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Abstract: Blockchain is a developing technology that can be utilized for secure data storage and
sharing. In this work, we examine the cost of Blockchain-based data storage for constrained Internet of
Things (IoT) devices. We had two phases in the study. In the first phase, we stored data retrieved from
a temperature/humidity sensor connected to an Ethereum testnet blockchain using smart contracts in
two different ways: first, appending the new data to the existing data, storing all sensor data; and
second, overwriting the new data onto the existing data, storing only a recent portion of the data.
In the second phase, we stored simulated data from several sensors on the blockchain assuming
sensor data is numeric. We proposed a method for encoding the data from the sensors in one variable
and compared the costs of storing the data in an array versus storing the encoded data from all
sensors in one variable. We also compared the costs of carrying out the encoding within the smart
contract versus outside the smart contract. In the first phase, our results indicate that overwriting
data points is more cost-efficient than appending them. In the second phase, using the proposed
encoding method to store the data from several sensors costs significantly less than storing the data
in an array, if the encoding is done outside the smart contract. If the encoding is carried out in the
smart contract, the cost is still less than storing the data in an array, however, the difference is not
significant. The study shows that even though expensive, for applications where the integrity and
transparency of data are crucial, storing IoT sensor data on Ethereum could be a reliable solution.

Keywords: blockchain; Internet of Things; sensor data; smart contracts

1. Introduction

Blockchain technology is revolutionizing the way we store, share, and interact with data. It provides
various essential services for data storage including immutability, transparency, decentralization, and
fault tolerance without the need of a central authority. Initially developed by Satoshi Nakamoto as a
trusted, distributed ledger system for the Bitcoin cryptocurrency [1], blockchain technology is currently
being researched in areas such as healthcare, education, smart cities, financial services, logistics and
supply chain, provenance, electronic voting, among other applications.

In the realm of Internet of Things (IoT) systems, the use of blockchain is currently researched
under various aspects including decentralized architectures, authentication, autonomy, security, and
marketplaces [2]. Many IoT systems are not computationally powerful in terms of storage and
processing power, so much of the research in the integration of blockchain and IoT systems have
focused on the computational cost to validate, process and integrate IoT devices in blockchain networks
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under security constraints [2]. However, no rigorous study of the monetary cost to store IoT sensor
data has been published to date.

Storing sensor data on a public blockchain where anyone can access it (almost in real-time), is a
useful capability. For example, sensors that check air quality, monitor food temperature, or water
quality in an area could publish their readings on a public blockchain which would allow reliable and
tamper-resistant data storage. Any researcher could potentially download and use the data to address
problems of interest in a community. The data could also provide reliable resources for auditing
purposes [3]. In addition, using blockchain systems to store sensor data could potentially enable
utilization of these systems for crowdsensing in which contributors could sell/auction their collected
data to interested third parties, hence creating distributed marketplaces using smart contracts [4] for
IoT sensor data and, at the same time, alleviating some privacy aspects in the utilization of IoT sensor
data in crowdsensing systems since contributors would agree on a smart contract in the blockchain
itself, and they would give consent through the smart contract.

In this work, we shed light on the monetary cost of storing sensor data on a public blockchain.
We test various storage options for data from one sensor and data from several sensors. Our study
comprises two phases. In the first phase, we describe an IoT testbed to store sensor data on the Ropsten
Ethereum testnet blockchain via smart contracts and we examine the monetary cost of this operation
under two different storage options: (1) appending the new data to the end of the existing data, hence
storing all data; (2) overwriting on the existing data, hence storing a most recent portion of the data. In
the second phase, we examine the cost when storing data from several IoT sensors on the blockchain.
In this phase we simulate data for several sensors assuming sensor data is numeric; in particular,
an integer and store the data on the blockchain in three ways: (1) storing the data in an array, (2)
encoding the data from all sensors into one variable outside the smart contract and storing the variable
on the smart contract, and (3) encoding the data from all sensors into one variable within the smart
contract and storing the variable on the smart contract. Our results indicate that even though it could
be expensive, for applications where the integrity and transparency of data are crucial, storing IoT
sensor data on Ethereum could be a reliable solution.

