budget in Figs. 7e2 and 7e3,

baroclinic instability is responsible for the disturbance

growth, as the baroclinic energy conversion (red curve)

dominates the initial increase ofKE. Barotropic instability

is again unimportant. After the initial growth, a steady

balance between baroclinic conversion and dissipation is

reached and maintained over an extended period.

Third, unlike the inviscid case (Fig. 7f1), the time se-

ries of growth rate in the viscous cases (Figs. 7f2,f3) show

two peaks. Diagnosing the Ertel PV suggests that the

first and second peaks correspond to symmetric and

baroclinic instabilities, respectively. In the viscous cases,

symmetric instability occurs near the surface in the be-

ginning, as shown by the finescale wiggles in Figs. 7a2

and 7a3. This is because the no-flux boundary condition

forces the near-boundary isopycnals to steepen such that

local PV becomes negative. However, the symmetric

instability is short lived as the surface density adjusts

rapidly to a symmetrically stable state. This instability

has no appreciable impact on the mean density structure

(cf. Figs. 7a1,a2), consistent with the findings of Brink

and Cherian (2013). After the initial adjustment, baro-

clinic instability (second peak), which requires sustained

and organized wave interactions, begins to dominate

(e.g., Haine and Marshall 1998). The second peak in

growth rate also corresponds to the sharp rise in

baroclinic conversion (cf. Figs. 7e2–f2), suggesting the

onset of baroclinic instability. Since our focus is on

baroclinic instability, we take the second peak in growth

rate and the corresponding wavelength (black and red

squares) to represent the most unstable mode.

b. Testing the Eady–Ekman theory

One main objective of this study is to evaluate

whether the Eady–Ekman theory can provide guidance

in understanding how coastal baroclinic instability re-

sponds to varying bottom drag and dissipation. To

evaluate the theory, we plot the model-derived growth

rate and wavelength against the friction parameter DE

for different values of Ri (Figs. 8a,c). The inviscid Eady
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FIG. 7. As in Fig. 5, but here Ri is held fixed (510). The three cases differ only in the linear friction factor used (g 5 0, 1024, and

1023 m s21; cases 12, 14, and 17 in Table 1), corresponding to DE 5 0, 0.17, and 1.7. Note that the basic flows (i.e., Fig. 5a) are not plotted

because they are identical.
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solution is at DE 5 0 [Eq. (1)]. Experiments using a

quadratic drag law are also included.

The Eady–Ekman theory captures the general re-

spons of baroclinic instability to increasing frictional

effects: The growth rate decreases, while the instability

shifts toward longer wavelength, presumably due to the

weakening of bottom buoyancy perturbations that slow

the bottom waves (Fig. 8e; see appendix B for how wave

phase speed is estimated), forcing the instability to

select a faster and longer wave mode to maintain the

coupling (e.g., Fig. 2b, section 2a; see more below).

However, the theory overestimates the reduction of

growth rate at large drag. For DE . 0.5 the model-

derived growth rate levels off, suggesting that the

baroclinic instability becomes insensitive to further in-

creases in friction coefficient. Yet, the theory predicts a

continued growth rate reduction. At DE 5 2.8, for ex-

ample, the reduction is overestimated by the theory by

FIG. 8. Evaluation of the Eady–Ekman theory. (a),(b) Growth rate, (c),(d) wavelength, and

(e),(f) bottom wave speed are plotted against the friction parameter DE. These quantities are

nondimensionalized by f0Ri20.5, Ld, and U, respectively [scales guided by the Eady model;

Eq. (1)]. (left) The original theory, with DE defined in Eq. (6). (right) Shown with D0
E [Eq.

(13)] that includes a correction for Ekman pumping at large drag. The model-derived

quantities are the open symbols. Theory is the black curve. The horizontal dashed lines in-

dicate the Eady solution.Wave speed estimates are described in appendix B. The RMSDs for

the model–theory comparisons are given.
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more than 70%. The wavelength and bottom wave speed

comparisons in Figs. 8c and 8e also exhibit a large

degree of scatter.

To further evaluate the validity of the theory and to

look into the causes for the discrepancies at large drag,

we examine the assumptions of the Eady–Ekmanmodel.

As schematized in Fig. 2a, the key assumptions are 1)

vertical segregation of inviscid interior and a boundary

layer (the instability grows in the inviscid interior, while

dissipation is concentrated in a thin boundary layer) and

2) interior instability is forced from below by Ekman

pumping (bottom stress induces Ekman transport). The

transport divergence then drives Ekman pumping that

modifies the interior instability.

Assuming separation of an energy converting interior

and a dissipative boundary layer is supported by the

model results in all cases. As an example, we show the

cross-shore structure of baroclinic energy conversion

and dissipation diagnosed from the KE budget [Eq.

(B1)] for a simulation with large drag (g 5 1023m s21;

DE 5 1.7; Fig. 9). Both processes occur quite uniformly

across the mean flow center, and are clearly segregated

in the vertical. The energy conversion takes place above a

thin boundary layer as denoted by the horizontal line,

whereas most of the energy dissipation occurs near the

bottom. Here we use the height where y0rms has a sub-

surface maximum to define the boundary layer (see be-

low). The region above this height accounts for over 95%

of the energy conversion, whereas over 80% of the dissi-

pation is found below. Similar patterns hold for all cases.

Next we examine the vertical structure of the in-

stability and bottom Ekman flows for different values of

DE (Fig. 10). The top panels show the vertical structure

of y0rms at maximal sm, averaged across the mean flow

center (over 1 Ld). The presence of bottom drag greatly

reduces the near-bottom velocity, compared to the Eady

model, such that y0rms exhibits a subsurface secondary

maximum. The height of the y0rms secondary maximum

(dashed lines) represents, on average, the zero-crossing

of stress profiles and is thus used to set the boundary

layer thickness dy0max. Above dy0max, the amplitude of

instability increases toward both boundaries like in the

Eady model. However, unlike the symmetric Eady

structure, y0rms with bottom drag is surface intensified.

This surface intensification is consistent with Fig. 2a and

Eq. (7). Ekman pumping acts to reduce the bottom

buoyancy perturbations, weakening the bottom waves

(see below).

The bottom Ekman transport is a robust feature in all

cases. In Fig. 10b, we compute the alongshore compo-

nent of the transport (2
Ð
u2 ug dz) and plot it against

the predictions of t0by/(r0f0) over the entire domain. The

transport is integrated from the bottom to dy0max. The

comparisons mostly follow the one-to-one relationship,

suggesting the dominance of Ekman flows in the bottom

layer. Note that, for the case with large drag (Fig. 10b3),

we integrate the transport to a height 1m above dy0max

because dy0max slightly underestimates the boundary

layer thickness.

