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a b s t r a c t 

Modeling and analysis of human behaviors in social networks are essential in fields such 

as online business, marketing, and finance. However, the establishment of a generalized 

decision-making framework for human behavior is challenging due to different decision 

structures among individuals. Thus, we propose a new decision-making framework, De- 

cision Field Theory with Learning (DFT-L), which combines the DFT model and the DeG- 

root model. We investigated three factors influencing preference evolution: previous ex- 

periences, current evaluations, and neighbors’ preferences. The equilibrium status of social 

networks within this framework is obtained as an explicit formula under the independent 

and identically distributed (IID) conditions on weight values. This facilitates the identifica- 

tion of limiting expected preference values and covariance matrices. A simulation analysis 

using simulated and real networks is performed to validate the DFT-L framework and to 

demonstrate its efficiency compared with the original DFT. Our finding confirms that the 

diffusion process within DFT-L propagates fastest in the random network and slowest in 

the ring-lattice network. We also show that interactions among people affect the agent’s 

decision within DFT-L and intensify embedded society characteristics, which helps to ana- 

lyze irregular behaviors such as information cascades in social networks. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

There are many frameworks proposed by current researchers for modeling human behaviors in social networks. However,

establishing a generalized and realistic framework has been a particular challenge since it requires consideration of the fol-

lowing factors: (1) an accurate understanding of individual behavior, (2) a high level of preference fluctuation in long-term

decision-making processes, and (3) the interaction among people. In order to represent the individual’s decision-making

processes, utility function within the optimization framework has been widely used with constraints on resource limitation

[20,29] . Though this approach allows modelers to take advantage of well-developed optimization theories, it presents some

limitations in representing human behaviors in social networks. First, it is challenging to find generalizable utility functions

for all decision-makers because every person has different objectives and distinctive perceptions of their utilities [43] . Sec-

ond, even if one could find the appropriate utility function for each decision-maker, the function itself should have some

good mathematical characteristics (e.g., convexity) in order to efficiently find the optimal solution, which is not always the

case. Finally, the decision maker’s utility function must satisfy the characteristics of completeness, transitivity, independence
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among irrelevant alternatives, and continuity; however, some researchers have pointed out that people’s decision phenom-

ena do not follow these characteristics [12] . For these reasons, a different approach to modeling individual decision-making

processes in the social network is necessary. 

Offering several advantages as an alternative to the utility theory, Decision Field Theory (DFT) was proposed by Buse-

meyer and Townsend [11,12] as a cognitive and dynamic approach to model individual decision-making processes [12,18] .

One benefit of the DFT framework is that it takes into account the effect of people’s previous experience and current eval-

uation on the preference values of alternatives. This allows DFT to achieve a general modeling framework by avoiding the

use of utility functions [12] . Additionally, the non-existence of utility functions in the framework enables both a high level

of freedom in modeling and efficient analysis of equilibrium states in decision-making processes [11] . A third advantage is

straightforward, tracking the evolution of an individual’s preference values over time [18] . Since DTF is expressed as Markov

processes [18] , a model’s evolution over time can be tractable using traditional stochastic process theories. Finally, the DFT

model carries a simple structure allowing various extensions to improve its expressiveness [11,12] . For example, DFT was

initially developed for binary choice problems but was extended to multiple-choice options with multi-attribute cases [42] .

Lee et al. proposed Extended Decision Field Theory to incorporate the effect of environmental change over time on prefer-

ence values [35] . By using DFT as a reference model to describe individual decision-making processes, one can make the

most of DFT’s advantages while adjusting it to represent various scenarios in real life. 

When it comes to modeling human behaviors in social networks, it is important to consider interactions among people

[8] . People can share their posts and tweets on Facebook and Twitter by simply pushing the “like” button (or “retweet”

button), so that one tweet uploaded by a famous person can be immediately shared among thousands of people [36] .

Significant research has been devoted to studying the establishment and evolution of interactions in the social network,

but there are some phenomena observed in social networks which cannot be fully understood by only analyzing individual

decision-making processes [2,37] . One famous example is “information cascade,” the phenomenon whereby people choose

against their preference in favor of their neighbors’ choices [6] . This can cause inaccurate beliefs to spread out throughout

the whole social network, despite several people knowing clear evidence to the contrary. For example, in the late 20 0 0s,

the United States faced a significant economic decline caused by the collapse of the housing bubble (Subprime Mortgage)

[17] . The main reason for the faulty development in the housing market was aggressive, reckless investment decisions made

by financial analysts, and while only a few of them chose a risky investment option for the first time, their massive profits

galvanized all play-makers in financial markets to take more risks than usual [19] . It is necessary to consider the interaction

among people to enhance the reality of decision-making models. 

