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Abstract

A recent line of work has shown a qualitative equivalence between differentially
private PAC learning and online learning: A concept class is privately learnable
if and only if it is online learnable with a finite mistake bound. However, both
directions of this equivalence incur significant losses in both sample and computa-
tional efficiency. Studying a special case of this connection, Gonen, Hazan, and
Moran (NeurIPS 2019) showed that uniform or highly sample-efficient pure-private
learners can be time-efficiently compiled into online learners. We show that, assum-
ing the existence of one-way functions, such an efficient conversion is impossible
even for general pure-private learners with polynomial sample complexity. This
resolves a question of Neel, Roth, and Wu (FOCS 2019).

1 Introduction

Differential privacy [Dwork et al., 2006] offers formal guarantees and a rich algorithmic toolkit
for studying how such analyses can be conducted. To address settings where sensitive data arise
in machine learning, Kasiviswanathan et al. [2011] introduced differentially private PAC learning
as a privacy-preserving version of Valiant’s PAC model for binary classification Valiant [1984]. In
the ensuing decade a number of works (e.g., Beimel et al. [2014], Bun et al. [2015], Feldman and
Xiao [2015], Beimel et al. [2016, 2019], Alon et al. [2019], Kaplan et al. [2020]) have developed
sophisticated algorithms for learning fundamental concept classes while exposing deep connections
to optimization, online learning, and communication complexity along the way.

Despite all of this attention and progress, we are still far from resolving many basic questions about
the private PAC model. As an illustration of the state of affairs, the earliest results in non-private PAC
learning showed that the sample complexity of (i.e., the minimum number of samples sufficient for)
learning a concept class C is tightly characterized by its VC dimension [Vapnik and Chervonenkis,
1974, Blumer et al., 1989]. It is wide open to obtain an analogous characterization for private PAC
learning. In fact, it was only in the last year that a line of work [Bun et al., 2015, Alon et al., 2019,
Bun et al., 2020b] culminated in a characterization of when C is privately learnable using any finite
number of samples whatsoever. The following theorem captures this recent characterization of private
learnability.

Theorem 1 (Informal [Alon et al., 2019, Bun et al., 2020b]). Let C be a concept class with Littlestone
dimension d = L(C). Then 2°9 samples are sufficient to privately learn C and Q(log™ d) samples
are necessary.

The Littlestone dimension is a combinatorial parameter that exactly captures the complexity of learn-
ing C in Littlestone’s mistake bound model of online learning [Littlestone, 1987]. Thus, Theorem 1

*The full version of this work appears at https://arxiv.org/abs/2007.05665.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.


https://arxiv.org/abs/2007.05665

characterizes the privately learnable concept classes as exactly those that are online learnable. This is
but one manifestation of the close connection between online learning and private algorithm design,
e.g., [Roth and Roughgarden, 2010, Dwork et al., 2010, Hardt and Rothblum, 2010, Jain et al.,
2012, Feldman and Xiao, 2015, Agarwal and Singh, 2017, Abernethy et al., 2017, Alon et al., 2019,
Bousquet et al., 2019, Neel et al., 2019, Gonen et al., 2019, Bun et al., 2020a, Jung et al., 2020] that
facilitates the transfer of techniques between the two areas.

Theorem 1 means that, at least in principle, online learning algorithms can be generically converted
into differentially private learning algorithms and vice versa. The obstacle, however, is the efficiency
of conversion, both in terms of sample use and running time. The forward direction (online learning
= private learning) [Bun et al., 2020b] gives an algorithm that incurs at least an exponential
blowup in both complexities. The reverse direction (private learning = online learning) [Alon
et al., 2019] is non-constructive: It is proved using the fact that every class with Littlestone dimension
at least d contains an embedded copy of 7HRiog 4, the class of one-dimensional threshold functions
over a domain of size log d. The characterization then follows from a lower bound of Q(log” d) on
the sample complexity of privately learning 7 HRiog ¢- (In earlier work, Feldman and Xiao [2015]
used a similar connection to show that “pure” (e, 0)-differentially private learning requires finite
Littlestone dimension.)

