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ABSTRACT. We give new obstructions to the module structures arising in Heegaard
Floer homology. As a corollary, we characterize the possible modules arising as the
Heegaard Floer homology of an integer homology sphere with one-dimensional reduced
Floer homology. Up to absolute grading shifts, there are only two. We use this corollary
to show that the chain complex depicted by Ozsvath, Stipsicz, and Szabd in [21] to argue
that there is no algebraic obstruction to the existence of knots with trivial € invariant and

non-trivial T invariant cannot be realized as the knot Floer complex of a knot.

1. INTRODUCTION

Heegaard Floer homology is a collection of three-manifold invariants defined by Ozsvath
and Szabdé which were inspired by the Seiberg—Witten equations in gauge theory [24]. The
most refined of these invariants is HF", which is a graded module over F[U], where U is
an endomorphism of degree —2, and F denotes the field Z/2Z. The simplest example is the
Heegaard Floer homology of the 3-sphere for which HF +(S3) = 7{83, where 7&) denotes
F[U,U']/U - F[U] with gr(1) = d. More interesting examples include HF " (+%(2,3,5)) =
Tihg) and HF'(£(2,3,7)) = T ® Fg), while HF " (~X(2,3,7)) = T ® F_1) where a
positive orientation refers to the orientation induced on the boundary of a positive-definite
plumbing. In fact, for every Spin® rational homology sphere (Y, s), we have a (non-canonical )
splitting HF " (Y, s) = ’72:;) @ HF,.4(Y,s), where HF,.4(Y,s) is a finitely generated torsion
module and d € Q. If Y is an integer homology sphere, then there is a unique Spin®
structure.

The d-invariant is an invariant of Spin® rational homology cobordism, and has become
pervasive in applications to singularity theory, knot concordance, and unknotting numbers
of knots (see for instance [1, 20, 25]). On the other hand, if HF,.4(Y) = @, HF,.4(Y,s) =
0, then Y cannot admit a co-orientable taut foliation [22]. The interplay between the
d-invariants and the reduced Floer homology is also quite powerful; this was used to prove
the Dehn surgery characterization of the unknot in S [11] (see also [22, 6]).

In this note, we give new restrictions on the module structure of the Heegaard Floer

homology of rational homology spheres.
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Theorem 1. Let Y be a rational homology sphere and s a self-conjugate Spin® structure. If
HF, 4(Y,s) is supported only in degrees strictly greater than d(Y,s), then dimp HF,.4(Y,s)
is even. The same statement holds if HF,.4(Y,s) is supported in degrees strictly less than
d(Y,s) — 1.

Note that every three-manifold admits at least one self-conjugate Spin® structure and
the unique Spin® structure on an integer homology sphere is tautologically self-conjugate.
Theorem 1 immediately yields a characterization of the modules with one-dimensional

reduced Floer homology.

Corollary 2. Let Y be a rational homology sphere equipped with a self-conjugate Spin‘
structure s. If dimg HF,.4(Y,s) = 1 then HF ' (Y,s) = ’72;) DF ) or HF"(Y,s) = 7&) &)
F .

(d—1)

By the computations of HF'(+X(2,3,7)) stated above, we see that the two possible
relatively graded modules with dimp HF',.; = 1 are realized.

One may also use the above restrictions to obstruct a chain complex from being realized
as the knot Floer complex of a knot inside an integer homology spheres. The following

corollary demonstrates this utility of Theorem 1 and Corollary 2.

Corollary 3. The e-trivial complex C with non-trivial Y ¢ depicted in [21] cannot be realized

as the knot Floer complex of a knot inside an integer homology sphere.

The argument for the proof of Theorem 1 will be a result of the isomorphisms with
monopole Floer homology (see Theorem 4) and its relationship, via the Gysin sequence of
Lin [18], with the Pin(2)-monopole Floer homology. For the reader with a distaste for gauge
theory, we point out that the arguments only use the formal properties of these theories. We
briefly review these properties in Section 2, and provide a proof of Theorem 1 in Section 3.
We prove Corollary 3 in Section 4.

