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Abstract: The privacy of users and information are becoming increasingly important with the growth
and pervasive use of mobile devices such as wearables, mobile phones, drones, and Internet of Things
(IoT) devices. Today many of these mobile devices are equipped with cameras which enable users
to take pictures and record videos anytime they need to do so. In many such cases, bystanders’
privacy is not a concern, and as a result, audio and video of bystanders are often captured without
their consent. We present results from a user study in which 21 participants were asked to use
a wearable system called FacePET developed to enhance bystanders’ facial privacy by providing
a way for bystanders to protect their own privacy rather than relying on external systems for
protection. While past works in the literature focused on privacy perceptions of bystanders when
photographed in public/shared spaces, there has not been research with a focus on user perceptions
of bystander-based wearable devices to enhance privacy. Thus, in this work, we focus on user
perceptions of the FacePET device and/or similar wearables to enhance bystanders’ facial privacy.
In our study, we found that 16 participants would use FacePET or similar devices to enhance their
facial privacy, and 17 participants agreed that if smart glasses had features to conceal users’ identities,
it would allow them to become more popular.

Keywords: bystanders’ privacy; facial privacy; face detection; face recognition; Internet of Things;
wearables; usability; usable privacy; adversarial machine learning

1. Introduction

The availability of cameras and Artificial Intelligence (AI) through wearables, mobile phones,
drones, and Internet of Things (IoT) devices is making bystanders’ facial privacy more significant to
the general public. Bystanders’ privacy arises when a device that collects sensor data (such as photos,
sound or video) can be used to identify third-parties (or their actions) when they have not given consent
to be part of the collection [1,2]. Even though bystanders’ privacy has been an issue since the end of
the 19th century with the invention of portable cameras that could take photos in a short amount of
time [1], recent advances of camera-enabled devices (e.g., mobile phones, IoT) combined with Artificial
Intelligence (AI) and the Internet have raised awareness about this privacy issue especially in the last
couple of years. We show in Figure 1 some of issues related to bystanders’ facial privacy.
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Figure 1. Issues related to bystanders’ privacy. Our focus in this work is to study bystanders’ 
perceptions of a bystander-centric device/system to enhance facial privacy. 

Recently, various solutions [3–24] that address bystanders’ privacy have been proposed in the 
literature. However, most of these solutions rely on bystanders trusting third-party devices or 
systems which do not give a choice to protect their privacy. To enable bystanders to protect their 
privacy, we have developed the Facial Privacy Enhancing Technology (FacePET) [25] smart wearable 
device. FacePET is a wearable system made of intelligent goggles worn by bystanders to protect their 
privacy from unauthorized face detection. FacePET operates on image features (in particular Haar-
like features [26]) through visible light produced by the FacePET goggles to confuse face detection 
algorithms based on the Viola–Jones face detection algorithm [27]. If an unauthorized party takes a 
photo of the bystander with the FacePET system enabled, the action on the features is registered in 
the photo. Thus, if later an Artificial Intelligence (AI) algorithm based on the Viola–Jones algorithm 
attempts to detect a bystander’s face, the goal of the FacePET is to prevent detection of the bystander’s 
facial features by the AI algorithm. 

The FacePET goggles are controlled via a mobile application at the bystanders’ mobile phone 
which permits the bystander to create privacy policies to automatically provide consent to third-party 
cameras. When a third-party authorized by the bystander wants to take a photo of the bystander, 
FacePET turns off the goggles and disables the operation. 

The concept of consent is a cornerstone in privacy [28–30], and in this context, FacePET improves 
upon previous bystander-based approaches to protect facial privacy by allowing the bystander to 
create his/her own privacy policies and provide the consent. We describe the complete FacePET 
system, how it acts on Haar-like features based on the Viola–Jones face detection algorithm, and its 
effectiveness in [25]. 

In this work, we present the results of a small user study with a focus on perceptions of users 
about the FacePET system and intelligent goggles with features to mitigate facial detection 
algorithms. While there have been past works [8,14,31–40] on understanding the perceptions of 
bystanders with respect to facial privacy, to the best of our knowledge, our user study is the first to 
address the perceptions of a smart wearable (IoT) system worn by bystanders with a privacy 
protection focus. 

Research contributions of this work 
We summarize the main research contributions of this work as follows: 

• We present a summary of human–computer interaction studies and systems related to facial 
privacy. 

• We present a user study of the FacePET system with a focus on users’ perceptions about the 
device and intelligent goggles with features to mitigate facial detection algorithms. 