There is limited room to improve the general sample complexity relationships in Theorem 1. There
are classes of Littlestone dimension d (e.g., Boolean conjunctions) that require £2(d) samples to
learn even non-privately. Meanwhile, 7HR,a has Littlestone dimension d but can be privately
learned using O((log* d)'-5) samples [Kaplan et al., 2020]. This latter result rules out, say, a generic
conversion from polynomial-sample private learners to online learners with polynomial mistake
bound.

In this work, we address the parallel issue of computational complexity. Could there be a computa-
tionally efficient black-box conversion from any private learner to an online learner? We show that,
under cryptographic assumptions, the answer is no.

Theorem 2 (Informal, building on [Blum, 1994]). Assuming the existence of one-way functions,
there is a concept class that is privately PAC learnable in polynomial-time, but is not online learnable
by any poly-time algorithm with a polynomial mistake bound.

The question we study was explicitly raised by Neel et al. [2019]. They proved a barrier result to the
existence of “oracle-efficient” private learning by showing that a restricted class of such learners can
be efficiently converted into oracle-efficient online learners, the latter for which negative results are
known [Hazan and Koren, 2016]. This led them to ask whether their barrier result could be extended
to all private learning algorithms. Our Theorem 2 thus stands as a “barrier to a barrier” to general
oracle-efficient private learning.

This question was also studied in a recent work of Gonen et al. [2019]. They gave an efficient
conversion from pure-private learners to online learners with sublinear regret. As we discuss in
Section 3.6 the efficiency of their construction relies on either a uniform model of learning (that turns
out to be incompatible with pure differential privacy) or on an additional assumption that the private
learner is highly sample efficient. Theorem 2 rules out the existence of such a conversion even for
non-uniform pure-private learners without this extra sample efficiency condition.

Proof idea of Theorem 2. In 1990, Blum [1994] defined a concept class we call OWS that is
(non-privately) efficiently PAC learnable but not poly-time online learnable. We prove Theorem 2
by showing that OWS is efficiently privately PAC learnable as well. Blum’s construction builds
on the Goldreich-Goldwasser-Micali [Goldreich et al., 1986] pseudorandom function generator to
define families of “one-way” sequences o7, ..., 0, € {0,1}% for some r that is exponential in d.
Associated to each o; is a label b; € {0, 1}. These strings and their labels have the property that they
can be efficiently computed in the forward direction, but are hard to compute in the reverse direction.
Specifically, given o; and any j > i, it is easy to compute o; and b;. On the other hand, given o, it
is hard to compute ¢; and hard to predict b;.

To see how such sequences can be used to separate online and non-private PAC learning, consider
the problem of determining the label b; for a given string ;. In the online setting, an adversary may
present the sequence 0, 0,_1, ... in reverse. Then the labels b; are unpredictable to a poly-time
learner. On the other hand, a poly-time PAC learner can identify the o;- with smallest index in its



sample of size n. Then all but a roughly 1/n fraction of the underlying distribution on examples will
have index at least +* and can be predicted using the ease of forward computation.

Note that the PAC learner for OWS is not private, since the classifier based on ¢* essentially reveals
this sample in the clear. We design a private version of this learner by putting together standard
algorithms from the differential privacy literature in a modular way. We first privately identify an ¢*
that is approximately smallest in the sample. Releasing o;+ directly at this stage is still non-private.
So instead, we privately check that every o; with ¢ < ¢* corroborates the string ;+, in that o, is the
string that would be obtained by computing forward using any of these strings. If the identity of o;«
is stable in this sense and passes the privacy-preserving check, then it is safe to release.

2 Preliminaries

An example is an element x € {0,1}?. A concept is a boolean function ¢ : {0,1}% — {0,1}. A
labeled example is a pair (x, c(x)). A concept class C = {Cq}aen is a sequence where each Cy is a
set of concepts over {0, 1}¢. Associated to each C, is a (often implicit) representation scheme under
which concepts are encoded as bit strings. Define |c| to be the minimum length representation of c.