Thus, the main contributions of this work are as follows:

e  We describe an experimental testbed to store IoT sensor data on a public Ethereum-based
blockchain network.

e  We analyze the monetary cost (in gas, which is a monetary unit in Ethereum) when storing IoT
sensor data using two storage mechanisms.

e  We propose a method to store encoded data from several sensors for more efficient storage and
examine the cost when storing data from several IoT sensors on the Ethereum blockchain using
three methods.

This work is different than the work presented by Park et al. [4] and by Javaid [5] because we
evaluate the monetary cost of storing IoT sensor data in a public blockchain rather than the monetary
cost to create an IoT marketplace. In addition, both of the aforementioned studies use a model based on
strings of characters (with no sensor data or IoT device used) to experiment with their market model.
To the best of our knowledge, this work is the first analysis of the monetary cost of storing IoT sensor
data on a public blockchain. The rest of the paper is organized as follows. Section 2 presents a review
of the related work. In Section 3 we describe the testbed and the experiments to analyze the monetary
cost of IoT sensor data in a public blockchain. Finally, Section 4 provides some concluding remarks.

2. Related Work

2.1. The Internet of Things

The Internet of Things (IoT) is a term that encompasses the development of Cyber-Physical
Systems (CPS) that collect, share data and perform actions on some type of physical process while
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connected to the Internet. Some IoT application areas include smart cities, intelligent transportation,
entertainment, security, agriculture [6], and healthcare [7]. For example, the use of IoT technologies can
improve the efficiency and effectiveness of rural systems [6], and IoT-enabled systems can deal with
elderly monitoring and introduce a hierarchical model for elderly-centered monitoring [8]. Combined
with advances in artificial intelligence, the IoT is having a significant impact on how consumers
perform various activities in their daily lives especially in terms of making many of these activities a
lot easier to perform. The availability and growth of these IoT devices (estimated to be about 75 billion
by 2025 [9]) make computation transparent, in the sense that people are not aware of the availability of
these devices and what they do in their surroundings. Typically, the architecture of IoT systems is
made up of the following components:

e Internet of Things device: These components collect data (e.g., temperature, movement, sound,
images) from physical actions or processes. In addition, IoT devices may perform initial data
verification, aggregation and basic analysis (e.g., feature extraction) on the collected data. Some
IoT devices may have actuators (e.g., rotors, relays, speakers, lights) that allow the IoT device to
perform some type of physical response in the environment.

e Data transport: This part of the IoT system represents the communication network between the
IoT device and cloud services. Typically, this is performed by cellular networks and the Internet.
However, communication can be accomplished by home service Internet providers and WiFi.

e  Cloud services: These components collect and store data sent from IoT devices. They also provide
analytics services and feedback to IoT devices. Some cloud services may share data externally
with other parties.

IoT systems can be classified into two broad categories: special-purpose IoT and consumer IoT.
Special-purpose IoT systems are developed to satisfy the application requirements in specific realms
(e.g., supervisory control and data acquisition (SCADA) systems, supply chain, smart agriculture [6]),
and they require access to dedicated companies. In contrast, consumer IoT systems are easily acquired
by the general public, and they generally include wearables, smart homes, and mobile IoT [10,11].

e  Wearables: These are computers with embedded sensors and actuators/output devices developed
as a garment, accessory, or device that is worn (or carried around) by consumers.

e Smart homes: These devices are deployed in homes with the goal of simplifying a consumers’
life from the perspective of security, comfort and entertainment. This category may include
Internet-connected toys.

e  Mobile IoT: This category encompasses bicycles, smart cars, drones and others that people use
either for transportation and/or leisure. This category may also include smartphones.

