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Abstract

We introduce a simple framework for designing private boosting algorithms. We give natural con-
ditions under which these algorithms are differentially private, efficient, and noise-tolerant PAC
learners. To demonstrate our framework, we use it to construct noise-tolerant and private PAC
learners for large-margin halfspaces whose sample complexity does not depend on the dimension.

We give two sample complexity bounds for our large-margin halfspace learner. One bound is
based only on differential privacy, and uses this guarantee as an asset for ensuring generalization.
This first bound illustrates a general methodology for obtaining PAC learners from privacy, which
may be of independent interest. The second bound uses standard techniques from the theory of
large-margin classification (the fat-shattering dimension) to match the best known sample com-
plexity for differentially private learning of large-margin halfspaces, while additionally tolerating
random label noise.

Keywords: Boosting, Differential Privacy, Learning with Noise, Linear Threshold Functions

1. Introduction
1.1. (Smooth) Boosting, Noise-Tolerance, and Differential Privacy

Boosting is a fundamental technique in both the theory and practice of machine learning for con-
verting weak learning algorithms into strong ones. Given a sample .S of n labeled examples drawn
i.i.d. from an unknown distribution, a weak learner is guaranteed to produce a hypothesis that can
predict the labels of fresh examples with a noticeable advantage over random guessing. The goal
of a boosting algorithm is to convert this weak learner into a strong learner: one which produces a
hypothesis with classification error close to zero.

A typical boosting algorithm — e.g., the AdaBoost algorithm of Freund and Schapire (1997) —
operates as follows. In each of rounds t = 1,...,7, the boosting algorithm selects a distribution
Dy over S and runs the weak learner on S weighted by Dy, producing a hypothesis h;. The history
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of hypotheses hq, ..., h; is used to select the next distribution D, according to some update rule
(e.g., the multiplicative weights update rule in AdaBoost). The algorithm terminates either after a
fixed number of rounds 7', or when a weighted majority of the hypotheses A1, ..., At is determined
to have sufficiently low error.

In many situations, it is desirable for the distributions D; to be smooth in the sense that they
do not assign too much weight to any given example, and hence do not deviate too significantly
from the uniform distribution. This property is crucial in applications of boosting to noise-tolerant
learning (Domingo and Watanabe, 2000; Servedio, 2003), differentially private learning (Dwork
et al., 2010), and constructions of hard-core sets in complexity theory (Impagliazzo, 1995; Barak
et al., 2009b). Toward the first of these applications, Servedio (2003) designed a smooth boosting
algorithm (SmoothBoost) suitable for PAC learning in spite of malicious noise. In this model of
learning, up to an 7 fraction of the sample S could be corrupted in an adversarial fashion before
being presented to the learner (Valiant, 1985). Smooth boosting enables a weak noise-tolerant
learner to be converted into a strong noise-tolerant learner. Intuitively, the smoothness property
is necessary to prevent the weight placed on corrupted examples in S from exceeding the noise-
tolerance of the weak learner. The round complexity of smooth boosting was improved by Barak
et al. (2009b) to match that of the AdaBoost algorithm by combining the multiplicative weights
update rule with Bregman projections onto the space of smooth distributions.

Smoothness is also essential in the design of boosting algorithms which guarantee differen-
tial privacy (Dwork et al., 2006), a mathematical definition of privacy for statistical data analysis.
Kasiviswanathan et al. (2011) began the systematic study of PAC learning with differential privacy.
Informally, a (randomized) learning algorithm is differentially private if the distribution on hypothe-
ses it produces does not depend too much on any one of its input samples. Again, it is natural to
design “private boosting” algorithms which transform differentially private weak learners into dif-
ferentially private strong learners. In this context, smoothness is important for ensuring that each
weighted input sample does not have too much of an effect on the outcomes of any of the runs of the
weak learner. A private smooth boosting algorithm was constructed by Dwork et al. (2010), who
augmented the AdaBoost algorithm with a private weight-capping scheme which can be viewed as
a Bregman projection.

1.2. Our Contributions

Simple and Modular Private Boosting. Our main result is a framework for private boosting
which simplifies and generalizes the private boosting algorithm of Dwork et al. (2010). Our frame-
work is flexible enough to accommodate adaptations of Servedio’s SmoothBoost algorithm (Ap-
pendix K), as well as the smooth boosting algorithm of Barak et al. (2009a) based on Bregman pro-
jections (Section 4). We obtain these simplifications by sidestepping a technical issue confronted
by Dwork et al. (2010). Their algorithm maintains two elements of state from round to round: the
history of hypotheses H = hy, ..., h; and auxiliary information regarding each previous distribu-
tion Dy, ..., Dy, which is used to enforce smoothness. They remark: “[this algorithm] raises the
possibility that adapting an existing or future smooth boosting algorithm to preserve privacy might
yield a simpler algorithm.”

We realize exactly this possibility by observing that most smooth boosting algorithms have
effectively stateless strategies for re-weighting examples at each round. By definition, a boosting
algorithm must maintain some history of hypotheses. Therefore, re-weighting strategies that can be
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computed using only the list of hypotheses require no auxiliary information. Happily, most smooth
boosting algorithms define such hypothesis-only re-weighting strategies. Eliminating auxiliary state
greatly simplifies our analysis, implies natural conditions under which existing smooth boosting
algorithms can be easily privatized, and yields lower sample complexity. A detailed comparison
between our boosting algorithm and that of Dwork et al. (2010) appears in Appendix L.

Our main algorithm is derived from that of Barak et al. (2009a), which we call BregBoost.
Their algorithm alternates between mutiplicative re-weighting and Bregman projection: the mul-
tiplicative update reflects current performance of the learner, and the Bregman projection ensures
that BregBoost is smooth. Unfortunately, a naive translation of BregBoost into our frame-
work would Bregman project more than once per round. This maintains correctness, but ruins
privacy. Inspired by the private optimization algorithms of Hsu et al. (2013, 2014) we give an al-
ternative analysis of BregBoost that requires only a single Bregman projection at each round.
The need for “lazy” Bregman projections emerges naturally by applying our template for private
boosting to BregBoost, and results in a private boosting algorithm with optimal round complex-
ity: LazyBregBoost. This method of lazy projection (see Rakhlin, 2009, for an exposition) has
appeared in prior works about differential privacy (Hsu et al., 2013, 2014), but not in the context of
designing boosting algorithms.

Application: Privately Learning Large-Margin Halfspaces. A halfspace is a function f :
RY — {—1,1} of the form f(x) = sign(u - x) for some vector u € R Given a distribution
D over the unit ball in R%, the margin of f with respect to D is the infimum of |u - | over all
in the support of D. Learning large-margin halfspaces is one of the central problems of learning
theory. A classic solution is given by the Perceptron algorithm, which is able to learn a 7-margin
halfspace to classification error o using sample complexity O(1/72a) independent of the dimen-
sion d. Despite the basic nature of this problem, it was only in very recent work of Nguyén et al.
(2019) that dimension-independent sample complexity bounds were given for privately learning
large-margin halfspaces. In that work, they designed a learning algorithm achieving sample com-
plexity O(1/72a¢) for 7-margin halfspaces with (e, 0)-differential privacy, and a computationally
efficient learner with this sample complexity for (g, ¢)-differential privacy. Both of their algorithms
use dimensionality reduction (i.e., the Johnson-Lindenstrauss lemma) to reduce the dimension of
the data from d to O(1/72). One can then learn a halfspace by privately minimizing the hinge-loss
on this lower dimensional space.

Meanwhile, one of the first applications of smooth boosting was to the study of noise-tolerant
learning of halfspaces. Servedio (2003) showed that smooth boosting can be used to design a (non-
private) algorithm with sample complexity O(1/72a?2) which, moreover, tolerates an 7 = O(7a)
rate of malicious noise. Given the close connection between smooth boosting and differential pri-
vacy, it is natural to ask whether private boosting can also be used to design a learner for large-
margin halfspaces. Note that while one could pair the private boosting algorithm of Dwork, Roth-
blum, and Vadhan with our differentially private weak learner for this application, the resulting
hypothesis would be a majority of halfspaces, rather than a single halfspace. Like Nguyén et al.
(2019) we address proper differentially-private learning of large-margin halfspaces where the hy-
pothesis is itself a halfspace and not some more complex Boolean device.

We use our framework for private boosting to achieve a proper halfspace learner with sample
complexity O ( L ) when (g, 0)-DP is required. Our learner is simple, efficient, and automatically

eat?
tolerates random classification noise (Angluin and Laird, 1987) at a rate of O(«a7). That is, we
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recover the sample complexity of Nguyén et al. (2019) using a different algorithmic approach while
also tolerating noise.! Additionally, our efficient algorithm guarantees zero-concentrated differen-
tial privacy (Bun and Steinke, 2016), a stronger notion than (e, §)-DP. In this short paper we phrase
all guarantees as (e, §)-DP to facilitate comparison of sample bounds.

Theorem 1 (Informal, Fat-Shattering Application to Large-Margin Halfspaces) Given
n =0 (m%) samples from a distribution D supported by a T-margin halfspace u subject to
O(ar)-rate random label noise, our learning algorithm is (¢,0)-DP and outputs with probability

(1 — B) a halfspace that a-approximates u over D.

Furthermore, it may be interesting that we can also obtain non-trivial sample bounds for the
same problem using only differential privacy. The analysis of Nguyén et al. (2019) uses the VC
dimension of halfspaces and the analyses of Servedio (2003) and Theorem 1 above both use the fat-
shattering dimension of halfspaces to ensure generalization. We can instead use the generalization
properties of differential privacy to prove the following (in Appendix H).

Theorem 2 (Informal, Privacy-Only Application to Large-Margin Halfspaces) Given
n=0 (6 ang +e7? 4 0472) samples from a distribution D supported by a T-margin halfspace u
subject to O(ar)-rate random label noise, our learning algorithm is (g, 9)-DP and outputs with

probability (1 — () a halfspace that a-approximates u over D.

Intuitively, the fat-shattering argument has additional “information” about the hypothesis class
and so can prove better bounds. However, the argument based only on differential privacy would
apply to any hypothesis class with a differentially private weak learner. So, we present a template
for generalization of boosting in Sections G.2 and G.3 which relies only on the learner’s privacy
guarantees.

2. Preliminaries
2.1. Measures & Distributions

For a finite set X, let /(X' be the uniform distribution over X.

Definition 3 (Bounded Measures) A bounded measure on domain X is a function p : X — [0, 1].
Density: d(u) = E,y(x) [1(x)] — the “relative size” of a measure in X.
Absolute Size: || = > p(x)
Induced Distribution: [i(x) = pu(z)/|u| — the distribution obtained by normalizing
a measure

We require some notions of similarity between measures and distributions.

Definition 4 (Kullback-Leibler Divergence) Let 111 and po be bounded measures over the same
domain X. The Kullback-Leibler divergence between (1 and ps is defined as:

= z)lo 21C)) T) — T
KL 1) = 3= o) los (25) + 1ate) = i)

1. Our algorithm only tolerates “local” noise patterns like RCN, because malicious noise could ruin privacy. See Section
G.3 of the appendix for a discussion.
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Definition 5 (Statistical Distance) The statistical distance between two distributions Y and Z, de-
noted A(Y, Z), is defined as:

AY,Z) = msa}x\Pr[Y €S| —Pr[Z e 9]

The a-Rényi divergence has a parameter o € (1,00) which allows it to interpolate between
KL-divergence at « = 1 and max-divergence at o« = oc.