While the above analyses support the assumptions of

inviscid interior and bottom Ekman flows, the Ekman

pumping formulation in the Eady–Ekman theory is

found to be problematic at large drag. The pumping

velocity at the top of a bottomEkman layer [w(z5 d)] is

proportional to the curl of bottom stress [Eq. (4)]. If we

parameterize the bottom stress using the interior ve-

locity at z 5 dy0max, in the case of linear friction, the

vertical velocity can be written in terms of interior

vorticity w 5 (g/f0)zy0max as in the Eady–Ekman

theory. However, our numerical simulations resolve

the boundary layer such that the bottom stress is com-

puted using the velocity at the lowest grid point (Warner

et al. 2008; Taylor and Sarkar 2008). This means that, for

FIG. 9. An evaluation of the conceptual Eady–Ekmanmodel that

assumes vertical separation of an inviscid interior and a dissipative

boundary layer (see Fig. 2a).The cross-shore structure of (a) baroclinic

energy conversion and (b) energy dissipation [seeEq. (B1) in appendix

B]. We choose the case with a largest friction factor as an example

(case 17; Fig. 7a3). The structure is taken at maximal growth rate

(square symbol in Fig. 7f3). Two sloped lines indicate the surface sa-

linity minimum and maximum that define the baroclinic zone (e.g.,

Fig. 5a1). The horizontal dashed lines denote the bottom boundary

layer height (see Fig. 10a and corresponding text).
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FIG. 10. Comparisons of (a) the vertical structure of unstable wave amplitude (y0rms 5
ffiffiffiffiffiffi
y02

p
), (b) alongshore

component of Ekman transport, (c) Ekman pumping formulation [Eq. (4)], and (d) bottom vorticity representation,

for three frictional cases (DE 5 0.17, 0.36, and 1.7 from left to right). In (a), the horizontal dashed line denotes the

subsurface maximum of y0rms (dy0max) that roughly represents the height of zero stress and thus boundary layer limit.

The structure of Eady wave is the gray curve. In (d) bottom vorticity zb vs interior vorticity zg is shown. The Eady–

Ekman theory assumes that zb can be approximated by zg (see text). In (b), (c), and (d), the geostrophic velocity ug,

vertical velocity w, and zg are taken immediately above the boundary layer. The black dots are the model results

over the entire domain. Note that for the large drag case in (b3), because using dy0max tends to underestimate the

boundary layer height, we compute the Ekman transport at 1m above dy0max. In (d), the gray lines are the linear fits,

with slopes of 1.2, 1.5, and 2.9 and a R2 of 0.9, 0.8, and 0.4, respectively.
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linear friction, the correct representation of Ekman

pumping is w 5 (g/f0)zb, where zb is the near-bottom

vorticity. Hence, the use of the Ekman pumping formu-

lation in the theory [Eq. (4)] is equivalent to assuming that

the near-bottom vorticity zb can be approximated by the

interior value zy0max.

The assumption of zb ’ zy0max is rather poor at large

drag. For relatively small drag (g # 23 1024m s21), the

model-derived vertical velocityw at the top of boundary

layer (z5 dy0max) is consistent with the Ekman pumping

predictions evaluated at the same height (Figs. 10c1,c2).

The interior vorticity is slightly greater than the near-

bottom value, but they generally follow the one-to-one

relationship (Figs. 10d1,d2). For example, in Fig. 10d1, a

linear regression gives zy0max’ 1.2zb, meaning that using

the interior vorticity to approximate zb leads to a 20%

error. By contrast, at large drag in Fig. 10c3, the Ekman

pumping predictions greatly overestimate the vertical

velocity. The regression in Fig. 10d3 suggests that the

use of zy0max overpredicts zb by a factor of 3. Such

symptoms also carry over to the cases with large

quadratic drag coefficients (runs 20–21 in Table 1).

As a result, the overestimated Ekman pumping in the

theory provides too large of a boundary forcing to the

interior or too much reduction in buoyancy pertur-

bations [Fig. 2a and Eq. (7)], which in turn leads to an

overestimation of growth rate reduction at large drag

in Fig. 8a.

c. Influences of a stratified Ekman layer

The overestimation of near-bottom vorticity and thus

Ekman pumping using interior vorticity is apparent in

the velocity profiles. The difference in y0rms across the

boundary layer in Fig. 10a3 (large drag) is clearly larger

than that in Fig. 10a1 (small drag). To investigate what

causes the velocity deficit to increase, we examine the

near-bottom structure of the flow (Fig. 11).

The observed increase in top–bottom velocity differ-

ence with increasing drag is consistent with the response

of a stratified Ekman layer. The deficit of y0rms is quite

small (;1 cm s21) with g 5 5 3 1025 (gray curve;

Fig. 11b), but it increases to over 5 cm s21 as g increases

to 1023 (black curve). Although the boundary layers are

thin (,3m), they remain stratified from about 0.5m

above the bottom, and their maximal N2 is not far from

the basic flow value of 2.56 3 1023 s22 (Fig. 11a). The

vertical shear

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(›u/›z)2 1 (›y/›z)2

q
generally increases

toward the bottom, but it has a notable subsurface

maximum (Fig. 11c). Here we overlay a scaling theory

proposed by Taylor and Sarkar (2008) for stratified

Ekman layer (dashed curves). The scaling relates the

shear with the classic law of the wall and overlying

stratification as

dV

dz
ab

’
u*
kz

ab

1N , (12)

where u*(5
ffiffiffiffiffiffiffiffiffiffiffi
t0b/r0

p
) is the friction velocity, k is the von

Kármán constant, and zab is height above bottom.

Without coefficient tuning, the scaling of shear for a

stratified Ekman layer shows vertical structure similar to

the model results (Fig. 11c). It suggests that the down-

ward increase of shear corresponds to the structure of

logarithmic velocity profile, but the shear of log law

decays rapidly as 1/zab. Away from the bottom, the shear

is supported by interior stratification N, thereby

showing a subsurface maximum. Indeed, the shear at

the near-bottom grid scales linearly with the log law

u*/(kzab) (Fig. 11d; squares), whereas the shear over the

upper half of dy0max is proportional to stratification N

(circles).

d. An empirical correction for the Ekman pumping

The above analyses have shown that the Eady–Ekman

theory overestimates the reduction of growth rate at

large drag due to overestimating Ekman pumping. This

occurs because, as the friction coefficient g increases, the

increased shear and boundary layer thickness, along

with finite stratification, weaken the near-bottom ve-

locity and vorticity zb [Eq. (12); Fig. 11]. The use of in-

terior vorticity to approximate the near-bottom value in

the theory thus leads to large errors at large drag

(Figs. 10a3,c3,d3). In other words, the baroclinic in-

stability loses sensitivity to the friction factor (Fig. 8a)

because the stratified Ekman layer tends to limit the

increases in bottom stress and Ekman pumping.