Another way to model decision-making processes in social networks is to utilize game theory methodologies. Galeotti

et al. proposed that a decision maker’s choice of one option over the other is affected by its popularity among its neighbors

[23] . Kalai introduced a semi-anonymous decision-making model, which represents that people’s decisions are not only

affected by a number of actions among the neighbors but also by the types of persons (i.e., if a close friend has chosen one

alternative, then she/he is also likely to follow it) [33] . Bramoulle and Kranton introduced a public goods game that can be

used to represent the consumption behavior of public goods in a social network [9] . A significant variation introduced by

Ballester et al. addresses the derivation of a better pay-off structure based on their actions [3] . Along with the development

of pay-off structure in social networks, Bayesian social learning has been used to demonstrate decision-making processes,

and group behaviors such as herd behavior were analyzed using the sequential decision-making model [4] . However, since

all of these models require the use of utility function for each alternative, the limitation of utility function still needs to be

addressed. 

The goal of this article is to establish a new decision-making framework, representing people’s interactions through the

DFT model. The present challenge is that the DFT model itself cannot convey the interactions among people because its

primary focus was to represent short-term individual decision-making processes. One possible adjustment to DFT is gen-

eralizing it in long-term decision-making processes. We suggested one extension of DFT using decay theory, Decision Field

Theory with Forgetting (DFT-F), which notes that people’s memories soften over time when they have a longer deliberation

period during their decisions [34] . Now we will show how we developed an extension of DFT by not just embodying the for-

getting process but exhibiting the social learning process in order to enhance expressiveness and reality of decision-making

processes in social networks. 

In our research, we name the new decision-making framework Decision Field Theory with social-Learning (DFT-L). The

main assumption of our model is that people’s decisions are affected by three factors: previous experiences, current evalu-

ations, and neighbors’ preferences. We analyzed the dynamic evolution of people’s preferences by deriving the equilibrium

state of the model based on different assum ptions. We also validated our model by using agent-based simulation (ABS) to

confirm that DFT-L has the same characteristic as the general innovation diffusion model [2] . We then show how the pop-

ulation composition of different types of people affects the nature of the equilibrium state. Finally, factors influencing time

until equilibrium is achieved within DFT-L are obtained by statistical analysis. 

2. Proposed models 

In this section, we begin by introducing two underlying models, Decision Field Theory (DFT) and Degroot’s model, in

Sections 2.1 and 2.2 respectively. In Section 2.3 , we propose a new model, Decision Field Theory with Learning (DFT-L), with
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Table 1 

The example of parameter values under the DFT model. 

S M C 

S 11 = 0 . 9 S 12 = −0 . 05 M 11 = 0 . 7 M 12 = 0 . 4 C 11 = 1 C 12 = −1 

S 21 = −0 . 05 S 12 = 0 . 9 M 21 = 0 . 2 M 22 = 0 . 6 C 21 = −1 C 22 = 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a detailed explanation of all parameters. Finally, we demonstrate the incorporation of DFT and DeGroot’s model into DFT-L

while addressing not only individual decision-making processes but also interaction among people in social networks. 

2.1. Individual decision-making processes 

As mentioned in Section 1 , DFT was first introduced by Busemeyer and Townsend to model a dynamic cognitive approach

for decision-making processes, which has been used and developed in various areas such as manufacturing, psychology, and

supply chains [11] . From among many variants of DFT, we chose the latest model with multiple alternatives and attributes

proposed by Roe et al. [11,42] . The main idea of DFT is that human decision-making processes rely on two factors: past

experiences and current evaluations. If an agent has n number of alternatives with m attributes, each agent’s preference

values are expressed as follows: 

P ( t + h ) = SP ( t ) + CMW ( t + h ) = SP ( t ) + V ( t + h ) (1)

P ( t + h ) represents the array of preference values (at time t + h ) for the alternatives that are available to all decision-makers.

S is an n by n symmetric matrix in which the diagonal elements refer to forgetting factors and the non-diagonal elements

refer to competitive interactions between two alternatives. Elements of matrix M ( n by m ) indicate personal evaluations

of options’ attributes. W (t + h ) is an m dimensional weight vector of the attributes. Both M and W (weight can vary from

person to person [11,12] . The second term CMW ( t + h ) is often called a valence vector V ( t + h ) . The DFT model can be

considered a function (mapping) from multiple alternatives to the real number (R ) , and the corresponding real number will

represent the preference values of each alternative. Based on the assumption of DFT, the summation of all preference values

of the alternatives will be 0 ∈ R due to the construction of n dimensional square matrix, C . This characteristic of C implies

that the increase in the preference value to one option eventually decreases the preference value to the other. 

To illustrate, consider a person who wants to purchase a new car and is deciding between two alternatives, cars A and B.

His evaluation is based on two attributes, cost and driving efficiency. The corresponding DFT model is expressed as Eq. (1) ,

where P 1 (t) and P 2 (t) represent a preference for car A or B, respectively. In this scenario, car A has a greater cost advantage

whereas car B is more driving efficient. For the construction of matrix S , diagonal elements are set to be quite large ab-

solute values (e.g., 0.9) compared to non-diagonal elements (e.g., −0.01) [11,35,42] , which implies that people’s impression

regarding one alternative does not significantly affect their impression of the other. Finally, due to the assumption of DFT,

the diagonal values of C matrix are always 1, while all the non-diagonal values have to be −1/( n −1), where n represents the

number of alternatives available to decision-makers. Table 1 summarizes all the parameters of the DFT model used for the

example. 