2.1 PAC Learning

In the PAC model, there is an unknown target concept ¢ € C and an unknown distribution D over
labeled examples (z, c(x)). Given a sample ((x;, c(x;)))"_, consisting of i.i.d. draws from D, the
goal of a learning algorithm is to produce a hypothesis A : {0,1}¢ — {0, 1} that approximates ¢ with
respect to D. Specifically, the goal is to find i with low population loss defined as follows.

Definition 3 (Population Loss). Let D be a distribution over {0, 1} x {0, 1}. The population loss
of a hypothesis & : {0,1}¢ — {0, 1} is

lossp(h) = " E’)rND[h(a:) #£).

Throughout this work, we consider improper learning algorithms where the hypothesis /& need not be
a member of the class C. A learning algorithm L efficiently PAC learns C if for every target concept c,
every distribution D, and parameters «, 3 > 0, with probability at least 1 — /3 the learner L identifies
a poly-time evaluable hypothesis h with lossp(h) < « in time poly(d, 1/«,1/8, |c|). It is implicit
in this definition that the number of samples n required by the learner is also polynomial. We will
also only consider classes where |c| is polynomial in d for every ¢ € C4, so we may regard a class as
efficiently PAC learnable if it is learnable using poly(d, 1/«, 1//3) time and samples.

2.2 Online Learning

We consider two closely related models of online learning: The mistake-bound model and the
no-regret model. Our negative result holds for the weaker no-regret model, making our separation
stronger. We first review Littlestone’s mistake-bound model of online learning [Littlestone, 1987].
This model is defined via a two-player game between a learner and an adversary. Let C be a concept
class and leg ¢ € C be chosen by the adversary. Learning proceeds in rounds. In each round
t=1,...,2¢%

(i) The adversary selects an z; € {0, l}d,
(ii) The learner predicts b; € {0,1}, and
(iii) The learner receives the correct labeling b; = ¢(x;).
A (deterministic) learning algorithm learns ¢ with mistake bound M if for every adversarial ordering
of the examples, the total number of incorrect predictions the learner makes is at most M. We say

that the learner efficiently mistake-bound learns C if for every ¢ € C it has mistake bound poly(d, |c|)
and runs in time poly(d, |c|) in every round.

We also consider a relaxed model of online learning in which the learner aims to achieve no-regret,
i.e., err with respect to c in a vanishing fraction of rounds. Let 7" be a time horizon known to a



randomized learner. The goal of the learner is to minimize its regret, defined by

T
RT = Z]I[Bt 7é C(l’t)].

We say that a learner efficiently no-regret learns C if there exists 7 > 0 such that for every adversary,
it achieves E[Rr] = poly(d,|c|) - T*~" using time poly(d, |¢|,T) in every round. Under this
formulation, every efficient mistake-bound learner is also an efficient no-regret learner.

We point out two non-standard features of this definition of efficiency. First, “no-regret” typically
requires regret to be sublinear in 7T, i.e., o(T) whereas we require it to be strongly sublinear T ~".
A stronger condition like this is needed to make the definition nontrivial because a regret upper
bound of T' < d - T/logT = poly(d) - o(T) is always achievable in our model by random guessing.
Many no-regret algorithms achieve strongly sublinear regret, e.g., the experts/multiplicative weights
algorithm and the algorithm of Gonen et al. [2019] that both achieve = 1/2. Second, it would
be more natural to require the learner to run in time polynomial in log T, the description length of
the time horizon, rather than 7T itself. The relaxed formulation here only makes our lower bounds
stronger, and we use it to be consistent with the positive result of Gonen et al. [2019] that runs in
time proportional to 7T'.

2.3 Differential Privacy

Definition 4 (Differential Privacy). Let e, > 0. A randomized algorithm L : X" — R is (g,d)-
differentially private if for every pair of datasets S, S differing in at most one entry, and every
measurable set 7' C R,

Pr[L(S) € T) < e Pr[L(S") € T| + 6.