Definition 6 (Rényi Divergence) Let P and Q) be probability distributions on ). For o € (1,00),
we define the Rényi Divergence of order o between P and () as:

Du(P Q)= Lo (&, (52 ])

A measure is “nice” if it is simple and efficient to sample from the associated distribution. If
a measure has high enough density, then rejection sampling will be efficient. So, the set of high
density measures is important, and will be denoted by:

Lo ={p|d(p) = s}
To maintain the invariant that we only call weak learners on measures of high density, we use

Bregman projections onto the space of high density measures.

Definition 7 (Bregman Projection) Ler I' C RIS be a non-empty closed convex set of measures
over S. The Bregman projection of fi onto I is defined as:

IIpfi = argmin KL(p [| /)
Bregman projections have the following desirable property:
Theorem 8 (Bregman, 1967) Let [i, ;1 be measures such that |, € I'. Then,
KL(p || p2) + KL(Hpf || ) < KL(p || ). In particular, KL(u || Ipi) < KL(p || ).

Barak, Hardt, and Kale gave the following characterization of Bregman projections onto the set
of x-dense measures, which we will also find useful.

Lemma 9 (Bregman Projection onto I',; is Capped Scaling Barak et al. (2009a)) Let I' denote
the set of k-dense measures. Let [i be a measure such that |[i| < kn, and let ¢ > 1 be the smallest
constant such that the measure i, where (1) = min{1, ¢ - fi(i)}, has density . Then IIpji = p.

2.2. Learning

We work in the Probably Approximately Correct (PAC) setting (Valiant, 1984). Two types of
error are allowed: first, the algorithm is allowed to completely fail with some small probability,
and second, it outputs a hypothesis that is only close to the concept we are trying to learn. We
denote by X" the domain of examples, and for the remainder of this work consider only the Boolean
classification setting where labels are always +1.
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Definition 10 (PAC Learning) A hypothesis class H is («, 3)-PAC learnable if there exists a sam-
ple bound ny : (0,1)? — N and a learning algorithm A such that: for every o, 3 € (0,1) and for
every distribution D over X x {£1}, running A on n > ny/(a, B) i.i.d. samples from D will with
probability at least (1 — () return a hypothesis h : X — {£1} such that:
Pr |[h(z)=9y]>1-a.
WD [h(x) = y]
PAC learners guarantee strong generalization to unseen examples. We will construct PAC learn-

ers by boosting weak learners — which need only beat random guessing on any distribution over
the training set.

Definition 11 (Weak Learning) Ler S C (X x {£1})" be a training set of size n. Let D be a
distribution over [n|. A weak learning algorithm with advantage ~y takes (S, D) as input and outputs
a function h : X — [—1, 1] such that:

1 — , 1
5 2 DWIA(;) =yl < 5 =
j=1

2.3. Privacy

Two datasets S, S” € X™ are said to be neighboring (denoted S ~ S’) if they differ by at most a
single element. Differential privacy requires that analyses performed on neighboring datasets have
“similar” outcomes. Intuitively, the presence or absence of a single individual in the dataset should
not impact a differentially private analysis “too much.” We formalize this below.

Definition 12 (Differential Privacy) A randomized algorithm M : X" — R is
(e, 6)-differentially private if for all measurable T C R and all neighboring datasets S ~ S’ € X",
we have

Pr[M(S) € T] < €€ Pr[M(S) € T] + 4.

In our analyses, it will actually be more useful to work with the notion of (zero-)concentrated
differential privacy, which bounds higher moments of privacy loss than normal differential privacy.

Definition 13 (Zero Concentrated Differential Privacy (zCDP)) A randomized algorithm M
X" — R satisfies p-zCDP if for all neighboring datasets S ~ S’ € X" and all @ > 1, we have
Do (M(S) || M(S")) < pa, where D (- || -) denotes the Rényi divergence of order c.

This second notion will often be more convenient to work with, because it tightly captures the
privacy guarantee of Gaussian noise addition and of composition:

Lemma 14 (Tight Composition for zCDP, Bun and Steinke (2016)) If M1 : X" — R; satis-
fies p1-zCDP, and My : (X™ x R1) — Rq satisfies p2-zCDP, then the composition M : X" — Ry
defined by M(S) = Ma(S, M1(S)) satisfies (p1 + p2)-zCDP.

zCDP can be converted into a guarantee of (¢, §)-differential privacy.

Lemma 15 (zCDP — DP, Bun and Steinke (2016)) Let M : X" — R satisfy p-zCDP. Then
forevery § > 0, we have that M also satisfies (e, §)-differential privacy for e = p+2+/plog(1/9).
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The following lemma will let us bound Rényi divergence between related Gaussians:

Lemma 16 (Folklore, see Bun and Steinke (2016)) Let z,2' € R% o € R, and o € [1,00). Then

allz — 2|3
202

Do(N(z,0%1) | N(#,6%1,)) =
Finally, p-zCDP is closed under post-processing, just like standard DP.

Lemma 17 (Post-processing zCDP, Bun and Steinke (2016)) Let M : X" — Ry and f : R —
Ry be randomized algorithms. Suppose M satisfies p-zCDP. Define M’ : X" — Ry by M'(x) =
f(M(z)). Then M’ satisfies p-zCDP.

3. Abstract Boosting (for Privacy)

Here we give sufficient conditions for private boosting, using a natural decomposition that applies
to many boosting algorithms. In Appendix G, we use the same decomposition to give templates
for noise-tolerant generalization and sample complexity bounds for private boosted classifiers that
rely only on the algorithmic stability imposed by differential privacy. While boosting is amenable
to generalization arguments using many different techniques (e.g., VC Theory, compression-based
arguments, and margin bounds) stability-based arguments have not yet produced concrete sample
bounds for boosting (Gao and Zhou, 2010). But when we impose the stringent algorithmic stability
condition of differential privacy, a straightforward generalization argument follows. Furthermore,
the sample bounds from DP alone are not much worse than those based on fat-shattering dimension
for large-margin halfspaces (Appendix H).

3.1. Boosting Schemas

A boosting algorithm repeatedly calls a weak learning algorithm, aggregating the results to produce
a final hypothesis that has good training error. Each call to the weak learner re-weights the samples
so that samples predicted poorly by the hypothesis collection so far are given more “attention”
(probability mass) by the weak learner in subsequent rounds. Thus boosting naturally decomposes
into two? algorithmic parts: the weak learner Wk and the re-weighting strategy NxM.

Below, we describe boosting formally using a “helper function” to iterate weak learning and re-
weighting. Crucially, we avoid iterating over any information regarding the intermediate weights;
the entire state of our schema is a list of hypotheses. This makes it easy to apply a privacy-
composition theorem to any boosting algorithm where NxM and Wk L satisfy certain minimal condi-
tions, elaborated later. Much of the complexity in the analysis of private boosting by Dwork et al.
(2010) was due to carefully privatizing auxiliary information about sample weights; we avoid that
issue entirely. So, many smooth boosting algorithms can be easily adapted to our framework.

We denote by H the hypotheses used by the weak learner, by S an i.i.d. sample from the target
distribution D, by T' the number of rounds, by 91 the set of bounded measures over S, and by D(.S)
the set of distributions over .S.

2. Some boosting algorithms also have a stopping rule; instead of a fixed number of rounds 7" they terminate when the
ensemble is “good enough.” We give an appropriate schema in Appendix K and capture Servedio’s SmoothBoost.
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Algorithm 1 Boost. In: S € X", T € N Algorithm2 Tter. In: S € X", H € H*

H«+ {} p < NxM(S, H)
fort =1to 7 do h <+ WKL(S, p)
H « Iter(S,H) return H U {h}
end for // Add h to list of hypotheses

f@) « 730 hi(x)

~

return sgn(f(z))

3.2. Ensuring Private Boosting

Under what circumstances will boosting algorithms using this schema guarantee differential pri-
vacy? Since we output (with minimal post-processing) a collection of hypotheses from the weak
learner, it should at least be the case that the weak learning algorithm Wk is itself differentially pri-
vate. In fact, we will need that the output distribution on hypotheses of a truly private weak learner
does not vary too much if it is called with both similar samples and similar distributional targets.

Definition 18 (Private Weak Learning) A weak learning algorithm WKL : S x D(S) — H satis-
fies (p, 8)-zCDP if for all neighboring samples S ~ S’ € (X™ x {x1}), all & > 1, and any pair of
distributions [i, i' on X such that A(ji, (i) < s, we have:

Da(WKL(S, 2) || WKL(S', @) < pa
This makes it natural to demand that neighboring samples induce similar measures. Formally:

Definition 19 ({-Slick Measure Production) A measure production algorithm NxM : S X H — N
is called (-slick if, for all neighboring samples S ~ S’ € (X™ x {%1}) and for all sequences of
hypotheses H € H*, letting [i and [’ be the distributions induced by NxM(S, H) and NxM(S’, H)
respectively, we have:

A(fr i) < ¢

It is immediate that a single run of Iter is private if it uses NxM and Wk L procedures that are
appropriately slick and private, respectively. Suppose WkL is (py, ¢)-zCDP and NxM is (-slick. By
composition, Iter run using these procedures is py-zCDP. Finally, observe that Boost paired
with a private weak learner and slick measure production is is 7' py-zCDP, because the algorithm
simply composes 7" calls to Iter and then post-processes the result.

4. Concrete Boosting via Lazy Bregman Projection

We instantiate the framework above. This requires a “Next Measure” routine (LB—NxM, Algorithm
3) a Boosting Theorem (Theorem 20) and a slickness bound (Lemma 21).

4.1. Measure Production Using Lazy Dense Multiplicative Weights

Our re-weighting strategy combines multiplicative weights with Bregman projections. In each
round, we compute the collective margin on each example. Then, we multiplicative-weight the
examples according to error: examples predicted poorly receive more weight. Finally, to ensure that
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Algorithm 3 LB-NxM (x, A) : Lazy-Bregman Next Measure

Parameters: r € (0, 1), desired density of output measures; A € (0, 1), learning rate
Input: S, the sample; H = {hq, ..., h;}, a sequence of hypotheses

Output: A measure over [n], n = |5)|

p1(i) < k Vi € [n] /* Initial measure is uniformly  * /

for j € [t] do
Ci(w;) 1 — 3|hj(z;) — yi| Vi € [n] /* Compute error of each hypothesis  /
end for

o1 (i) = e 2= 6@ 4 () Vi € [n]
1 < Hp(figs1)
return fizy1

no example receives too much weight, we Bregman-project the resulting measure into the space I'
of xk-dense measures. We call this strategy “lazy” because projection happens only once per round.

LB-NxM is typed correctly for substitution into the Boost algorithm above; the measure
is computed using only a sample and current list of hypotheses. Thus, LazyBregBoost =
Boost (LB-NxM) admits a simple privacy analysis as in Section 3.2.

4.2. Boosting Theorem for Lazy Bregman Projection

Given a weak learner that beats random guessing, running LazyBregBoost yields low training
error after a bounded number of rounds; we prove this in Appendix I. Our argument adapts the well-
known reduction from boosting to iterated play of zero-sum games (Freund and Schapire, 1996) for
hypotheses with real-valued outputs. For completeness, we also give a self-contained analysis of
the iterated-play strategy corresponding to LB—NxM in Appendix J. Similar strategies are used by
other differentially-private algorithms (Hsu et al., 2013, 2014) and their properties are known to
follow from regret bounds for lazy projected mirror descent (Shalev-Shwartz, 2012; Hazan, 2016).
However, to our knowledge an explicit proof for the variant above does not appear in the literature;
so we include one in Appendix J for completeness. Overall, we have the follwing:

Theorem 20 (Lazy Bregman Round-Bound) Suppose we run Boost with LB-NxM (k,~/4) on
16log (1/k)
2

a sample S C X x {£1} using any real-valued weak learner with advantage ~ for T > =

rounds. Let H : X — [—1, 1] denote the final, aggregated hypothesis. The process has:

Good Margin: H mostly agrees with the labels of S.