• We discuss the results of the study to further enhance the FacePET system, as well as influence 
the development of future bystander-centric devices for facial privacy. 

The rest of this paper is organized as follows. Section 2 presents a review of related works. In 
Section 3 we describe the FacePET system. Section 4 presents the results of our usability evaluation 
of FacePET. Finally, in Section 5, we make some concluding remarks and present future work. 
  

Figure 1. Issues related to bystanders’ privacy. Our focus in this work is to study bystanders’ perceptions
of a bystander-centric device/system to enhance facial privacy.

Recently, various solutions [3–24] that address bystanders’ privacy have been proposed in the
literature. However, most of these solutions rely on bystanders trusting third-party devices or systems
which do not give a choice to protect their privacy. To enable bystanders to protect their privacy, we have
developed the Facial Privacy Enhancing Technology (FacePET) [25] smart wearable device. FacePET
is a wearable system made of intelligent goggles worn by bystanders to protect their privacy from
unauthorized face detection. FacePET operates on image features (in particular Haar-like features [26])
through visible light produced by the FacePET goggles to confuse face detection algorithms based on
the Viola–Jones face detection algorithm [27]. If an unauthorized party takes a photo of the bystander
with the FacePET system enabled, the action on the features is registered in the photo. Thus, if later
an Artificial Intelligence (AI) algorithm based on the Viola–Jones algorithm attempts to detect a
bystander’s face, the goal of the FacePET is to prevent detection of the bystander’s facial features by
the AI algorithm.

The FacePET goggles are controlled via a mobile application at the bystanders’ mobile phone
which permits the bystander to create privacy policies to automatically provide consent to third-party
cameras. When a third-party authorized by the bystander wants to take a photo of the bystander,
FacePET turns off the goggles and disables the operation.

The concept of consent is a cornerstone in privacy [28–30], and in this context, FacePET improves
upon previous bystander-based approaches to protect facial privacy by allowing the bystander to
create his/her own privacy policies and provide the consent. We describe the complete FacePET system,
how it acts on Haar-like features based on the Viola–Jones face detection algorithm, and its effectiveness
in [25].

In this work, we present the results of a small user study with a focus on perceptions of users
about the FacePET system and intelligent goggles with features to mitigate facial detection algorithms.
While there have been past works [8,14,31–40] on understanding the perceptions of bystanders with
respect to facial privacy, to the best of our knowledge, our user study is the first to address the
perceptions of a smart wearable (IoT) system worn by bystanders with a privacy protection focus.

Research contributions of this work
We summarize the main research contributions of this work as follows:

• We present a summary of human–computer interaction studies and systems related to facial privacy.
• We present a user study of the FacePET system with a focus on users’ perceptions about the device

and intelligent goggles with features to mitigate facial detection algorithms.
• We discuss the results of the study to further enhance the FacePET system, as well as influence the

development of future bystander-centric devices for facial privacy.
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The rest of this paper is organized as follows. Section 2 presents a review of related works.
In Section 3 we describe the FacePET system. Section 4 presents the results of our usability evaluation
of FacePET. Finally, in Section 5, we make some concluding remarks and present future work.

2. Related Works

2.1. Bystanders’ Facial Privacy: Human–Computer Interaction (HCI) Perspective

From the HCI perspective, research studies related to bystanders’ privacy can be classified
into two groups: (1) understanding the utilization/adoption of mobile, camera-enabled devices
(i.e., mobile phones, wearables, IoT, and drones), and related technologies in shared spaces; (2) usability
studies for facial privacy systems. These studies have been conducted using a variety of methods such
as interviews, analysis of logged data (i.e., voice-mail diaries), online web comments, surveys, and a
combination of more than one of these methods. We highlight some of these studies in Table 1.

Table 1. Human–Computer Interaction (HCI) studies related to Bystanders’ Facial Privacy.

Reference Research Focus Approach Comments

Palen et al. [31] Mobile phones in
shared spaces

19 new mobile phone users tracked
for six weeks. Voice mail diaries,

interviews and calling behavior data
collected for four months

Users were inclined to modify their
perceptions on social appropriateness
from initial use. Highlighted a conflict

of spaces (physical vs. virtual)

Denning et al. [32] Augmented Reality
(AR) glasses

12 field sessions with 31 bystanders
interviewed and their reactions to a

co-located AR device

Participants identified different factors
on making recording more/less

acceptable and they expressed interest
on being asked for consent to be

recorded and record-blocking devices

Motti et al. [33]

Wearable devices including
armbands, smart watches,

earpieces, head bands,
headphones and smart glasses

Observational study of online
comments posted by wearable users.