In the Eady–Ekman theory, the strength of Ekman

pumping is solely represented by the thickness d in the

friction parameterDE [5dk/S; Eq. (6)]. This dependence

comes from w 5 dzy0max [Eq. (4)], where d (5g/f0) sets

the proportionality between pumping velocity and in-

terior vorticity. We have seen that dzy0max overestimates

the actual vertical velocity at large drag, and this is ex-

plained by zy0max � zb (Figs. 10c3,d3). However, if we

insist on expressing w in term of the interior vorticity as

w 5 Dzy0max, the problem may be attributed to an

overestimation of the boundary layer thicknessD5 d5
g/f0, because, with the weakening of near-bottom ve-

locity, the bottom stress should not scale linearly with g.

A more sensible representation of the thickness may be

the stratified Ekman layer scaling D5 dstrat 5 u*/
ffiffiffiffiffiffiffiffi
Nf0

p
(Pollard et al. 1973; McWilliams et al. 2009), where the

thickness explicitly depends on bottom stress and in-

terior stratification N.

Based on the above argument, we make a correction

to the Ekman pumping velocity (w 5 dstratzy0max) and

introduce a rescaled friction parameter:

20 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 50



D0
E 5 d

strat
k/S5 u*/

ffiffiffiffiffiffiffiffi
Nf

0

q� �
(k/S) . (13)

This correction weakens the Ekman pumping at large

drag because dstart � g/f0. Using this corrected friction

parameter, the model–theory discrepancy at large drag

is reduced (e.g., Fig. 8a versus Fig. 8b). The overall

agreement is also significantly improved, as the model

results tend to collapse onto the theoretical curves

(Figs. 8b,d,f), except for a few cases with largest drag.

Quantitatively, the correction reduces the root-mean-

square deviation for growth rate and bottomwave speed

by a factor of 3 and 1.7, while the deviation for wave-

length remains comparable (;0.4; around 8% of the

mean wavelength). Although the correction is empirical,

the improved agreement provides support for attributing

the instability’s loss of sensitivity to friction factor at large

drag to the boundary layer response, which tends to limit

the strength of bottom stress and Ekman pumping.

5. Influences of bottom slope

a. Structure and growth rate

Finally we investigate the effects of bottom slope

(Group 3 in Table 1). As in Figs. 5 and 7, we compare the

instability structure and time series of energy level, KE

budget, and growth rate among three cases (Fig. 12).

FIG. 11. Near-bottom (#3m) structure of (a)N2, (b) y0rms, (c) vertical shear, for two cases with contrasting friction

factors [g 5 53 1025 (gray) and 1023 (black) m s21]. These quantities are rms values (i.e., in alongshore direction)

and averaged over the mean flow center. In (a) and (b), the horizontal dashed lines indicate the boundary heights

for the two cases. In (c), the scaling of shear for a stratified Ekman layer [Eq. (12)] is indicated by the dashed curves.

(d) Comparison of the law of the wall scaling for the bottom grid point (squares) and stratified scaling (shear;N)

for the upper half of the boundary layer (circles).
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FIG. 12. As in Fig. 5, but here Ri is held fixed (510). The three cases differ only in the bottom slope (SB5 0, 43 1024, and

6 3 1024; H 5 40m; cases 22, 24, and 26 in Table 1), corresponding to d 5 0, 20.2, and 20.3.
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These three cases (runs 22, 24, 27) differ only in the

bottom slope (Fig. 12a). They have identical isopycnal

slopes, with Ri 5 10 (same M2 and N2). The basic flow

has the same width of 40 km, centered at the mean depth

of 40m. As before, we quantify the instability growth

rate and wavelength across half of the mean flow (i.e.,

centered at H 5 40m). The simulations are carried out

with viscosity set to zero.

Increasing bottom slope tends to suppress the growth

of baroclinic instability (Fig. 12). The growth in KE is

primarily driven by baroclinic energy conversion

(Fig. 12f), suggesting the dominance of baroclinic in-

stability as in the other cases studied. As the bottom

slope increases, the amplitude of the disturbances in

surface salinity decreases (e.g., Figs. 12c1–c3,d1–d3).

This suppression of instability is clearly reflected in

the time series where the levels of y02 and growth rate

both decrease with increasing slope (Figs. 12e1–

e3,g1–g3). In particular, the growth rate of the most

unstable mode sm (black squares) decreases from

1.2 3 1025 to 0.62 3 1025 (s21) as the slope increases.

The corresponding wavelength lm also shortens from

23.8 to 18.6 (km).

b. Testing Blumsack and Gierasch’s theory

We evaluate the utility of a quasigeostrophic theory,

here the BG72model for slope effects, by comparing the

predictions against the model results (Fig. 13). Recall

that the steepness of bottom slope is measured relative

to isopycnal slope (d 5 SB/S). The term d is negative

because these two slopes are tilted in the opposite way.

The theory captures the decrease in growth rate, shift

to shorter wavelength, and increase in bottom wave

speed with increasing slope ratio jdj (Fig. 13). Over

relatively gentle bottom slopes (i.e., jdj # 0.5), the

agreement is very good for the wave speed and wave-

length. The theory tends to overestimate the growth rate

by a mean error of around 30% (Fig. 13a). However,

overall, there is a reasonable agreement between BG72

theory and the numerical model results for jdj # 0.5.

The decrease in growth rate with increasing slope may

be understood by noting that an offshore displacement

along the lower boundary would force a buoyant water

parcel downward, unfavorable to the release of potential

energy (BG72). The instability selects a shorter wave

mode in order to counter the speedup of bottom waves

(see section 2a). However, it should be noted that the

predictability of the theory appears to deteriorate as jdj
increases. The error of growth rate estimates increases

from 14% to over 75% as d changes from 0 to 20.6

(Fig. 13a). The model–theory deviations in estimates of

wave speed and wavelength also increase for large jdj
(Figs. 13b,c), suggesting missing dynamics in the theory

over steep slopes, which is explored further in the next

subsection.

c. Influences of horizontal shear and eddy tilting

We suggest that the decrease in predictive skill of the

theory as the bottom slope steepens is linked to the

FIG. 13. Evaluation of BG72 theory for the slope effect on the

baroclinic instability. (a) Growth rate, (b) wavelength, and (c) bottom

wave speed are plotted against the slope ratio d [Eq. (10)]. These

quantities are dimensionless as in Fig. 8. The model-derived

quantities are the open symbols. Black curves indicate BG72 the-

ory. The horizontal gray dashed lines indicate the Eady solution. In

(b), the black dashed curve (k5 22 d) is an approximate marginal

stability condition obtained by matching top and bottom wave

speed (see section 2a). The RMSDs for the model–theory com-

parisons are given.
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increase in influence of horizontal shear which was not

included in the BG72 model. We first recognize that a bal-

anced mean flow with zero bottom velocity will have in-

creased horizontal shear as the bottom slope steepens, due

simply to the depth variation [›U/›y 5 (M2/f0)›H/›y 5
2(M2/f0)SB]. However, in BG72, this effect is assumed

negligible for mild slopes.