Pr H(x) < < K
JPr (@) <7<

Smoothness: Every distribution i, supplied to the weak learner has i (i) < Ly

Kn

4.3. Slickness Bound for Lazy Bregman Projection

LB-NxM is “lazy” in the sense that Bregman projection occurs only once per round, after all the
multiplicative updates. The projection step is not interleaved between multiplicative updates. This
is necessary to enforce slickness, which we require for privacy as outlined in Section 3.2.
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Lemma 21 (Lazy Bregman Slickness) The dense measure update rule LB—NxM (Algorithm 3)
is -slick for { = 1/kn.

Proof [sketch, see Appendix D.] Observe that, when run on neighboring datasets S ~ S’, the
unprojected measures /i and i’ produced by LB—NxM can differ on exactly one element: the element
z witnessing the single difference between S and S’

Since the Bregman-projected and normalized distributions are x-smooth, they cannot allocate
too much mass to each individual element of the domain. Therefore, even the worst-case difference
between p(z) and 1/ (z) is not enough to shift A(fi, ii') by too much, after a single projection. W

5. Application: Learning Halfspaces with a Margin
5.1. Learning Settings

We first assume realizability by a large-margin halfspace. Let u be an unknown unit vector in R¢,
and let D be a distribution over examples from the /5 unit ball B4(1) C R¢. Further suppose that
D is 7-good for u, meaning |u - x| > 7 for all x in the support of D. A PAC learner is given access
to n i.i.d. labeled samples from D, honestly labeled by w.

A noise-tolerant learner is given access to a label noise example oracle with noise rate 1, which
behaves as follows. With probability 1 — 7, the oracle returns a clean example (x,sgn(u - x)) for
x ~ D. With probability 7, the oracle returns an example with the label flipped: (x, —sgn(u - x))
for x ~ D. Given access to the noisy example oracle, the goal of a leaner is to output a hypothesis
h: By — {—1, 1} which a-approximates v under D, i.e., Pr,plh(z) # sgn(u-z)] < a (Angluin
and Laird, 1987).

Servedio (2003) showed that smooth boosting can be used to solve this learning problem under
the (more demanding) malicious noise rate n = O (o) using sample complexity n = O(1/(ra)?).
We apply the Gaussian mechanism to his weak learner to construct a differentially private weak
learner, and then boost it while preserving privacy. Our (best) sample complexity bounds then
follow by appealing to the fat-shattering dimension of bounded-norm halfspaces in Section 5.4.
Slightly worse bounds proved using only differential privacy are derived in Appendix H.

5.2. Weak Halfspace Learner: Centering with Noise

We apply the Gaussian mechanism to Servedio’s weak learner to obtain ﬁ(S , [, o) which outputs

h(z) = z - x for

=Y j) yi-wi+v,

i=1

with noise v ~ N(0, 021,;). Our advantage bound (proved in Appendix E) trades off against privacy.

Theorem 22 (Private Weak Halfspace Learner) Let ji be a distribution over [n] such that
Loo(ft) < 1/kn. Suppose that at most nm examples in S do not satisfy the condition y; - (u-x;) > T
forn < kT /4. Then we have:

1. Privacy: WI(S, i, o) satisfies (p, s)-zCDP for p = 20/rnts)*,

o2

10
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2. Advantage: There is a constant ¢ such that for any & > 0, WI(S, fi,0) returns a hy-
pothesis h : By — [—1,1] that, with probability at least 1 — &, has advantage at least
7/4 — cov/log(1/&) under ji.

5.3. Strong Halfspace Learner: Boosting

Putting all the pieces together, we run Boost using the private weak halfspace learner (Theorem 22)
and lazy-Bregman measures (Theorem 20). Via the composition theorem for differential privacy,
we get a privacy guarantee for the terminal hypothesis as outlined in Section 3.2. Finally, we use
the fat shattering dimension to ensure that this hypothesis generalizes.

Algorithm 4 Strong Halfspace Learner, via Boosting (HS-StL)

Input: Sample: S; Parameters: («, 3)-PAC, (g, 0)-DP, 7-margin
Output: A hypothesis H

o 7'/80\/10g (307210g(1/n)>

Bre
T + 10241og(1/k) /T2
H < Boost run with LB-NxM(x = (a/4), A :== (7/8)) and WL(+, -, o) for T rounds

5.4. Generalization via fat-shattering dimension.

Following the analysis of Servedio (2003), we can show that with high probability the hypothesis
output by our halfspace learner will generalize, even for a sample drawn from a distribution with
random classification noise at rate O (). The proof of generalization goes by way of fat-shattering
dimension. Using an argument nearly identical to that of Servedio (2000), we can bound the fat-
shattering dimension of our hypothesis class. This bound, along with the guarantee of Theorem 20
that our final hypothesis will have good margin on a large fraction of training examples, allows
us to apply the following generalization theorem of Bartlett and Shawe-Taylor, which bounds the
generalization error of the final hypothesis.

Theorem 23 (Bartlett and Shawe-Taylor (1998)) Let H be a family of real-valued hypotheses
over some domain X, let D be a distribution over labeled examples X x {—1,1}. Let S =
{(z1,91),. -, (Tn,yn)} be a sequence of labeled examples from D, and let h(x) = sgn(H (z))
for some H € H. If h has margin less than vy on at most k examples in S, then with probability at
least 1 — 6 we have that

k

2d
(I7y)1rND[h(x) #y] < Tt \/n In(34en/d)log(578n) + In(4/9)

where d = fatp(y/16) is the fat-shattering dimension of H with margin -y /16.

In order to meaningfully apply the above theorem, we will need to bound the fat-shattering
dimension of our hypothesis class . Our bound (proved in Appendix F) follows from the analysis
of Servedio (2000), but given that our hypothesis class is not exactly that analyzed in Servedio
(2000), the bound holds only when the noise added to the hypotheses at each round of boosting
does not increase the £2 norm of the final hypothesis by too much.

11
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Lemma 24 (Fuzzy Halfspace Fat Shattering Dimension) With probability 1 — g after T =
%5(1/”) rounds of boosting, Algorithm 5.3 outputs a hypothesis in a class with fat-shattering

dimension faty () < 4/+2

With the above bound on fat-shattering dimension, we may prove the following properties of
HS-StL.

Theorem 25 (Private Learning of Halfspaces) The HS-StL procedure, is a (¢, §)-Differentially
Private («, 3)-strong PAC learner for T-margin halfspaces, tolerating random classification noise
at rate O(a), with sample complexity

- ( Vlog(1/) Tog(1/5) log(log(L/a) B%) , log(1/ra)log(1/a)  log(1/8) )

caT? o272 aTt

privacy accuracy

Proof [sketch, see Appendix C] We begin by calculating the total zCDP guarantee of HS-StL.
First, by the privacy bound for WL (Theorem 22), we know that a single iteration of Boost is
p-zCDP for p = (H% Furthermore, by tight composition for zZCDP (Lemma 14) and our setting

0)2*
of T', HS-StL is pr-zCDP where:
log(1/k
o (B,
(knoT)
Denote by ¢ and § the parameters of approximate differential privacy at the final round 7" of
HS-StL. Now we convert from zero-concentrated to approximate differential privacy, via Lemma

15: forall § > 0, if e > 31/prlog(1/6), then HS-StL is (g,0)-DP. So, for a given target £ and 4,
taking

eRTZ

Vo (wog(l/@ Log(L/9) 1og<1og<1/n>/ﬁr>>

will ensure the desired privacy.

If no “bad” events that ruin either training error or generalization occur (see Appendix C for
details), it remains to show that we can achieve accuracy o. From Lemma 39, we have that H
will have margin v = 7/8 on all but a x fraction of the examples, some of which may have been
corrupted. We assume the worst case — that H is correct on all corrupted examples. Then if we set

k = «/4 and take
co <log(1/ow) 10g(1/a)> 7

272

we can apply Theorem 23 to conclude that

| Pr i@ #3<a] 215
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Appendix A. Glossary of Symbols

n Sample size

M A randomized mechanism.

& Training error. Only in Appendices.

« Final desired accuracy of output hypothesis, as in («, 3)-PAC learning
[ Probability of catastrophic learning failure, as in (v, 3)-PAC learning
¢ Final desired privacy of output hypothesis, as in (g, d)-DP

0 Final desired “approximation” of privacy, as in (¢, §)-DP

1 Rate of random classification noise

7 Margin of underlying target halfspace.

¢ Slickness parameter.

d Dimension of the input examples from R? = X

v Advantage of Weak Learner

v Gaussian random variable denoting noise added to Weak Learner
o Magnitude of Gaussian noise added to Weak Learner

x Density parameter of LazyBregBoost

A Learning rate of Dense Multiplicative Weights

# Margin induced by “Optimal” Boosting (Pythia)

X A domain.

X Domain of examples, specifically.

1 A bounded measure.

£ A normalized bounded measure; a distribution.

[ A bounded measure that has not been Bregman projected.
A(Z,Y) Total variation distance between Z and Y’

M A two-player zero-sum game. Only in Appendices.
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Appendix C. Proof of generalization via fat-shattering dimension
We recall and prove Theorem 26.

Theorem 26 (Private Learning of Halfspaces) The HS-StL procedure, is a (g, §)-Differentially
Private («, 3)-strong PAC learner for T-margin halfspaces, tolerating random classification noise
at rate O(a), with sample complexity

i Q( Vlog(1/a)log(1/5) log(log(1/a)/B2) , log(l/rajlog(l/a) | log(1/5) )

caT? o272 ot

NV
privacy accuracy

Proof We begin by calculating the cumulative zCDP guarantee of HS—-St L. First, by the privacy
bound for WL (Theorem 22), we know that a single iteration of Boost is p-zCDP for p = ﬁ.
Furthermore, by tight composition for zZCDP (Lemma 14) and our setting of 7', HS-St L is pp-zCDP
where: log(1/#)
og(l/k
pr=0 ((/inm-)?) )

Denote by ¢ and § the parameters of approximate differential privacy at the final round 7" of

HS-StL. Now we convert from zero-concentrated to approximate differential privacy, via Lemma

15: forall § > 0, if e > 3/prlog(1/d), then HS-StL is (¢,d)-DP. So, for a given target € and 9,
taking

eRTZ

e (wlogu/m log(1/9) log(log(l/ﬁ)/ﬂr)>

will ensure the desired privacy.
We now turn to bounding the probability of events that could destroy good training error.

Too Many Corrupted Samples. Our proof of WL’s advantage required that fewer than k7n/4
examples are corrupted. At noise rate < x7/8, we may use a Chernoff bound to argue
that the probability of exceeding this number of corrupted samples is at most (3/3, by taking
> 24108(3/8)

KT

Gaussian Mechanism Destroys Utility. The Gaussian noise injected to ensure privacy could de-
stroy utility for a round of boosting. Our setting of ¢ simplifies the advantage of WL to

~(1,0) = 7/8 with all but probability £ = . Then we have that with probability

Br?
3072log(1/k)
1-9T >1- g every hypothesis output by WL satisfies the advantage bound v > 7/8.
Therefore, by Theorem 20, HS—StL only fails to produce a hypothesis with training error
less than x with probability /3.

We now consider events that cause generalization to fail.

Final hypothesis H ¢ H. The Gaussian noise added to ensure privacy could cause the final hy-
pothesis H to fall outside the class H = {f(z) = z - x : ||z|]2 < 2}, for which we have a
fat-shattering dimension bound. The probability of this event, however, is already accounted
for by the probability that the Gaussian Mechanism destroys the weak learner’s utility, as both
failures follow from the Gaussian noise exceeding some /2 bound. The failures that affect util-
ity are a superset of those that affect the fat-shattering bound, and so the (3/3 probability of
the former subsumes the probability of the latter.
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Failure internal to generalization theorem. Theorem 23 gives a generalization guarantee that holds
only with some probability. We denote the probability of this occurrence by ;.