2.2. Blockchain, Smart Contracts and Their Applications

According to Bashir [12], blockchain is defined as “a peer-to-peer, distributed ledger that is
cryptographically secure, append-only, immutable, and updateable only via consensus or agreement
among peers” [12]. It is a ledger that consists of blocks chained together with cryptographic hashes
and is distributed over all the nodes in the system. Each block in the chain contains transactions.
Transactions posted from the nodes on the blockchain are verified based on a predetermined set of
rules and only valid transactions are selected for inclusion in a block. The next block to be chained to
the ledger is determined by a consensus algorithm which is run by all nodes in the system [13]. This
distributed consensus mechanism is the primary underpinning of a blockchain. It allows a blockchain
to present a single version of the truth which is agreed upon by all parties without the requirement
of a central authority. The first blockchain, Bitcoin, was created by a person/group known by the
pseudonym Satoshi Nakamoto in 2008 [14]. Bitcoin is one specific application of blockchain technology;
namely, a cryptocurrency. Since the introduction of Bitcoin, the underlying, blockchain technology has
been studied extensively to adapt it for other uses. It is still being actively researched by academia,
government, industry and other interested parties.
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There are two types of Blockchain: public and private, or more commonly called permissioned.
Public blockchains are open to everyone; anyone can run applications and join the network. Bitcoin is
an example of a public blockchain. Another well-known public blockchain is the Ethereum Mainnet.
Ethereum is a global, open-source platform for decentralized applications. It was proposed in 2013 by
Buterin [15]. Different from Bitcoin, Ethereum blockchain allows smart contracts.

A smart contract is a “computer program that encapsulates the business logic and code needed to
execute a required function when certain conditions are met.” [12]. An important feature of blockchain
technology is that it provides a platform to execute smart contracts. The concept of smart contracts
was first introduced by Nick Szabo in 1977 [16]. With the advent of blockchain technology, smart
contracts have found applications especially in the financial services industry due to the reduced cost
of transactions and simplification of complex contracts. Not all blockchains support smart contracts.
For example, Bitcoin is a cryptocurrency-only platform.

Permissioned blockchains are blockchains in which access is controlled and only those who are
vetted can participate in the network. Permissioned blockchains are popular among industry-level
enterprises and businesses for which security, identity, and role definition are important. A prime
example of permissioned blockchains is the Hyperledger project [17]. Hyperledger itself is not a
blockchain; it is an umbrella project that offers the necessary framework, standards, guidelines and
tools to build open source blockchains and related applications for use across various industries. It is a
global collaboration, hosted by The Linux Foundation including leaders in finance, banking, Internet
of Things, supply chains, manufacturing and technology. It was launched in 2016. Some projects and
tools under the Hyperledger project include Fabric, Sawtooth, Iroha, Burrow, Indy, Cello, Composer,
Explorer, and Quilt.

Blockchain development has gained adoption in various sectors since its introduction with Bitcoin,
and it is being investigated for use in healthcare [18], education [19], smart contracts [20], smart
cities [21], smart homes [22], finance [23], supply chains [24], provenance [25], electronic voting [26]
and other sectors.

Kuo et al. describe benefits of blockchain for biomedical/health care applications compared
with traditional distributed databases. With the benefits of blockchain that include decentralized
management, immutable audit trail, data provenance, robustness and availability, and improved
security and privacy, it can improve medical record management, enhance the insurance claim
process, accelerate clinical/biomedical research, and advance biomedical/health care data ledgers [27].
Other use cases in healthcare and life sciences (HCLS) of blockchain architectures are described by
Curbera et al. [28].

Christidis et al. described how smart contracts reside on the blockchain for the automation of
multi-step processes and how a blockchain cooperates with IoT in terms of services/resources sharing
and a cryptographical automation. They mention that the blockchain-IoT combination significantly
change several industries in the form of new business models and novel [20].

Park et al. propose a review system that can confirm the reputation of the owner of data or the
traded data in the P2P marketplace that is based on the Ethereum smart contracts [4]. They note
that all functions to be processed by Ethereum transactions require a certain amount of gas and
analyze the performance of their proposed model with required gas. Pieroni et al. [21] investigated the
implementation of smart energy grid for citizens in the urban context for smart environments based
on blockchain. In their work, they implemented a mobile application to enable citizens access to a
blockchain network. Their distinctive solution uses the blockchain technology to join the grid, and it
trades energy between energy providers and private citizens with blockchain granting ledger.

Litke et al. [24] analyzed the blockchain adoption for a large-scale deployment on the supply
chain management industry. They investigated the factors that affect the adoption of blockchain
in supply chain including scalability, performance, consensus mechanism, privacy considerations,
location proof and cost. Ferraro et al. [29] described how distributed ledger technologies (DLTs) can
be used to enforce social contracts and to orchestrate the behavior of agents trying to access a shared



Electronics 2020, 9, 244 5o0f 14

resource. After analyzing the advantages and disadvantages of using DLTs architectures to implement
certain control systems in an Internet of Things (IoT) setting, they proposed an application of DLTs as a
mechanism for dynamic deposit pricing, wherein the deposit of digital currency is used to orchestrate
access to a network of shared resources.