The influence of horizontal shear on the eddy field is

illustrated in Fig. 14, comparing three cases that differ

only in bottom slope. The panels from top to bottom are

the top view of fluctuating surface elevation h0, surface
mean flow speed as a function of cross-shore distance, and

cross-shore profiles of eddy momentum fluxes u0y0 and
barotropic energy conversion in the eddy kinetic energy

budget [Eq. (B1)]. Parameter h0 is a proxy for geostrophic
eddy orientation (i.e., pressure field). Figure 14d shows

only the dominant termof the conversion that is associated

with horizontal shear (2u0y0›u/›y).
Horizontal shear at the surface clearly increases with

bottom slope (Fig. 14b). As the slope steepens, the

surface eddies are increasingly tilted in northeast–

southwest direction (toward offshore and 1x) by the

mean horizontal shear (Fig. 14a). This eddy orientation

leads to predominantly positive eddy momentum fluxes

across the mean flow (Figs. 14c2,c3). The magnitude of

u0y0 increases with the tilt and hence with the bottom

slope. The positive u0y0 due to tilted eddies occurs mostly

over the region with ›U/›y . 0. This means that the

momentum fluxes are largely upgradient, acting to

convert the eddy kinetic energy back to the mean flow

(i.e., negative energy conversion in Figs. 14d2,d3) and

therefore reducing the instability growth.

The loss of eddy kinetic energy via upgradient mo-

mentum fluxes due to tilted eddies is further supported

by diagnosis of the energy equation. In Fig. 15, we plot

the volume-integrated barotropic energy conversion

against the slope ratio d for all cases. To compare among

different basic states, we normalize the barotropic con-

version by the dominant (positive) eddy kinetic energy

source of baroclinic conversion. The conversion ratio is

evaluated at the time of maximal growth rate, but the

result is robust within a window of a few days before

finite-amplitude effects become significant. Barotropic

energy conversion during maximal growth is negative

FIG. 14. Comparisons of (a) eddy orientation, (b) cross-shore profile of initial surface mean flow, (c) eddy momentum flux u0y0, and
(d) barotropic energy conversion (2u0y0›u/›y), for the three cases shown in Fig. 12; (a), (c), and (d) are taken at the maximal growth rate

(squares in Fig. 12g). Shown in (a) is the top view of pressure perturbations normalized by the maximal value. In (d), only the dominant

conversion [first term on the right in Eq. (B1)] is plotted. In (c1), the contour limits aremultiplied by two for better visualization.At the top

right corner, a schematic is shown to illustrate how horizontally shearedmean flow [arrow lines; (b2) and (b3)] tilts an eddy (a tilted ellipse)

that leads to predominantly negative energy conversion in (d2) and (d3).
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for all cases with a sloping bottom (Fig. 15). Over rela-

tively gentle slopes (jdj # 0.5), the conversion ratio

scales positively with d (as indicated by the linear fit),

meaning that the barotropic conversion becomes more

negative as the bottom slope steepens. This pattern is

consistent with the interpretation in Fig. 14, that in-

creasing eddy tilting by bottom-slope-induced horizon-

tal shear converts more eddy kinetic energy back to the

mean. In other words, the bottom-slope-induced hori-

zontal shear acts as an energy sink to suppress the in-

stability growth. Because BG72 theory did not include

this effect, the theory increasingly overestimates the

growth rate as the bottom slope steepens (Fig. 13a). The

positive relationship between conversion ratio and

d appears to break down at steep slopes, when jdj ex-
ceeds around 0.5 (Fig. 15). Detailed analyses of routes of

energy transfer and the potential influences of baro-

tropic instability are beyond the scope of this work and

thus left for future studies.

6. Summary and discussion

The main objective of this study is to examine the

utility of the Eady-type theories in understanding

baroclinic instability in coastal buoyancy-driven flows.

We focus on the effects of nongeostrophy, boundary

dissipation, and bottom slope.

Not surprisingly, with an Eady-like basic state and in

the absence of viscosity (e.g., valid for interior flow),

bottom slope, and horizontal shear, the coastal baroclinic

instability shows growth rate and wave properties consis-

tent with the Eady theory. The governing parameter is the

Richardson number Ri [5N2f 20M
24 5Ro22; Eq. (2)].

When the basic state is in the quasigeostrophic regime

(Ri . 5), the ROMS-derived growth rate sm and

wavelength lm for the most unstable mode agree with

Eady predictions of 0.31f0Ri21/2 and 3.9Ld (Fig. 6). QG

or not, the growth rate varies inversely with Ri because a

steeper isopycnal associated with a smaller Ri (e.g.,

decreasingN2 while holdingM2 and f0 constant) allows a

horizontally displaced parcel to rise higher and thus

releases more potential energy [Eqs. (1) and (3)]. This

study also confirms that the growing instability in the

numerical experiments can be interpreted as mutual

reinforcement of boundary-trapped Rossby waves (e.g.,

Hoskins et al. 1985). Specifically, we find evidence for

wave phase locking, with counterpropagating waves that

translate at the same apparent speed of U/2, and west-

ward phase tilt, with top–bottom phase difference near

p/2, allowing waves to be mutually amplified (Fig. B1).

As Ri decreases, the steepened isopycnal slope gives

rise to nonnegligible vertical motion and hence increases

the non-QG effects. Stone’s (1966) theory is shown to

give reasonably accurate nongeostrophic corrections for

Ri. 1: comparedwith theEadymode, the nongeostrophic

baroclinic instability has a lower growth rate and longer

wavelength as predicted by Eq. (3) (Fig. 6). The shift to a

longer wave mode is consistent with Nakamura’s (1988)

explanation. That is, nongeostrophy makes the boundary-

trapped waves shallower (Fig. B1e). The instability thus

tends to select longer waves to maintain the vertical

coupling.

