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Recent experiments show that quasi-one-dimensional

lattices of self-propelled droplets exhibit collective

instabilities in the form of out-of-phase oscillations

and solitary-like waves. This hydrodynamic lattice is

driven by the external forcing of a vertically vibrating

fluid bath, which invokes a field of subcritical

Faraday waves on the bath surface, mediating the

spatio-temporal droplet coupling. By modelling the

droplet lattice as a memory-endowed system with

spatially non-local coupling, we herein rationalize

the form and onset of instability in this new class

of dynamical oscillator. We identify the memory-

driven instability of the lattice as a function of the

number of droplets, and determine equispaced lattice

configurations precluded by geometrical constraints.

Each memory-driven instability is then classified as

either a super- or subcritical Hopf bifurcation via a

systematic weakly nonlinear analysis, rationalizing

experimental observations. We further discover a

previously unreported symmetry-breaking instability,

manifest as an oscillatory–rotary motion of the

lattice. Numerical simulations support our findings

and prompt further investigations of this nonlinear

dynamical system.

1. Introduction
Classifying emergent properties of many-body systems,

both passive and active, is a central theme of contem-

porary soft matter physics [1,2]. In recent years, myriad

systems have emerged whose complex dynamics at

the macroscale originate from the properties of their

constituent particles, such as the particles’ shape,

polarity, and activity or locomotion. Examples include

the complex flows arising from active stresses exerted

by bacteria suspended in fluid [3,4]; vortex generation

and nonlinear wave propagation in colloidal fluids [5–8];

phonon-like excitations in passively driven crystals of

2020 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. (a) Single droplet of silicone oil self-propelling on the surface of a vibrating fluid bath. Picture courtesy of Daniel

Harris. (b) Schematic of the droplet self-propulsion. Each time the droplet impacts the bath, it experiences a lateral force from

the slope of the waves excited on the surface at previous impacts. (c) Oblique perspective of a chain of 40 equispaced bouncing

droplets of silicone oil confined to a submerged annular channel, surrounded by a shallow layer of fluid [25]. (Online version in

colour.)

particles and droplets confined to microfluidic channels [9–13]; and emergent magnetic order in

hydrodynamic spin lattices of walking dropets [14,15]. In non-fluidic systems, theoretical models

of active nonlinear lattices are shown to exhibit instabilities in the form of out-of-phase oscillations

and solitary waves [16–20], prompting experimental analogues in the form of active electronic

circuits [21–24].

Inspired by recent experiments [25], we here focus on rationalizing the instability of a new class

of fluid-based, active oscillator; see figure 1c. The active units in the experiments [25] are self-

propelled millimetric droplets bouncing on the surface of a vertically vibrating bath of viscous

fluid, as described in [26,27] and references therein. In the absence of drops, the fluid interface

remains flat below the Faraday threshold, the critical vibrational acceleration at which Faraday

waves spontaneously appear on the bath surface. When placed on the surface, a millimetric

droplet may bounce periodically in resonance with its self-generated, subcritical, subharmonic

Faraday wave field (with a characteristic wavelength λF), exciting waves at each impact. Above

a critical vibrational acceleration, the droplet destabilizes to small, lateral perturbations. In this

regime, dissipative effects due to drag are overcome by propulsive forces enacted by the slope

of the droplet’s guiding wave field, its so-called pilot wave (figure 1a,b). Herein lies the active

component of the droplet motion: self-propulsion is achieved by continual exchange of energy

of the droplet with its environment, in this case the vertically vibrating fluid bath. In prevailing

model systems of active matter, such as bacterial or colloidal suspensions, the dynamics of the

constituent particles and their environment are typically overdamped [28,29]. This constrasts

with the droplet system, wherein inertial effects play a significant role through both the finite

mass of the droplets and the underdamped Faraday waves excited on each impact with the bath.

Moreover, as the bath’s vibrational acceleration is increased progressively, the decay time TM of

the pilot wave lengthens and the droplet is thus influenced by more of its past, increasing the so-

called memory time of the droplet’s motion [30]. Memory and self-propulsion are thus intimately

connected, the former regulating the strength of the propulsive wave force required to overcome

dissipation.

As demonstrated in [25], when confined to a submerged annular channel, droplets may form

an effectively one-dimensional lattice (figure 1c). Each droplet in the lattice bounces in periodic

synchrony with period TF, generating a spatially non-local, quasi-monochromatic wave field,

whose superposition over all the droplets mediates the spatio-temporal coupling of the lattice. For

sufficiently large forcing, experiments show that the droplet lattice exhibits collective vibrations

in the form of small-amplitude out-of-phase oscillations or solitary-like waves, depending on the
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proximity of neighbouring droplets. Moreover, the transition to each of the aforementioned states

may be characterized by the onset of a super- and subcritical Hopf bifurcation, respectively.

Oscillations of the lattice emerge from the competition between droplet self-propulsion—

arising through the interaction of each droplet with the slope of its own wave field—and

wave-mediated coupling between droplets. This latter phenomenon represents a distinguishing

feature of this new class of coupled oscillator: the waves produced at each droplet impact with the

bath giving rise to an effective self-generated, dynamic coupling potential between droplets (vis-

à-vis lattices subject to an externally applied potential). The existence of this dynamic potential

has far-reaching consequences; for example (i) there exist stable lattice equilibria in which the

droplets sit at the local maxima of the potential and (ii) the dynamic potential encodes the

memory of the system, storing information regarding each droplet’s past trajectory. We note that

while oscillators containing spatial and temporal non-locality have received significant theoretical

attention [31–34], experimental, mechanical analogues are relatively scarce, limited to networks

of coupled pendula [35,36].

Through a systematic analysis of the simplest possible model of the hydrodynamic lattice—

introduced in §2—we herein seek to delineate the conditions under which qualitatively different

bifurcations can arise, elucidating the key mechanims underpinning the emergent, collective

properties of this new class of dynamical oscillator. In §3, we identify the memory-driven,

oscillatory instability of the lattice, as well as equispaced configurations rendered uniformly

unstable at all memory by the form of the lattice wave field. We rationalize the latter in the

low-memory regime through an energy-like quantity that the system attempts to minimize.

A weakly nonlinear analysis (§4) then prescribes to each memory-driven instability a super- or

subcritical Hopf bifurcation, rationalizing experimental observations [25]. Furthermore, we show

that symmetry-breaking leads to a previously unreported self-induced, oscillatory–rotary motion

of the lattice. Our analysis concludes in §5 with an exploration into how the transition to each

of the aforementioned instabilities is controlled by the droplet separation distance. We note that,

while our study is focused on the regime where droplet motion is confined to an annular channel,

the results of §§2–5 are also appropriate for describing azimuthal oscillations of droplet rings in

free space [37], allowing us to rationalize behaviour in this related system. Finally, the results of

our paper are summarized in §6, along with proposals for future work.