Mezquita et al. [30] propose a multi-agent system that combines smart contracts and blockchain to
enable peer-to-peer electricity trading in a micro-grid scenario without the need for human intervention.
The agents manipulate the blockchain through smart contracts creating a transparent and efficient
market of electricity in which the peers trade electricity directly between themselves. They use the
Ethereum blockchain and network of nodes, in order to have a decentralized tamper-proof registry
which allows for the establishment of trustful agreements between agents, and the data recorded
by them.

2.3. Blockchain Technology and IoT

An JoT system is composed of connected devices that communicate with each other for various
purposes. The devices” ability to connect and communicate with each other without human interaction
has enabled many conveniences for human in areas such as smart homes, smart vehicles, medical
care, agriculture, manufacturing, and others [23]. In industrial settings, the integration of blockchain
technology and the Industrial Internet of Things (IloT) is bringing benefits to produce and manufacture
goods with tight integrations between business partners [31].

Security is at the heart of most of these applications [32]. However, security issues in IoT systems
have not been fully addressed in the rapid development of the concept/technology. Many security
challenges remain to be solved in the IoT realm. For some of these challenges, blockchain technology
is being investigated as a viable solution in academic, industry and government circles [31]. Khan et al.
provide a categorization of security issues in IoT systems into low-level, intermediate-level and
high-level issues based on the IoT deployment architecture [33]. They discuss how some of the intrinsic
features of blockchain can be useful in addressing some of these challenges. Areas where blockchain
could be useful according to authors include address space, identity of things and governance, data
authentication and integrity, authentication, authorization, privacy, and secure communications.

Makhdoom et al. provide an excellent survey on the progression of blockchain technology and its
impact on IoT [34]. After discussing the IoT threat environment and an overview of the blockchain
technology, the authors discuss the challenges to blockchain’s adoption in IoT. Yeray et al. also point
out the limiting factors of blockchain technology impeding the rise in value of IoT systems [35].
The primary challenge they observe is the non-availability of an IoT centric consensus protocol. Most of
the current consensus mechanisms are too heavy for IoT devices with limited computing power and
storage capacity. Another challenge is the lack of transaction validation rules that can accommodate
IoT systems which usually comprises heterogeneous devices, sending of sensor data, and/or data in
distinct formats and different range of values. Scalability is also one of the challenges as the size of
blockchain grows quickly especially in IoT systems [35]. Also, for many IoT systems such as wireless
sensor networks (WSNs), industrial control systems (ICS), smart vehicles and smart grids, the sharing
of real-time data is required. Better transaction confirmation times, without compromising the security,
are needed to achieve real-time data sharing. Another problem in applying blockchain technology
to the IoT realm is the integration of the IoT devices to the blockchain. Mechanisms to ensure the
authenticity of the device and the integrity of data from the device are needed. Finally, the lack of
a mechanism for secure and synchronized software upgrades of the devices when they remain in
continuous operation is another challenge. Additional issues that may apply to certain use cases are
user privacy, data security (encryption), and legal issues [36].

Jesus et al. analyzed the uses of blockchain to achieve security and privacy in IoT. They listed the
limited capabilities, high transaction costs, and in certain cases privacy requirements for the data as
main issues in integration of blockchain in IoT [37]. Ourad et al. [38] proposed a blockchain-based
authentication and access control mechanism for IoT devices based on smart contracts. After the user
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successfully authenticates to the smart contract, the user and the IoT device receive an authentication
token and the Ethereum address of the authorized user. In their work, they compared their solution
with Oauth2, Auth0, and Blockstack. They also showed that their solution using Ethereum smart
contracts can provide tamper proof records and decentralization to improve current approaches.

Guin et al. [39] presented an authentication scheme using blockchain technology to authenticate
IoT edge devices. Their scheme uses Static Random Access Memory-based (SRAM-based) physically
unclonable functions to generate unique digital fingerprints for device IDs. Registered manufactures
upload their IDs to a globally accessible blockchain. When a device is to be deployed in an IoT network,
a locally permissioned blockchain is used to authenticate the device through the global blockchain.
The dual blockchain approach counters the counterfeit and clone problems, enhances the reliability
and usability of the supply chain, and ensures authenticity of edge devices.