Contrary to the agreement with Stone’s nongeostrophic

theory, themodel results suggest that, even under idealized

settings, the Eady–Ekman and BG72 theories have in-

herent limitations, due to the neglect of boundary layer

responses and horizontal shear, respectively.

For boundary dissipation, the analyses support the

conceptual model put forth by the Eady–Ekman theory,

but there are problems at large drag. Dissipation con-

centrates in a thin boundary layer which affects the in-

stability via inducing Ekman pumping at the lower

boundary of the interior flow (Fig. 10). The theory

introduces a bottom friction parameter DE [Eq. (6)],

which assumes that the strength of pumping w increases

linearly with the friction factor g [Eq. (4)]. Qualitatively,

the Eady–Ekman theory captures the general tendency

of decreasing growth rate and increasing wavelength

when bottom friction DE increases (Figs. 8a,c). How-

ever, the theory overestimates the growth rate reduction

at largeDE (e.g., by 70%atDE5 2.8). The problem lies in

that the bottom stress does not increase linearly with g.

FIG. 15. Volume-integrated barotropic energy conversion

against the slope ratio d for all cases with a bottom slope (cases 22

to 34). The barotropic conversion is normalized by baroclinic

conversion [2C(KE, KM)/C(PE, KE); Eq. (B2)] and is computed

at maximal growth rate. Note that the barotropic conversion is

negative for all cases with a nonzero bottom slope. The gray line is

a linear fit for d.20.5 (R2 5 0.93), indicating a positive relation

between the bottom slope and barotropic energy conversion (see

section 5c).
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Instead, the increased vertical shear and boundary

layer thickness, along with the presence of stratification,

weakens the near-bottom velocity [Fig. 11 and Eq. (11)].

This boundary layer response buffers the increase of

bottom stress, which in turn limits Ekman pumping and

the slowdown of bottom waves [Eq. (7)]. An empirical

correction ofEkman pumping inDE [Eq. (13)] significantly

improves the model–theory comparison (Figs. 8b,d,f),

highlighting the key role of Ekman pumping in modifying

the instability properties.

For bottom slope, BG72 theory provides reasonable

predictability over gentle slopes. However, agreement

between the simulations and theory decreases as the

bottom slope increases, and the slope-induced horizon-

tal shear in the basic state, which is not accounted for in

the theory, becomes significant. A key parameter here is

the slope ratio d [Eq. (10)], for which we consider only

negative values with the bottom and isopycnals tilted in

opposite directions. Over a relatively gentle bottom

slope (jdj , 0.5), as jdj increases, the observed decrease

in wavelength and increase in bottom wave speed are

well represented by BG72 (Figs. 13b,c). The theory also

captures the reduction in growth rate.

Bottom slope induces horizontal shear in the basic

state via the thermal wind relation. This shear increases

with bottom slope. As jdj increases, the sheared flow tilts

the eddies and increasingly favors convertingKE back to

the mean flow (Fig. 14). The slope-induced horizontal

shear therefore acts as an energy sink to suppress the

instability, leading to the increased theory–model

discrepancies.

a. Interpreting the friction and slope parameters and
scale selection

We now expand on the implications and limitations of

this work. The analyses in this study clearly show the

dependence of instability properties on the friction pa-

rameter DE and slope ratio d. In addition to their links to

bottom buoyancy perturbations (section 2a), the physi-

cal meaning of these two parameters may be further

illuminated from a geometric (or potential vorticity)

perspective. Using Eqs. (4), (7), and (11), we find, for flat

bottom with friction,

[(w/y0)/S]j
z50

5 iD
E
5 i(dk/S) , (14a)

and, for sloping bottom with zero friction,

[(w/y0)/S]j
z50

5 d5 S
B
/S . (14b)

These expressions make explicit the fact that, in terms of

scales, DE and d both represent the slope of the bottom

parcel trajectory (w/y0), relative to the isopycnal slope S.

The importance of parcel trajectory can be understood

in the context of vortex stretching/squashing. Recall

from Fig. 1a that the generation of boundary-trapped

waves in the Eady model can be interpreted via

stretching/squashing of a vortex element. An offshore

displacement along the lower boundary tends to induce

stretching and cyclonic circulation, leading to wave

propagation in the 1x direction (Fig. 1c).

We suggest, using geometric arguments, that when the

friction effect is included, Ekman pumping reduces

vortex stretching due to the upward–seaward bottom

parcel movement (w. 0, y0 . 0; thick arrow in Fig. 2a).

Conversely, the presence of a bottom slope enhances the

stretching by requiring the parcel to move parallel to

the topography (w , 0, y0 . 0 in Fig. 2b). Therefore, in

the case of friction (bottom slope with d# 0), the parcel

movements effectively reduce (enhance) the background

PV gradients and thus decrease (increase) the bottom

wave speed (Figs. 3b,d). The slowdown (speedup) of the

bottomwave then forces the instability to select a longer

(shorter) wave mode to maintain the phase lock

(Figs. 3a,c).

WhileDE and d can both be interpreted as slope ratios,

we cannot make a quantitative analogy between the

friction and bottom slope effects. Based on the above

PV argument, bottom Rossby waves will not exist when

the slope ratio becomes one, because a horizontally

displaced vortex element cannot be stretched/squashed.

Without the bottom wave to interact and resonate with

the topwave, an instability will not grow. Indeed, we find

that the instability growth rate vanishes with d $ 1 as

shown in Fig. 3c.

However, such a behavior cannot be seen for the

frictional effects. In Fig. 3a, there is still finite growth

rate with DE $ 1. The main difference may lie in that, in

the case of bottom friction, w and y0 are 908 out of phase
[Eq. (14a)]. This relation simply reflects that the maxi-

mum pumping occurs where the spatial gradient of y0

and thus divergence of Ekman transport is maximal.

Therefore, the maximal w and y0 are staggered in both

space and time, contrary to the collocated w and y0

extrema over a sloping bottom.

b. Linkage with prior studies

The findings of this work have clear linkages with

prior studies. For example, Brink and Cherian (2013)

and Hetland (2017) both invoked frictional spindown as

key processes in their modeling studies on the baroclini-

cally unstable tidal mixing fronts and coastal currents.

Brink and Cherian (2013) proposed a scaling for fric-

tionally damped eddy kinetic energy, based on amismatch

of spindown and eddy turnover time scales.Hetland (2017)

used similar time-scale mismatch arguments to isolate the
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cases where frictional processes are negligible. The

presence of spindown is clearly supported by this study.