A total of 72 privacy
comments analyzed

Identified 13 user’s concerns about
wearable privacy related to the type of

data and how device collects, stores,
processes and shares data. Concerns
depend on type and design of device

Hoyle et al. [34] Lifelogging with wearable
camera devices

In situ user study in which
36 participants wore a lifelogging

device for a week, answered
questionnaires on photos captured,
and participated in an exit interview

Users preferred to manage privacy
through in situ physical control of
image collection (rather than later),

context determines sensitivity,
and users were concerned about

bystanders’ privacy although almost no
opposition or concerns were expressed

by bystanders during study

Hoyle et al. [35] Privacy perceptions of
online photos

Survey deployed through Amazon
Mechanical Turk (mTurk) with
279 respondents. Survey used
60 photos showing 10 different

contextual conditions

Respondents shared common
expectations on the privacy norms of

online images. Norms are socially
contingent and multidimensional.

Social contexts and sharing can affect
social meaning of privacy

Zhang et al. [36] Privacy attitudes on video
analytics technologies

10 day longitudinal in situ study
involving 123 participants and

2328 deployment scenarios

Privacy preferences vary with a number
of factors (context). Some contexts make
people feel uncomfortable. People have
little awareness on the contexts where

video analytics can be deployed

Hatuka et al. [37]
Smartphone users’ perceptions
about contemporary meaning

of public/private spaces

Correlational study with
138 participants who took surveys
and were observed by researchers

for three months. Participants
divided in two groups: basic phone

users and advanced smart
phone users

Differences on the meaning of
public/private spaces may be blurred
and may be dynamically redefined by

use of technology
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Table 1. Cont.

Reference Research Focus Approach Comments

Wang et al. [38]
Civilian use of

drones/Unmanned Aerial
Vehicles (UAVs)

16 semi-structured interviews to
examine people’s perceptions on

drones and usage under five specific
scenarios. Participants were shown

a real drone and videos about its
capabilities before interview

Differences on the meaning of
public/private spaces for participants.

Participants highlighted inconspicuous
recording and inaccessible drone pilots
to request for privacy as concerns and

some participants expected for expected
for consent to be asked before recording

by drones

Chang et al. [39] Drones

Laboratory study with 20
participants using real and

simulated drones to elicit user
perceptions about drone security

and privacy. Study also used
surveys, interviews and drone

piloting exercises

Drone design affects privacy and raises
security concerns with drones.

Recommended the use of geo-fencing to
address privacy concerns, designated

fly-zones/“highways” for drones.
Auditive and wind clues to inform of

drone usage for bystanders

Steil at al. [8]
User evaluation of a

privacy-preserving device to
block a head-mount camera

12 participants with semi-structured
one-to-one interviews to evaluate an

eye gesture-activated first-person
camera shutter blocker device

controlled by Artificial
Intelligence (AI)

17 participants annotated video
datasets for training data

Eye-tracking can be used as a way to
handle bystanders’ privacy as camera
activates when person fixes eyesight.

Non-invasive on the user. Eye tracking
not perceived in general as a threat to

privacy by participants.
Privacy sensitivity varies largely among

people, thus affecting the definition
of privacy

Aditya et al. [14]

Personal expectations and
desires for privacy on photos

when photographed as
a bystander

Survey deployed online via Google
Forms with 227 respondents from 32

different countries

Privacy concerns and privacy actions
varied based on context (i.e., location,

social situations)

Ahmad et al. [40]
People’s perceptions of and

behaviors around current IoT
devices as bystanders

Interview study with 19 participants

Participants expressed concerns about
uncertainty of IoT device’s state (if they

were recording or not) and their
purpose when being bystanders around

these devices

Our approach
(FacePET)

User study of a
bystander-based wearable

(smart glasses) to attack facial
detection algorithms

21 participants took survey on
bystanders’ privacy, wore the

FacePET device, saw the results of
facial privacy protection on their
faces, and answered questions on

the usability of FacePET

Most participants would use FacePET
or a bystander-based facial privacy

device. Most participants agreed that
facial privacy features would improve
the use and adoption of smart glasses

We describe below some of the common findings among these studies:

• Seven studies in Table 1 recruited less than 36 participants (five studies recruited 20 or less
participants [8,31,38–40], and two studies recruited less than 36 participants [32,34]. Only two
studies recruited more than 100 participants [36,37]. The studies with less than 36 participants use
interviews, observation, testing of devices and some of them use surveys. The studies with more
than 100 participants use surveys or automated ways (AI) to gather data of interest.