We refer to the special case where § = 0 as pure e-differential privacy, and the case where § > 0 as
approximate differential privacy.

When L is a learning algorithm, we require that this condition hold for all neighboring pairs of
samples S, S’ — not just those generated according to a distribution on examples labeled by a concept
in a given class.

3 Theorem 2: Privately PAC Learning One-Way Sequences

3.1 One-Way Sequences

For every d, Blum defines a concept class OWS; consisting of functions over the domain {0, 1}¢
that can be represented using poly(d) bits and evaluated in poly(d) time. The concepts in OWS
are indexed by bit strings s € {0,1}*, where k = [v/d| — 1. The definition of OWS, is based
on two efficiently representable and computable functions G : {0, 1}* x {0,1}* — {0,1}?~* and
f:{0,1}* x {0,1}* — {0, 1} that are based on the Goldreich-Goldwasser-Micali pseudorandom
function family [Goldreich et al., 1986]. The exact definition of these functions are not important to
our treatment, so we refer the reader to [Blum, 1994] for details. Here, G(4, s) computes the string
o0; as described in the introduction, and f (7, s) computes its label b;. For convenience we identify
{0, 1}* with [2*].

We are now ready to define the concept class OWS g = {cs}se 0,13+ Where

. _J1 ifo=G(,s)and f(i,s) =1
(i, 0) = {0 otherwise.

We recall the two key properties of the sequences o; obtained from these strings. They are easy to
compute in the forward direction, even in a random-access fashion, but difficult to compute in reverse.
These properties are captured by the following claims.

Proposition 5 ([Blum, 1994]). There is an efficiently computable function ComputeForward :
{0,1}F x {0,1}* x {0,1}4=% — {0,1}9* x {0, 1} such that ComputeForward(j, 7, G (i, s)) =
(G(4,s), f(4,s)) for every j > i.



Proposition 6 ([Blum, 1994], Corollary 3.4). Suppose G and f are constructed using a secure pseu-
dorandom generator. Let O be an oracle that, on input j > i and G(i, s) outputs (G (34, s), f(J, s))-
For every poly-time probabilistic algorithm A and every i € {0,1}F,

1
PHAC(, G (i, ) = [ )] < 5 +negl(d)
where the probability is taken over the coins of A and uniformly random s € {0,1}*.

Blum used Proposition 6 to show that OWS cannot be efficiently learned in the mistake bound model
(even with membership queries). In the full version of this work, we adapt his argument to the setting
of no-regret learning.

Proposition 7. If G and f are constructed using a secure pseudorandom generator, then OWS
cannot be learned by an efficient no-regret algorithm.

In the rest of this section, we construct an (g, ¢)-differentially private learner for OWS.

3.2 Basic Differential Privacy Tools

The sensitivity of a function ¢ : X™ — R is the maximum value of |¢(S) — ¢(S")| taken over all
pairs of datasets S, S’ differing in one entry.

Lemma 8 (Laplace Mechanism). The Laplace distribution with scale )\, denoted Lap(\), is supported
on R and has probability density function fi.p)(x) = exp(—|z|/N)/2A\ Ifq : X™ — R has
sensitivity 1, then the algorithm Mr,.,(S) = q(S) + Lap(1/¢) is e-differentially private and, for
every 8 > 0, satisfies | Myap(S) — q(S)| < log(2/8)/e with probability at least 1 — .

Remark 9. We describe our algorithm using the Laplace mechanism as a matter of mathematical
convenience, even though sampling from the continuous Laplace distribution is incompatible with
the standard Turing machine model of computation. To achieve strict polynomial runtimes on finite

computers we would use in its place the Bounded Geometric Mechanism [Ghosh et al., 2012, Balcer
and Vadhan, 2018].