We hope that this note encourages further work utilizing the strengths of both Heegaard

Floer homology and Seiberg-Witten theory in conjunction.
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2. BACKGROUND

In order to prove Theorem 1, we use the Pin(2)-symmetry of solutions of the

Seiberg-Witten equations to rule out certain graded module structures in Heegaard Floer
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homology. To be more precise, we use the Pin(2)-monopole Floer homology as defined by
Lin in [18]. The latter is a Morse-Bott version of Kronheimer and Mrowka’s monopole
Floer homology (see [12]). In this article, we will not need the definitions of either the
monopole Floer homology or the Pin(2)-monopole Floer homology. It suffices to work with
their formal properties, which we review next.

First, to make connection with the Seiberg-Witten equations, we appeal to the
isomorphism between Heegaard Floer homology and monopole Floer homology as is proved
in [13, 14, 15, 16, 17].

Theorem 4 (Main Theorem in [13]). Let Y be a closed oriented three-manifold and s be
a Spin structure on' Y. Then, HF(Y,s) (respectively, HF~(Y,s) and HF(Y,s)) and
L\Ill/éf*(Y,s,cb) (respectively, I?M*(Y,s,cb) and HM . (Y,s,¢,)) are isomorphic as relatively
graded F[U]-modules.

Here, HM(Y,s,c,) denotes the monopole Floer homology of (Y,s) with a balanced
perturbation. In the case of a torsion Spin® structure, this is the same as the standard
monopole Floer homology (see [12, §30]). Otherwise, one would work with completions of
these modules, denoted HOM.(Y, s, ), with respect to the variable U, making them modules
over F[[U]]. According to [12, Theorem 31.1.1], we have the following isomorphisms:

EJ/W.(KE,CI)) = EJ/W.(Y,E), Ej\wo(xﬁacb) = @.(KE), HM.(Y,E,Cb) = HM.(KB)

In any case, completion does not affect the chain complex that defines HM since every
element of HM is annihilated by some finite power of U.

The part of the isomorphism between Heegaard Floer homology and monopole Floer
homology relevant to this article also follows from combined works of Taubes [28, 29,
30, 31, 32] and Colin, Ghiggini, and Honda [2, 3, 4]. In fact, together with works of
Cristofaro-Gardiner [5], Huang and Ramos [10], and Ramos [27], it follows that for a rational
homology sphere Y, HF*(Y,s) and oM «(Y,s) are isomorphic as absolutely Q-graded
F[U]-modules.

Like in Heegaard Floer and monopole Floer homologies, the Pin(2)-monopole Floer
homology comes in a variety of flavors: HS o HS ., and HS,. However, the Pin(2)-monopole
Floer homology comes equipped with a more interesting module structure; this is the
same structure which enables the more refined invariants leading to Manolescu’s disproof
of the Triangulation Conjecture in dimensions > 5 [19] (see also [18]). For a closed
oriented three-manifold Y equipped with a self-conjugate Spin® structure s, the invariants
ES'.(Y, s), EL\?.(Y, s), HS, (Y, s) take the form of Q-graded modules over R = F[[V]][Q]/Q°,
where V' and @ are endomorphisms of degrees —4 and —1, respectively. Note that we can
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also naturally equip any F[[U]]-module with an R-module structure, by having @ act by 0
and V by U 2,

The following proposition displays the clear analogy between the flavors of the monopole
Floer and Pin(2)-monopole Floer homologies.

Proposition 5 (Proposition 4.6 in Chapter 4 of [18]). Let s be a self-conjugate Spin®
structure on a rational homology sphere Y. Then, up to an absolute grading shift,
HS,(Y,5) = F[[V.V[Q)/Q".