Chen et al. [40] proposed a method based on blockchain technology to protect data integrity
in the IoT. They develop a stochastic blockchain scheme to limit the number of cooperative nodes
and distribute the load among IoT edge nodes. They also proposed a lightweight mining process
designed for their scheme. Huang et al. [41] proposed a credit-based consensus mechanism for
industrial IoT systems. In their work, they propose a credit-based proof-of-work (PoW) mechanism
which can guarantee system security and transaction efficiency simultaneously. They also designed a
data authority management method to regulate access to sensor data to protect the confidentiality of
sensitive data [41].

Casado-Vara [42] et al. proposed the utilization of an adaptive control algorithm for IoT systems
to optimize the block mining process. In their work, they made use of queuing theory and non-linear
closed control loop to determine when an IoT device should send data to be stored in the blockchain
so the mining process is more efficient. In addition to the queuing model and control system, they
also proposed an IoT network architecture made of sidechains for IoT devices and fully connected
blockchain nodes.

Ejaz et al. [32] investigated prime issues related to the successful adoption of blockhain-based IoT
systems and their applications. In their research, they present two case studies related to the adoption
of blockchain in IoT systems with applications in smart homes and food supply chain traceability to
show the effectiveness of IoT blockchain technology in these applications.

3. Methodology

3.1. Experimental Testbed

In this study we created a testbed to store IoT sensor data in a public blockchain system. The IoT
testbed used to collect IoT sensor data is composed of the following elements:

e A DHT11 temperature/humidity sensor: The DHT11 is a low-cost (less than $10 USD) capacitive
sensor that captures humidity and temperature data, and provides a digital output. A limitation
of the DHT11 sensor is that it generates data every two seconds.

e A Raspberry Pi3 Model B device: The Raspberry Pi Model 3B is a small, low-cost and embeddable
computer that can be used to create IoT prototypes. The 3B model is powered by a 1.32 GHz
quad-core processor, it has 1GB of RAM, on-board WiFi/Bluetooth connectivity, and a 40-pin GPIO
bus [43]. Figure 1 shows an image of the Raspberry Pi with the DHT11 sensor. The Raspberry Pi
acts as a lightweight Ethereum node.

e MetaMask: MetaMask is a browser extension that acts as a bridge between Internet browsers,
Ethereum-based blockchains, and decentralized applications (DApps) running on a full Ethereum
node [44]. In our testbed, MetaMask was used as an Ethereum wallet and this extension is
executed on the Raspberry Pi device. We used MetaMask because it provided an Ethereum faucet
in which a wallet can obtain a limited number of free funds in Ethereum’s digital currency (ethers)
for the IoT sensor transactions/operations.
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Infura: Infura is an infrastructure that offers a suite of tools to connect apps to the Ethereum
network [34]. It runs fully connected Ethereum nodes and provides access to them via an
application programming interface (API). Once an account and project are created in Infura, an
URL end point that can be used to push the smart contract transactions onto the blockchain via
web services. Infura is needed because of the computing power of the Raspberry Pi does not
allow to connect it directly to the Ethereum network.

Ropsten: Ropsten is an Ethereum blockchain to test applications (a testnet) [29]. Among the
testnets, Ropsten is the one that most closely follows the main Ethereum blockchain (Mainnet).
Ropsten uses the proof of work (PoW) consensus mechanism, which is the same mechanism used
by the Mainnet.

Figure 1. Prototype Raspberry Pi IoT (Internet of Things) device used for the testbed.

We used two major tools to collect data, write and deploy the smart contract transactions on

Ropsten. The first tool is the Remix IDE [32], which is a web-based environment used to develop
and test smart contracts using the Solidity programming language. Remix was used to upload the
smart contract to the Ropsten testnet and it provided the application binary interfaces (ABI) to interact
with the contract. The second tool is the Web3 Python library which we used in a Python script that
was executed in the Raspberry Pi IoT device. The Web3 library contains the necessary methods to
interact with the blockchain including signing and sending transactions, receiving receipts, among
others. The Python script that we created was executed in the Raspberry PiIoT device to collect sensor
data, create, sign and send transactions to Ropsten via the Web3 library and Infura, as well as to log
transactions. Thus, steps performed by this Python script (Figure 2) are as follows:

1.
2.