Now, we can assume that the decision-maker’s weight on attributes can be changed over time, which enables the vec-

tor W to be the function of t , W ( t ). Preference values will be updated in every deliberation period, which introduces the

dynamicity in analyzing decision-making processes. If we represent the example by using model (1) , it will be as follows: [
P 1 ( t + h ) 
P 2 ( t + h ) 

]
= 

[
0 . 9 −0 . 05 

−0 . 05 0 . 9 

][
P 1 ( t ) 
P 2 ( t ) 

]
+ 

[
1 −1 

−1 1 

][
0 . 7 0 . 4 
0 . 2 0 . 6 

][
w 1 ( t + h ) 
w 2 ( t + h ) 

]
(2)

As seen in Fig. 1 , the preference value for each option within the DFT framework can be changed over time. The figure

represents the dynamic evolution of preference value for car A (highlighted in yellow) and car B (highlighted in blue) over

time. At the beginning of deliberation periods, neither preference value exceeds the threshold value to the person making a

decision. They keep evaluating the preference values until one option is significantly preferable to the other, making them

confident in their decision. The threshold value (highlighted in red) can be viewed as a confidence value for each decision-

maker. Since people’s preference values are more likely to be updated over time, the dynamic model is required to analyze

individual decision-making processes accurately. 

As described in Section 1 , DFT assumes that a decision-maker updates their preference values in a short-term delibera-

tion period. The DFT framework cannot adequately represent imperfect memory recall processes, but DFT can be extended

fairly naturally by considering longer deliberation periods. The extension allows modeling of decay theory, the idea that

memories weaken over time, which can be applied to DFT for increased accuracy of understanding individual decision-

making processes [12] . This leads to the proposal of Decision Field Theory with Forgetting (DFT-F) to mimic long-term

decision-making processes with the forgetting [34] . The main difference is the structure of matrix S , as follows: 

P ( t + h ) = S ( t + h ) P ( t ) + CMW ( t + h ) (3)

where matrix S is replaced by S( t + h ) , which more accurately represents the exponential decay of human forgetting pro-

cesses [10] . This accelerated memory loss, also called retroactive interference, is usually observed when people are exposed
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Fig. 1. Dynamic Evolution of Preference Values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to others’ opposing opinions [14,49] . Selection of the accurate forgetting function for S is a prominent research area, and

Chechile and Sloboda categorized possible distributions of the forgetting process [14] . In Section 2.3 , we also explain how

this model ( Eq. (3) ) can be incorporated in the structure of the social network while deriving the asymptotic values of

preferences within social networks. 

2.2. Learning models in social networks 

The term “learning” has various definitions and uses, but in social networks, learning generally represents the update of

decision-making parameters based on the present environment [22] . Within the DFT framework, learning can refer to the

process by which people can update their preferences after collecting information on their neighbors’ preferences. Among

various social-learning models, DeGroot’s consensus model provides a simple structure to express that the relationships

among agents can affect their beliefs [16] . If k number of agents living in a given social network has a belief about one

option, the evolution of beliefs can be demonstrated by using the following model (4) : 

F ( t + 1 ) = AF ( t ) (4) 

Originally, DeGroot [16] used the vector F to describe the subjective probability distribution of an unknown parameter,

but Hegselmann and Krause [28] interpreted it as the magnitude of a belief, which allows that belief to have any real value.

In this paper, we will follow Hegselmann and Krause’s extension of interpretation, which considers F (t + + 1) to be a k by

1 vector of quantifiable levels of the opinion of one option. Also, A , which is k by k matrix, represents the magnitude at

which each agent’s opinion is affected by others. The element a ij in matrix A indicates that agent i put a ij amount of weight

on j person’s opinion when updating their opinion. Eq. (5) , which is the i th row of the model (4) , infers that each agent’s

opinion is updated as the weighted sum of all agents’ opinions, while all elements in A lie between 0 and 1. 

x i ( t + h ) = a ik x 1 ( t ) + · · · + a ik x k ( t ) (5) 

Identifying and measuring the influence of one agent on the other is another research problem [28] . If we use a graph

theory to represent a social network, then nodes represent agents and edges do their connections such as Following in

Twitter and Friends in Facebook. In Section 4 , the detailed technique and the explanation are shown to assign weight values

to the edges in given networks. 