2. Active lattice model
We begin by constructing a model of the droplet lattice, valid below and near to the onset of

instability, following the framework set forth for a single droplet in [38]. Consider a lattice of N

droplets of equal mass m, bouncing periodically with period TF, in synchrony with the surface

of the vibrating fluid bath. On successive impacts with the bath, each droplet excites a field of

standing waves, the superposition of which creates a global wave field, a dynamic potential,

mediating the spatio-temporal coupling of the lattice. (We ignore the effect of the initial transient

wave propagating away from the impact site [27,39], as this effect is only significant when droplets

are packed closely together.) Denoting by xn(t) the position of each droplet in the lattice at time

t, time-averaging the droplets’ horizontal motion over one bouncing period gives rise to the

stroboscopic equation of motion [38]

mẍn + Dẋn = −mg∇h(x, t)|x=xn , (2.1a)

where h(x, t) is the stroboscopic global wave field and dots denote differentiation with respect to

time. According to (2.1a), the trajectory of each droplet is therefore governed by a balance between

inertia, a time-averaged drag force with drag coefficient D [40], and the time-averaged horizontal

propulsive wave force enacted on each droplet by the slope of the global wave field, h(x, t). The

remaining constant g is acceleration due to gravity.

In the physical regimes of interest [25], the time scale of the droplets’ vertical motion, TF, is

typically much less than the time scale of horizontal motion. The time-averaged stroboscopic

wave kernel H generated over each bouncing period by each droplet is thus assumed to be
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Figure 2. (a) An example wave field H(x; xp), corresponding to a stationary, bouncing droplet at x = xp, computed

using the model of Durey et al. [44] for R/λF = 2.59 (upper panel). The fluid and geometry parameters are listed in the

electronic supplementary material. Grey regions denote the shallow layer of fluid, and the deeper, annular channel has a white

background. The positionxp is denoted by the black dot. Horizontal lengths are normalized by the Faradaywavelength,λF , and

the vertical scale is normalized byH(xp; xp). The radial cut |x| = R (denoted by the black circle in the upper panel) ofH is

presented in the lower panel, parametrized by the arc length, x, where x = 0 corresponds to the horizontal position x = xp.

(b) The analogous result to (a) for the wave fieldH(x; xp)= F0(|x − xp|) defined by (2.3). (Online version in colour.)

the time-averaged wave field generated by a single, stationary droplet bouncing periodically

at a horizontal position x = xp, normalized by the exponential decay time, TM, of the Faraday

waves [41–43]. We recall from the discussion in §1 that TM increases with the strength of the

vibrational forcing of the bath [40,42]; hence, TM may be regarded as a control parameter in

our model and a proxy for increasing vertical vibrational acceleration. Increasing TM results in

a longer path memory of the droplets’ past trajectory. In contrast to free space [38], we note

that the presence of the annular subsurface topography in experiments [25] means that H is not

translationally invariant; the wave kernel depends on the position xp at which the droplet resides

in the channel and so H=H(x; xp). However, we note that the geometry of the experimental

system is rotationally invariant; thus, in polar coordinates (whose origin coincides with the centre

of the annulus) we have H=H(r; rp; θ − θp) (figure 2a).

A distinguishing feature of the pilot-wave system is that the horizontal wave force

−mg∇h(xn(t), t) depends explicitly on the droplets’ past, through vestiges of the surface waves

excited at previous impacts. As shown in [38], the stroboscopic wave field h(x, t) may be written

as an integral over time, representing the superposition of waves generated along each droplet’s

prior trajectory. (This approximation remains valid provided the time scale of horizontal motion is

much greater than TF.) Alternatively, it is readily verified that h(x, t) satisfies the following partial

differential equation:

∂h

∂t
+ 1

TM
h = 1

TF

N
∑

m=1

H(x; xm). (2.1b)
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The rate of change of h is thus balanced by wave dissipation and the generation of waves about the

instantaneous position of each droplet. The integral form of the stroboscopic model is recovered

by integrating (2.1b).

The system (2.1) is the many-droplet analogue of the stroboscopic model presented in [38,

45], generalized to account for submerged topography. In the experiments reported in [25], it is

observed that, close to the point of instability, the deviation from circumferential droplet motion

is small. Using this fact, we recast the two-dimensional horizontal droplet motion, given by (2.1),

in terms of the arc length x along a circle of constant radius R (which, in experiments, is controlled

by the radius of the submerged channel). The projection of the stroboscopic wave kernel, H, onto

this circle is then H(x) =H(Rer(x); Rer(0)), where the radial unit vector er(x) is defined as er(x) =
(cos(x/R), sin(x/R)). Furthermore, the rotational invariance of the system renders H=H(x − xp),

where the wave kernel H(x) is periodic with period L = 2πR. The model (2.1) then becomes

mẍn + Dẋn = −mg
∂h

∂x

∣

∣

∣

x=xn

(2.2a)

and

∂h

∂t
+ 1

TM
h = 1

TF

N
∑

m=1

H(x − xm), (2.2b)

where h(x, t) is the global wave field projected along the circle of radius R.

Our model is closed by selecting a particular form of the wave kernel H(x) =H(x + L), which

may be generated using a fluid mechanical model to compute the fluid evolution over the

submerged annular channel [44] (figure 2a). However, there are many subtle aspects of the wave

field that obfuscate the key mechanisms underlying the dynamics of the hydrodynamic lattice.

These include variations in the wave-field amplitude arising due to the particular bouncing phase

of the drops [43], and memory-dependent changes to the exponential decay length of the pilot

wave [46–49]. Our theory is instead developed for a general, flexible, periodic wave kernel, H(x).

For exploration and demonstration purposes, we simply define a wave kernel that exhibits the

fundamental aspects of the fluid system: namely, a quasi-monochromatic wave field endowed

with exponential spatial decay, exhibiting a peak at the droplet position. An application—using

the results of this study—to the specific fluid system explored in experiments is subject to

future work.

To inform our choice of candidate wave kernel, H(x), we observe numerically that

topographically induced deviations in H(x; xp) from an axisymmetric wave kernel about xp are

weak (figure 2a). For simplicity, we thus consider H(x; xp) = F0(|x − xp|) for our simulations, where

a candidate monochromatic, axisymmetric wave form F0(r) exhibiting exponential spatial decay is

F0(r) =A0J0(kFr)sech

(

r

ld

)

. (2.3)

Here, J0 is the zeroth-order Bessel function as arises for droplets in free space, modulated

to incorporate spatial damping of the wave kernel [42,43,49]. The parameter A0 is the wave

amplitude, kF = 2π/λF is the Faraday wavenumber and ld is a tunable spatial decay length, which

in turn determines the strength of the non-local droplet coupling. The wave kernel, H(x), is then

defined as the radial cut of H(x; xp) along a circle of constant radius R, specifically

H(x) = F0

(

2R sin
x

2R

)