Sensor data collection from the sensor at the Raspberry Pi.

Creation of blockchain transaction data with inclusion of nonce, origin address, destination
address, and other data needed to process the transaction in the blockchain.

Data signing with the account’s private key to authenticate that the correct account is sending
the data.

Sending transaction data to Ropsten in which fully connected nodes receive the data via Web3
and Infura.

Extraction of the transaction’s receipt from the blockchain, in which the cost, specifically the
monetary cost in gas usage of the operation. At this point the script repeats again from step 1.
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Figure 2. Steps performed by Python script at the Raspberry Pi IoT device.

3.2. Experimental Procedure

With the testbed described in the previous section, we then proceed to evaluate the monetary cost
of IoT sensor data storage in Ropsten under two scenarios:

e Storing all data on a contract (array appending): In this scenario, we appended the new data
generated by the IoT device at the end of an expanding array stored in the smart contract.

e  Storing only a recent portion of the data on a contract (array substitution): In this scenario, we
allocated a fixed array in the smart contract and stored only the most recent portion of the data
that could fit in the array, thus overwriting the array entries. In this last scenario, we performed
two types of substitution: substitution with array size = 200 entries and substitution with array
size = 2000 entries.

In Ethereum the amount of computational effort required to execute the operations in a transaction
or a smart contract is measured in gas. The basic operations allowed in an Ethereum blockchain and
how much gas they require are published in the Ethereum beige paper [45]. When a transaction is
created, a gas limit, which is the maximum amount of gas the originator is willing to pay for, along
with how much the originator is willing to pay per gas is specified in the transaction. The currency to
pay for gas is ether, more specifically the gas cost is specified in gwei which is 10~ ether. The price for
gas is not fixed. It is up to the sender of a transaction to specify any gas price they like. On the other
side, it is up to the miner to verify any transactions they like. Naturally, to maximize their profit, the
miners usually pick the transactions that specify the highest gas price.

If an operation runs out of gas, the miners stop mining and the operation is reverted back to
its original state. The originator still pays the miners the fee for their computational costs and the
operation gets added to the blockchain even though it is not executed. If there is any gas left over, it is
refunded to the originator. There are mechanisms in place in Ethereum to prevent bloated gas limits in
transactions [15,45]. On the most part the price one is willing to pay per gas determines the speed
of the transaction. The website ethgasstation.info [46] provides information about current gas prices,
transaction confirmation times, and miner policies on the Ethereum network. To gauge the cost of gas
prices for different types of transaction speeds, we checked ethgasstation.info.

After pushing the transactions onto the blockchain, the Python script described in the previous
section extracted the gas used for the operation from the transaction receipts when the sensor
transactions were confirmed. Figure 3 shows a diagram with these steps. We also confirmed the
transactions through etherscan for Ropsten [47], a web-based tool that allows viewing of all transactions
on Ethereum blockchains including Ropsten.

We created three smart contracts to measure the gas cost of storing data on Ropsten. The first
contract appended the data in an expanding array, thus storing all data points on the contract.
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The second contract kept an array of size 200 (hence 200 recent data points were kept, making a
substitution every time data sensor data was uploaded), and the third contract kept an array of size
2000 (hence 2000 recent data points were kept, making a substitution every time the IoT sensor data
was uploaded). Ethereum allows unsigned integer data types of 8 bits to 256 bits with 8-bit increments
named uint8, uintl6, uint24, ..., uint256. We initially tested storing individual 8-bit and 256-bit
unsigned integers on the Ropsten blockchain and found that storing a 256-bit int (uint256) is not more
expensive than storing an 8-bit int (uint8) in terms of gas usage. In fact, storing one 256-bit integer
costs 26,796 gas which is slightly less than storing an 8-bit integer which costs 27,283 gas. For this
reason, in the smart contracts, we used the data type uint256 even though the humidity sensor data
would allow smaller number of bits to be used. When creating a transaction, and to make sure that we
had enough gas to cover the extra operations for storage in an array, we specified the gas limit to be
140,000 which was consistent with the gas estimate that Remix provided. We specified the gas price
to be 40 gwei for average transaction speed as was suggested by ethgasstain.info when we ran the
transactions/experiments in July 2019.