This is analogous to the fact that HM,(Y,s) = F[[U, U '] for any Spin® rational homology
sphere. Recall that this implies, using the long exact sequence relating HM o M ., and
HM ,, that in sufficiently large gradings, the dimension of HM .(Y,s) alternates between one
and zero. Likewise, Proposition 5 has the following consequence with regard to the rank of

HS of rational homology spheres in sufficiently large gradings.

Lemma 6. Let s be a self-conjugate Spin® structure on a rational homology sphere Y. Then
dimp HS,,(Y,s) < 1 for k » 0.

Proof. This follows readily from the definition of the groups s o s ., HS,, the long exact
sequence relating them, and Proposition 5. To be more explicit, by definition HSj(Y,s) is
zero for all sufficiently large k£ » 0. Then the long exact sequence,

D 1S, (Y, s) P HS (Y, 8) 2 HS,(Y,8) 25 OS5, (Y, s) 25

implies that HS,(Y,s) =~ HS,, (Y,s) as vector spaces over F for all sufficiently large k& » 0.
On the other hand, Proposition 5 implies that HS.(Y,s) has rank at most 1 for any k € Z.
This gives the desired result. O

The key fact which allows us to transport information from s . to M o 1s the following
Gysin sequence.

Proposition 7 (Proposition 3.10 in Chapter 4 of [18]). Let Y be a closed oriented
three-manifold equipped with a self-conjugate Spin® structure s. Then there exists a long

exact sequence:
> HSp 1 (Y,8) S5 HS(Y,8) 5 HM,(Y,s) 8 HS,(Y,s) 5 HS, 1 (Y,s) — ...
Further, the maps in this long exact sequence respect the R-module structures.
With the preceding understood, we are ready to prove Theorem 1.
3. PROOF OF THEOREM 1

In order to prove Theorem 1, we will simply show that an F[[U]]-module of the form

7@) @ N where N is an r-dimensional torsion module supported in degrees greater than
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d with r an odd integer cannot fit into the Gysin sequence with an R-module satisfying
Lemma 6. As explained momentarily, a duality argument rules out the case where N is
supported in degrees less than d — 1. This will imply that such an F[[U]]-module cannot
occur as the monopole Floer homology of a rational homology sphere with a self-conjugate
Spin® structure. The R-module structure will be key.

Note that the isomorphisms of Theorem 4 are only relatively graded. However, from the
proof, it will be clear that the absolute grading does not play a role. We therefore assume
for notational simplicity that d = 0 throughout.

Meanwhile, by [12, Proposition 28.3.4], ﬁ]\//[,(Y, 5) x~ ﬁ]\\i.(—Y,s) via an isomorphism
sending elements in grading k to elements in grading —(k + 1). Working with coefficients
in the field F, we also have E]\\l.(—Y,s) ~ @.(—Ks). Hence, if E]\/I,(Y,s) ~ T(ar) @
HM,.4(Y,s) where HM . .4(Y,s) is r-dimensional and is supported in degrees less than —1
with 7 an odd integer, then ﬁ]\?,(—Y,s) ~ T(g) ® HM ,.4(—Y,s) where HM . 4(—Y,s) is
r-dimensional and is supported in degrees greater than 0. Therefore, it suffices to prove the
non-realizability of 7?3) ®HM,,; where HM .., is r-dimensional and is supported in degrees
greater than 0 with r an odd integer.

With the preceding understood, suppose that oM [Y)s) = 7253 @® HM,.q(Y,s) with
HM.,..4(Y,s) supported only in positive degree.

Lemma 8. I?T?k(Y,s) =0 for k<0 and I;TTS’O(Y,s) =F.