Theorem 10 (Exponential Mechnanism [McSherry and Talwar, 2007]). Letq: X™ X R = R be a
sensitivity-1 score function. The the algorithm that samples r € R with probability x exp(eq(S,1)/2)
satisfies

1. e-differential privacy, and

2. For every S, with probability at least 1 — [ the sampled 7 satisfies

1
a(S.7) = maxq(S.7) - w

The following “basic” composition theorem allows us to bound the privacy guarantee of a sequence
of adaptively chosen algorithms run over the same dataset.

Lemma 11 (Composition, e.g., [Dwork and Lei, 2009]). Let M7 : X™ — R be (&, 0)-differentially
private. Let My : X™ X Ry — Ro be (€2, 02) differentially private for every fixed value of its second
argument. Then the composition M (S) = My (S, M(S)) is (e1 + &2, 81 + d2)-differentially private.

3.3 Private Robust Minimum

Definition 12. Given a dataset S = (z1,...,z,) € [R]™, an a-robust minimum for S is a number
r € [R)] such that

1. |{¢:2; <r}| > an,and
2. [{i:z; <r} <2an.

Note that r need not be an element of S itself — this is important for ensuring that we can release
a robust minimum privately. Condition 2 guarantees that 7 is approximately the minimum of S.
Condition 1 guarantees that this condition holds robustly, i.e., one needs to change at least an points
of S before r fails to be at least the minimum.



Theorem 13. There exist polynomial-time algorithms Minyyre and Mingpprox that each solve the
private robust minimum problem with probability at least 1 — [3, where

1. Algorithm Ming. is e-differentially private and succeeds as long as

w0 (EE)

ag

2. Algorithm Min,pprox is (€, 0)-differentially private and succeeds as long as

o ((bg* R)1 - log"5(1/0) ~log(1/ﬁ)) |

ag

Proof. The algorithms are obtained by a reduction to the interior point problem. Both this problem
and essentially the same reduction are described in [Bun et al., 2015] but we give the details for
completeness. In the interior point problem, we are given a dataset S € [R]™ and the goal is to
identify r € [R] such that min S < r < max S. An (g, §)-DP algorithm that solves the interior point
problem using m samples and success probability 1 — 5 can be used to solve the robust minimum
problem using n = O(m/«) samples: Given an instance S of the robust minimum problem, let
S’ consist of the elements [an] through |2an] of S in sorted order and apply the interior point
algorithm to S”.

The exponential mechanism provides a pure £-DP algorithm for the interior point problem with
sample complexity O(log(R/3)/e) [Smith, 2011]. Let z(y), . .., 2(,) denote the elements of S in
sorted order. The appropriate score function ¢(.S, ) is the maximum value of min{¢,n — ¢} such that
2y < <xg) v < wpyqr) < o0 < (). Thus ¢S, 7) ranges from a maximum of [n/2] iff r
is a median of .S to a minimum of 0 iff r is not an interior point of S. By Theorem 10, the released
point has positive score (and hence is an interior point) as long as n > 4log(R/3)/ec. Moreover, one
can efficiently sample from the exponential mechanism distribution in this case as the distribution is
constant on every interval of the form [z ), £ (441)).

For (&, 0)-DP with § > 0, Kaplan et al. [2020] provide an efficient algorithm for the interior point
problem (with constant failure probability) using O((log* R)"® log'®(1/5)/¢) samples. Taking the
median of O(log(1//3)) repetitions of their algorithm on disjoint random subsamples gives the stated
bound. O

3.4 Private Most Frequent Item

Let S € X™ be a dataset and let x € X be the item appearing most frequently in S. The goal of the
“private most-frequent-item problem” is to identify x with high probability under the assumption that
the most frequent item is stable: its identity does not change in a neighborhood of the given dataset S.
Forz € X and S = (21,...,2,) € X", define freqq(z) = |[{i : z; = a}|.

Definition 14. An algorithm M : X™ — [R] solves the most-frequent-item problem with gap
GAP and failure probability § if the following holds. Let S € X" be any dataset with x* =
argmax,, freqq(z) and

freqq(z*) > max freqg(z) + GAP.

Then with probability at least 1 — 3, we have M (S) = x*.