• The definitions of private/public (shared) spaces and privacy perceptions vary among individuals.
What is meant for a private/public space seems to depend on context (i.e., individuals, actions and
devices used at any given location).

• The design of the data capturing device has an impact on user and bystanders’ privacy perceptions.
• Individuals want to have control of their facial privacy even though some contexts are less

private-sensitive than others.

In contrast to the related works discussed above which focused primarily on privacy perceptions
of users/bystanders when photographed in shared/public spaces by different kinds of devices, and their
perceptions about how these photographs are shared in social networks and used by external parties
(i.e., in web/remote services for facial recognition), in this work we explore the perceptions of a
bystander-centric device (smart goggles) to protect bystanders’ facial privacy. To the best of our
knowledge, our study is the first study to explore user perceptions of a bystander-centric IoT/wearable
system with a focus on privacy.
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2.2. Bystanders’ Facial Privacy: Solutions

In the past we proposed a taxonomy [1] to classify solutions to handle bystanders’ facial
privacy. Our taxonomy is composed of two major groups of solutions: location-dependent methods
and obfuscation-dependent methods. Methods in these categories have differences in terms of
effectiveness [25], usability [41], and power consumption [42]. We show this taxonomy in Figure 2 and
we present a summary of methods under each category in Table 2.IoT 2019, 2 FOR PEER REVIEW  6 
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control to protect his/her privacy. 
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Table 2. Recently proposed technological solutions for bystanders’ facial privacy.

Category Subcategory Method

Location
Methods disable or ban the utilization

of capturing devices

Disabling devices–sensor saturation BlindSpot [3]

Disabling services–Broadcasting
of commands

Using infrared to disable devices [4]

Using Bluetooth to disable devices [5]

Disabling devices–context-based

Virtual Walls [6]

Privacy-restricted areas [7]

World-driven access control [15]

Sensor Tricorder [16]

PlaceAvoider [17]

PrivacEye: [8]

Obfuscation
Methods hide the identity of

bystanders’ faces to avoid
identification

Bystander–based

NotiSense [9]

PrivacyVisor [10]

PrivacyVisor III [11]

Perturbed eyeglass frames [12]

Invisibility Glasses [18]

Device-based–default Privacy Google StreetView [19]

Device-based–selective

ObscuraCam [13]

Respectful cameras [21]

Invisible Light Beacons [23]

Negative face blurring [24]

Device-based–collaborative

I–pic [14]

PrivacyCamera [20]

Do Not Capture [22]
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2.2.1. Location-Dependent Methods

The focus of location-dependent methods is to disable/enable the utilization of a capturing device
at a particular location [43,44] or context. Location-based methods can be divided into two categories:

• Banning/Confiscating devices: Even though they are non-technological solutions, banning/

confiscating devices are the oldest method to handle bystanders’ privacy. In the U.S., this method
was first used starting from the development of portable photographic cameras at the end of
the 19th century [45]. Around this time, cameras were forbidden at some public spaces and
private venues.

• Disabling devices: In this group the goal is to disable a capturing device to protect bystanders’ privacy.
Methods under this category can be further classified based on the technology used to disable the
capturing device. In the first group (sensor saturation), a capturing device is disabled by some
type of signal that interferes with a sensor that collects identifiable data [3]. In the broadcasting
of commands group, a capturing device receives disabling messages via data communication
interfaces (i.e., Wi-Fi, Bluetooth, infrared) [4,5]. In the last group (context-based approaches)
the capturing device identifies contexts using badges, labels, or it recognizes contexts [46] using
Artificial Intelligence (AI) methods to determine if capturing cannot take place [6–8].

2.2.2. Obfuscation-Dependent Methods

The goal of obfuscation-dependent methods is to hide the identity of bystanders to avoid their
identification. Depending on who performs the action to hide a bystander, these methods can be
classified into two categories:

• Bystander-based obfuscation: In this category, bystanders avoid their facial identification either by
using technological solutions to hide or perturb bystanders’ identifiable features, or by performing
a physical action such as asking somebody to stop capturing data, or simply leaving a shared/public
space. Our FacePET [25] wearable device falls into this category.

• Device-based obfuscation: In this group, third-party devices which are not owned by the bystander
perform blurring or add noise (in the signal processing sense) to the image captured from the
bystander to hide his/her identity. Depending on how the software at the capturing device
performs the blurring, solutions in this category can be further classified into default obfuscation
(any face in the image will be blurred) [19], selective obfuscation (third-party device users select
who to obfuscate in the image) [20], or collaborative obfuscation (third-party and bystander’s
device collaborate via wireless protocols [47] to allow a face to be blurred) [21]. A drawback of
device-based obfuscation method is that a bystander must trust a device that he/she does not
control to protect his/her privacy.