Proof. Since M (Y,8) = 0 for £ < 0, the Gysin sequence in Proposition 7 gives
isomorphisms HS (Y,s) = HS w—1(Y,s) for all k& < 0. Thus HS x(Y,s) is isomorphic for
all k < 0. But HS (Y, s) = 0 for sufficiently negative k by definition, so we must have that
HS,(Y,s) = 0 for all k < 0. Finally, HM,(Y,s) = F (since HM g is 0 in degree 0), and the

exactness of

> HS(Y.5) > HM(Y,5) " HS(Y.5) =0 M
implies that 7 is an isomorphism and HS oY,s) =T. O

Given k > 0 even, let 7, denote the restriction of the map m, : mk(Y, 5) — Egk(K )
in the Gysin sequence in Proposition 7 to the part of the tower 7?3) with grading k.

Although the splitting of E]\?(Y,s) ~ T(g) @® HM,.,(Y,s) is non-canonical, we can identify
’7?53 canonically as a submodule of HM (Y, s) by considering the image of U for ¢ » 0. Thus,
the restriction of 7, to 7?:;) is well-defined.

Lemma 9. For each ¢ > 0, Ty is nontrivial and T4, o 15 trivial.

Proof. Suppose that 7; is nontrivial for some even i. We deduce that 7;, 4 is also nontrivial

from the fact that the Gysin sequence respects the module structures on M . and s o
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In particular 7w, 0 U 2=Vo Tiy4. Since U? gives a nontrivial map between (the restrictions
to 7253 of) E]\/ii+4(Y,5) and EJ\/L(Y,s) and 7; is nontrivial, we must have that 7, is
nontrivial. That 7 is nontrivial follows from Equation (1) (note that since HM .4 is trivial
in degree 0, we have 7y = m). By induction, it follows that 7,; is nontrivial for all ¢ > 0.

Now suppose that 74;, o is also nontrivial for some ¢ > 0 . Then by the argument above
Tyj+2 is nontrivial for all j > 4, and so Ty, is nontrivial for all k > 2i. For sufficiently high
degrees (in particular, higher than the support of HM,.,4), the Gysin sequence breaks into
pieces of the form

0 — HSy 41 (Y,5) — HSop(Y,8) 5 F 25 HSyp (Y, 5) — HSyp_1(Y,5) — 0.

Thus we have isomorphisms I;{S’%H (Y,s) ~ I;{S’%(Y, s) and dimp I?L/S’Zk (Y, s) is strictly larger
than dimp HS9;,_1(Y,s). It follows that dimp HS (Y, s) grows without bound for sufficiently

large k, violating Lemma 6. Thus 74;, o must be trivial for all i > 0. (|

With these lemmas, we are ready to complete the proof of Theorem 1. For sufficiently
large k, ﬁ]\?%“(Y,s) and E]\/l4k+3(Y, s) are zero. Consider the portions of the Gysin
sequence centered around HM 4 4+2(Y,s) and HM 1 (Y, 8):

~— ~— O ~— ~—
0 — HSyy,3(Y,8) = HS 1 0(Y,8) » F = HS 1 0(Y,8) = HS 541 (Y,8) — 0,

0 — HS 41 (Y,5) — HS 4y (Y,8) > F — HSy(Y,8) —> HS g1 (Y,5) — 0.
Note that the non-triviality (respectively triviality) of the map 7y, : F — ES’LUC(Y, s)

(respectively Typi0 @ F — FITS’MH(Y,S)) is determined by Lemma 9. For k >» 0, this
gives the following isomorphisms:

HS o 1(Y,8) = HS (Y, 5),
HS yp19(Y,8) = HS 411 (Y, 5),
HS 4j13(Y,5) ®F = HS 5, »(Y, 9),
HS jpa(Y,8) = HS g 3(Y,5) @ F.
In particular, since %4“4(}/,5) = 1'?[?94k+3(Y,5) @ F and by Lemma 6 we have that
dimp HS 4,1 4(Y,s) < 1, it follows that HS 4, 3(Y,s) = 0 for all sufficiently large k.
Fix some large k such that 4k + 3 is larger than the maximum degree in the support of
HM ,.4(Y,s) and HSy;,,3(Y,s) = 0. Consider the Gysin sequence between HM 4., 5(Y,s) =0
and HM _1(Y,s) = 0. By exactness, the sum of dimensions of each group in this sequence

must be even. The groups that appear in this sequence are M ;(Y,s) for each 0 < 7 < 4k+2,
HS 43.15(Y,8) = 0, HS_{(Y,s) = 0, and two copies of HS;(Y,s) for each 0 < ¢ < 4k +2. It
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follows that