, (2.4)

as demonstrated by the black circle in figure 2b. A further advantage of (2.4) is that it allows us

to easily explore the implications of varying the lattice radius, R, continuously (§5). For peace

of mind, we tested this generic wave kernel against a numerically computed wave kernel [44],

which demonstrated sufficient qualitative similarities to still capture the dynamical motion of the

active lattice (see electronic supplementary material for further details). Finally, we emphasize

that the analysis presented herein is independent of the particular choice of H, provided that H is

periodic and sufficiently smooth.
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To non-dimensionalize (2.2)–(2.4), we set λF as the typical horizontal length scale, t0 = m/D as

the typical time scale, and h0 = λ2
F/gt2

0 as the typical free-surface elevation. By rescaling H �→H0H,

where H0 = h0TF/t0, the dimensionless model then reads

ẍn + ẋn = −∂h

∂x
(xn, t) (2.5a)

and

∂h

∂t
+ νh =

N
∑

m=1

H(x − xm), (2.5b)

where

H(x) = F

(

2r0 sin
x

2r0

)

, F(r) =AJ0(2πr)sech
( r

l

)

. (2.6)

The dimensionless parameters are l = ld/λF, r0 = R/λF, ν = t0/TM > 0, and A=A0/H0, while the

dimensionless circumference of the lattice is Λ = L/λF = 2πr0. Unless stated otherwise, for the

numerical results presented herein, we consider values typical of experiments, namely r0 = 5.4

[25], A= 0.1, and l = 1.6 [42].

To summarize, waves are generated about the current position of each droplet and superpose

to form the global wave field, h(x, t). The spatio-temporal evolution of h(x, t) is regulated by (2.5b)

and depends on the trajectories of each droplet, imprinting a path-memory on the system. Each

droplet is then driven by the local gradient of h(x, t) through (2.5a). The effects of memory (and

hence of vibrational acceleration) in our dimensionless system (2.5) are encoded through the

dimensionless dissipation rate ν ∼ 1/TM. While ν is convenient algebraically, we will interpret

our results using a more natural measure of memory M = 1/ν, where larger M means that past

dynamics play a more prominent role.

3. Memory-driven and geometric instability
To determine the critical value of the memory M = Mc at which the wave force promotes self-

propulsion of the droplets, we analyse the linear stability of (2.5) to small perturbations about a

static, equispaced lattice configuration, coinciding with experiments [25]. Initially, the droplets are

positioned at xn = nδ, where δ = Λ/N. Equation (2.5b) then yields the corresponding free-surface

elevation

h(x) = h0(x) = 1

ν

N
∑

m=1

H (x − mδ) . (3.1)

By symmetry, the free-surface gradient beneath each droplet vanishes in this steady configuration.

We note that as the wave field h is a dynamic and not a static potential, the form of H permits stable

lattice configurations in which each droplet resides at a local maximum of h. Furthermore, from

(3.1), we see that one effect of increasing the memory, M = 1/ν, is to increase the wave amplitude

of the steady lattice. Upon consideration of a small perturbation to each droplet position, xn, and

the concomitant perturbation to the wave field, h, we set

xn = nδ + ηx̂n and h = h0 + ηĥ,

where 0 < η � 1. By substituting this form into (2.5) and linearizing, we obtain

ẍn + ẋn = −
[

∂h

∂x
+ xn

∂2h0

∂x2

]

∣

∣

∣

∣

x=nδ

(3.2a)

and

∂h

∂t
+ νh = −

N
∑

m=1

xmH
′(x − mδ), (3.2b)

where we have dropped the carets on the perturbed variables, and primes denote differentiation

with respect to x.
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The difficulty in analysing (3.2) rests in the temporal non-locality of the free-surface

perturbation, h(x, t). To circumnavigate this issue and project the dynamics entirely onto the

droplet trajectories, xn(t), we use the form of (3.2b) to define the auxiliary variables xn(t) satisfying

ẋn + νxn = xn for n = 1, . . . , N, (3.3)

a procedure that we also apply throughout the weakly nonlinear analysis presented in §4. It then

follows from (3.2b) that the evolution of the perturbed free-surface elevation, h(x, t), may now be

expressed in terms of the auxiliary variables, xn(t). Specifically, we obtain the particular solution

h = −
N

∑

m=1

H
′(x − mδ)xm. (3.4)

The homogeneous solution to (3.2b) decays exponentially in time, and thus plays no role in either

the linear or weakly nonlinear stability (§4) of the system. Having expressed h in terms of the

auxiliary variables xn, we recast (3.2) as a reduced dynamical system for the variables xn and xn.

Substituting (3.4) into (3.2a), and using (3.1), we find that Ln(x) = 0, where x = (x1, . . . , xN). The

linear operator Ln is defined as

Ln(x) = ẍn + ẋn +
N

∑

m=1

(

xn

ν
− xm

)

H
′′(δ(n − m)), (3.5)

which, together with equations (3.3), constitute a linear system of 2N ordinary differential

equations describing the evolution of xn from the steady state. Equations (3.3) and (3.5) may be

solved using standard eigenmode methods, the periodicity of the steady lattice prompting the

ansatz

xn = A exp (iknα + λkt) + c.c., xn = A

λk + ν
exp (iknα + λkt) + c.c., (3.6)

where the form of xn follows from (3.3). (With xm written in the form (3.6), we note that (3.4)

assumes a similar form to a Bloch wave.) Here, we have defined the angular spacing parameter

α = 2π/N, imaginary unit i, and complex amplitude A, where c.c. denotes complex conjugation of

the preceding term. By symmetry considerations, we restrict our attention to the wavenumbers

k = 0, . . . , N, where N = �N/2	. By substituting (3.6) into (3.5), we obtain the dispersion relation

Dk(λk; ν) = 0, where

Dk(λ; ν) = λ2 + λ + c0

ν
− ck

λ + ν
. (3.7)

The real constants ck are defined as

ck =
N

∑

n=1

cos (knα)H′′(nδ), (3.8)

which may be interpreted as the discrete cosine transform coefficients of the even and periodic

function H′′(x), arising from the discrete convolution in equation (3.5).

Upon rearranging Dk(λk; ν) = 0 and writing ν = 1/M, the eigenvalues, λk, describing the

asymptotic linear stability of (3.2), satisfy the cubic polynomial

Mλ3
k + (M + 1)λ2

k + (c0M2 + 1)λk + M(c0 − ck) = 0, (3.9)

whose roots we typically compute numerically. The uniform lattice is asymptotically unstable

if, for some wavenumber k, there exists an eigenvalue λk satisfying Re(λk) > 0. A fundamental

property of this lattice is the rotational invariance, characterized by the eigenvalue λ0 = 0, which

may allow for a slow drift of the lattice in the weakly nonlinear regime (see §4).

It transpires that the lattice may destabilize via two distinct mechanisms: (i) a memory-

independent instability, where the lattice wave field destabilizes the uniform configuration

for all memory M > 0 (so Mc = 0); and (ii) a memory-driven instability when the wave force

exceeds the drag force, prompting propulsion of the droplets for M > Mc > 0 (to be determined).