3. The FacePET System

3.1. Adversarial Machine Learning Attacks on the Viola–Jones Algorithm

To detect a face automatically in an image, supervised machine learning (classification) methods
in image processing can be used. Given an image/photo x and a face detection (classification)
method/algorithm Fd, the goal of Fd is to classify (or assign a label) to the image x such that if x contains
a face, then Fd(x) = 1, and if x does not contain a face then Fd(x) = 0.

The process of finding a vulnerability to make classification algorithms fail is an application of a
field called adversarial machine learning [48,49] which studies how an adversary/attacker can generate
attacks to render machine learning models/methods ineffective. For face detection, this process can
be done by applying a transformation Tr(x) on the image such that if Fd(x) = 1, then Fd(Tr(x)) = 0.
In other words, if x contains a face, the goal of an adversary during the face detection process is
to find a method/transformation of a face in x so the face detection method does not detect the
face. The transformation can be done after the image x has been captured by a camera, which in
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this case, Tr(x) is performed by software, or Tr(x) can be generated as part of the process to capture
an image wherein a person (i.e., a bystander) in the photo has a physical method to execute the
transformation which is recorded/stored in the image. Thus, the goal for FacePET is to physically
generate a transformation to prevent the Haar-like features from being used by the face detection
(classification) algorithm. A Haar-like feature is calculated using the following formula:

h(r1, r2) = s(r1) − s(r2) (1)

In this formula, s(r1) is the average of pixel intensities in “white” regions, and s(r2) is the average
of pixel intensities in the “black” regions of predefined black/white patterns that are juxtaposed over
an image (or a region of an image). The patterns are engineered to train classification models using
machine learning algorithms and the Haar-like features. Once the model is trained, the patterns are
used in images to calculate the Haar-like features, which then serve as inputs to the trained classifier.
Figure 3 presents the predefined black/white patterns used by Viola–Jones to calculate Haar-like
features for face detection.
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Figure 4. Face detection with the Viola–Jones algorithm (a) Face detected/FacePET googles off; (b) 
Face not detected/FacePET with goggles on. The superposed blue and green squares in the left figure 
indicate the detection of a face. In the right figure, the attack with the LEDs is successful because no 
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Figure 3. Predefined patterns to calculate Haar-like features in the Viola and Jones algorithm [27].

When using these patterns, the Viola–Jones algorithm creates windows of different sizes (sub-regions/
sub images), calculates the Haar-like features for each window using the patterns, and then each
window is passed through a classifier Fd(x) that outputs 1 if a face is detected. Performing adversarial
attacks on a Viola–Jones face detection algorithm can be achieved by generating noise (in the signal
processing sense) in the bystander’s face (or photo) such that the values of the Haar-like features make
a Viola–Jones classifier fail.

In FacePET [25], PrivacyVisor [10], and Invisibility glasses [18], these attacks are performed using
Light Emitting Diodes (LEDs) (either through visible light in the case of FacePET or infrared light in
the case of PrivacyVisor and Invisibility glasses) embedded in goggles. Figure 4 shows an example
of a detected face without the attack (Figure 4a) and an undetected face with the attack (Figure 4b).
This figure shows screenshots of an application that we created using the OpenCV’s implementation
of the Viola–Jones algorithm to demonstrate the attack on the Haar-like features. We note that when
the face is detected the software superimposes a blue square around the area of the face, and green
squares around the area of the eyes and mouth (Figure 4a). However, when the features are attacked,
the software fails to detect the face (Figure 4b) and no squares are superimposed on the face.
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Figure 4. Face detection with the Viola–Jones algorithm (a) Face detected/FacePET googles off; (b) Face
not detected/FacePET with goggles on. The superposed blue and green squares in the left figure indicate
the detection of a face. In the right figure, the attack with the LEDs is successful because no squares are
superimposed (attack on Haar-like features performed).

Recent advances in deep learning and Convolutional Neural Networks (CNN) have improved
the accuracy of image processing methods, including face detection methods. While in Viola–Jones
methods the features for face detection are hand-crafted through the use patterns and Haar-like
features to achieve the detection, in CNN-based algorithms there is no need for any of the two,
because CNN can learn the features needed to achieve the detection through the automated training of
neural networks [50]. However, CNNs for face detection can also be subject to adversarial machine
learning attacks that include the optimization of adversarial generator networks for face detection [51],
image-level distortions (i.e., modifications of the image’s appearance not related to faces) and face-level
distortions (i.e., modifications of facial landmarks in an image) [52].