One of the variants of the Degroot’s learning model ( Eq. (4) ) was first introduced by Abelson (1964) [1] and later ex-

tended by Hegselmann and Krause [28] . The main concept is that social factors in A alter over time, with the proposed

model as follows: 

F ( t + 1 ) = A ( t ) F ( t ) (6) 

The strength of relationships among people can alter over time, especially in long-term decision processes due to the

structural changes in social networks. Six types of community behavior in social networks serve as examples to demon-

strate the evolution: Growth, Contraction, Merging, Splitting, Birth, and Death [41] . Growth represents that the number of

edges in the network generally increases, while Contraction refers to the number of edges decreasing. Splitting describes

how a huge community is divided into several groups. This process decreases the complexity of the whole network, which

will increase the number of 0 values in the A matrix. Merging represents several communities combining, the opposite of

the split process. Birth represents a new agent (person) entering the network and beginning to form relationships with



S. Lee and Y.-J. Son / Information Sciences 512 (2020) 1293–1307 1297 

Fig. 2. Illustrative example for the DFT-L model: (a) example of social network (b) adjacency matrix for social learning (c) ˆ A matrix for the DFT-L model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

other people in the community. Therefore, the dimension of the A matrix should also be increased. The Death process de-

scribes the disappearance of an agent in the network. We can represent the Death process without changing the dimension

of the A matrix by making all the values in the i th row and column to be 0. Thus, evolution can be illustrated through

the birth/death of agents, new connections, or detached connections among agents [1,28,41] . Therefore, Eq. (6) can be a

substitute for decision-making processes in a longer deliberation period. 

2.3. Details of proposed models 

The proposed model in this work retains the key ideas such as forgetting and assessment processes described in DFT and

the social relationship effect described in DeGroot’s model while maintaining a simpler overall structure. We have titled the

model Decision Field Theory with Learning (DFT-L). Block diagonal matrices are used to create a combined DFT model of the

individuals in the social network, and individual DFT models are maintained as sub-matrices, while the whole framework

incorporates these sub-matrices into Degroot’s framework. For example, if we have k number of people, n options, and m

attributes, then all parameters of DFT-L are represented as (7) . The new preference matrix also becomes an extended array

of preference values of all decision-makers in the network. Accordingly, the overall DFT-L model can be expressed as (8) . 

ˆ S = 

⎡ 

⎢ ⎢ ⎣ 

S 1 0 · · · 0 
0 S 2 · · · 0 
. . . · · · · · · · · ·
0 0 · · · S k 

⎤ 

⎥ ⎥ ⎦ 

ˆ C = 

⎡ 

⎢ ⎢ ⎣ 

C 1 0 · · · 0 
0 C 2 · · · 0 
. . . · · · · · · · · ·
0 0 · · · C k 

⎤ 

⎥ ⎥ ⎦ 

, ˆ M = 

⎡ 

⎢ ⎢ ⎣ 

M 1 0 · · · 0 
0 M 2 · · · 0 
. . . · · · · · · · · ·
0 0 · · · M k 

⎤ 

⎥ ⎥ ⎦ 

ˆ P = 

⎡ 

⎢ ⎣ 

P 1 
P 2 
· · ·
P k 

⎤ 

⎥ ⎦ , ˆ W = 

⎡ 

⎢ ⎣ 

W 1 

W 2 

· · ·
W k 

⎤ 

⎥ ⎦ , ˆ A = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

a 11 0 a 12 0 · · · a 1 k 0 
0 a 11 0 a 12 · · · 0 a 1 k 
. . . · · · · · ·

. . . 
a k 1 0 a k 2 0 · · · a kk 0 
0 a k 1 0 a k 2 · · · 0 a kk 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(7)

ˆ P ( t + h ) = ˆ S ̂  A ̂  P ( t ) + ˆ C ˆ M ˆ W ( t + h ) = ˆ S ̂  A ̂  P ( t ) + ˆ V ( t + h ) (8)

Fig. 2 shows the construction of matrix ˆ A within the social network. Suppose that two alternatives are given to three

agents in social networks as shown in Fig. 2 (a). Agents update their preference values based on their social factors depicted

in matrix A ( Fig. 2 (b)). Then, the matrix ˆ A can be constructed as the matrix shown in Fig. 2 (c), which represents a kn × kn

dimensional matrix demonstrating progression of updates in each person’s preference value to the specific option based

on their neighbors’ preference value. In DFT-L, each decision-maker i has information others’ previous preference values (at

time t ) but not their forgetting factors since the matrix is a block diagonal matrix. Therefore, this structure makes DFT-L

more realistic because people do not generally share their internal evaluation processes with others. An agent’s preference

values are updated by the weighted sum of others’ past preference values (including his own) as well as their own current

evaluation of the alternatives. Therefore, the main differences of our proposed model from the original DFT is the existence

of the matrix that can demonstrate influences by neighbors and block matrix structures of parameters for representing

multiple agents in social networks. 

Since the DFT-L framework is a combination of DFT and DeGroot’s models, it brings all assumptions of both models. The

assumptions from DFT are that the decision maker has a finite number of alternatives, new alternatives cannot be entered or

removed in every deliberation period, and the number of attributes remains unchanged. DeGroot’s model has the following

limitations: 1) the new agent cannot be added or disposed during the deliberation periods; 2) the number of persons in

the social network is finite; 3) preference updates occur at discrete points. In the DFT-L framework, these assumptions can

be explained as follows: the dimension of all matrices S, M, W, A should remain the same and the preference values are
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updated at each discrete deliberation point. Under this assumption, the proposed DFT-L framework can be applicable to all

types of social networks. 