Physically, case (i) arises from geometrical frustration of the lattice wave field: for particular
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lattice configurations, the lattice wave field precludes the formation of a stable, equispaced lattice,

forcing the droplets to occupy a nearby equilibrium configuration. Henceforth, we will thus refer

to case (i) as a geometric instability. The memory-driven instability (ii) may be further decomposed

into two subcategories: instability via a real eigenvalue, giving rise to the steady rotation of the

lattice, analogous to the dynamics of a single walking droplet [38]; and oscillatory instabilities

arising for droplets in close proximity, akin to those observed in experiments of this lattice system

[25]. We discuss each of the foregoing cases and their implications in the following three sections.

(a) Geometric instability

For short memory M � 1 (equivalently, ν 
 1), the polynomial (3.9) admits three real roots:

λ
(1)
k = −1 + O(M), λ

(2)
k = − 1

M
+ O(1) and λ

(3)
k = (ck − c0)M + O(M2). (3.10)

Thus, if there exists a wavenumber k∗ such that ck∗ > c0, then λ
(3)
k∗

> 0 and the lattice is

unconditionally unstable for M � 1. In fact, the lattice is unconditionally unstable for all M > 0

when ck > c0, the negativity of the constant term in (3.9) always giving rise to a positive real

root. While the asymptotic results (3.10) provide a mathematical rationale for this memory-

independent instability, they provide little in the way of physical intuition, which we presently

provide.

We first introduce the rescaled variables τ = Mt and H = h/M and substitute into

equations (2.5). We then consider the low-memory limit M � 1, leading us to neglect the highest-

order time derivative in each equation. The result is overdamped, gradient-driven motion for

each droplet described by

dxn

dτ
= −

N
∑

m=1

H
′(xn − xm), (3.11)

where the wave field is H(x, τ ) =
∑N

m=1 H(x − xm(τ )). If all but one of the droplets were static, then

the remaining droplet would evolve in response to a fixed potential prescribed by the wave field.

However, due to the spatially non-local coupling of the lattice, this motion in turn alters the wave

force acting on all other droplets, prompting propulsion. As such, it is necessary to consider the

global dynamics of the system.

We characterize the dynamics by the mean height of the wave field beneath each droplet

H (τ ) = 1

N

N
∑

n=1

H(xn(τ ), τ ) = 1

N

N
∑

n=1

N
∑

m=1

H(xn(τ ) − xm(τ )). (3.12a)

Using (3.11) and that H(x) is an even, periodic function, it is readily verified that

dH

dτ
= − 2

N

N
∑

n=1

(

dxn

dτ

)2

≤ 0, (3.12b)

indicating that the mean wave height, H , decreases along droplet trajectories (except at lattice

equilibria). This phenomenon was also observed numerically in simulations of two-dimensional

lattices [37]. Indeed, the foregoing argument readily generalizes to this latter case, and thus may

be applied to this wider class of system [50–53].

We now provide an alternative interpretation of the geometric instability in terms of the

energy-like quantity H . When perturbing about the equispaced lattice, with xn(τ ) = nδ + ηx̂n(τ )

(with 0 < η � 1), we compute the change in H from the steady state H0 =
∑N

n=1 H(nδ). By

substituting this ansatz into (3.12a) and Taylor expanding in powers of η, we obtain

H = H0 + η2

[

1

N
x̂

T(c0I − A)x̂

]

+ O(η3),
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Figure3. Theonset of geometric instability in the low-memory regime forN = 31 droplets. Black circles denote thefinal droplet

rest state, a configuration that provides a local minimizer for the mean wave heightH (see (3.12)). (a) Overhead view of the

final lattice, where lengths are normalized by the Faradaywavelength. (b) Initial (thin curve) and final (thick curve) lattice wave

fields,h, plotted over the arc denotedby the red curve in (a).White circles denote the initial positions of the equispaced, unstable

lattice. (Online version in colour.)

where x̂ = (x̂1, . . . , x̂n)T, I is the identity matrix, and A is the symmetric, circulant matrix with

entries Anm =H′′(δ(n − m)). The stability of the equispaced lattice thus depends entirely on

the definiteness of the matrix (c0I − A), where negative eigenvalues indicate instability since

H can decrease in the direction of the corresponding eigenvector. Due to the form of A, its

eigenvalues are ck (for k = 0, . . . , N − 1) with corresponding eigenvectors vk whose nth element

is eiknα (consistent with the normal modes ansatz in (3.6)). Hence, the energy may decrease if there

exists k∗ such that c0 − ck∗ < 0 (recall (3.10)), rendering the steady lattice a saddle. When multiple

wavenumbers satisfy this condition, the lattice rearranges in the direction of steepest descent of

this energy-like quantity, H , prescribed by the wavenumber k∗ that minimizes c0 − ck. When N

is even and k∗ = N/2, symmetry dictates that the droplets approach a lattice whose separation

distances alternate in size. For other values of k∗, more exotic, asymmetric lattice structures

emerge, such as the 31-droplet lattice presented in figure 3. In fact, such an instability can even

affect two well-separated droplets (specifically, δ 
 l), despite the waves felt by the other droplet

being exponentially small, emphasizing the extent of the spatially non-local coupling.

(b) Onset of collective walking

If the lattice configuration is not geometrically unstable, the system may destabilize to collective

walking when the memory, M, increases above a critical threshold (to be determined). One such

instability arises when a real eigenvalue of (3.9) passes through the origin, going from negative

to positive. Such an instability typically arises when k = 0 and λ0 becomes a double eigenvalue

at the instability threshold, although it is also possible in the exceptional case when there exists

k = k∗ such that ck∗ = c0 (since λk∗ = 0 is then also a trivial root of (3.9)). By factorizing (3.9) when

ck = c0, the non-trivial eigenvalues satisfy the quadratic polynomial

Mλ2
0 + (M + 1)λ0 +

(

c0M2 + 1
)

= 0. (3.13)

Since M > 0, the stability of the system depends on the sign of the constant term in (3.13), where

c0 determines the local curvature beneath each droplet in the steady lattice.

When c0 < 0, corresponding to each droplet sitting on a peak of the free surface, both roots

of (3.13) are real. The system destabilizes at the critical threshold M = 1/
√−c0, at which one

eigenvalue transitions from a stable node to a saddle, characteristic of a pitchfork bifurcation.

Physically, this is the threshold at which the wave force dominates the drag force, promoting

unidirectional self-propulsion, and thus is the many-droplet analogue of the walking threshold

described in [38], for which a supercritical pitchfork bifurcation arises [30].
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Figure 4. The real (top panel) and imaginary (bottom panel) parts of the dominant eigenvalues, λk , determined from the

cubic polynomial (3.9) for (a) N = 19, (b) N = 20 and (c) N = 21. AsM is gradually increased, a single wavenumber kc ∈ [0, N]

touches Re(λkc )= 0, while Im(λkc ) �= 0. The upper and lower branches correspond to one member of the conjugate pair. As

M is increased further, yet more neighbouring wavenumbers destabilize about kc. In contrast to N = 20 and N = 21, there is a

notable departure of kc from k = N when N = 19, a hallmark of subcritical bifurcations (see §5). (Online version in colour.)