3.2. The Facial Privacy Enabled Technology (FacePET) System

In Section 2.2, we described different classes of facial privacy systems that are not controlled
by bystanders, and many do not provide a choice for bystanders before a photo is taken (i.e., still a
bystander can be photographed inadvertently and identified without consent). These systems require
bystanders to trust other parties to protect their own facial privacy without a choice or assurances to
bystanders that their privacy is indeed being protected. We argue that the best types of facial privacy
systems are those that provide methods for bystanders to make choices for their own facial privacy
before a photo can be taken. We developed FacePET [25] under this premise. Figure 5 shows the
components of the FacePET system.
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The major components of FacePET include:

• FacePET wearable: The FacePET wearable (as Figure 6 shows) is composed of goggles with
6 strategically placed Light Emitting Diodes (LEDs), a Bluetooth Low Energy (BLE)-enabled
microcontroller, and a power supply. When a bystander wears and activates the wearable,
the FacePET wearable emits green light that generates noise (in the signal processing sense) and
confuse Haar-like features for the Viola–Jones algorithm. The BLE microcontroller allows the
bystander to turn on/off the lights through a Graphical User Interface (GUI) implemented as a
mobile application and runs on the bystanders’ mobile phone.

• FacePET mobile applications: We implemented two mobile applications for the FacePET system.
The first mobile application, namely the Bystander’s mobile app implements a GUI to turn on/off the
FacePET wearable through commands broadcast using BLE communications. The Bystander’s
mobile app also implements an Access Control List (ACL) in which third-party cameras are
authorized to disable the wearable and take photos. Different types of policies can be enforced for
external parties to disable the wearable. For example, for a specific third-party user, the Bystander’s
mobile app can limit the number of times the wearable can be disabled for that third-party user.
Further privacy policies based on contexts (i.e., location) can also be implemented. The second
app, called the Third-party (stranger) mobile application, issues requests to disable the wearable and
take photos of the bystander with wearable’s lights off. In the current prototype, the Third-party
(stranger) mobile application connects to the Bystander’s mobile app via Bluetooth [53]. Figure 8
presents screenshots of both mobile applications.

• FacePET consent protocol: The FacePET consent protocol (as Figure 7 shows) enables a mechanism
that creates a list of trusted cameras (an ACL) at the bystander’s mobile application. In our current
prototype the consent protocol is implemented over Bluetooth.
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Figure 6. The FacePET wearable device. (a) Wiring sketch diagram for FacePET LEDs; (b) Schematic;
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4. A User Evaluation on Perceptions of FacePET and Bystander-Based Facial Privacy Devices

4.1. Methodology

We applied for an approval from the CSU’s Institutional Review Board (IRB) to conduct our study.
The initial recruitment of participants was conducted by sending a flyer through Columbus State
University’s (CSU) e-mail system. The flyer explained the steps for participants to take part in the
study which was performed in a room at the CSU’s Synovous Center for Commerce and Technology.
Once in the room, each participant filled out an informed consent form that provided information
about the research and its risks. Next, participants filled out an initial survey (called the “Bystander’s
Privacy Survey”) to gauge their knowledge about the concept of bystanders’ privacy as well as their
personal preferences on having their photos taken in certain situations and places. We used questions
from the survey developed for the I-Pic system [14]. Figure 9 shows the questions asked in the survey.
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After the initial survey, participants wore the FacePET wearable and had their photo taken using
the rear-facing camera of an iPhone 7 in an indoor setting (i.e., a lab) with the wearable system
being active and inactive. The captured photos were then used as input in a Python application that
used the OpenCV’s face detection Application Programming Interface (API) [26] implementation
which provides an open source implementation of the Viola–Jones face detection algorithm [27].
Figure 3 shows screenshots of this application. The results of the face detection were presented to the
participants (as Figure 3 shows) before they filled out a second survey (called the “Usability Survey”)
about the use of the wearable device and their attitudes about it. Figure 10 shows the questions we
asked in this second survey. Once this second survey was completed, the participants concluded their
participation in the study. A total of n = 21 participants took part of this study and we raffled a gift card
for USD 25.00 among the participants as an incentive reward for their participation. Table 3 presents
the participants’ demographics in this study. All participants were at least 18 years old.
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Table 3. Participant demographics.