Decision Field Theory with Forgetting (DFT-F) can also be represented under a social network setting by using the block

matrix defined above. Eq. (9) illustrates long-term decision-making process by considering forgetting processes and with

social interactions. 

P ( t + h ) = ˆ S ( t + h ) ̂  A ̂  P ( t ) + ˆ C ˆ M ˆ W ( t + h ) = ˆ S ( t + h ) ̂  A ̂  P ( t ) + ˆ V ( t + h ) (9) 

The main characteristic of DFT-F within the social network is that a portion of the agent’s prior preference values involved

in the current decision will shift over time due to the exponential decay of memory ( ̂ S ( t + h ) ) while incorporating the

interaction factor in the model. In Section 3 , we derive the asymptotic behaviors of both Eqs. (8) and (9) and illustrate

assumptions to achieve an equilibrium. 

3. Asymptotic stability and its conditions in proposed models 

The analysis of equilibrium is one of the most important topics in modeling decision-making processes in social net-

works. Researchers has found that the initial opinions of agents, network structures, and the stubbornness of agents are

primary factors in achieving opinion equilibrium in social networks. A continuous coordination game is widely utilized to

analyze equilibrium from iterative opinion updating processes. Jadbabaie et al. [31] examined equilibrium status under the

nearest neighbor rule, while Guestrin et al. [26] and Kok et al. [32] studied and extended the coordination processes in a

context-specific manner using a coordination graph (GC). Ghaderi and Srikant [24] examined the effect of the presence of

stubborn agents in the social networks on the equilibrium status, while Lorenz and Lorenz [38] presented conditions for

convergence to a consensus using a time-dependent dynamical model. Jackson and Wolinsky [30] utilized pairwise stabil-

ity to understand stability in different network structures, which was further studied by Goyal and Joshi [25] as well as

Belleflamme and Bloch [5] for its use in different applications. The equilibrium of our proposed models is explained in this

section. 

Using standard results from the linear systems theory, we have derived the asymptotic status of the networks under the

DFT-L framework in this section. The limiting behaviors of DFT-L and DFT-F are mathematically driven and the assumptions

for the stabilities are also demonstrated. Within the DFT-L framework, estimating preference values of decision-makers will

be used to estimate the ultimate status of social networks. The following three lemmas represent that the mathematical

approach is possible to demonstrate the eventual status of social networks. 

Lemma 1. Let E[ ̂  W (t) ] = ˆ W E , Cov [ ̂  W (t) ] = 
ˆ � and both are finite. The expected and covariance value of the valence vector ( ̂  V (t) )

can be expressed as follows: 

E 
[
ˆ V ( t ) 

]
= ˆ C ˆ M ˆ W E , Cov 

[
ˆ V ( t ) 

]
= ˆ C ˆ M ̂

 � ˆ M 
T ˆ C T (10) 

Proof. Take the expectation of both sides of the equation ˆ V (t) = ˆ C ̂  M ̂  W (t) , then E[ ̂  V (t) ] = ˆ C ̂  M E[ ̂  W (t) ] = ˆ C ̂  M ̂  W E . Likewise,

take the covariance of the same equation ˆ V (t) = ˆ C ̂  M ̂  W (t) , then Cov [ ̂  V (t) ] = ˆ C ̂  M Cov [ ̂  W (t) ] ̂  M 
T ̂  C T = ˆ C ̂  M ̂

 � ˆ M 
T ̂  C T �

Lemma 2. Let the all initial preference values are zero ( i.e. , E[ ̂  P (0) ] = 0) . If the 2-norm of matrix ˆ S ̂  A is strictly less than 1 and

if ˆ W is stationary with the finite expected value E[ ̂  W ] in every deliberation period, then asymptotic expected preference values

within the DFT-L framework are as Eq. (9) . Moreover, the asymptotic covariance preference value converges under the assumptions

of iid ˆ W . 

lim 

t→∞ 

E 
[
ˆ P ( t ) 

]
= 

(
I − ˆ S ̂  A 

)−1 
E 
[
ˆ V 
]

= 

(
I − ˆ S ̂  A 

)−1 
ˆ C ˆ M ˆ W E (11) 

lim 

t→∞ 

C ov 
[
ˆ P ( t ) 

]
= 

∑ n 

i =1 

(
ˆ S ̂  A 

)i −1 
C ov 

[
ˆ V ( t ) 

](
ˆ A 
T ˆ S T 

)i −1 = ( I − G ) 
−1 �̄ (12) 

Proof. At the first deliberation period ( t = 0 ), E[ ̂  P (h ) ] = E [ ̂ S ̂  A ̂  P (0) ] + E [ ̂  V (h) ] = E [ ̂  V ] = ˆ C ̂  M ̂  W E . Likewise, at t = = 1, 

E[ ̂  P ( 2h ) ] = ˆ S ̂  A E[ ̂  P (h)] + E [ ̂  V ( 2h ) ] = ̂  S ̂  A ̂  C ̂  M ̂  W E + ̂  C ̂  M ̂  W E = ( I + ̂  S ̂  A ) ̂  C ̂  M ̂  W E . 