If none of these failures occur, it remains to show that we can achieve accuracy o. From
Lemma 39, we have that H will have margin v = 7/8 on all but a x fraction of the examples,
some of which may have been corrupted. We assume the worst case — that H is correct on all cor-
rupted examples. We have already conditioned on the event that fewer than x7n /4 examples have
been corrupted, and so we may then conclude that H has margin less than ~ on at most a 2« fraction
of the uncorrupted examples. Then if we set kK = «/4 and take

c o (lstlle)loxtje)),

o272

then so long as e < B1 < B/3, we can apply Theorem 23 to conclude that

P | P @) 24 <a] 215

Appendix D. Lazy Bregmans are Slick

We recall and prove Lemma 21.

Lemma 21 (Lazy Bregman Slickness) The dense measure update rule LB-NxM (Algorithm 3) is
¢-slick for ¢ = 1/kn.

Proof Let i, i’ be the unprojected measures produced at the end of the outermost loop of NxM,
when NxM is run with the sequence of hypotheses H = {h1, ..., hr}, and on neighboring datasets
S ~ §'. Let i be the index at which S and S’ differ, and note that fi(j) = 7i'(j) for all j # i.

Let fip denote the measure with fig(j) = i(j) = @/(j) for all j # i, and fip(¢) = 0. Take
I" to be the space of x-dense measures, and let ;g = Il,fip and p = 1.zt denote the respective
projected measures. We will show that SD(yig, 1) < 1/kn, which is enough to prove the claim
by the triangle inequality. (Note that |ug| = |u| = kn, which follows from Lemma 9 and the
observation that |fig| < |f1| < kn. Moreover, ug(j) > p(j) for every j #i.)

We calculate

> r0(G) = p(G)] = @)+ lro(i) — p()]
j=1 j#i
<1+ Y po(d) — i)
i
=1+ |pol — (Il — p(4))
<1+ |pol = |pl+1
=2,
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since u and pg have density x. Hence,

o T ) pold)
Ao 1i0) = 5 2T~ Tl
= LS ) — ol
_2/@ni:1'ul Hokt
1
< —.
RN

Appendix E. Private Weak Halfspace Learner: Full Analysis

The noise-tolerant weak learner for halfspaces was WL(,S, /1) which outputs the hypothesis h(z) =
z - x where

n
2= () yi- v
i=1
The accuracy of this learner is given by the following theorem:

Theorem 27 (Servedio (2003)) Let [i be a distribution over [n] such that Lo (f1) < 1/kn. Suppose
that at most nn examples in S do not satisfy the condition y; - (u - z;) > 7 for n < k7/4. Then
WL(S, i) described above returns a hypothesis h : By — [—1, 1] with advantage at least T /4
under fi.

We apply the Gaussian mechanism to Servedio’s weak learner to obtain \/N\L(S, fi,0) which

outputs h(x) = Z - x for
n

=Y j) yi-wi+v,
i=1
with noise v ~ N(0, 0%1;). We get a similar advantage bound (proved in Appendix E), now trading
off with privacy.
We recall and prove Theorem 22.

Theorem 22 (Private Weak Halfspace Learner) Let [i be a distribution over [n] such that
Loo (1) < 1/kn. Suppose that at most nn examples in S do not satisfy the condition y; - (u-x;) > T
forn < k7 /4. Then we have:
— . . 2
1. Privacy: WL(S, 1, o) satisfies (p, s)-zCDP for p = 2(1/';77?5)
2. Advantage: There is a constant c such that for any & > 0, \7\7\[;(5, i, o) returns a hy-

pothesis h : By — [—1,1] that, with probability at least 1 — &, has advantage at least
T/4 — cov/log(1/&) under fi.
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Proof We begin with the proof of privacy. Let fij, fio be k-smooth distributions over [n] with
statistical distance A(fiy, fi2) < s. Let S ~ S’ be neighboring datasets with {(z;,y;)} = S\ S’
and {(z},y})} = 5"\ S. Then we have

125,01 = 25,2 ll2 = |1 (4)ys - @ - @+ Z fi1 (7 ())yj - w2
J#Z
< |l @)y - zill2 + a2(@)y; - 25ll2 + Z ez 2(7))y; - wjll2
J#z
n
= (i) + o (i) + Y (@1 () — fra(5)))
j=1
J#

< 2fiy(i) +Z!u1 i)l

2(1/kn + 3).
Then Lemma 16 gives us that

D (ELS.fn.0) | TS i) < 20000 2

and therefore \/N\L(S, fi1,0) satisfies (p, s)-zCDP for p = 20/ rnts)?,

0.2
Building on Servedio’s result, we now give the advantage lower bound. Servedio’s argument

shows that the advantage of \/N\L(S, ft,o)is atleast Z-u/2 = z-u/2+v-u/2. Since v is a spherical
Gaussian and w is a unit vector, we have that for any £ > 0,

Prl[v - u| > coy/log(1/§)] < ¢

Appendix F. Fuzzy Halfspaces have Bounded Fat-Shattering Dimension

We recall and prove Lemma 24.

Lemma 24 (Fuzzy Halfspace Fat Shattering Dimension) With probability 1—%, afterT = 102410g(1/x)

T2
rounds of boosting, Algorithm 5.3 outputs a hypothesis in a class with fat-shattering dimension
faty(v) < 4/9%

This follows from the lemmas below due to Servedio, Bartlett, and Shawe-Taylor.

Lemma 28 (Servedio (2000)) If the set {x1,..., 2Ty} is y-shattered by H = {f(z) = z -z :
|z|l2 < 2}, then every b € {—1,1}" satisfies

n
I3 by = /2
=1
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Lemma 29 (Bartlett and Shawe-Taylor (1998)) Forany set {x1, ..., x,} with each x; € R and
|@;ll2 < 1, then there is some b € {—1,1}" such that || 37, bzill2 < /.

Proof We begin by showing that, with high probability, the hypothesis output by Algorithm 5.3 is
intheclass H = {f(z) = z - x : ||z]|]2 < 2}. To bound the ¢ norm of z, we observe that

T

1
el = I > 2

t=1

1 T n 1 T
2 < 7 20| 2 fuliailly + lelle = 1+ 3wl
t=1 =1 t=1

where Z; denotes the weak learner hypothesis at round ¢ of boosting, and v; denotes the Gaussian

vector added to the hypothesis at round ¢. Letting o = 7/ 80\/ log (%ﬁ(l/’{)) for a constant c, it

follows that with probability at least 1 — m =1- 3%, a given 14 has ||1]|2 < 7/8 < 1, and

therefore with probability (1 — %)T > (1- g), %Z?zl le]l2 < 1, and so ||z||2 < 2. Therefore
with all but probability 3/3, the hypothesis output by Algorithm 5.3 is in the class H.

From Lemma 28, it cannot be the case that a set {1, ..., x,} is y-shattered by # if there exists
abe {—1,1}" such that

n
H Z blleQ < ’)/TL/Q.
=1

At the same time, it follows from Lemma 29 that if n > 4/42, such a b € {—1,1}" must exist.
Therefore the fat-shattering dimension of H at margin v is faty(y) < 4/42. Since our final
hypothesis is in H with probability 1 — /3, our claim holds. [ |

Appendix G. Abstract Boosting (for Generalization)

Here we describe a proof template that combines private weak learning with private boosting to
obtain noise-tolerant generalization guarantees and sample complexity bounds. First, we review the
generalization properties of differential privacy.

G.1. Generalization and Differential Privacy

We now state the generalization properties of differentially private algorithms that select statisti-
cal queries, which count the fraction of examples satisfying a predicate. Let X be an underlying
population, and denote by D a distribution over X.

Definition 30 (Statistical Queries) A statistical query q asks for the expectation of some function
on random draws from the underlying population. More formally, let q : X — [0, 1] and then define
the statistical query based on q (abusing notation) as the following, on a sample S € X™ and the
population, respectively:

q<s>=,1s,zq<x> and (D)= E_[g()]
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In the case of statistical queries, dependence of accuracy on the sample size is good enough
to obtain interesting sample complexity bounds from privacy alone. These transfer theorems have
recently been improved, bringing “differential privacy implies generalization” closer to practical
utility by decreasing the very large constants from prior work (Jung et al., 2019). As our setting is
asymptotic, we employ a very convienent (earlier) transfer lemma of Bassily et al. (2016).

Theorem 31 (Privacy =—> Generalization of Statistical Queries, Bassily et al. (2016)) Let0 <
e < 1/3,let0 < § < e/dandletn > log(4e/8)/e% Let M : X™ — Q be (¢,)-differentially
private, where @) is the set of statistical queries q : X — R. Let D be a distribution over X, let
S < D™ be an i.i.d. sample of n draws from D, and let q < M(S). Then:

P [lq(8) — q(D)| > 18] < 3/z.

G.2. Template: Privacy —> Boosting Generalizes

Referring to the boosting schema in Section 3, we now outline how to use the generalization proper-
ties of differential privacy to obtain a PAC learner from a private weak learner, via boosting. Recall
that the fundamental boosting theorem is a round bound: after a certain number of rounds, boosting
produces a collection of weak hypotheses that can be aggregated to predict the training data well.

Theorem 32 (Template for a Boosting Theorem) Fix NxM. For any weak learning algorithm Wk I,
with advantage ~y, running Boost using these concrete subroutines terminates in at most T'(y, c, 3)
steps and outputs (with probability at least 1 — 3) a hypothesis H such that:

P @) £y <a

We can capture the training error of a learning algorithm using a statistical query. For any
hypothesis H, define erry(x,y) = 1if H(z) # y, and errg (x, y) = 0 otherwise.

Denoting by D the target distribution, PAC learning demands a hypothesis such that err g (D) <
«, with high probability. If the boosting process is differentially private, the generalization proper-
ties of differential privacy ensure that erry(.S) and errg (D) are very close with high probability.
Thus, boosting private weak learners can enforce low test error. We elaborate below.

Theorem 33 (Abstract Generalization) Let WkL be a (p,()-zCDP weak learner with advantage
~. Suppose NxMis (-slick and enjoys round-bound T with error « and failure probability 8. Denote
by M’ the algorithm Boost run using WkL and NxM. Let ¢ = O(\/pT log(1/8)) and suppose
n > Q(log(e/8)/e?). Then, with probability at least 1 — 3 — § /¢ over S ~;;q D™ and the internal
randomness of M, the hypothesis output by M’ generalizes to D:

JPr [HE) £y <

Proof [sketch] By the round-bound and inspection of Algorithm L.2, M’ simply composes T calls
to Tter and post-processes. So by zCDP composition (Lemma 14) we know that M’ is pT-zCDP.
This can be converted to an (e, §)-DP guarantee on M’ for any 6 > 0 (Lemma 15).

For the sake of analysis, define a new mechanism M that runs M’(.S) to obtain H and then
outputs the statistical query erry. This is just post-processing, so M is also (e, §)-DP. Thus, given
enough samples, the conversion of privacy into generalization for statistical queries applies to M:
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SPB"H errp (S) —erry(D)| > 18¢] < §/e (Theorem 31) .

By the guarantee of the round-bound, errg (S) < a with probability at least 1 — 3. Therefore,

Pr | Pr [H <a+ 18| <d/e+ .
oob | br pH (@) # 9] < ot 182) < d/e + 5

Observe that we require privacy both for privacy’s sake and for the generalization theorem.
Whichever requirement is more stringent will dominate the sample complexity of any algorithm so
constructed.