Not surprisingly, bottom Ekman transport is a robust

feature in all frictional cases (Fig. 10), and the nearly in-

viscid interior is forced by Ekman pumping. However, this

study points out further that the frictional influence on the

instability does not increase proportionally with the fric-

tion factors (linear or quadratic; Figs. 8a,c,e). The in-

creased vertical shear across the boundary layer tends to

weaken the near-bottom flow, thereby limiting the in-

crease in bottom stress and Ekman pumping. This buff-

ering effect of the boundary layer may explain why the

eddy length scales became insensitive to the linear friction

factor as reported by Brink and Cherian (2013, their

Fig. 7). Moreover, we expect the weakening in sensitivity

to the friction factor to be a generic process in coastal flows.

Thus, parameterizations for eddy fluxes that are based on

Eady-type linear theories [e.g., following Stone’s (1972)

approach] will likely need different friction-factor de-

pendences at least for small and large drag regimes.

For bottom slope effects, several recent studies have

incorporated bottom slope dependence into the scalings

for eddy length scales, growth rate, and buoyancy fluxes

(e.g., Brink 2012; Zhang and Gawarkiewicz 2015; Spall

2004). The general form for some of the scalings may be

deduced directly from the BG72 theory. For example,

Brink (2012) scaled the eddy length and growth rate of

baroclinically unstable tidal mixing fronts as l/Ld ;
1/(1 1 b2s) and s/(f0Ri20.5) ;1/(1 1 b1s), respectively,

where s52SBN/f0 is the slopeBurger number and b1, b2
are empirical constants. Zhang and Gawarkiewicz (2015)

applied similar scalings to characterize unstable shelfbreak

fronts. We can see immediately from the above functional

form that bottom slope SB exerts a stabilizing effect and

makes the most unstable waves shorter (s. 0), consistent

with BG72 (Fig. 13). If we use BG72’s approximate

marginal stability condition (i.e., matching top and

bottom wave speed; section 2a) of ~k5 (2p/l)Ld 5 22 d

and note that d5 SBN
2/M2 52s

ffiffiffiffiffiffi
Ri

p
, we obtain l/Ld 5

p/[11 (Ri1/2/2)s], yielding a similar functional form as

above. The consistency thus provides a theoretical basis

for the prior scalings.

Note however that our study also emphasizes the

limitations of BG72. As the bottom slope steepens, the

slope-induced horizontal shear leads to increasing and

nonnegligible differences between ROMS-derived and

BG72 growth rates. This result therefore suggests cau-

tion in applying the existing scalings to systems with

steep topography. Taking jdj 5 0.5 as a limit (Fig. 13)

and Ri 5 5 for nearly QG basic flows, we may expect

BG72 theory to be applicable for s # 0.2, beyond which

the slope-induced horizontal shear would lead to sig-

nificant errors (Fig. 13a).

The tight coupling between the bottom slope and

horizontal shear shown in this study also has implica-

tions for coastal current stability. In a recent attempt to

understand why unstable coastal currents were rarely

reported in the literature, Hetland (2017) proposed that,

due to the proximity to a coastal boundary, the width of

the coastal currents may be too narrow for baroclinic

eddies to develop. This conclusion was drawn primarily

from ROMS simulations showing instabilities being in-

hibited over a range of parameters, which contradicts

the finite growth rate predicted by BG72 (e.g., finite

s for jdj # 2 in Fig. 3c). Considering that, even without

invoking effects such as bottom drag, nongeostrophy,

and width, the slope-induced horizontal shear alone can

reduce BG72-predicted growth rate by more than 50%

at jdj; 0.5 (Fig. 13a), it seems plausible that some of the

inhibited growth in Hetland (2017) may be attributed to

horizontal shear. However, the width dependence and

horizontal shear are hard to separate as they are both

scaled by the coastal current width. Nevertheless, the

coupling of slope and horizontal shear is another stabi-

lizing factor that requires further consideration.

It is worth noting that horizontal shear stabilization is

well established in the atmospheric science literature

(referred to as the ‘‘barotropic governor’’). James (1987)

suggested that the eddy energy transfer from potential

to mean kinetic energy that strengthens the atmospheric

eddy-driven jets can be hindered when the horizontal

shear of a barotropic jet becomes large enough to reduce

the meridional coherence of the eddy field. There ap-

pears to be differences between the barotropic governor

and slope-induced horizontal shear. The former is part

of a nonlinear feedback loop (e.g., Nakamura 1993),

whereas the latter can operate at the linear stage of in-

stability growth (Fig. 13). Yet, their mechanisms are the

same: horizontal shear affects the eddy orientation and

thus the eddy energy conversion rate [Eq. (B2)].

Therefore, insights gained from the barotropic governor

effect could benefit further investigations on the slope–

shear coupling.

Finally, this study has focused on individual effects,

aiming to solidify our fundamental understanding of

baroclinic instability over continental shelves. The com-

bined effects of bottomdrag, bottom slope, nongeostrophy,

and horizontal shear are left largely unaddressed

(except for some limited analyses on slope-horizontal

shear coupling). When these effects are combined to

represent more realistic basic flows (Fig. 4h), it is clearly

important to identify the parameter regimes over which

one particular effect may dominate. Also, combining the

effects could potentially introduce additional processes

that merit further investigation. For example, consid-

ering bottom drag over a sloping bottom allows bottom
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stress to adjust via buoyancy shutdown (e.g., MacCready

and Rhines 1991; Brink and Lentz 2010). This may further

limit Ekman pumping and thereby modify the interior

instability. The mixed barotropic–baroclinic and sym-

metric instabilities could come into play when horizon-

tal shear and nongeostrophy are included (e.g., Allen

and Newberger 1998; Wenegrat et al. 2018). Addi-

tionally, forcing by wind and tides is expected to

modify the coastal baroclinic instability throughmixing

and supplying/removing available potential energy. In

viewof the scope of the full problem, this study represents

a small step toward a comprehensive understanding of

instabilities over continental shelves.
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APPENDIX A

Eady-Type Models

a. Eady model (inviscid problem without
topography)

TheEady problem is briefly reviewed here.We closely

follow the notation of Vallis (2017). Skipping the lineari-

zation of the quasigeostrophic potential vorticity conser-

vation equation, we go straight to an equation set

applicable to Eady’s simple basic flow. For detailed deri-

vations, refer toVallis [2017, chapter 9, Eqs. (9.62)–(9.78)].