4k+2 - 4k+2
> dimg HM (Y, s) = 2(k + 1) + | dimg HM,.q,(Y, )
1=0 i=0

is even, where the first term on the right is the contribution to the tower from degrees zero
to 4k + 2, and the second term is simply dimy HM ,..4(Y, s) since by assumption HM,..4(Y, s)
is supported in positive degrees at most 4k + 2. Therefore, dimyp HM,..4(Y,s) must be even.
This completes the proof of Theorem 1.

4. PROOF OF COROLLARY 3

By way of background, Hom introduced a concordance invariant, denoted e, that takes
values in the set {—1,0, 1} [7]. This invariant is zero for smoothly slice knots, and it was used
by Hom to prove the existence of an infinite rank summand in the subgroup of the smooth
concordance group generated by topologically slice knots [8]. Later on, Ozsvath, Stipsicz,
and Szabd introduced another concordance invariant, denoted T, which is a piecewise linear
real-valued function on [0, 2] [21]. Hom showed in [9] that there exist knots K with Y =0
but €(K) # 0. Conversely, Ozsvéth, Stipsicz, and Szabé presented a chain complex C' that
is a free F[U,U _1]—m0dule with five generators and differential described by the following

diagram:

U3

U3

FIGURE 1. The Alexander gradings of the five generators are as follows:
A(a) = A(d) = A(e) =0, A(b) = —3, and A(c) = 3.

They show in [21, Proposition 9.4] that the chain complex C depicted in Figure 1 is e-trivial,
equivalently ¢(C') = 0, but it has non-trivial Y. They use this to argue that there is no
algebraic obstruction to existence of knots K with €(K) = 0 but T # 0. We show that

the chain complex C' cannot be realized as the knot Floer complex of a knot.
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Proof. To start the proof, suppose to the contrary that such a knot K < Y exists.
Then CFK*(Y,K) is as in Figure 2a. By [23, Theorem 4.4] (also see [26, Theorem
2.3]), HF+(Y;)(K),3) ~ H,(A{) for large odd values of p > 0 where s is the unique
self-conjugate Spin“-structure on Y,(K) and Aar is the chain complex consisting of elements
in CFK® (Y, K) with maz(i,j) > 0 (see Figure 2b.) It is easy to check that H,(AJ) =
(F[U,U|/U - F[U]) - [U°b] @ F - [Ue]. Note also that the relative grading between Ue
and U>b is more than 1; in fact, gr(Ue, U3b) = 4. Therefore, H,(Aj) = 'T(J:4) DO F(, as
relatively-graded groups, which contradicts Corollary 2. As a result, there does not exist
any K c Y with CFK™(Y,K) as described by the diagram in Figure 1. O

Remark. We would like to note here that if the chain complex C' were modified so as
to make the diagonal arrow have twice the length then the resulting chain complex would
still be e-trivial with non-trivial T invariant, but the F[U]-torsion in the homology of the
resulting Ag complex would have even rank over F. Therefore, we are not able to use the
above argument to obstruct that complex from being the knot Floer complex of a knot in

an integer homology sphere.

[ S — LS —
————————— re————
° & ° &

,a</— ° n, @
/ U
(A) (B)

FIGURE 2. (A) The complex CFK*(Y,K) in the (i,j)-plane. Different
U-translates of the diagram in Figure 1 are depicted in different colors. (B)
The complex Ag .
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