Raspberry Pi
collects and sends
Measure data data transaction

B—

Blockchain receives
@ transactlon

Mlne and confirm ‘ @
transaction

Block is added into the
@ BIockcham :

Figure 3. Steps to store sensor data in Ropsten as performed in our experiments.
3.3. Results

The sensor data and the gas consumption for the three smart contracts are shown in Figure 4 in
top and bottom graphs, respectively. The graphs are shown in one figure to make the relation between
sensor readings and costs for storing them more apparent. As shown in Figure 4 (top), humidity
readings fluctuated between 50% and 80% during the execution of the experiments. We collected more
than 2000 data points which were stored on Ropsten using the three different smart contracts. We
observed from Figure 4 (bottom) that the gas cost was mostly affected by the method used to store the
data on the blockchain.

——Sensor Data
80 — T T T ‘ —
75
70
S
> 85 =
=]
£ 60— —
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I
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Figure 4. Cont.
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Figure 4. Data captured by the IoT device (top); gas consumption of storage options (Gas used: y-axis
on left; data points) (bottom).

In the array substitution method, the average cost of the substitution method was 58,777 gas.
However, once the actual substitution began, the cost was reduced by 33% (39,905 gas on average).
In our experiments, the most expensive operations were array initializations and the least expensive
were those of array substitution. From our experiments, array substitution was cheaper than array
appending by 26% on average. We can deduce then that the smart contract operations have the most
impact on the gas cost, and the size of the data holds little no to weight affecting the increase/decrease
of gas.

We now calculate the total cost of storing T data points on the blockchain under the two different
storage options as follows (in gas):

Method 1—array appending:
Tappending = Cost for Initialization + Cost for appending T data points 1)
Method 2—array substitution (Keeping N data points):

Tsubstitution = Cost for Initialization + Cost for appending N data points

)

+ Cost for overwriting T — N data points

Using the data from Table 1, we can calculate the cost of storing T data points on the blockchain
as follows:

Method 1:
Tappending = 82,960 + 52,960 X T, 3)

Method 2:
Tsubstitution = 103,777 + 58,777 X N + 39,305 X (T — N), 4)

For example, suppose that a business/entity needs to store 6000 data points on Ethereum in a
month, their monthly gas cost would be:

Method 1: Typpending = 82,960 + 52,960 X 6000 = 317,842,960 gas
Method 2: Tsypstitution With N = 200:

Tsubstitution = 103,777 + 200 x 58,777 + 5800 x 39,305 = 239,828,177 gas
Tsubstitution With N = 2000:

Teubstitution = 103,777 + 58,777 x 2000 + 39,305 x 4000 = 274,877,777 gas
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As of 22 November 2019, the recommended Ethereum gas price for standard mining in the
Mainnet as published in ethgasstation.info was 10 gwei and 1 ether is 146.87 USD. Recalling that 1 gwei
= 1077 ether, we calculate the total cost in US Dollars (USD) for storing 6,000 data points as follows:

Method 1: Costappending = 317,842,960 x 10 x 10~ ether = 3.1784296 ether = 466.82 USD.
Method 2 with N = 200: Costsupstitution = 239,828,177 x 10 x 10 =2.27969 ether = 334.82 USD.
with N = 2000: Costeubstitution = 274,877,777 X 10 x 10~0 = 2.74877777 ether = 403.71 USD.

Table 1. Average gas consumption of storage options.

Method Initialization Adding First N Points Adding after N Points
Array appending 82,960 52,960 52,960
Array substitution 103,777 58,777 39,305

3.4. Discussion

As previously stated, the gas required to push a new data point in the blockchain does not seem to
depend on the size of the array in either appending or substitution methods. Out of the two methods,
using substitution proved to be the more efficient method for data storage on the Ropsten Ethereum
blockchain. The total gas cost for storing the most recent 200 data points was about 75.4% and storing
the most recent 2000 data points was about 86.5% of that of appending.