The linearized QGPV equation below describes pure

alongshore (zonal) advection of QGPV perturbations

�
›

›t
1Lz

›

›x

��
=2c0 1

f 20
N2

›2c0

›z2

�
5 0, (A1)

where the term in the first parentheses is an advection

operator [mean flow u(z)5Lz; z5 0 at the bottom], and

the second is the QGPV perturbation q0 due to relative

vorticity and vortex stretching, with c0 being the pertur-

bation streamfunction, (u0, y0) 5 (2›c0/›y, ›c0/›x). An

overbar refers to an alongshore mean and a prime

denotes a perturbation. Equation (A1) incorporates the

simplifications associated with the Eady basic flow. The

purely alongshoremean flow u is balanced and horizontally

uniform, has constant vertical shear, constant stratifi-

cation, constant depth, and is on an f plane (Fig. 1a).

Hence, the following parameters are all constant: buoy-

ancy frequency N (N2 5 ›b/›z; where b is buoyancy),

cross-shore buoyancy gradient (M2 52›b/›y), Coriolis

parameter f0, thermal wind shear (L 5 M2/f), and the

isopycnal slope (S 5 M2/N2). Note also that the cross-

shore advection of the background PV gradient

(y0›q/›y) does not appear in Eq. (A1). This is followed

from ›q/›y52uyy 2 (f 20/N
2)uzz 5 0 (subscripts denote

partial derivatives) as the linearly shearedmean flow has

zero curvature.

In a reentry channel, plane-wave solutions of the form

c0 5ReF(z) sinlyeik(x2ct) for Eq. (A1) can be found

[imposing c0(y 5 0, L) 5 0]. The waves have an expo-

nential structure in the vertical. The general solution is

F(z)5A cosh(m~z)1B sinh(m~z), where A and B are un-

determined coefficients, ~z(5z/H) is a scaled height, and

m (5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 l2

p
Ld) is the horizontal wavenumber nor-

malized by the deformation radius Ld (5NH/f0). The

top and bottom boundary conditions are w(z 5 H) 5
w(z 5 0) 5 0. In Eady-type models, the boundary condi-

tions come in through linearized buoyancy conservation

�
›

›t
1 u

›

›x

�
b0 1

›b

›y
y0 1N2w5 0, (A2)

where the buoyancy perturbation b0 can be expressed as

f0›c
0/›z via the hydrostatic relation. The boundary

conditions are

w(z5H)5 0 :

�
›

›t
1U

›

›x

�
f
0

›c0

›z
2Lf

0

›c0

›x
5 0, (A3a)

w(z5 0)5 0 :

�
›

›t

�
f
0

›c0

›z
2Lf

0

›c0

›x
5 0. (A3b)

with the velocity scale U 5 LH. Plugging c0 5
Re[(A coshm~z1B sinhm~z) sinlyeik(x2ct)] into Eq. (A3)

and nondimensionalizing velocity by U, spatial scale

by Ld, and time scale by Ld/U, we find that the di-

mensionless phase speed ~c(5c/U) for nontrivial solu-

tions (i.e., A, B 6¼ 0) is given by

~c5
1

2
6

1

2

�
11

4

m2
2

4

m
coth(m)

�1/2
. (A4)

The phase speed (~c5 ~cr 6 i~ci) is complex. A wave mode

with alongshore wavenumber ~k(5kLd) will grow expo-

nentially with time at a rate of ~k~ci if the imaginary part of

the phase speed ~ci is nonzero. Because our focus is on the

fastest growing baroclinic instability, throughout this work

we assume perturbation variables are uniform in cross-

shore direction (l / 0; m5 ~k). The growth rate is then
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~s5 ~k~c
i
5 [ ~k coth( ~k)2 12 ~k2/4]1/2 . (A5)

Using Eq. (A3b), we rewrite F5 [cosh( ~k~z)2
(~c ~k)21 sinh( ~k~z)]A. The vertical structure of wave am-

plitude and phase can be readily determined by (FF*)1/2

and tan21[Im(F)/Re(F)], respectively (see below).

The properties of the Eady solution are shown in

Fig. A1 (for l 5 0). The most unstable mode has a

maximum ~s of 0.31 at ~k’ 1:61 (Fig. A1a). Dimension-

ally, this corresponds to the Eady growth rate s 5 kci 5
0.31f0Ri20.5 andwavelength l5 (2p/1.61)Ld5 3.9Ld [as

in Eq. (1); s is scaled by U/Ld 5 f0Ri20.5]. In Fig. A1a,

there is a well-known short-wave cutoff at ~k5 2:4, be-

yond which the boundary-trapped waves cannot main-

tain phase locking (as the intrinsic phase speed is too

slow) and their vertical coupling diminishes as wave-

number increases (i.e., F decays exponentially as ~k~z).

Over the unstable range ( ~k, 2:4), the waves propagate

in the1x direction at half of themean flow speed (c/U5
0.5 in Fig. A1c), satisfying the phase-locking condition.

The most unstable mode has the bottom wave leading

the top by p/2 (Fig. A1b) and is boundary-intensified

(Fig. A1d). These features are consistent with Hoskins

et al’s (1985) interpretation of baroclinic instability in

terms of Rossby wave interactions. This wave in-

terpretation is described in section 2a of the main text.

b. Boundary dissipation effect (Eady–Ekman model)

As described in section 2a(2), in the Eady–Ekman

model the boundary dissipative effect is represented by

Ekman pumping that forces the inviscid interior at its

lower boundary (i.e., top of the Ekman layer; Fig. 2a).

The lower boundary condition of the original Eady

problem [Eq. (A3b)] is replaced by Eq. (5). Following

the same solution procedure, the phase speed becomes

(again for l 5 0)

~c5
1

2

2
412 iD

E

coth( ~k)
~k

3
56

1

2

8<
:
2
412 iD

E

coth( ~k)
~k

3
5
2

2 4(12 iD
E
)

2
4coth( ~k)

~k
2

1
~k2

3
5
9=
;

1/2

, (A6)

where the friction parameter DE [Eq. (6)] is a di-

mensionless measure of Ekman pumping strength.