The second last equation holds by the stationary assumption of ˆ W [42] . 

By mathematical induction, E[ ̂  P ( nh ) ] can be expressed as ( I + ̂  S ̂  A + · · · + ̂  S ̂  A 
n −1 ) ̂  C ̂  M ̂  W E ,which implies that

( I − ˆ S ̂  A )E[ ̂  P ( nh ) ] = ( I − ˆ S ̂  A )( I + ̂  S ̂  A + · · · + ̂  S ̂  A 
n −1 ) ̂  C ̂  M ̂  W E = ( ̂ S ̂  A ) n ˆ C ̂  M ̂  W E . 

Multiplying ( I − ˆ S ̂  A ) −1 to both sides of this equation,we can get E[ ̂  P ( nh ) ] = ( I − ˆ S ̂  A ) −1 ( ̂ S ̂  A ) n ̂  C ̂  M ̂  W E = ( I − ˆ S ̂  A ) −1 ̂  C ̂  M ̂  W E . 

The last equality holds because lim 

n →∞ 

( ̂ S ̂  A ) n = 0 when the 2-norm of ˆ S ̂  A is less than 1. 

Then, lim 

n →∞ 

E [ ̂  P ( nh ) ] = ( I − ˆ S ̂  A ) −1 ̂  C ̂  M ̂  W E is satisfied, and the last equality holds because of the finiteness of ˆ W E . 

Likewise, take the covariance of both side of the following equation ˆ P ( nh ) = 

∑ n 
i =1 ( ̂ S ̂  A ) i −1 ̂  V ( ( n − i )h ) . 

Then, by the iid assumption of ˆ W , Cov [ ̂  P ( nh ) ] = 

∑ n 
i =1 ( ̂ S ̂  A ) i −1 Cov [ ̂  V (t ) ] ( ̂  A 

T ̂  S T ) i −1 . 

To find a closed form of an asymptotic matrix, we can use a reshaping procedure proposed by Hancock et al. [27] . Let

Cov [ ̂  V (t ) ] be � and ( ̂ S ̂  A ) be K = [ k i j ] for i, j ∈ {1, ���p}. Also, let us define a reshaping operator. If the dimension of � is p

x p, then �̄ is 1 × p 2 matrix after rearranging values of �. 
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Fig. 3. Agent-based modeling techniques: (a) State diagram (b) Network representation. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then, Cov [ ̂  P ( nh ) ] = 

∑ n 
i =1 ( ̂ S ̂  A ) i −1 Cov [ ̂  V (t ) ] ( ̂  A 

T ̂  S T ) i −1 = 

∑ n 
i =1 K 

i −1 �K ′ i −1 = 

∑ n 
i =1 G 

i ̄� where G = [ z ( j−1 ) p+ i, ( k −1 ) p+ i ] = k il k jk
for i, j, j, l ∈ {1, ���p} by Hancock et al. [27] . 

Thus, lim 

n →∞ 

Cov [ ̂  P ( nh ) ] = lim 

n →∞ 

∑ n 
i=1 G 

i ̄� = lim 

n →∞ 

( I − G ) −1 ( I − G 
n ) ̄� = ( I − G ) −1 ̄��

The assumptions used in proving Lemma 2 are three folds: (1) people’ initial preference values are zero, (2) finite values

for expected weight, and (3) the restriction of the 2-norm of matrix ˆ S ̂  A . The plausibility of the first and second assump-

tions can be explained by the car purchase example. At the beginning, your personal preference on each car model can be

indifferent because you have no information. However, as time goes on, you will be determined in evaluating your options,

so the expected weight vector becomes stable. This allows people’s expected decision criteria converge to fixed values even

though it can vary at some degrees. If the 2-norm of matrix ˆ S ̂  A is less than 1 implying that all the eigenvalues lie within

the unit circle on the complex planes, then the inverse of ( I − ˆ S ̂  A ) exists. By observing the eigenvalues of ˆ S ̂  A , the stability

of the system can be achieved. Since || ̂ S ̂  A || 2 ≤ || ̂ S || 2 || ̂  A || 2 , the stability of DFT-L is achieved when all eigenvalues of both Ŝ

and ˆ A are less than 1. The stability of ˆ S is guaranteed when all S i for i = { 1 , · · · , n } matrices are stable (this assumption

is equivalent to those used in the original DFT’s, when asymptotic values are derived in analyzing the limiting status of

people’s choices [11,12] ). Then, it suffices to show that || ̂  A || 2 ≤1. Because of the construction of ˆ A , ˆ A becomes stable if its

corresponding social factor matrix A is stable. By applying standard results in Markov Chain model, it is evident that the

social factor matrix A has to be strongly connected and aperiodic for stability [40] . This is the same as the stability condi-

tion of the DeGroot’s model. Thus, if the stability conditions of both DeGroot’s model and DFT are satisfied, the stability of

DFT-L is also guaranteed. Therefore, our extension does not show significant deviation from the original model. The main

advantages of these two lemmas are that asymptotic preference values within the DFT-L framework can be estimated by the

initial parameter values without loss of generality. 