Theorem 15 ([Balcer and Vadhan, 2018]). There exist polynomial-time algorithms Freqpyre and
Freqapprox that each solve the private most-frequent-item problem with probability at least 1 — 3,
where

1. Algorithm Freqpue is e-differentially private and succeeds as long as GAP >
O(log(R/B)/)-

2. Algorithm FreQapprox is (g, 0)-differentially private and succeeds as long as GAP >

O(log(n/4p)/e)-

Balcer and Vadhan [2018] actually solved the more general problem of computationally efficient
private histogram estimation. Theorem 15 follows from their algorithm by reporting the privatized
bin with the largest noisy count.



3.5 Privately Learning OWS,

Algorithm 1 Pure Private Learner for OWWS,

1. Let S4 = ((i1,01), .-, (im,om)) be the subsequence of positive examples in S, where
i <y < ... <y

2. Let7m = m + Lap(3/e). If i < an/3, output the all-0 hypothesis.

3. Let I = (i1,...,4m). Run Minpy.(I) using privacy parameter /3 to identify a (an/6m)-
robust minimum ¢* of I with failure probability /3/6.

4. For every i; € I with i; < i* let (6j,l;j> = ComputeForward(i*,i;,0;). Forevery i; € I
with ’ij =" let <6’j,bj> = <Jj,bj>.

5. Run Freqpure({61,b1), - - ., (4, bg)) using privacy parameter £/3 to output (o*,b*) with
failure probability 5/6. Here, ¢ is the largest j for which i; < 4*.

6. Return the hypothesis h(i, o) =
“If ¢ < ¢*, output 0. If i = ¢*, output b* if ¢* = o and output 0 otherwise. If ¢ > ¢*, run
algorithm ComputeForward(i,i*,0*) = (6,b). If o = &, output b. Else, output 0.”

Theorem 16. Algorithm 1 is an e-differentially private and («, 5)-PAC learner for OWS ; running
in time poly(d, 1/«,log(1/8)) using

o (\/8+log(1/5)>

(075

samples.

Proof. Algorithm 1 is an adaptive composition of three (e/3)-differentially private algorithms, hence
e-differentially private by Lemma 11.

To show that it is a PAC learner, we first argue that the hypothesis produced achieves low error with
respect to the sample S, and then argue that it generalizes to the underlying distribution. That is, we
first show that for every realizable sample .S, with probability at least 1 — 3/2 over the randomness
of the learner alone, the hypothesis  satisfies

n

lossg(h) = %Zﬂ[h(mk) # b] < a/2.

k=1

We consider several cases based on the number of positive examples m = |S,|. First suppose
m < an/4. Then Lemma 8 guarantees that the algorithm outputs the all-0 hypothesis with probability
at least 1 — /3 in Step 2, and this hypothesis has sample loss at most a;/4.

Now suppose m = |S4| > an/2. Then with probability at least 1 — §/3 we have [fh — m| <
3log(6/8)/e. In particular this means 1 > an/3, so the algorithm continues past Step 2. Now with
probability at least 1 — 3/3, Step 3 identifies a point i* such that |{¢ € I : i < i*}| > (an/6m)-m >
an/10and [{i € I : i < i*}| < (an/6m) - m < an/2, as long as

sz(Hlogu/mm%:,nzO(ﬁHbgww.

g n ag

The first condition, in particular, guarantees that £ > an/10. Realizability of the sample S guarantees
that the points (61,b1), ..., (67, bg) are all identical. So with the parameter GAP = ¢ > an/10,
Step 5 succeeds in outputting their common value (o*, b*) with probability at least 1 — 3/3, again as
long as n > O((Vd + log(1/8))/ae).

We now argue that the hypothesis h produced in Step 6 succeeds on all but an/2 examples. A case
analysis shows that the only input samples on which h makes an error are those (i;,0;) € Sy for
which ¢; < ¢*. The success criterion of Step 3 ensures that the number of such points is at most an/2.