Participants’ Characteristics Number of Participants

Age group
Less than 20 years 1

20–30 years 17
30–40 years 3

Gender
Male 14

Female 7

Educational level

High school 1
Some college credits 14
Associate’s degree 1
Bachelor’s degree 4
Master’s degree 1

4.2. Study Results

The initial bystanders’ privacy survey assessed the participant’s knowledge about facial and
bystanders’ privacy and how it affects them. Participants were first asked questions about how they
feel themselves with respect to technology and how often they took pictures and videos. They were
also asked how much they knew about the issue of bystanders’ privacy and if they found it to be an
important issue in today’s world. Out of the 21 participants, 19 of them considered themselves to be
tech savvy. When asked how often they took pictures/videos, 11 participants took pictures often while the
rest answered not so often (8 participants) or very little (2 participants). When asked about bystanders’
privacy and how much they knew about bystanders’ privacy, surprisingly, most of them did not know
much about the issue or not at all (11 participants adding both choices). In this question, 2 participants
stated that they knew a lot about it and 7 participants stated that they knew enough. After these questions
and being introduced to the topic, most of the participants were in agreement that it is an important
issue in today’s world (18 participants), and the rest stating that it was not (3 participants).

When asked about the preferred privacy actions in certain contexts such as being at the gym, in a
bar, at the beach, among others (see Figure 11), the participants were given for each situation five choices
(I agree to be captured in any photograph; I agree to be captured, but please send me a copy of any photograph that
includes me; Please obscure my appearance in any photograph that includes me; I can decide my preference only
after I see the photograph; I do not wish to be captured in any photograph). The most common choice among
all contexts was “I can decide my preference only after I see the photograph” (32% of all choices). The second
most frequent choice was “I agree to be captured in any photograph” with 28.07% of all choices). It is
worth noting that in general, 15 participants chose a privacy action other than always agreeing to be
photographed. This result demonstrates that, among our survey participants, they prefer some type of
privacy protection when photographed. In this part of the survey we had a total of 228 answers.
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From the results of the survey, we found that the participants of our study prefer to be photographed
without restrictions in some communal places and activities such as outdoor activities, workplaces,
at private gatherings with known people (i.e., family and friends), while they do not wish to be
photograph in places and activities related to health (i.e, at hospitals, at gyms). It worth noting that
the most preferred choice for places such as in bars/nightclubs, at the beach, at a place of worship,
and in a restaurant was “I can decide my preference only after I see the photograph”. These results show that,
in health-related activities, and in contexts that involve consumer/lifestyle habits (i.e., bars, beaches,
and restaurants) participants of the study want to control their privacy. This conclusion is similar to
past works with a focus on bystander’s privacy perceptions (as described in Section 2.1).

The last section of the initial bystanders’ privacy survey evaluated the participants’ comfort levels
about who may be a photographer taking photos of them and what the photographer can do with the
photos regardless of any specific situation. For each type of photographer/action, the participant could
choose five comfort levels (in a Likert scale). Figure 12 shows the results of these questions. In the
figure, the Likert scale has been reduced to three categories to simplify the visualization and analysis.
In these questions, less comfortable choices (little less and much less) represented 35.24% of all choices,
neutral choice (“I will feel the same”) represented 32.86% of all choices, and more comfortable choices
represented 31.9%. In these questions, participants felt more comfortable in situations where there
was some type of privacy protection or the photographer was somebody professional or known to
the participant. Finally, participants felt less comfortable if the photos were to be published without
consent, if the photographer was a stranger, and if there were children in the proximity of the photo.
These results demonstrate that participants were concerned about their facial privacy when photos
are taken and published without their knowledge. In this part of the survey there were 210 answers.
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The results in this part of the study are similar to past works in the area of bystanders’ perceptions on
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The participants then wore the FacePET system. Each individual was photographed using the
rear-facing camera of an Apple iPhone 7 mobile phone with the device enabled (privacy protection)
and disabled. These photos were then fed into the OpenCV’s face detection script (Figure 3). Out of
the 21 participants, six participants’ faces were detected, giving the device’s a success rate in protecting
a user’s face around 71%. A handful of the participants also took pictures using their own mobile
phones so that comparisons could be made for how effective the device worked regardless of the
different cameras. The participants were then shown the results of the application (Figure 3) and then
they answered the usability/user perceptions survey shown in Figure 10.

While conducting the experiment on capturing the photos, we noticed that the glasses seemed
a little bit big on some of the participants who had thinner or smaller facial structures. This caused
OpenCV’s face detection script to detect their faces as the FacePET device failed to thwart the facial
features. We also observed that the illumination in the room where the experiment was conducted
diminished the effectiveness of the device. We plan to address these aspects in the future.