G.3. Template: Privacy —> Noise-Tolerant Generalization

Suppose now that there is some kind of interference between our learning algorithm and the training
examples. For example, this could be modeled by random classification noise with rate n (Angluin
and Laird, 1987). This altered setting violates the preconditions of the DP to generalization transfer.
A noised sample is not drawn i.i.d. from D and so the differential privacy of M is not sufficient to
guarantee generalization of the “low training error’” query erry as defined above.

To get around this issue, we fold a noise model into the generalization-analysis mechanism.
Define an alternative noised mechanism M, (Algorithm 5) atop any M that outputs a “test error”
query, and apply “DP to Generalization” on M, instead. Suppose that M is differentially private,
and the underlying learning algorithm 4 run by M tolerates noise at rate 7). Then, if M,, is DP, we
can generalize the noise-tolerance of A.

Algorithm 5 M, for RCN. Input: S € X", S ~ D"
Vi € [n] F; < —1 with probability n
yi < Fi xyi
S {(zi, yi)}
erry < M(S)
return erry

At least for random classification noise, M, does indeed maintain privacy. Observe that for
a fixed noise vector N, M, run on neighboring data sets .S and S” will run M with neighboring
datasets S and S’, and therefore the output distributions over queries will have bounded distance.
Since the noise is determined independent of the sample, this means that M,, inherits the differential
privacy of M, and therefore satisfies the conditions of Theorem 31. So the resulting learner still
generalizes.

This trick could handle much harsher noise models. For instance, each example selected for
noise could be arbitrarily corrupted instead of given a flipped label. But we seem unable to capture
fully malicious noise: an adversary viewing the whole sample could compromise privacy and so
generalization. Thus, the “effective noise model” implicit above seems to distinguish between ad-
versaries who have a global versus local view of the “clean” sample. This seems a natural division;
we hope that future work will explore the expressiveness of this noise model.
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Appendix H. Privacy-Only Noise-Tolerant Sample Bound for Large-Margin
Halfspaces

We state and prove the formal version of Theorem 2.

Theorem 34 (Learning Halfspaces Under Random Label Noise) The HS—-StL procedure is a
(e,9)-Differentially Private («, [3)-strong PAC learner for T-margin halfspaces tolerating random
label noise at rate n = O(«t) with sample complexity

of L o L 1.1
n = _— _— J— _
ear? a7 ez ?
~—— ~

——
privacy accuracy  generalization
(Claim 1) (Claim 4)

Proof Denote by 7 and d7 the parameters of approximate differential privacy at the final round 7’
of HS-StL, and by the H the output hypothesis of HS-St L. We proceed as follows.

1. Given enough samples, HS—St L is differentially private. (Claim 1)

2. Random Label Noise at rate = O(«7) will (w.h.p.) not ruin the sample. (Claim 2)
3. The Gaussian Mechanism will (w.h.p.) not ruin the weak learner. (Claim 3)

4. Given enough samples, training error is (w.h.p.) close to test error. (Claim 4)

5. Given enough samples, HS—St L (w.h.p.) builds a hypothesis with low test error.

For the remainder of this proof, fix the settings of all parameters as depicted in HS-St L (Algo-
rithm 5.3). We reproduce them here:

K< a4 (1)
o 4 7/80\/10g <3O72 log(l/n)) (2)

Br

Claim 1 (Enough Samples — HS-StL is Differentially Private) For every 67 > 0, we have:

~ 1
n > 0 <2> —> HS-StLis (ep,dr)-DP
ETANT

Proof By the privacy bound for WL (Theorem 22), we know that a single iteration of Boost is
p-zCDP for p = ﬁ. Then, Boost runs for T = %%r(l/“)

for zCDP (Lemma 14), HS-St L is p7-zCDP where:

log(1/k)
r=0 (Y
(knoT)?
Now we convert from zero-concentrated to approximate differential privacy, via Lemma 15: if
er < 3y/prlog(1l/dr), then HS-StLis (e, d7)-DP for all 57 > 0. We re-arrange to bound n.

rounds. So, by tight composition
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log(1/k) £t
(knoT)? <0 (10g(1/5T))

Unpacking pr we get:

This will hold so long as:

o0 <\/log(1//£) log(1/5T)>

KOTET

Substituting the settings of o and x from HS—-St L, we obtain:

Ve (Jlog(l/oo log(1/31) logaog(l/a)/m?))

erat?

We next consider the two events that could destroy good training error.

Too Many Corrupted Samples Noise could corrupt so many samples that the weak learner fails.
Under an approprite noise rate, this is unlikely. We denote this event by BN (for “bad noise”).

Gaussian Mechanism Destroys Utility The Gaussian noise injected to ensure privacy could de-
stroy utility for a round of boosting. We denote this event by BG (for “bad Gaussian”).

Both events are unlikely, under the settings of HS—-StL.

Claim 2 (Hopelessly Corrupted Samples are Unlikely) Let Fq,...,F, indicate the event “label
i was flipped by noise,” and denote by F = 3" | F; the number of such corrupted examples. Under
the settings of HS—-StL and noise rate n = a1 /32, we have:

n > 961n(4/5) = Pr[BN] = Pr[F > xkn| < /4

aT

Proof At noise rate 7, we have [E [F] = nn. From the definitions and Theorem 22,

Pr[BN] = Pr [F > %n}

We apply the following simple Chernoff bound: V9§ > 1
PriF > (1+9)E[F]] <exp(—E][F]d/3)

Substituting with § = 1:
Pr[F > 2nn| < exp(—(nn)/3)

Noise rate n = a7 /32 gives the appropriate event above:
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Pr[F > 2nn] = Pr [F > %n} < exp(—(an)/96)
Constraining the above probability to less than 3/k; for any constant k1 > 1 we solve to obtain:

_ 96In(ki/B)

aT

Claim 3 (Bad Gaussians are Unlikely) Ler BG; indicate the event that the ith call to the weak
learner fails to have advantage at least T/8. Under the settings of HS—St L:

Pr[BG] = Pr[3i BG;] < /2

Proof Our setting of ¢ simplifies the advantage of WL to ~(1,0) = 7/8 with all but probability

&= Wél/ﬁ). Then, by the round bound for LB-NxM (Theorem 20), Boost will terminate after
T = 81°g7(21/ K — 5121°Tg2(1/ %) rounds, and so we have that with probability 1-T>1- g every

hypothesis output by WL satisfies the advantage bound.
|

To enforce generalization, we capture both training and test error for any hypothesis H with a
statistical query that indicates misclassification. Evaluated over the sample it is the training error of
H, and evaluated over the population it is the test error of H.

1 ifyH <0
errg (x,y) — nY (9.6) n
0 otherwise

Claim 4 (Enough Samples —> Good Generalization) If 0 < e < 1/3and 0 < ép < ep/4

~ (1
n > <2> = Pr [erry(D) > erry(S) + 18er| < dr/er
Ep S~Dn

Proof Define (for analysis only) a procedure HS-StL-test, which outputs the “error” statistical
query. That is, letting H = HS—-StL(S) where S ~ D", HS-StL-test prints erry. Thus,
HS-StL-test is a mechanism for selecting a statistical query.

Because HS—-StL-test is simple post-processing, it inherits the privacy of HS-StL. Since
we select erryy privately, it will (by Theorem 31) be “similar” on the sample .S (training error) and
the population D (test error). Ignoring over-estimates of test error and observing the sample bounds
of Theorem 31, this gives the claim.

|

Claim 5 (Low Training Error is Likely) Given =GB and —=BN, we have erry(S) < a/2.
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Proof Let S denote the noised sample, and let S¢ and Sp be the “clean” and “dirty” subsets of
examples, respectively.

Given ~GB and —BN, the weak learning assumption holds on every round. So, by Theorem 20,
the boosting algorithm will attain low training error err H(S’ ) = k. This is not yet enough to imply
low test error, because S 7;;q D. So we bound err(S) using erry(S). Suppose that the noise
affects training in the worst possible way: H fits every flipped label, so H gets every example in Sp

wrong. Decompose and bound err g (S) as follows:

erry(S) = Z errp (@, y)

(z,y)esS
= Z CIry ($7 y) + Z errH(x, y)
<k +|Sp]| Boosting Theorem, worst case fit
ot
< — -BN
<K+ 16

Because the sample is from the unit ball, we have 7 € (0, 1). Therefore, it is always the case

that §5 < §. Soerrg(S) < k + a/4 < /2, concluding proof of the above claim. [ |

It remains only to select e and J7 so that the claims above may be combined to conclude low
test error with high probability. Recall that our objective is sufficient privacy to simultaneously:

1. Ensure that HS-StLis (¢,0)-DP

2. Apply DP to generalization transfer (Theorem 31) for good test error.

Both these objectives impose constraints on e and 7. The requirement that the algorithm is
desired to be (¢, §)-DP in particular forces e7 to be smaller than € and d7 to be smaller than §. The
transfer theorem is slightly more subtle; to PAC-learn, we require:

SPBW lerrr (D) > erry(S) + 18er] < dr/er

So, accounting for both privacy and accuracy, we need ep < ¢ = min(e, a/36). We can select
any 07 < min(d, ¢/3/4) to ensure that d7 /e < (/2. By substituting the different realizations of
these “min’ operations into Claims 1 and 4 we obtain the sample bound.

Finally, observe that with these settings we can union bound the probability of BN and BG and
the event that generalization fails with 3, as required for PAC learning. But it follows from the
claims above that if =BN and —BG and a good transfer all occur, then the ouput hypothesis H has

test error less than o, concluding the argument.
|
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Appendix I. Smooth Boosting via Games

Here, we prove our round-bound and final margin guarantee for LazyBregBoost. The proof is
a reduction to approximately solving two-player zero-sum games. We introduce the basic elements
of game theory, then outline and excute the reduction. Overall, we recall and prove Theorem 20:

Theorem 20 (Lazy Bregman Round-Bound) Suppose we run Boost with LB-NxM (k,v/4) on
16log (1/k)
10208 {1/K)

a sample S C X x {£1} using any real-valued weak learner with advantage ~y for T > =

rounds. Let H : X — [—1, 1] denote the final, aggregated hypothesis. The process has:

Good Margin: H mostly agrees with the labels of S.

Pr H(x) < <K
(xyy)ws[y () <9] <

Smoothness: Every distribution i, supplied to the weak learner has ji;(i) < Ly

Kn

I.1. Two-Player Zero-Sum Games

A two player game can be described by a matrix, where the rows are indexed by “row player”
strategies P, the columns are indexed by “column player” strategies Q, and each entry (i,j) of
the matrix is the loss suffered by the row player when row strategy ¢ € P is played against column
strategy j € Q. Such a game is zero-sum when the colum player is given as a reward the row player’s
loss. Accordingly, the row player should minimize and the column player should maximize.

A single column or row is called a pure strategy. To model Boosting, we imagine players who
can randomize their actions. So the fundamental objects are mixed strategies: distributions P over
the rows and () over the columns. Playing “according to” a mixed strategy means sampling from
the distribution over pure strategies and playing the result. When two mixed strategies are played
against each other repeatedly, we can compute the expected loss of P vs. () playing the game M:

M(P,Q)= > PEHMG/)QU) =Y MPHRG) =Y POHMGEQ) ()

1,JEPXQ JjeEQ i€P

@) (ii) (iii)

“Iterated play” pits the row player against an arbitrary environment represented by the column
player. At each round, both the row player and column player choose strategies P; and (); respec-
tively. The expected loss of playing ); against each pure row strategy is revealed to the row player.
Then, the row player suffers the expected loss of P vs. ;. This set-up is depicted by Algorithm
6. Good row player strategies have provably bounded regret — they do not suffer much more loss
than the best possible fixed row player strategy in hindsight during iterated play.