The final case where an/4 < m < an/2 is handled similarly, except it is now also acceptable for
the algorithm to terminate early in Step 2, outputting the all-0 hypothesis.

We now argue that achieving low error with respect to the sample is sufficient to achieve low
error with respect to the distribution: If the learner above achieves sample loss lossgs(h) < a/2
with probability at least 1 — 3/2, then it is also an («, 8)-PAC learner for OWS,; when given at
least n > 8log(2/5)/a samples. The analysis follows the standard generalization argument for
one-dimensional threshold functions, and our presentation follows Bun et al. [2015].

Fix a realizable distribution D (labeled by concept ¢,) and let H be the set of hypotheses that the
learner could output given a sample from D. That is, H consists of the all-0 hypothesis and every
hypothesis of the form h;- as constructed as in Step 6. We may express the all-0 hypothesis as hoa ;.
It suffices to show that for a sample S drawn i.i.d. from a realizable distribution D that

Pr[3h € H : lossp(h) < aand lossg(h) < «/2] < /2.

Let i_ be the largest number such that lossp(h;_) > «. If some h; has lossp(h;) > o theni <i_,
and hence for any sample, lossg(h;—) < lossg(h;). So it suffices to show that

Prlossg(hi—) < /2] < B/2.

Define E = {(i,G(4,s)) : i < i_ and f(i,s) = 1} to be the set of examples on which h;_ makes a
mistake. By a Chernoff bound, the probability that after n independent samples from D, fewer than
an/2 appear in E is at most exp(—an/8) < /2 provided n > 8log(2/5)/c.

O

The same argument, replacing the use of Mingyre With Mingpprox and Freqpyre With Freqapprox in
Algorithm 1 yields

Theorem 17. There is an (e, §)-differentially private and (o, B)-PAC learner for OWS 4 running in
time poly(d, 1/a,log(1/5)) using

I <(1og* d)** - log'°(1/0) '10g(1/ﬂ)>

ag

samples.

3.6 Comparison to Work of Gonen et al. [2019]

Gonen et al. [2019] proved a positive result giving conditions under which pure-private learners can
be efficiently compiled into online learners. The purpose of this section is to describe their model and
result and, in particular, explain why it does not contradict Theorem 16.

The [Gonen et al., 2019] reduction and uniform learning. The reduction of Gonen et al. [2019]
works as follows. Let C be a concept class that is pure-privately learnable (with fixed constant
privacy and accuracy parameters) using mg samples. Consider running this algorithm roughly
N = exp(myg) times on a fixed dummy input, producing hypotheses h1, ..., hx. Pure differential
privacy guarantees that for every realizable distribution on labeled examples, with high probability
one of these hypotheses h; will have small loss. This idea can be used to construct an online learner
for C by treating the random hypotheses hq, ..., hy as experts and running multiplicative weights to
achieve no-regret with respect to the best one online.

As it is described by Gonen et al. [2019], this is a computationally efficient reduction from no-regret
learning to uniform pure-private PAC learning. In the uniform PAC model, there is a single infinite
concept class C consisting of functions ¢ : {0,1}* — {0, 1}. An efficient uniform PAC learner for
C uses m(«, B) samples to learn a hypothesis with loss at most « and failure probability £ in time
poly(Jc|,1/c,1/53). Note that the number of samples m(«, 3) is completely independent of the
target concept c. This contrasts with the non-uniform model, where the number of samples is allowed
to grow with d, the domain size of c.

Another noteworthy difference comes when we introduce differential privacy. In the uniform model,
one can move to a neighboring dataset by changing a single entry to any element of {0, 1}*. In the
non-uniform model, on the other hand, an entry may only change to another element of the same



{0,1}%. This distinction affects results for pure-private learning, as we will see below. However, it
does not affect (e, §)-DP learning, as one can always first run the algorithm described in Theorem 15
to privately check that all or most of the elements in the sample come from the same {0, 1}

A simple example to keep in mind when considering feasibility of learning in the uniform model is
the class of point functions POINT = {p, : © € {0,1}*} where p,(y) = 1 iff z = y. This class
is efficiently uniformly PAC-learnable using m(a, ) = O(log(1/5)/«) samples by returning p,
where z is any positive example in the dataset.