By contrast, when c0 > 0, each droplet sits in a trough of the free surface, a highly stable

configuration. As such, Re(λ0) < 0 for all M, where the system may return to its rest state via

either overdamped or underdamped oscillations. Such a regime may arise when the troughs

about the central peak of the wave kernel, H, are sufficiently deep (akin to the numerical examples

presented in figure 2a and the electronic supplementary material) and the droplets lie in close

proximity.

(c) Oscillatory instability

Of particular relevance to the experiments described in [25] is the case where the lattice undergoes

instead an oscillatory instability, wherein the real part of a complex-conjugate pair of eigenvalues

transitions from negative to positive as memory is increased (indicative, but not conclusive, of a

Hopf bifurcation; see §4). We note that a lattice may have consecutive pitchfork and oscillatory

instabilities as M is varied, in which case the form and threshold of the instability is determined

by the smallest such critical M.

In figure 4, we demonstrate the possible forms of an oscillatory instability through

consideration of the real and imaginary parts of the dominant eigenvalue, λk, for three consecutive

droplet configurations: N = 19, N = 20 and N = 21. As the memory, M, is increased, a single

wavenumber kc ∈ [0, N] touches Re(λkc
) = 0 for some critical value of M = Mc (determined below),

while Im(λkc
) = ωkc

�= 0, corresponding to an oscillatory instability. As M is increased further,

beyond Mc, yet more wavenumbers destabilize as their corresponding eigenvalues cross the

imaginary axis. Of particular interest is the case N = 20 (figure 4b), where the critical wavenumber

is kc = N/2 in the current parameter regime. According to the linear stability analysis, each droplet

position is described by xn = nδ + (−1)n[A exp(iωkc
t) + c.c.] at M = Mc in this case, corresponding

to out-of-phase oscillations of adjacent droplets, akin to experimental observations [25, fig. 2]. We

also observe a notable departure in kc from k = N for N = 19 (figure 4a), contrasting with N = 20

and N = 21. This shift appears to be a hallmark of subcritical bifurcations (see §5). To fully describe
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The lattice is unstable when the memory parameter,M= ν−1, satisfiesM> Mc , and is stable forM< Mc . The form of each

instability is characterized by the legend. Black lines between data points are visual guides. (Online version in colour.)

the lattice dynamics for M > Mc, we consider the weakly nonlinear stability of these oscillations

in §4.

At the critical threshold M = Mk, the memory at which wavenumber k goes unstable, the

critical eigenvalue is λk = iωk, where ωk > 0 without loss of generality. Upon substituting into

(3.9) and taking real and imaginary parts, we obtain two equations for ωk, namely

ω2
k = c0Mk + 1

Mk
and ω2

k = Mk(c0 − ck)

Mk + 1
. (3.14)

By eliminating ωk, we find that Mk satisfies p(Mk) = 0, where p(M) = c0M3 + ckM2 + M + 1.

We identify Mk as the smallest real root of p for each wavenumber k and define the critical

lattice instability threshold as Mc = mink Mk, the minimum memory over all wavenumbers. The

corresponding critical angular frequency ωc = ωkc
may then be determined from (3.14), namely

ωc =
√

c0Mc + 1/Mc.

(d) Summary

The form of each instability outlined in §3a–c is summarized in figure 5, where we present

Mc for each droplet configuration consisting of N droplets. Lattice configurations are either

geometrically unstable (Mc = 0), or instability is triggered by memory effects (Mc > 0) through a

pitchfork bifurcation or an oscillatory instability. (Foreshadowing the results of §4, the oscillatory

instabilities may be categorized as either supercritical or subcritical Hopf bifurcations.) We

observe no apparent pattern in the distribution of memory-driven or geometric instabilities,

principally due to the fact that N is varied discretely. As portrayed in §5, a more illuminating

view is afforded when changing the lattice radius, r0, continuously and fixing N.

4. Weakly nonlinear oscillations and self-induced drift
The results of §3 suggest that, for geometrically stable lattice configurations (excluding the case

N = 1), the lattice destabilizes via a Hopf bifurcation. (Technically, these are not Hopf bifurcations

in the strict sense, as—due to rotational invariance of the lattice—the fixed point is non-isolated.)

In general, the Hopf bifurcation is one of two types: supercritical, in which stable, small-amplitude

oscillations arise beyond the instability threshold, propelled by the slope of the droplet wave field

(figure 6); or subcritical, where the system jumps to a distant attractor (such as a solitary-like wave

[25]). We proceed to perform a weakly nonlinear analysis in the vicinity of the bifurcation point,
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Figure 6. Surface plot of the evolution of the wave field, h, and droplet positions (black curves) for N = 22 droplets, exhibiting

out-of-phase oscillations slightly beyond the onset of a supercritical bifurcation (specifically, νc − ν = 0.02). (Online version

in colour.)

ν = νc = 1/Mc, allowing us to distinguish between these two contrasting dynamics of this spatially

and temporally non-local system.

When ν is only slightly less than νc, we set νc − ν = ε2, where 0 < ε � 1, corresponding to M

slightly above the critical threshold, Mc. We then pose the following asymptotic multiple-scales

expansions:

xn ∼ nδ + D(T) +
∞
∑

i=1

εix
(i)
n (t, T) and h ∼

∞
∑

i=0

εih(i)(x, t, T), (4.1)

where T = ε2t is the slow time scale. The O(1) drift, D(T), may give rise to a net rotation of the

lattice. The origin of this drift may be traced back to the k = 0 mode of the dispersion relation (3.9),

corresponding to translational invariance. (We note that the Stokes drift in surface gravity waves

arises in a similar manner [54].) The asymptotic expansions (4.1) are standard for the method of

multiple scales [55,56]. The fast time scale t characterizes the time scale of the unstable droplet

oscillations beyond νc, while T incorporates the slow amplitude modulation of the instability.

We expect the expansions (4.1) to remain valid over long time scales, provided the amplitude of

oscillations remains small, specifically of size O(ε). The effects of neglected higher-order nonlinear

terms only become significant when T = O(1/ε).

The path memory stored within the free surface (entering through equation (2.5b)) means

that the requisite calculations involved in this procedure are non-standard and (unfortunately)

lengthy, with full details outlined in appendix A. Stated succinctly, the outcome of the multiple-

scales analysis is that each droplet evolves according to

xn = nδ + [D(T) + O(ε)] + ε

[

A(T)ei(kcnα+ωct) + c.c.
]

+ O(ε2),

where the slowly varying complex amplitude A is governed by the Stuart–Landau equation

dA

dT
= γ1A − γ2|A|2A. (4.2)

The accompanying equation governing the evolution of the drift, D, is

dD

dT
= γ3|A|2. (4.3)

The coefficients γ1, γ2 ∈ C and γ3 ∈ R are defined in terms of the system parameters in appendix A.