The following lemma represents asymptotic preference values in the DFT-F model in the social network. 

Lemma 3. Let the all initial preference values are 0. If agents’ forgetting processes and weight vectors are independent and

stationary with finite expected value E[ ̂ S ] = ˜ S and E[ ̂  W ] = ˜ W , respectively, and if the 2-norm of the matrix ˜ S ̂  A is less than 1,

then the limiting expected preference values in DFT-F are as follows: 

lim 

t→∞ 

E 
[
ˆ P ( t ) 

]
= 

(
I − ˜ S ̂  A 

)−1 
ˆ C ˆ M ˜ W (13)

Proof. At t = = 0, E[ ̂  P (h)] = E [ ̂ S (h) ̂  A ̂  P (0)] + E [ ̂  C ̂  M ̂  W (h) ] = ˆ C ̂  M ̃  W , because ˆ P (0) = = 0 . In the next deliberation pe-

riod, E[ ̂  P ( 2h )] = E [ ̂ S (h) ̂  A ̂  P (h) )] + ̂  C ̂  M E [ ̂  W ( 2h )] = ̂  S ̂  A ̂  C ̂  M ̃  W + ̂  C ̂  M ̃  W ( I + ̂  S ̂  A ) . The second equality holds because of indepen-

dence and stationary assumption of ˆ S and ˜ W . So, ( I − ˆ S ̂  A )E[ ̂  P ( nh ) ] = ( ̂ S ̂  A ) n ˆ C ̂  M ̃  W by the same argument of the proof

of Lemma 2 . Multiplying ( I − ˆ S ̂  A ) −1 to both sides of this equation, we can get lim 

n →∞ 

E[ ̂  P ( nh ) ] = ( I − ˆ S ̂  A ) −1 ( ̂ S ̂  A ) n ̂  C ̂  M ̃  W =
( I − ˆ S ̂  A ) −1 ̂  C ̂  M ̃  W �
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Table 2 

Parameter values in simulation [11,21,27,42] . 

S M W a ij 

U(0.85, 0.95), 

N(0.9, 0.03 2 ) 

-U(0.01, 0.03), 

-N(0.02, 0.01 2 ) 

U(0.7, 0.9), 

N(0.8, 0.06 2 ) 

U(0.2, 0.4), 

N(0.3, 0.06 2 ) 

quality U 1 
U 1 + U 2 Equally 

Weighted: 1 
d i 

-U(0.01,0.03), 

-N(0.02, 0.01 2 ) 

U(0.85, 0.95) 

N(0.9, 0.03 2 ) 

U(0.2, 0.4), 

N(0.3, 0.06 2 ) 

U(0.7, 0.9) 

N(0.8, 0.06 2 ) 

cost U 2 
U 1 + U 2 Proportional: 

d i ∑ 

( i, j ) ∈ e d j 

Fig. 4. Three network types based on the complexity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All the assumptions used in Lemma 3 are the same as in Lemma 2 except the independency between forgetting factors S

and weight vectors W . In a real scenario, the internal forgetting process of people’s experience are independent of assigning

weights on criteria for decision making [22,49] . In the next section, we will illustrate and demonstrate the proposed models

using the agent-based simulation and discover some interesting phenomena within DFT-L framework in social networks. 

4. Simulation experiments 

In this section, our main purposes are to describe the simulation configuration, validate Decision Field Theory with

Learning (DFT-L), compare DFT-L and DFT, and further analyze the benefits of DFT-L. We validate DFT-L by implementing

the “leader and followers” configuration widely used in the innovation diffusion model. After validation, we compare DFT-L

to the original DFT model using various scenarios to highlight key differences. Finally, we describe the asymptotic status

of social networks within the DFT-L framework using “opinion formation” configuration, which will help to explain some

interesting phenomena (e.g., information cascade) in social networks. 

4.1. Simulation configuration 

We begin by describing the simulation model and its configuration. We chose Agent-Based Simulation (ABS), an

acclaimed approach to modeling complex social networks [7,13] , to illustrate and validate the proposed models in

Sections 2 and 3 , primarily because within the ABS framework, it is easy to model individual (constituent unit) decision-

making processes, the environment around agents, and interaction among agents [7] . For this work, we used AnyLogic TM 

software as a tool of ABS. 