Here, we reduce boosting to the “Lazy Dense Multiplicative Updates” row player strategy (Al-
gorithm 7) which enjoys bounded regret (Lemma 35, proved in Appendix J for completeness) and
two other helpful properties:

Simple State: The only state is all previous loss vectors and step count so far; this enables privacy.

Single Projection: It Bregman-projects just once per round; this enforces slickness.
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Algorithm 6 Iterated Play
Input: T the number of rounds to play for
Output: Total expected row player cost incurred
fort =1to 1 do
P, + Row player choice of mixed strategies, seeing £1, ..., ;1
@; < Column player choice of mixed strategies, seeing P;
0(i) « M (i,Q:) Vi /+* Reveal loss on each pure row strategy  /
C <+ C+ M(P;,Q¢) /+* Accumulate total loss « /
end for

Algorithm 7 Lazy Dense Update Strategy (LDU)
Input: P, a set of pure row-player strategies, learning rate A, losses #1, ..., {p
Output: A measure over P
fori € P do
(i) < K
end for
for i € P do
i (i) e A Tim 6@ gy (4)
end for
pry1 < Hppar

Lemma 35 (Lazy Dense Updates Regret Bound) Let I be the set of k-dense measures. Set i1(i) =
k for every i. Then for all i € I" we have the following regret bound.

1 T

T
D M, Q) < 1 S0 M (3, Q) + A+
t=1 t=1

KL || 1)
A&|P|T

I.2. Reducing Boosting to a Game

We present a reduction from boosting real-valued weak learners to approximately solving iterated
games, following Freund and Schapire (1996). To prove the necessary round-bound (Theorem 20),
we do the following:

1. Create a Game. The meaning of “advantage” given by a Weak Learning assumption (Def-
inition 11) naturally induces a zero-sum game where pure row strategies are points in the
sample .S and pure column strategies are hypotheses in 7. The Booster will play mixed row
strategies by weighting the sample and the weak learner will play pure column strategies by
returning a single hypothesis at each round.

2. Weak Learning —> Booster Loss Lower-Bound. Weak Learners have some advantage
in predicting with respect to any distribution on the sample. Thus, the particular sequence of
distributions played by any Booster must incur at least some loss.

3. Imagine Pythia, a Prophetic Booster. Given perfect foreknowledge of how the weak learner
will play, what is the best Booster strategy? Create a “prescient” Boosting strategy P* which
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concentrates measure on the “worst” examples (x,y) € S for the final hypothesis H at each
round.

4. How Well Does Pythia Play? Upper-bound the total loss suffered by a Booster playing P*
each round.

5. Solve for T': Recall that we want the Booster to lose. That is, we want an accurate ensemble
of hypotheses. Combining the upper and lower bounds above with the regret bound, we solve
for a number of rounds to “play” (Boost) for such that the size of the set of “worst” examples
shrinks to a tolerable fraction of the sample. This gives the round-bound (Theorem 20).

[1.2.1. CREATE A GAME

Our game is a continuous variant of the Boolean “mistake matrix” (Freund and Schapire, 1996).
Let H C {Ba(1) — [—1,1]} be a set of bounded R-valued hypothesis functions on the unit ball.
These functions will be the pure column player strategies. Now let S = (x1,y1),. .-, (Zn, Yn)
be a set of points where y; € {£1} and z; € By(1). These points will be the pure row player
strategies. Having chosen the strategies, all that remains is to define the entries of a matrix. To
cohere with the definition of weak learning for real-valued functions, we define the following game
of soft punishments:

‘ 1
MY = M}, h) =1— 3 [P(@i) = il

Notice the quantification here: we can define the soft punishment game for any sample and any
set of hypotheses. We will omit  and .S when fixed by context. This is a simple generalization
of the game from Freund and Schapire (1996) which assigns positive punishment 1 to correct re-
sponses, and 0 to incorrect responses. Since we work with real-valued instead of Boolean predictors,
we alter the game to scale row player loss by how “confident” the hypothesis is on an input point.

1.2.2. WEAK LEARNING —> BOOSTER LOSS LOWER-BOUND.

Mixed strategies for the booster (row player) are just distributions over the sample. So the accuracy
assumption on the weak learner WkL, which guarantees advantage on every distribution, induces a
lower bound on the total loss suffered by any booster playing against WkL. Recall that losses are
measured with respect to distributions over strategies, not measures. So, below we normalize any
measure to a distribution “just before” calculating expected loss

Lemma 36 (Utility of Weak Learning) For any sequence of T booster mixed strategies (1, . . ., i1),
suppose the sequence of column point strategies hy, . . ., hr is produced by a weak learner that has
advantage ~y. Then:
T
S M) = T2+ T
t=1
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Proof
T T
> M he) =) E [M(i, )] unroll def 3 (iii)
=1 =1 "H
T
= Z E [1—12h(xi) — yil] re-arrange “advantage”
=1 H
T
=> 1o+ E [t2—1plh(zi) — uil] linearity of E
t—1 h
T
=Th+ Z E [Y2he(x;)yi distributing summations
=1 "
>Th+Ty by Weak Learning Assumption

1.2.3. IMAGINE PYTHIA, A PROPHETIC BOOSTER.

How should a booster play if she knows the future? Suppose Pythia knows exactly which hypotheses
hi, ..., hr the weak learner will play, but is restricted to playing the same fixed «-dense strategy
for all T rounds. Intuitively, she should assign as much mass as possible to points of .S where the
combined hypothesis H = (1/7) Zte[T] ht is incorrect, and then assign remaining mass to points
where H is correct but uncertain. We refer to this collection of points as B, the set of “bad” points
for h1, ..., hy. We formalize this strategy as Algorithm 8.

Algorithm 8 Pythia
Input: S a sample with |S| = n; H a combined hypothesis; x a target density
Output: Distribution P* over [n]; Minimum margin 7
B« {ie[l,n]|y;H(xz;) <0} /x Place all mistakes in B »/
Sort [1,n] \ B by margin of H on each point
‘9T +~0
while |B| < kn do
Add minimum margin element ¢ of [1,n] \ B to B
Update 07 to margin of H on (x;,y;)
end while
P* « the uniform distribution over B
Output P*, 0

The prophetic booster Pythia plays the uniform measure on a set B of “bad” points selected by
Algorithm 8, normalized to a distribution. That is:

P(i) 1/|B|] ifie B
1 =
0 otherwise

It is important to observe that if 7 is outside of the “bad set” B, we know H has “good” margin
on (x;,y;). To quantify this, observe that for all i € B, H has margin at most 67 on (x;, y;).
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Proposition 37 (Bad Margin in Bad Set) For every i € B, we know Zthl yih(z;) < TOr

Proof
i€B = y;H(z;) <0p inspection of Pythia, above
T
% Z hi(xi) < Or unroll H
t=1
T
Z yiht(xi) < TOr re-arrange
t=1

1.2.4. How WELL DOES PYTHIA PLAY?

Here, we calculate the utility of foresight — an upper-bound on the loss of P*. Suppose H is
the terminal hypothesis produced by the boosting algorithm. We substitute P* into the definition
of expected loss for Mgi‘ (soft punishments) and relate the margin on the bad set for H to the
cumulative loss of H, giving the following lemma.

Lemma 38 (Excellence of Pythia) Let S be a sample, (hy,...,hr) € H' a sequence of hypothe-
ses, H = (1/T) Zszl hi, and k € [0,1/2] a density parameter. Let P*, 0 = Pythia(S, H, k).
Then:

> M(P* hy) < (T/2) + (T0)/2
t=1

We require a simple fact about advantages. Since h(x) € [—1,+1] and y € {1}, we know:
yh(z) =1 — [h(zx) - y|
= (1/2)(yh(x)) = (1/2) = (1/2)[h(x) — y]

The entries of the soft punishments matrix can also be re-written by formatting advantage as
above. For i € [1,n] and h € H we have:

M(i, h) = (1/2) + (1/2)(yih(x:)) 4)

Proof We manipulate the total regret of P* towards getting an upper-bound in terms of the minimum
margin of H and number of rounds played.
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T T n
S OM(P*hy) =Y (i) - M(i, hy) Part (iii) of Expected Loss (Definition 3)
t=1 t=1 i=1
T
= Z Z P*(i) - M(i, hy) Restrict sum — P* (i) = 0 outside B
t=1ieB
1z
= — Z Z M(i, hy) Factor out P*(7) — constant by definition
Bli= i
1 T
= — ((1/2) + (1/2)he(zi)yi) Equation 4 about M2 entries
|BI i€B t=1
= % <(|ByT)/2+ (1/2) Zth (z:)y > Algebra
| ‘ 1€B t=1
< L (|1BIT)/2+ (1/2) Z 76 Bad margin in B (Proposition 37)
1Bl s
= (T/2)+ (T9)/2 Evaluate & re-arrange

1.2.5. SOLVE FOR T'.

We now have an upper bound on the loss incurred by a prescient booster, and a lower bound on
the loss to any booster under the weak learning assumption. This allows us to “sandwich” the
performance of boosting according to the lazy dense updates (LDU, Algorithm 7) strategy between
these two extremes, because LDU has good performance relative to any fixed strategy (Lemma 35,
proved in Appendix J). This sandwich gives a relationship between the number of rounds 7" and the
margin of the final hypothesis, which we now solve for the number of rounds necessary to boost
using LDU to obtain a “good” margin on “many” samples.

Lemma 39 Let S be a sample of size n, let ji; be the measure produced at round t by NxM(S, Hy—1)
playing the Lazy Dense Update Strategy of Algorithm 7, and let h; be the hypothesis output by
WKL(S, fis_1,0) at round t. Then after T > %W rounds of Iter, the hypothesis Hr(x) =

% Z?zl hi(x) has margin at least y on all but kn many samples.

Proof Denote by U(B) the uniform measure (all € B assigned a weight of 1) on the bad set B
discovered by Pythia. Combining the regret bound comparing LDU to fixed Pythia with the lower
bound on loss that comes from the weak learner assumption, we have, overall:

KLU(B) || 1)

M(P*, hy) + \T +
KN

MH

T T
- +T < t> ht)
5+ T Z (fur,
Weak Learning t=1 Regret Bound !

(Lemma 36) (Lemma 35)
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Apply Lemma 38, replacing prescient Boosting play with the upper bound on loss we obtained:

KLU(B) || p1)
Kn\

SN TOy
t=1

Let’s compute the necessary KL-divergence, recalling that |/ (B)| = |u1| = kn:

_ e (UB)E)Y
KL@B) | ) = S u(B)w)los (000 ) w3+
1
= log [ —
5 ()

(%)
= rknlog [ —
K

Substituting into the above and dividing through by T', we have:

o, Tog(1/n)

<
T=7 TX

Which, setting

16log (1

T= M and \ = /4
v
implies
O > 7.

This is the margin bound we claimed, for every (z,y) & B. [ |

Appendix J. Bounded Regret for Lazily Projected Updates

A “lazy” multiplicative weights strategy that, at each round, projects only once into the space of
dense measures is presented below. Here, we prove that this strategy (Algorithm 9) has bounded
regret relative to any fixed dense strategy.