When the critical wavenumber of instability is kc = N/2, corresponding to out-of-phase

oscillations of the droplets (recall §3c), we find that γ3 = 0 and hence D = constant. Otherwise
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Figure 7. Numerical (blue dots) and analytical (grey) predictions of a supercritical Hopf bifurcation for N= 23, as a function of

νc − ν = ε2. (a) The oscillation amplitude a. (b) The change in angular frequencyδΩ = |Ω − ωc|. (c) The drift speed |v|.
All numerical results were obtained by simulating (2.5) until a constant-amplitude, periodic state was attained. The numerical

and analytical predictions are virtually superimposed when ε is sufficiently small: as ε increases, however, the oscillations

undergo a second bifurcation, beyond which the dynamics become chaotic in this case. (Online version in colour.)

the lattice is endowed with a non-zero drift velocity superimposed on top of individual droplet

oscillations, a phenomenon also observed in free-space rings [37]. Furthermore, we observe from

(4.3) that when |A| is constant, D is linear in T and the lattice rotates with constant speed.

Furnished with equation (4.2), we now specify to which variety of Hopf bifurcation each lattice

configuration destabilizes. By recasting A in (4.2) in polar form A = ρ exp(iφ) (where ρ(T) ≥ 0 and

φ(T) are both real) and equating real and imaginary parts, we find

dρ

dT
= r1ρ − r2ρ

3 (4.4)

and

dφ

dT
= s1 − s2ρ

2, (4.5)

where ri = Re(γi) and si = Im(γi). Consistent with the linear stability analysis performed in §3, r1

satisfies r1 > 0, rendering the fixed point ρ = 0 (corresponding to a stationary lattice) unstable.

If r2 > 0, there is a second, stable, fixed point ρ∗ = √
r1/r2, corresponding to a supercritical Hopf

bifurcation. From (4.5), the corresponding phase is φ(T) = φ∗T where φ∗ = s1 − s2r1/r2 (we set the

constant of integration, corresponding to an arbitrary phase-shift, to zero by temporal invariance).

Conversely, if r2 < 0 then no additional fixed points emerge beyond the instability threshold,

characteristic of a subcritical bifurcation.

We return our attention to figure 5, in which we mark supercritical (r2 > 0) and subcritical

(r2 < 0) Hopf bifurcations for varying N. Although the precise details of this figure depend

on the form of the wave kernel, H, we see that it portrays one of the fundamental features

of the experiments [25], namely the transition from a super- to subcritical Hopf bifurcation as

the number of droplets is doubled from N = 20 to N = 40. Physically, stable, small-amplitude

oscillations arise for M > Mc when the Hopf bifurcation is supercritical, yet a distant attractor

is approached for a subcritical Hopf bifurcation (which, in experiments, takes the form of a

solitary wave [25]). The subtle implications of instead varying the ring radius, r0, while keeping

the number of droplets, N, fixed, are discussed in §5.

Finally, we justify the efficacy of (4.2) and (4.3) in describing the dynamics of the system (2.5)

beyond a supercritical bifurcation point. There is a stable, periodic regime in which each droplet
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evolves according to

xn(t) = nδ + d(t) + a cos(Ωt + Ψn) + O(ε2),

where the drift d(t) = v(t − t0) + O(ε) proceeds with velocity v = γ3(r1/r2)(νc − ν). The amplitude

of the oscillations is a = 2ρ∗
√

νc − ν and Ω = φ∗(νc − ν) + ωc is the angular frequency. Each

oscillation has an associated phase shift Ψn = kcnα.

In figure 7, we compare direct numerical simulations of (2.5) with our predictions for a, Ω , and

v in the supercritical case N = 23. Our numerical solutions were computed using a Fourier spectral

method, with code and documentation provided in the electronic supplementary material. For

0 < νc − ν � 1, our analytical and numerical predictions are virtually superimposed. If νc − ν

becomes too large, however, a significant discrepancy arises, which we attribute to the onset of

a second bifurcation wherein the oscillations themselves destabilize. It is then necessary to take

into account spatial, as well as temporal, variations of the amplitude A(T), which will be explored

elsewhere [57].

5. Control of stability
When the lattice radius, r0, is fixed and the number of droplets, N, is varied discretely, figure 5

shows no discernible pattern in the distribution of geometric and memory-driven instabilities.

However, the discrete variation of N accounts only for a finite subset of the infinite family

of possible droplet separations. To elucidate the underlying structure of the geometric and

memory-driven instabilities, we instead consider how the stability of a lattice of N = 20 droplets

changes as r0 is varied continuously. Herein, we characterize the dynamics by the dimensionless

separation distance, δ = Λ/N = 2πr0/N. As we shall see, regions of geometric and memory-driven

instability, in fact, arise quasi-periodically when δ is increased, with a period close to the Faraday

wavelength. (We recall that all lengths are normalized by λF.) We note that the wave kernel, H(x),

depends on r0 through equation (2.6).

(a) Geometric instability

We first study the origins of geometric instability, which we recall from §3a occurs if there exists

an integer k∗ such that ck∗ > c0. To aid the following discussion, we plot the coefficients ck for k ∈
[0, N = 10] in figure 8c as a function of δ. The oscillatory form of the coefficients ck with increasing δ

(or r0) arises due to the quasi-monochromatic form of H(x), the oscillation length scale being close

to the Faraday wavelength (unity in dimensionless units). Moreover, c0 and cN tend to oscillate

out of phase and bound the oscillations of c1, . . . , cN−1. The result is that regions of geometric

instability typically begin and end at those values of δ where cN crosses c0 from below and above,

respectively, thus selecting k∗ = N. Moreover, each successive region of geometric instability is

separated by a Faraday wavelength (δ ≈ 1). This effect is preserved even when the droplets are

well separated and interact weakly, specifically when δ greatly exceeds the wave kernel’s decay

length (δ 
 l). In this limit, the coefficients ck decay exponentially (to the asymptotic value H′′(0),

that of a single isolated droplet) over a length scale close to l, yet remain oscillatory.

(b) Memory-driven instability

In intervals of δ where the system undergoes a memory-driven Hopf bifurcation, figure 8a

demonstrates that the instability threshold, Mc, varies smoothly, except at points where kc

switches between different integer values (figure 8b). It appears that the Hopf bifurcation is

supercritical only when kc is N or N − 1 and subcritical otherwise (recall figure 4). When the

droplets lie less than a Faraday wavelength apart (δ � 1), the supercriticality region is very narrow,

explaining the prevalence of subcritical bifurcations when the droplets are tightly packed. We note

that for δ � 0.7 in the current parameter regime (figure 8d), the steady lattice wave field exhibits
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Figure 8. Delineation of the instability formwhen N = 20 is fixed and the dimensionless ring radius, r0 = Λ/(2π ), is varied,

altering the dimensionless separation distance, δ = Λ/N. In (a–c), green and red backgrounds correspond tomemory-driven

(Mc > 0) and geometric instabilities (Mc = 0), respectively. (a) The critical memory, Mc , where the lattice is unstable for

M> Mc . Kinks inMc correspond to jumps in kc . The dashed curve (dark green) corresponds to the N = 20 instability in figure 5.