After using the FacePET system and answering the usability survey, 17 participants found the
system easy to understand and use. When asked if the device was something they would use on a daily
basis, nine participants answered affirmatively, while the rest stated that they would not use the device
in its current state. Within the group of participants who answered that they would not use the device
(12 participants), we asked if they would use a similar version of the device (one that would achieve
the same goals for privacy protection). In this question, 7 out of 12 participants answered affirmatively.

Even though the original FacePET system is not a wearable that most of the participants would
use, when adding those participants who initially answered yes (9 participants) to use FacePET and
those who would use a similar version (7 participants), the majority of the participants (16 participants
out of 21) would use FacePET or similar devices (i.e., other bystander-based devices) to protect their
facial privacy. Most of the concerns or reasons surrounding participants not wanting to use the device
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seemed to be because of the device’s form factor. Some of these reasons indicated by the participants
included:

• The current model is too big and draws attention.
• The model is not stylish and can obstruct vision.
• Select participants do not really take pictures or engage in the media market in such a manner.

When the participants were asked about how people would react when seeing them wearing the
device, a variety of responses given were:

• Person laughs and says, “Stupid glasses”.
• People would stare a lot.
• People would be confused at first or creeped out.
• People would ask why the user was wearing such a device.
• The device would only invite more people to take pictures of it.

From these answers, it seems there would be plenty of confusion on others around the user about
the purpose of the device and why someone would wear it in its current form factor. Despite the fact
that some of the feedback obtained relates specifically on our FacePET prototype, it is worth pointing
out that the majority of the participants did agree that if smart glasses had features to conceal users’
identities, it would allow such smart glasses to become more popular with 17 participants stating yes,
3 participants feeling indifferent, and 1 participant stating no. Finally, we gathered some suggestions on
how to improve our FacePET prototype. Some of the improvements that were repeated among the
responses include a more fashionable design, a better size (smaller) for the goggles, and fixing the long
wires that connect the power supply with the goggles and the microcontroller in the current prototype.

4.3. Study Limitations

Due to the sample size (n = 21) of our study and because all participants recruited in our study
were from Columbus State University, the findings of this study cannot be generalized to a broader
population. Thus, if we conduct our study with a broader and more diverse population, we may obtain
different results to the ones currently presented in this work. As such, our conclusions are written in
terms that relate to our participants rather than a broader population. While our sample size and its
characteristics are similar to previous works that also used interviews, testing of devices and the study
of users in the wild [8,31,32,34,35,40], we acknowledge that to achieve external validity we will need to
scale our experiment to reach a broader population to increase both the sample size and its diversity.
To achieve this, we propose as future work the development of an experiment wherein participants
do not rely on the FacePET device for the study, but by using current advances in AI in face and eye
detection, we could simulate how a participant would look with a bystander-based privacy protection
device similar to FacePET, followed by participants interacting with an interface that simulates the
device, and finally have participants answer an online survey or record them answering open questions
about the simulated device. We plan to conduct this study in our future research works.

5. Conclusions

In this work we conducted a user study to assess user perceptions about the FacePET system
or similar bystander-centric devices for facial privacy protection. We conducted our study with
21 participants who took a survey to gather information about facial and bystanders’ privacy,
privacy choices with cameras, and preferences about sharing photos. Participants then used the
FacePET wearable and answered a second survey about the usability and perceptions of the system
and/or similar devices. We found evidence that participants want some type of privacy protection when
photographed, especially in contexts that involve consumer/lifestyle habits, and they do not wish to be
photographed in contexts that involve health-related activities or locations. Participants also showed
concerns about their facial privacy when photos are taken and published without their knowledge.
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When the participants used the FacePET system, we found that even though they would not use
the current prototype on a daily basis because of its bulkiness and unfashionable design, most of the
participants agreed that they would use a device similar to FacePET to protect their facial privacy.
Participants finally agreed that if smart glasses had features that would allow users to protect their
facial privacy, this feature would make smart glasses more popular with the general public.

For future work, we will develop a research study to recruit more participants and address the
external validity of the conclusions of our small study. To achieve this, we plan to create a research
protocol that does not require the utilization of a physical wearable (e.g., access to a FacePET prototype)
to scale the data collection. In addition, based on the results of the FacePET evaluation, we plan to
improve the appearance of the FacePET design. Finally, we plan also to improve the facial privacy
protection aspects of the device to protect against newer face detection and recognition systems based
on deep learning and Convolutional Neural Networks (CNNs).
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