Algorithm 9 Lazy Dense Update Process
Input: P, a set of pure row-player strategies, learning rate A, losses ¢y, ..., {1
Output: A measure over P

for x € P do
w1 (z) K
end for
for z € P do .
firi1(z) = e Xm0y ()
end for
pry1 < Hppr

To analyze the regret of a row player playing the strategy of Algorithm 9, we will need the
following definition.
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Definition 40 (Strong convexity) A differentiable function f : R™ — R is a-strongly convex on
X C R"™ with respect to the £, norm if for all z,y € X

(Vf(z) = V(y),z—y) = alz -y}

If f is twice differentiable, then f is a-strongly convex on X with respect to the {,, norm if for all
re X, yeR"?
(V2 f(2)y = allyl;
y' ( z))y > allyll;

We now proceed to analyze Algorithm 9 by arguments closely following those found in Chapter 2
of Rakhlin’s notes on online learning (Rakhlin, 2009). First, we show this update rule minimizes a
sequential regularized loss over all dense measures.

Lemma 41 Let M(f1,Q;) = E;;[¢i(i)]. Let I' be the set of k-dense measures, and let ji; be the
uniform measure over P of density k (u1(x) = k for all x € P). Then for all T > 1, the measure
ur41 produced by Algorithm 9 satisfies

prs1 = arg min AMZM (f1, Qe) + KL(pt || 1)
t=1

Proof Suppose towards contradiction that there exists p € I" such that

T T
Al Y - M, Qi) + KL || p) < Mpzrga] > M (i1, @r) + KL(prya || ).
t=1 t=1

Then it must be the case that

T
KL(prg | ) = KL(p || ) > XY (= prgr, )
t=1

T
= (p — pry1, Z Aly)

t=1
- Z MT+1 )) log [Lgi(f()z)
pri (i)
- Z uli (log AT41 ul(Z ) Z pr+(i <log #;E(l) — log

pr41(3)
w1 (i)

= KL(M | firy1) — KL(p || p1) — KL(MTH | firy1) + KL(pggr || p1)-

Under our assumption, then, it must be the case that 0 > KL(u || fir+1) — KL(pr41 || fir41), but
wr+1 was defined to be the k-dense measure that minimized the KL divergence from fir 1, and so
we have a contradiction. |

Using Lemma 41, we can now show the following regret bound for a row player that, at each
round, “knows” the column strategy (); that it will play against that round.
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Lemma 42 Let T be the set of k-dense measures. Let iy be the uniform measure over P of density
k (p1(x) = k for all x € P), and let |P| = n. Then for all pn € T we have that

T

D M1, Q) <

t=1 t

KL(p || 1)

M(laa Qt) + KL

[M]=

Il
—

Proof For T = 0, this follows immediately from the definition of 1.
Assume now that for any p € I' that

!

-1

S
—

~ N KL(u || g2
M (fie41, Q) < M(f1, Q¢) + ()\/-@|7|1)’
t=1 t=1
and in particular
T-1 T-1
- - KL(p || 11
S M, Q) < 30 MG, Q) + L)
t=1 t=1
It follows that
T T-1
D M (i1, Q) = Y M(fus1, Qe) + M(jir 1, Q)
=1 t=1
T-1 T T-1
= M(juy1, Q) + Y M(iirs1, Q) — > M(jir1, Q1)
t=1 t=1 t=1
- KL(pr1 || )
. T+1 || 1
< M _
< ; (fir41, Qt) + e
- KL(st || )
. 1
< M _—
— tz:; (M? Qt) + AKTL )
forall u € T, since pr41 = argmin,cp[A|p] 23:1 M (f1, Qe) + KL(pe || p1)]- [ |

To show a regret bound for the lazy dense update rule of Algorithm 9, we now need only relate
the lazy-dense row player’s loss to the loss of the row player with foresight. To prove this relation,
we will need the following lemma showing strong convexity of R(u) = KL(u || p1) on the set of
k-dense measures.

Lemma 43 The function R(p) = KL(p || p1) is (1/kn)-strongly convex over the set of measures
with density no more than k, with respect to the {1 norm.
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Proof Let i be a measure of density d < k, and let z = (ﬁ, cee ﬁ) The Hessian of R(y) is
V2R(p) = I,x. Therefore, for all y € R”,
T2 y;
Yy VR(u)y = >
(k) ; ()
12(_)2%2 Itiply by 1
= — > p)) = multiply by
|l % — pu(i)
2
> 1 Z () i Cauchy-Schwarz
~ e\ 5 ()
1
= —lyli
M
Therefore R(1) is strongly convex on the given domain, for the given norm. [ |

We can now relate the losses M (i, Q¢) and M (i1, Q).

Lemma 44 Let R(p) = KL(w || pe1), which is 1/kn-strongly convex with respect to the {1 norm
on T, the set of k-dense measures. Then for all T > 1

M, Qi) — M(firs1,Qt) < A

Proof We first note that M (jip, Q¢) — M (fip41, Q) = ﬁ(,uT — pr1, 7). So it suffices to show
that

Y (ur (@) = pra (i) er (i) < KnX
i
which, because ¢7(i) € [0, 1], is implied by ||¢(7) — pe41(2)||1 < wnA.
Our strong convexity assumption on R and an application of Bregman’s theorem (Theorem 8)
give us that

R HMT - /~LT+1”1 (VR(ur) — VR(pr11), o7 — pr41)
= KL(ur || prs1) + KL(prs || pr)
< KL(pr || fr+41) — KL(pr41 || ﬂT+1) + KL(prs1 || o) = KL(pr || fir)

—ZMT <log prli) > ZMTJrl (log prii(i) g b T“@)

MTH(Z) firy1(3) for (%)

_ZMT (108; - > ZMTH <log ftT(i) )

1 (i fir41(2)

= </~LT — 741, M)
< lpr — prsa |1 M40

Therefore
Zllpr — priallt < Alrgafloe < A

and so
|ur — prsalli < Asn.
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We are now ready to prove the regret bound for the lazy dense update process of Algorithm 9,
stated earlier in a simplified form as Lemma 35.

Lemma 45 Let I be the set of k-dense measures. Let p1 be the uniform measure over P of density
Kk (u1(z) = kK forall x € P), and let |P| = n. Then for all u € T we have the following regret

bound.
T

1 1 KL(t | )
— M( < = M(a At —
T Z (1, Qt) < ; Q1) + A+ T

Proof From Lemma 42, we have that
T T

1 1 , KL(u || 1)
— M( M _

T ; (f1t11,Qt) < T ; (11, Q) + T

Adding % Ethl M (jit, Q¢) to both sides of the inequality and rearranging gives

1 1<

T T

1

T E M (fi, Q) < = T E M, Q) + = E M (fig, Q) — M (figg1, Q) +
=1 =1 T4

KL(p || p1)
AenT

We may then apply Lemma 44 to conclude

T
1 KL( || )

T
1
M M ([ A
; (fir, Q¢) < th:; (14, Qt) + A+ NenT

Appendix K. Private Boosting with Stopping Rules

We now show that the SmoothBoost algorithm, due to Servedio (2003), can be adapted to
fit in our private boosting framework. This discussion yields another differentially private halfs-
pace learner and demonstrates that our framework is flexible enough to handle another “canonical”
smooth boosting algorithm.

K.1. Boosting Schemas with Stopping Conditions

In Section 3.1, we decomposed boosting into its two most basic algorithmic parts: the weak learner
WkL and the re-weighting strategy NxM. This assumed that 7', the number of calls to the weak
learner, is fixed in advance. But many boosting algorithms (including Servedio’s SmoothBoost)
employ a stopping rule: a test that determines adaptively whether or not to finish boosting and
return the current aggregated hypothesis. Here, we formalize the common case where the stopping
rule is a threshold function applied to the intermediate measure. In the boosting scheme of Section
3, the number of rounds is supplied as input. Below, the threshold against which the stopping rule
is tested is supplied as input.
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Just as in Section 3.1, we describe Boosting using a “helper function” for iteration. Again, this
will make it easy to apply composition for differential privacy and enforce privacy for any boosting
algorithm where NxM and ?END satisfy certain minimal conditions, elaborated later. We denote by
‘H the space of hypotheses used by the weak learner, S an iid sample from the target distribution D,
and M the set of bounded measures over S. Type signatures and the algorithmic schema follow.

Weak Learner, WkL : X" x M — H
Next Measure, NxM : X" x H* — M
Stopping Criterion, ?END : M — R
Iteration, Tter : X" x H* — H*

Algorithm 10 Boost. Input: S € X", S~ D, T €R
H«+ {}
repeat
H < Iter(S,H,T)
until L. € H
T « |H|
f(@) < + 3 hx)

return sgn(f(z))

Algorithm 11 Tter. Input: S € X", He H*, T € R
p < NxM(S, H)
v ~ Lap(1/e)
if (TEND(p) —T) + v > 2+ log(1/6) /e then
h < WKL(S, 1)
return Hoh
else
return | and terminate
end if

K.2. Approximate Differentially Private Learning

Our framework for handling boosting with stopping rules takes any weak learner satisfying approx-
imate differential privacy and produces a strong learner satisfying this privacy notion as well.

Definition 46 (Differential Privacy) A randomized algorithm M : X™ — R is (g, 6)-differentially
private if for all measurable T C R and all neighboring datasets S ~ S’ € X", we have

Pr[M(S) € T] < f PrIM(S') € T] + 6.

Definition 47 ((¢, §)-Differentially Private Weak Learning) A weak learning algorithm WXL :
S x D(S) — H satisfies (e, 0,()-DP if for all neighboring samples S ~ S" € (X™ x {£1}), for
all measurable T C H, and any pair of distributions [i, i’ on X such that A(fi, i") < { we have:
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Pr[WkL(S, i) € T) < e Pr[WkL(S', i') € T] + 6.

Again, we use composition theorems to handle the iterative structure of boosting. See Dwork
et al. (2010); Bun and Steinke (2016) for the result below.

Theorem 48 (Composition for Approximate Differential Privacy) Lere,d,8’ > 0. Then the k-
fold adaptive composition of (e, §)-differentially private algorithms is (¢',kd + &')-differentially
private for

2
g = % +ev/2klog(1/d).

K.3. Ensuring Privacy with Stopping Rules

Under what circumstances will boosting algorithms using this new scheme satisfy privacy bounds?
Just as in Section 3.2, the weak learner Wk L must be (e, d, ¢)-DP (Definition 47). However, we relax
the condition on the measure rule NxM to only be (-slick (Definition 19) on measures which satisfy
the guarantee checked by the stopping rule.

Lemma 49 (Abstract Single-Round Privacy) Suppose WkL is (,9,()-DP, NxM is (-slick under
the promise that it is given a measure passing the end test Wk L, and that END? is a sensitivity-1
test. Then Iter run using these procedures is (2¢,€£9)-zCDP.

Lemma 49 follows immediately from the following generalization of the Propose-Test-Release
framework of Dwork and Lei (2009), taking the function f below to be (?END(u) — 7).

Let f : X" — R be a sensitivity-1 function. Suppose A is a randomized algorithm with the
following guarantee: If S ~ S” and f(S), f(S’) > 0, then for every measurable set T, we have
Pr[A(S) € T| < e*Pr[A(S") € T] + 6.

Lemma 50 Let f and A be as above. Consider the following algorithm B: Let v ~ Lap(1/e). If
f(S)+v >2+1log(1/0)/e, output A(S). Otherwise, output L. Then B is (2¢, €°d)-differentially
private.