(b) The corresponding critical wavenumber, kc . For subcritical bifurcations, there is a notable departure in kc from k = N,

an apparent hallmark of such configurations. In both (a) and (b), black and grey curves denote super- and subcritical Hopf

bifurcations, respectively. Dark red lines correspond to geometric instability. (c) The coefficients ck (blue curves), where c0 and

cN = c10 are highlighted in black and red, respectively. (d–f ) Steady lattice wave field centred beneath a droplet, extending

to the two neighbouring droplets at x = ±δ, for (d) δ = 0.6, (e) δ = 1.6 and (f ) δ = 2.6, all corresponding to supercritical

Hopf bifurcations. When the droplets are packed tightly together, oscillations in the steady wave field become imperceptible.

(Online version in colour.)

imperceptible oscillations, which present a marked contrast to when δ � 1 (figure 8e,f ), for which

supercritical Hopf and geometric instabilities are prevalent.

(c) Summary

The regions of geometric instability thus provide quantized separation distances prescribed by

the Faraday wavelength at which oscillations arise beyond the instability threshold. Moreover,

we infer that subcritical bifurcations (and hence solitary-like waves) are more likely to arise

when the droplets are either packed closely together (δ � 1) or when δ is near the boundaries

of geometric instability. However, the solitary wave dynamics are not captured by our highly

simplified model, likely due to the omission of several potentially significant fluid mechanical

effects that arise in this regime (see §2). Nevertheless, the foregoing observations are entirely

consistent with experiments [25], where small-amplitude, out-of-phase oscillations and solitary-

like waves are observed when the droplet spacings are around 1.8λF and 0.9λF, respectively.

Finally, the foregoing results point to the sensitivity of the experimental system [25]: we infer

from figure 8 that a small change in ring radius, r0, or the addition/subtraction of a droplet may

adversely affect the stability of the lattice, for example by pushing the lattice into a region of

geometric instability.
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6. Conclusion
In this paper, we considered the onset and stability of collective vibrations in an inertial active

hydrodynamic lattice. This new class of dynamical oscillator is characterized by two features

atypical of traditional oscillator systems: spatially non-local coupling, mediated in this case by the

droplet wave field; and memory-driven self-propulsion of the lattice components. A consequence

of the spatially non-local coupling is the possibility of geometric instability, where the lattice wave

field acts to propel the droplets for all values of the memory parameter, M. Otherwise, linear

stability predicts that the system typically destabilizes to an oscillatory instability beyond a critical

memory.

The fate of the system close to the point of instability was then studied via a systematic

weakly nonlinear analysis. At the onset of a memory-driven instability, the lattice system

undergoes a Hopf bifurcation, which can be either supercritical, prompting stable, small-

amplitude oscillations beyond the instability threshold, or subcritical, where the system jumps

to a distant attractor, manifest in experiments as the excitation of a solitary-like wave [25]. In the

supercritical regime, an oscillatory–rotary motion may arise from asymmetric droplet oscillations,

a phenomenon observed in confined and free-space rings [25,37]. Moreover, when the lattice

radius was fixed, our weakly nonlinear analysis corroborated one of the fundamental features

of the experiments [25], namely the transition from a super- to subcritical Hopf bifurcation as the

number of droplets was doubled from 20 to 40.

The dependence of the stability of the lattice on the system parameters was probed yet further

when we allowed the lattice radius to vary continuously, while keeping the number of droplets

fixed. Here, we found quantized separation distances similar in size to the Faraday wavelength,

separating successive regions of geometric and memory-driven instability. Generalizing our

result of the transition from a super- to subcritical Hopf bifurcation, we infer that subcritical

bifurcations are more likely to arise when droplets are more tightly bound (less than a Faraday

wavelength apart), while supercritical and geometric instabilities prevail when the droplet

spacing is increased. These observations are consistent with the experimental results obtained

for the droplet spacings reported in [25].

The potential avenues for investigation prompted by the results of this paper are numerous,

and so we name only a few of the most salient here. Perhaps the most demanding is a description

of the fully nonlinear dynamics of the solitary wave regime, specifically extending our model

to consider variations in the droplets’ vertical bouncing phase [43], or two-dimensional effects

imposed by the geometry of the submerged annular channel [44]. Indeed, the fact that the wave

force vanishes for tightly packed, equispaced lattices (figure 8d) is a portent that the simplified

model (2.5) is insufficient to capture the solitary wave dynamics. Inspired by mathematical

models of traffic flow [58], another avenue is to course-grain the discrete model (2.5) to derive

a system of partial differential equations for the macroscopic droplet density and velocity. Such

models provide a natural framework in which to study the propagation of nonlinear waves.

Our system also begs further attention when viewed as a dynamical system. In the future [57],

we will show that taking into account spatial variations in the droplet oscillation amplitude, A,

generalizes equation (4.2) to a complex Ginzburg–Landau equation, allowing us to rationalize the

onset of the second bifurcation alluded to in figure 7. The techniques employed in this study may

also, in principle, be extended to two-dimensional lattices [37,50–53]. Finally, the spatio-temporal

non-locality present in our system also renders it a tantalizing experimental and theoretical

candidate to investigate so-called chimera states in coupled oscillators [32–34,59–61].
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Appendix A. Derivation of the Stuart–Landau and drift equations
In this appendix, we provide details of the multiple-scales expansion leading to the amplitude

and drift equations (4.2) and (4.3). The basic recipe is thus: first, we substitute the asymptotic

expansions (4.1) into the stroboscopic model (2.5) and gather successive powers of ε. At each

order, we suppress resonant terms (those that are either constant in t or proportional to eiφn(t),

where φn = kcnα + ωct), which are thereby solutions of the linear problem (3.5). This step is

facilitated by introducing auxiliary variables to solve for the free surface h, akin to §3. This

procedure gives rise to the Stuart–Landau equation (4.2) at O(ε3) and the drift equation (4.3) at

O(ε2).

At leading order, we obtain a similar system to (3.1)

∂h(0)

∂x

∣

∣

∣

∣

x=x
(0)
n

= 0, h(0)(x, T) = 1

νc

N
∑

m=1

H(x − x
(0)
m ), (A 1)

where x
(0)
n = x

(0)
n (T) = nδ + D(T). By symmetry of h(0), all odd-derivatives vanish beneath each

droplet at equilibrium, a fact we will make repeated use of in simplifying forthcoming terms in

our expansion.

At O(ε), we obtain an analogous problem to (3.2) for x
(1)
n and h(1). Hence, after defining the

auxiliary variables Xn satisfying

∂Xn

∂t
+ νcXn = x

(1)
n ,

we obtain the particular solution

h(1) = −
N

∑

m=1

XmH
′(x − x

(0)
m ), (A 2)

and Lnx
(1) = 0, where the definition of the linear operator, Ln, is the same as in (3.5) (with ν = νc)

and x
(1) = (x

(1)
1 , . . . , x

(1)
N ). (Recall that the homogeneous part of h(1) decays exponentially in time

(§3).) We now seek a solution to Lnx
(1) = 0 of the form

x
(1)
n = B(T) +

[

A(T)eiφn + c.c.
]

, Xn = 1

νc
B(T) +

[

A(T)

νc + iωc
eiφn + c.c.