Impossibility of efficinet uniform pure-private learning. The class POZNT turns out to be
uniformly PAC-learnable with pure differential privacy as well [Beimel et al., 2019]. However, this
algorithm is not computationally efficient. The following claim shows that this is inherent, as indeed
it is even impossible to uniformly learn POZN T using hypotheses with short description lengths.

Proposition 18. Ler L be a pure 1-differentially private algorithm for uniformly (1/2,1/2)-PAC
learning POINT. Then for every labeled sample S, we have By 1,(s)[|h]] = oc.

In fact, in the full version of this work, we show that every infinite concept class is impossible to
learn uniformly with pure differential privacy:

Proposition 19. Ler L be a pure 1-differentially private algorithm for uniformly (1/2,1/2)-PAC
learning an infinite concept class C. Then for every labeled sample S, we have Ej,1,(5)[|h]] = oc.

Sample-efficient learning. At first glance, this may seem to make the construction of Gonen et al.
[2019] vacuous. However, it is still of interest as it can be made to work in non-uniform model of
pure-private PAC learning under the additional assumption that the pure-private learner is highly
sample efficient. That is, if C4 is learnable using m(d) = O(log d) samples, then the number of
experts N remains polynomial. There is indeed a computationally efficient non-uniform pure private
learner for POZNT with sample complexity O(1) [Beimel et al., 2019] that can be transformed
into an efficient online learner using their algorithm. This does not contradict our negative result

Theorem 16, as that pure-private learner uses sample complexity O(\/ﬁ)

4 Conclusion

In this paper, we showed that under cryptographic assumptions, efficient private learnability does
not necessarily imply efficient online learnability. Our work raises a number of additional questions
about the relationship between efficient learnability between the two models.

Uniform approximate-private learning. In Section 3.6 we discussed the uniform model of (pri-
vate) PAC learning and argued that efficient learnability is impossible under pure privacy. It is,
however, possible under approximate differential privacy, e.g., for point functions. Thus it is of
interest to determine whether uniform approximate-private learners can be efficiently transformed into
online learners. Our negative result for non-uniform learning uses sample complexity O((log* d)*-%)
to approximate-privately learn the class OWS 4, so it does not rule out this possibility.

Efficient conversion from online to private learning. Is a computationally efficient version
of [Bun et al., 2020b] possible? Note that to exhibit a concept class C refuting this, C must in
particular be efficiently PAC learnable but not efficiently privately PAC learnable. There is an exam-
ple of such a class C based on “order-revealing encryption” [Bun and Zhandry, 2016]. However, a
similar adversary argument as what is used for OWWS can be used to show that this class C is also not
efficiently online learnable.

Agnostic private vs. online learning. Finally, we reiterate a question of Gonen et al. [2019] who
asked whether efficient agnostic private PAC learners can be converted to efficient agnostic online
learners.



Broader Impact

As this work is theoretical in nature, its tangible ethical and societal impacts are especially difficult
to predict. Optimistically, the conceptual message that efficient private learning is possible without
efficient online learning opens the door to the design of private learners for classes for which there
are no efficient online counterparts. This could lead to surprising tractable learning algorithms for
problems motivated by the practice of DP, and downstream, enable the analysis of data that could
otherwise not be shared.

Computational efficiency in differential privacy is a major bottleneck for its real-world adoption, and
must often be traded off against statistical error and bias. The availability of new, more efficient tools
should ideally only increase the adoption and efficacy of privcy-preserving technology. However, there
is also a general danger of making inappropriate choices of these tradeoffs when new technologies
become available. For instance, a much more efficient algorithm with weaker privacy or accuracy
guarantees might be chosen over a less efficient one for, e.g., a real-time analytics application. The
availability of new tools should always be complemented by thorough analyses of their accuracy and
privacy guarantees so that such decisions can be made in an informed and careful manner.
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