Proof Let t = 2 + log(1/d)/e. Fix neighboring datasets S, S’. First suppose f(S) < 1. Then by
concentration properties of the Laplace distribution and the fact that f has sensitivity 1, we have
Pr[f(S) + v > t] < ¢ and Pr[f(S’) + v > ] < ¢. Therefore, Pr[B(S) = 1] > 1 — ¢ and
Pr[B(S’) = 1] > 1— 6o B(S), B(S') are (¢, ¢)-indistinguishable.
Now suppose instead that f(S) > 1. Then since f has sensitivity 1, we also have f(S") > 0.
Let T" be a measurable subset of the range of A. Then we have
Pr[B(S) € T] = Pr[A(S) € T| - Pr[f(S) + v > {]
< (e Pr[A(S") € T)| +6) - e Pr[f(S) +v > 1]
= e* Pr[B(S') € T] + €°.
Similarly,
Pr[B(S) e TU{L}] =Pr[A(S) € T|-Pr[f(S)+v >t|+ Pr[f(S)+ v < ]
< (efPr[A(S) € T +6) - e Pr[f(S) +v > t] + e Pr[f(S) + v < {]
= e* Pr[B(S') € T] + €°.
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K.4. Servedio’s SmoothBoost Algorithm
We do not state the whole SmoothBoost algorithm, but describe the sensitivity-1 end test and mea-

sure production function below. The following theorem summarizes its guarantees:

Theorem 51 (Servedio (2003)) Suppose SmoothBoost is run with smoothness parameter 0 < k <
1 and weak learners which guarantee advantage 0 < v < 1/2. Then

1. The intermediate measures produced by SmoothBoost have density less than k within T <
2
W rounds.

2. The final hypothesis output by SmoothBoost has margin at least € = /(2 + ) on all but a k
fraction of inputs.

Algorithm 12 ?END(xn). Input: u
if >, (i) < kn then
return L
else

return T
end if

Algorithm 13 SB-NxM (x) : SmoothBoost Next Measure
Parameters: r € (0,1),0<60 <~y <1/2

Input: S, the sample; H = {hq, ..., h:}, the sequence of hypotheses
Output: A measure over [n], n = |5)|

if ¢ = 0 then
wi(i) < 1 Vi € [n]
else
s¢(1) « —t0 + 22:1 yihe(z;) Vi € [n]
. 1 if s4(7) <0 .
pesn(i) <0 ey

(1 —7)*@/2 if 5,(i) > 0
end if
return fu 1

K.5. Slickness of SmoothBoost

Lemma 52 (SmoothBoost Slickness) Lert jui, i’ be the measures produced when SB—NxM is run
with the sequence of hypotheses H = {hy, ..., hi}, and on neighboring datasets S ~ S’. Suppose
that both measures p, j' are r-dense. Then A(fi, i) < 2/kn.
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Proof Let i be the index at which .S and .S’ differ, and note that 11(j) = /() for all j # 4.

Let po denote the measure with g (j) = u(j) = p/(j) for all j # 4, and po(i) = 1. We will
show that A(fig, 1) < 1/kn, which is enough to prove the claim by the triangle inequality. Note
that 1o (j) > w(j) for every j, and hence |uo| > || > kn.

We calculate

NCWOEEDS

j=1

to(7) M(j)'
ol |pl

;(‘uo Sl -5
;@*;“(')(; )

1 ( 2 N 1 D
2 \Kn Iul lul+1
1/ 2 2
— 7_1_7
2 \kn  kn(kn+1)
2
< 2.
Kn

K.6. Putting Everything Together

Theorem 53 There exists a constant ¢ for which the following holds. Let n > clog(T/j39)/e.
Suppose that WKL is an (g,6,4/kn)-DP weak learner with advantage guarantee ~. Then with
probability at least 1— 3, Boost run with Wk L, SB—NxM(k), and ?END(kn/2) enjoys the following
properties.

4
1. Boost runs forT < PRy e rounds.

2. Forevery §' >0, Boost is (¢/,Te?§ + &')-DP for ¢’ = 2T + 2e+/T log(1/5").

3. The final hypothesis H output by Boost has margin at least 0 = ~v/(2 + 7) on all but a K
Jfraction of inputs.

Proof Property 1 follows from the first claim of Theorem 51. After 7' < Mﬁ rounds, the
measures produced by SB—NxM will have density less than x. For sufficiently large n as guaranteed
in the theorem statement, with probability at least 1 — /3, the noisy end test will halt after the density
decreases below , but before the density reaches /2.

Combining Lemma 49 with the slickness bound Lemma 52 implies that each call to ITter is
(2¢, e°6)-differentially private. Property 3 now follows from the advanced composition Theorem 48.

Property 4 follows immediately from the second claim of Theorem 51, as our advantage as-
sumption on Wk L means our learner inherits the margin guarantee of SmoothBoost. |
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Appendix L. Direct Comparison to (Dwork et al., 2010)

We now compare our algorithm to that of Dwork et al. (2010). They start from an (&y, 63 )-DP weak
learner with advantage ~ and boost to training error at most & under (e, 0)-Differential Privacy.
Their result is a combined privacy and sample bound, which we re-state as Theorem 56 for com-
parison’s sake. By numerous techniques (including a simple appeal to differential privacy itself, see
Appendix G) one could extend their training error bound to a generalization bound.

In this section, we hold utility and privacy objectives fixed under an identical weak learner
assumption to that of Dwork et al. (2010). We show that LazyBregBoost saves a factor of 72
in sample complexity while recovering (essentially) the same training error and privacy guarantees
(Theorem 57). Differences between our respective settings are summarized below.

Resampling vs. Weighted Boosting: There are two kinds of boosting implementations: resam-
plers use the intermediate distributions to draw a sample for the weak learner, while weight
boosters supply sample weights explicitly to a weak learner. Boost4People boosts by
resampling, while LazyBregBoost assumes the weak learner supports explicit sample
weighting. Here, we give a resampling version of LazyBregBoost for comparison.

Slickness: The weak learner of Dwork et al. (2010) does not have a “slickness” property (as in our
Definition 18) to enforce similar behavior on similar input distributions — which is necessary
for privacy under boosting. They impose slickness on an arbitrary private weak learner by sub-
sampling the input sample; this is one reason that Boost4People is a resampler booster.
The resampling version of LazyBregBoost presented here also “automatically” imposes
slickness.

Hypothesis Type: Our weak learner is real-valued, whereas the weak learner assumed by Dwork
et al. (2010) is Boolean-valued. So, our setting is a slight generalization.

Aggregation Function: LazyBregBoost aggregates weak learners by averaging, whereas the
Boost4People algorithm aggregates by majority vote. Thus, if a hypothesis class is
closed under averaging, LazyBregBoost can learn properly (as for halfspaces, Theorem
26). Here, we aggregate by majority to more closely match Dwork et al. (2010).

L.1. Preliminaries

We begin by re-stating the weak learner assumption of Dwork et al. (2010).

Definition 54 ((m, v, £)-Base Learner) Let X be a universe, C = {c¢ : X — {£1}} a concept
class, and L a learning algorithm that receives m labeled items, each in X x {£1} and outputs a
hypothesis h : X — {£1}.

We say that L is a (m,~y,£)-Base Learner for C if for every ¢ € C, when the k items are drawn
from a distribution D on X and labeled by c, with all but probability £ over the choice of items and
L’s coins, the hypothesis h labels at least a (1/2 + ~)-fraction of the mass of D correctly. That is:

Pr [h(z) = c(2)] > 1/2+7

We will alter our boosting schema to use resampling instead of explicit weighting. Accordingly,
we require the following lemma of Dwork et al. (2010), which is used to enforce “slickness” for
boost-by-resampling algorithms.
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Lemma 55 (Lemma 6.5 of Dwork et al. (2010), Sampling to Amplify Privacy) Let A and B be
distributions on universe U with statistical distance at most ¢, and M : U* — V an (¢,6)-DP
private mechanism, where k > 0 and € < 1/2. Then for every measurable S C V,

Pr[M(AF) € 8] < P PrM(B*) € S 46 - (1 4 %),

L.2. Private Boosting by Resampling

Finally, we define a resampling version of LazyBregBoost, modifying the schema of Section 3.

Algorithm 14 Boost-S.In: S € X", T € N Algorithm 15 TterS.In: S € X", H € H*

H + {} 11 < LBNxM(S, H)

fort =1to7T do S’ «— Sample k elements of S using
H «+ IterS(S,H) h «+ WkL(S")

end for return H U {h}

f(z) « lA\/IAJzT:1 hi(z) // Add h to list of hypotheses

return f(z)

The sample bounds below should be compared: both start from an (&3, d5)-DP weak learner with
advantage . We hold training error & and the parameter € of approximate differential privacy fixed
while allowing probability of learning failure and the § parameter of approximate differential privacy
to vary. Under these conditions, LazyBregBoost saves a factor v~ 2 in sample complexity.

Theorem 56 (Theorem 6.1 of Dwork et al. (2010) using advanced composition) Let L be a base
learner for concept class C. Then for any &,e,0',v € (0,1), when L is plugged into Boost 4People,

for appropriate settings of the parameters (and appropriate constants hidden in the O(-) notation)
Boost4People guarantees:

1. If L is (&p, 0p)-DP then one round of Boost4People is (¢*,0,(1 + exp(e*))-DP, where

e*=¢/y/8T In(1/¢").

2. By advanced composition (Theorem 48), it follows that T’ rounds of Boost 4People satis-
fies (e, T - 0p(1 + exp(e*)) + &')-DP.

3. If Lis a (m,~, ) base learner, then Boost4People runs for T = O (%) rounds.
For datasets of size at least

e (N/Tln(l/é’)sb : m-vlog(l/d)) g <\/log(1/d) In(1/8 ey - m - vlog(l/&))

ey ey3é

it guarantees that with all but (T -  + exp(—v)) probability, the output hypothesis has error
at most Q.

Theorem 57 Let L be a base learner for concept class C. Then for any &,0',¢ € (0,1), when

L is plugged into Iter—S, for appropriate settings of the parameters (and appropriate constants
hidden in the O(-) notation) Boost —S guarantees:

1. If L is (ep,0p)-DP then one round of Boost—S satisfies (*,5,(1 + exp(e*)))-DP, where

e* =¢//8TIn(1/¥).
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2. By advanced composition (Theorem 48), it follows that T rounds of Boost —S satisfies (e, T
O - (1 + exp(e*)) + ¢')-DP.

3. If L is a (m,~, ) base learner, then Boost—-S runs for T = O (%#) rounds. For

datasets of size at least

e Q( Tln(l/é’)-sbm> g <\/log(1/d) In(l/é’)sbm>

ek ey
it guarantees that with all but (T - 3) probability, the output hypothesis has error at most Q.

For utility, we appeal to Theorem 20, the round bound for boosting with LB—NxM. From the base
learner L, a weak learner L’ as in our Definition 11 can be produced by first sampling & examples
from the target distribution D and then invoking L. Thus, setting k € O(&), we can achieve training
error at most & when boosting concludes. To ensure there are enough examples for each run of the
base learner, we require |\S| = n > m.

For the privacy analysis, we re-express the strategy above by “lifting” the sampler out of the
weak learner and into the inner loop of boosting. This scheme will behave identically to boosting
with L' — as can be seen by comparing Boost—S and Iter-S to their counterparts in Section 3
— but is better partitioned to apply privacy composition lemmas.

By Lemma 21, LB—NxM has statistical distance between Dy, D; induced by neighboring sam-
ples S and S’ at most 1/(xn). Using this bound on statistical distance and arguing as in Lemma
6.3, item 3 of Dwork et al. (2010), we get that Tt er—S invoked with a Base Learner parameterized

as above is A )
(S o (ew (5)))
KN KN

differentially private. By advanced composition over 7' rounds of boosting, this is

(W- S 1, (1 + exp (222”1)) +5/)

)
RN

differentially private overall, for any ¢’ € (0,1). Given a privacy target ¢, we want:

JTI(i)5) - 2™
RN

Setting k € O(&), we have:

s e (VT - 20

an
which lower-bounds the sample size:

neq (VI - 20

Qe

Expanding 7" and substituting gives the claimed sample and privacy bounds for Boost-S.
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