]

, (A 3)

where A is a complex amplitude and B is a correction to the drift, D. This solution may be verified

by recalling that the dispersion relation, Dk, satisfies Dkc
(iωc; νc) = 0 and D0(0; ν) = 0.

At O(ε2), we have the following system for x
(2)
n and h(2):

∂2x
(2)
n

∂t2
+ ∂x

(2)
n

∂t
+ dD

dT
= −

{

∂h(2)

∂x
+ x

(2)
n

∂2h(0)

∂x2
+ x

(1)
n

∂2h(1)

∂x2

}

∣

∣

∣

x=x
(0)
n

(A 4)

∂h(2)

∂t
+ νch(2) + ∂h(0)

∂T
= h(0) +

N
∑

m=1

{

1

2
x

(1)2
m H

′′(x − x
(0)
m ) − x

(2)
m H

′(x − x
(0)
m )

}

. (A 5)

To solve for h(2), we introduce two further auxiliary variables, Yn and Zn, akin to the procedure

adopted in (3.3). By the form of the inhomogeneity in (A 5), we pose that Yn and Zn satisfy

∂Yn

∂t
+ νcYn = 1

2
x

(1)2
n and

∂Zn

∂t
+ νcZn = x

(2)
n . (A 6)
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A particular solution of (A 5) is then found:

h(2) = 1

νc

(

h(0) − ∂h(0)

∂T

)

+
N

∑

m=1

{

YmH
′′(x − x

(0)
m ) − ZmH

′(x − x
(0)
m )

}

. (A 7)

Using the form of x
(1)
n , we find from the first equation in (A 6) that

Yn = 1

νc

[

|A|2 + 1

2
B2

]

+ B

[

A

νc + iωc
eiφn + c.c.

]

+ 1

2

[

A2

νc + 2iωc
e2iφn + c.c.

]

. (A 8)

Substituting (A 7) and (A 8) into (A 4), and using (A 1), then yields

Lnx
(2) = −α0

dD

dT
+

{

a1A2e2iφn + c.c.
}

+ a2|A|2, (A 9)

where the coefficients α0, a1 and a2 are included in the summary at the end of this appendix.

For a bounded solution of (A 9), we require that the constant secular terms on the right-hand

side vanish, yielding an equation governing the drift D:

α0
dD

dT
= a2|A|2. (A 10)

As terms proportional to e±2iφn(t) in (A 9) are non-secular, the general solution of (A 9) is then

x
(2)
n =

[

C(T)eiφn + c.c.
]

+
[

a1A2

D2kc
(2iωc; νc)

e2iφn + c.c.

]

+ E(T),

where C and E are corrections to the complex amplitude, A, and drift, D, respectively. Thus, from

the second equation in (A 6), we find

Zn =
[

ã1A2

νc + 2iωc
e2iφn + c.c.

]

+
[

C

νc + iωc
eiφn + c.c.

]

+ 1

νc
E, where ã1 = a1

D2kc
(2iωc; kc)

.

At O(ε3), we have a system for x
(3)
n and h(3), namely

∂2x
(3)
n

∂t2
+ ∂x

(3)
n

∂t
+ x

(3)
n

∂2h(0)

∂x2

∣

∣

∣

∣

x=x
(0)
n

= −
[

2
∂2x

(1)
n

∂t∂T
+ ∂x

(1)
n

∂T

]

−
[

∂h(3)

∂x
+ x

(1)
n

∂2h(2)

∂x2
+ 1

2
x

(1)2
n

∂3h(1)

∂x3
+ x

(2)
n

∂2h(1)

∂x2
+ 1

6
x

(1)3
n

∂4h(0)

∂x4

]

∣

∣

∣

x=x
(0)
n

(A 11)

and

∂h(3)

∂t
+ νch(3) = −

[

∂h(1)

∂T
− h(1)

]

+
N

∑

m=1

{

x
(1)
m x

(2)
m H

′′(x − x
(0)
m ) − x

(3)
m H

′(x − x
(0)
m ) − 1

6
x

(1)3
m H

′′′(x − x
(0)
m )

}

. (A 12)

In an identical procedure to that carried out at O(ε2), introducing three further auxiliary variables

allows us to find a particular solution of (A 12) governing h(3). Then, after substituting h(3)

into (A 11), eliminating secular terms (either constant in t or proportional to eiφn(t)) yields two

equations governing the complex amplitude, A, and real drift, B, namely

α1
dA

dT
= α2A − α3|A|2A (A 13)

and

α0
dB

dT
= 2a2 Re[A∗C], (A 14)

in addition to equation (A 10) governing the drift, D. The notation A∗ denotes the complex

conjugate of A. We cannot determine the higher-order corrections B, C and E without proceeding
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to O(ε4) and higher. Nevertheless, a satisfactory approximation is obtained by considering A and

D alone, as made clear by figure 7.

We conclude by summarizing the coefficients, where it helps to recall that Dk(λ; ν) is the

dispersion relation (3.7). For convenience, we introduce the notation Hn =H(nδ) (and similarly

for derivatives). The coefficients α0, a1 and a2 appearing in (A 9), (A 10) and (A 14) are

α0 = ∂D0

∂λ
(0; νc) = 1 + 1

ν2
c

N
∑

n=1

H
′′
n,

a1 = 1

νc + iωc

N
∑

n=1

e−ikcnα
H

′′′
n − 1

2(νc + 2iωc)

N
∑

n=1

e−2ikcnα
H

′′′
n

and a2 = 2Re

[

1

νc + iωc

N
∑

n=1

e−ikcnα
H

′′′
n

]

= − 2ωc

ν2
c + ω2

c

N
∑

n=1

sin(kcnα)H′′′
n ,

while the αi, for i = 1, 2, 3, appearing in (A 13) are

α1 = ∂Dkc

∂λ
(iωc; νc), α2 = ∂Dkc

∂ν
(iωc; νc)

and

α3 = 3

2νc

N
∑

n=1

H
′′′′
n −

N
∑

n=1

H
′′′′
n Re

[

e−ikcnα

νc + iωc

]

+ 1

2

N
∑

n=1

H′′′′
n e−2ikcnα

νc + 2iωc
−

N
∑

n=1

H′′′′
n e−ikcnα

νc + iωc

+ 2iã1

N
∑

n=1

H
′′′
n Im

[

e−ikcnα

νc + iωc

]

− ã1

N
∑

n=1

H′′′
n e−2ikcnα

νc + 2iωc
− a2

α0

N
∑

n=1

e−ikcnαH′′′
n

(νc + iωc)2
.

Recall that ã1 = a1/D2kc
(2iωc; νc). On dividing (A 13) by α1 and (A 10) by α0 we arrive at

equations (4.2) and (4.3) in the main text, where γ1 = α2/α1, γ2 = α3/α1, and γ3 = a2/α0. We note

that when kc = N/2, simplifications arise since ã1 = a1 = a2 = 0.
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