FIG. A1. The Eady solution properties (for l5 0). (a) Growth rate and (c) phase speed are

plotted against the dimensionless alongshore wavenumber ~k, according to Eqs. (A4) and

(A5). In (a), the growth rate (s 5 kci) is made dimensionless by f0Ri20.5. The most unstable

(Eady) mode, with s 5 0.31f0Ri20.5 and ~k5 kLd 5 1:61 [Eq. (1)], is indicated by the dashed

lines. In (c), the solid and dashed curves are the real and imaginary part of the wave speed. (b),

(d) The vertical structure of wave phase and amplitude for the most unstable mode. For the

most unstable mode, the wave speed ofU/2 in (c), top–bottom phase difference of p/2 in (b),

and boundary-intensified wave amplitude in (d) are consistent with Hoskins et al.’s (1985)

Rossby wave resonance interpretation (see section 2a).
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The vertical structure function is F5 [cosh( ~k~z)2 (12
iDE)(~c ~k)

21 sinh( ~k~z)]A. This solution gives the inviscid

Eady solution whenDE5 0.We can calculate the growth

rate ~k~ci (as plotted in Fig. 3a) and vertical profiles of

amplitude and phase with F(~z) as described above.

c. Bottom slope effect (BG72)

As with boundary dissipation, the bottom slope ef-

fect is incorporated into the Eady model through the

lower boundary condition [see section 2a(3)]. Equa-

tion (A3b) is now replaced by Eq. (9). The phase

speed is

~c5
1

2

2
412 d

coth( ~k)
~k

3
56

1

2

8<
:
2
412 d

coth( ~k)
~k

3
5
2

2 4(12 d)

2
4coth( ~k)

~k
2

1
~k2

3
5
9=
;

1/2

, (A7)

where d [Eq. (10)] measures the steepness of a bottom

slope relative to the isopycnal slope, and the

vertical structure is given by F5 [cosh( ~k~z)2 (12
d)(~c ~k)21 sinh( ~k~z)]A. The growth rate is

~s5 ~k~c
i
5 f(12 d)[ ~k coth( ~k)2 1]2 [ ~k2 d coth( ~k)]2/4g1/2,

(A8)

identical to the solution of BG72 [their Eq. (3.11)]. The

growth rate in ~k–d space is plotted in Fig. 3c. It is worth

noting the similarity between the Eady–Ekman and

BG72 models. Their lower boundary conditions and

governing parameters have similar forms [Eqs. (5)–(7)

versus Eqs. (9)–(11)] such that the solutions of phase

speed [Eqs. (A6) and (A7)] are nearly identical (i.e.,

replacing iDE by d). This analogy will be elaborated on

further in section 6a.

APPENDIX B

Metrics for Analyses

We evaluate the properties of Eady-type theories

against the numerical model results using the follow-

ing metrics: the most unstable growth rate, wave-

length, vertical structure of wave speed, phase, and

amplitude. In addition, the energetics is examined via

the volume-integrated eddy kinetic energy budget.

Calculations of growth rate and wavelength have been

described in the main text. Here we use an example

to illustrate how the other metrics are defined and

calculated.

The wave speed and phase are estimated by computing

cross correlations in time and in the vertical coordinate,

respectively. For wave speed, we take an alongshore

profile of the perturbation cross-shore velocity y0 at a y

location and find the spatial lag Dx that has the maximum

correlation between y0(x, t) and y0(x, t1Dt) (Dt5 12h; y0 is
normalized to have an amplitude of 1). The phase speed is

Dx/Dt. We make estimates over a time period of 3 days

centered at the maximal growth rate (e.g., same as sm in

Fig. 5g) and for y locations that span 1/4 of themean flow

center. These estimates are then averaged to obtain a

representative value.

A similar procedure is applied to determine the ver-

tical wave phase. At the time of maximum growth rate,

we computed the x lag (Dx) of maximum correlation

between y0 at the surface and y0 at all other depths. We

also estimate the wavelength as 2 times the distance

between maximum and minimum x-lagged correlations

in y0. The wave phase in radians is then 2pDx/l. The
vertical structure of wave amplitude is the root-mean-

square of y0 (i.e., in the alongshore direction) and is then

averaged over a 3-day window and across the mean flow

center (e.g., Fig. 10a).

Figure B1 provides an example for the above calcu-

lations. It also serves as a comparison to the Eady

theory. For wave speed, Figs. B1a and B1b are

the Hovmöller diagrams of the top and bottom y0 at the
mean flow center for a case with Ri5 15 (Fig. 5a1). The

contour tilts clearly indicate wave propagation in the1x

direction. The contour slope at the surface (Fig. B1a) is

steeper than a reference slope for mean flow advection

(black line), indicating that the top wave propagates in

the 2x direction, relative to the mean flow. Cross-

correlation estimates show that the apparent wave

speed is U/2, regardless the value of Ri (Fig. B1f; cases

2–5). The unstable waves in the model are therefore

consistent with Eady’s solution and Hoskins et al.’s

(1985) interpretation. Counterpropagating top and

bottom waves riding on the mean flow propagate at a

phase-locking speed of U/2.

For wave phase, a snapshot of y0 along the x–z plane

shows a clear westward phase tilt (cf. Fig. B1c and

Fig. 1d). Cross-correlation calculations in Fig. B1d

yield a phase structure (black curve) that agrees well

with Eady’s most unstable mode (gray). This phase re-

lation thus allows waves to amplify each other, manifested

as growing instability.

In addition, thewave amplitude y0rms shows a boundary

intensified structure consistent with the Eady solution

(Fig. B1e). When Ri decreases, y0rms decays toward the

interior at a shorter vertical scale. This behavior is

consistent with the increasing nongeostrophic influences

proposed by Nakamura (1988).
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Finally, to diagnose the energy source of the in-

stability, we examine the volume integrated eddy

kinetic energy KE budget. The derivation and nota-

tion follow von Storch et al. (2012). The balance

equation for the eddy kinetic energy per volume

ke[5r0(u
02 1 y02)/2] is

›k
e

›t
1= � (k

e
u)1= �

hr
0

2
u0(u02 1 y02)

i
1= � p0u0

5 [2r
0
u0u0 � =u2 r

0
y0u0 � =y]

barotropic conversion

1 [2g r0w0]
baroclinic

1 [›(t0xu0 1 t0yy0)/›z2 «] ,
dissipation

(B1)

FIG. B1. Model estimates of unstable wave properties and comparisons with the Eady

solutions. (a),(b) The Hovmöller diagram of the top and bottom wave signals y0, taken in

a 3-day window centered at the time of maximal growth rate (case 5 in Table 1; Ri 5 15;

Fig. 5a1). The black reference line indicates the advective distance of the mean flow U.

(c) A snapshot of y0 in the x–z plane, taken at maximal growth rate and along the mean

flow center, for Ri 5 15 that exhibits a westward phase tilt. Color shading represents the

magnitude and direction of y0. (d)–(f) The vertical structure of wave phase, amplitude,

and apparent phase speed. The model results are labeled by different Ri values. The Eady

solution is the thick gray curve. The model estimates of the wave properties are described

in appendix B. Note in (e) that the case with a smaller Ri exhibits a shallower wave

structure, consistent with Nakamura (1988). In (f), the unstable waves for all Ri values

satisfy the phase-locking condition of c 5 U/2.
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