On the Ethereum blockchain, when data is substituted it still exists in the ledger and can be
retrieved from older blocks by looking at the transaction hash. The “get” functions in smart contracts
do not change the state of the blockchain so they can be executed at no cost, allowing for cost-efficient
data retrieval. As was mentioned in Section 3.2, our initial test showed that storing an unsigned
256-bit integer (in uint256 data type) on the blockchain costs 26,796 gas. If 6000 data points were
stored individually on the blockchain, then the cost would be about 26,796 x 6000 = 160,776,000 gas.
This would be about 51% of appending all data, 67% of storing the most recent 200 data points, and 59%
of storing the most recent 2000 data points. In our study, we chose to store all or some portion of the
data with the idea that the data could be used to make inferences about the environment from which
the humidity sensor is collecting data. One out-of-place humidity value sensor may raise suspicion
but when most of the recent values are abnormal, it may indicate problems with the environment, the
sensor, or data submission process. Smart contracts can be used to take actions in these cases, although
it will have its costs in gas units.

3.5. Storing Data from Several Sensors

In many applications data from several sensors are more useful. In this phase, we focus on storing
data from several sensors on the blockchain. We assume that readings from all the sensors are written
onto the blockchain at once via a smart contract. For example, we assume that there are 32 sensors and
the data from each sensor is at most 8-bits long. Note that the total length of data from all sensors is
8 x 32 = 256 bits. The discussion below can be adapted to any number of sensors where the sum of
maximum number of bits to represent the data for each sensor does not exceed 256. Since we assumed
the sensor data is at most 8-bits long, we simulated the sensor data by generating random numbers
between 0 and 255 in the Python script. We examined three methods of storing the data from the
32 sensors on the blockchain. The three methods and the gas usage for each transaction are given
below. For each method we ran 20 simulations to obtain the gas usage. Except for a few cases, the gas
usages were constant (equal to the values indicated in parentheses). This is as expected considering
the gas cost structure in Ethereum. In the exceptions, the gas amounts were very close to the numbers
indicated in parentheses.

e  Method 1. Storing the data in an array of size 32 of uint8 values (gas: 88,600)
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e  Method 2. Encoding the 32 values into 256 bits in the Python script (outside the smart contract)
and storing one uint256 on the blockchain (gas: 26,796)

e  Method 3. Encoding the 32 values into 256 bits in the smart contract script and storing one uint256
on the blockchain (gas: 84,837)

The encoding in methods 2 and 3 is such that each 8 bits of the 256 bits represents the reading from one
sensor. This is simply done by multiplying the sensor values by powers of 28 (i.e., 20, 28,216 .. 2248)
and adding them together. More specifically, if dy, d1,d>, ..., d3; are the data from the 32 sensors then
the 256-bit integer that represents them is dox 2° + dqx 28 + dpx 216 + ... + d31x 2248, Note that each
multiplication by 28 amounts to shifting the number 8 bits to the left.

With this encoding, method 2 comes down to storing an uint256 on the blockchain which needs
26,796 gas. This is the cheapest option as the encoding is done outside the smart contract. In our
implementation the “get” method simply returns the 256-bit number so one needs to do the decoding
once they get the data from the blockchain to get the actual sensor readings.

In method 3, the set method in the smart contract receives the 32 sensor readings in an array and
encodes them into a 256-bit number value using the encoding described above and stores the result in
an uint256 variable. As one expects, this is more expensive than method 2 because encoding operations
cost gas. The gas required in method 3 is about 3.2 times the gas required in method 2. This directly
translates to monetary equivalents. Even though more expensive, performing the encoding via the
smart contract may be more desirable. It has the advantage of avoiding manipulations of data, hence
providing stronger integrity.

We would like to note also that method 1, in which an array is used to store the data, costs the
most, hence should be avoided unless there is an absolute need to store the sensor data separately in
such a structure.

4. Conclusions

Blockchain is a developing technology that provides much desired security mechanisms such as
integrity, authenticity, availability, and fault tolerance although at some cost. Blockchain is not suited
for all scenarios but there are many cases where benefits may outweigh the cost. IoT is an area where
developments are rapid but many challenges remain, especially with respect to security. Utilizing
blockchain technology for challenges in IoT is an active area of research. More research that addresses
the cost, in particular ways to minimize the cost of using blockchain for IoT, need to be conducted.
Considering the amount of data generated by loT devices, efficient representations of data that enable
more manipulations via smart contracts at smaller costs should be studied. More functional smart
contracts that can do some analysis on the data and provide alerts (for example light a led) when
data is out of range, efficient ways to carry out these operations, and the cost analysis of such smart
contracts could enable more practical applications of blockchain technology in IoT.
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