First, individual decision-making processes were designed as shown in Fig. 3 (a), with all agents in the network sharing

the same reasoning process (i.e., within DFT/DFT-L framework). This process consists of four stages: (1) initialization, (2)

deliberation, (3) preference updates, and (4) decision. In the initialization stage, parameters in DFT-L (elements of S and

M ) were given to the agents. As the agents had two options to choose, they determined their weights of choice criteria

in the deliberation stage according to Table 2 . After that, they updated their preference values based on DFT-L/DFT in the

corresponding stage. Finally, the agents made their decisions based on whether their preference values had become greater

than the threshold value in the decision stage. Since all agents share the same reasoning process, we can use a state diagram

to represent individual decision-making processes, represented in Fig. 3 (a). In Fig. 3 (b), agents are shown with different

colors based on their final decisions, with blue representing the adoption of the first option while the green represents the

other option; yellow agents have not chosen either of them. In this way, detailed expression of individual decision-making

processes is clearly articulated with ABS. 

In our second step, we chose to focus on the network’s complexity among different environmental factors in social

networks. The three types of networks we considered were ring lattice, small world, and random network ( Fig. 4 ). Its com-

plexity determines the network type; all nodes have the same degree in the ring lattice, so the complexity level is low,

while nodes in the random network are likely to have different degrees which increase the complexity level, and small

world networks lie between these two extremes [15,48] . We used a complexity measure ( ρ) to describe this complexity.

As seen in Fig. 4 , random networks have the maximum complexity (while ring lattice networks have the minimum). Since
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Table 3 

Simulation configuration. 

Number of 

agents 

Network type Society type Models Learning type Reflecting neighbors’ 

opinion 

200 Random Progressive DFT Synchronous Proportional to 

neighbors’ degrees 500 Small world (0.7) 

Neutral 

700 Small world (0.4) DFT-L Asynchronous Equally weighted 

Conservative 

1000 Ring 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

it is well-known that the diffusion process would propagate fastest in the random network and slowest in the ring lattice

network [15,48] , we confirmed that our proposed model DFT-L follows the same pattern as a validation. 

Third, interactions among agents are expressed by determining the values of matrix A in DFT-L. Agents may update their

preference values while incorporating all neighbors’ opinions equally, but they often pay more attention to a neighbor who

has many friends in social networks. If a neighbor has a high level of social power (with larger degrees), then an agent will

likely adjust their opinion based on the weight representing the social power of its neighbors. Equations for elements of

matrix A for these two cases are explained in the last column of Table 2 (where represents degrees of agent). Based on the

literature review on the application of DFT in the real field, researchers assume that the error term ( ∈ i ( t )) follows Normal

distribution [11,42] . Also, when they estimate DFT parameters using real data, we have found that Uniform distribution is

also used to provide flexibility [21,27,45] . Thus, we decided to use both Normal and Uniform distribution for the parameter

value generation in the experiment. 

Finally, we considered two types of learning: synchronous and asynchronous to consider different learning processes.

In synchronous learning, all agents update their preference value at the same time (e.g., in every two-time unit in the

simulation). One example is how, during a presidential election period, people’s preferences for presidential candidates are

revealed simultaneously with the survey result. By contrast, asynchronous learning represents people updating their pref-

erence values at different deliberation periods. In this work, we set each duration to follow Uniform (0,4) time units, so

that the average duration becomes two as in synchronous learning. In Section 4.4 ., we demonstrated that these two types

of learning did not make a statistically significant difference in the time taken to reach an equilibrium using simulation

analysis. 

All of the other information in the simulation is summarized in Table 3 . While Table 2 represents all parameter values of

DFT/DFT-L used in individual reasoning processes, Table 3 shows all configurations of the environment around the agents.

In Section 4.3 , we explain another environmental factor, society type, which has a large effect on asymptotic status in social

networks. 

4.2. Validation of DFT-L 

To illustrate and validate DFT-L, we used the “Leader and Followers” configuration, which has been widely applied in

analyzing the diffusion process within social networks [15,44,48] . In this context, the two types of agents living in the net-

work are the leader, the person who has the largest number of degrees in the networks (tiebreaks arbitrary), and all others

who are classified as followers. All agents are presented with the option of adopting a new technology that is supposed to

offer a high quality of life to the people but requires a high amount of expense to adopt (e.g., the iPhone is more expensive

than other smartphones), or using an old one. At the beginning of the simulation, only the leader accepts the new technol-

ogy, which makes their preference value of the new technology 10, guaranteeing that the probability of occurring reverse

selection is less than 5 percent [42,46] . The followers’ preference values for the new and old technology are all set to zero

[11,12] . 

The followers update their preference values after every deliberation period by either DFT-L or DFT during the simulation;

all parameter values of DFT-L and DFT are assigned according to Table 2 , and followers will adopt the new technology if their

preference value for the new technology exceeds the threshold. We demonstrate that the model’s behaviors are consistent

with two well-known results: the adoption process is fastest in the random network and slowest in the ring network; and

the adoption process follows an S-curve [15,48] . 

As shown in Fig. 5 , we confirmed that the adoption process within DFT-L aligned with generally known results regardless

of population and network structures. We followed the ratio of people who adopted the technology to the total population

( Y -axis) over time ( X -axis). At the beginning of the simulation run, only a few agents adopted the new technology, while

another portion of the population adopted it as time progressed. At some point, the adoption rate increased sharply, then

slowed down after the technology was adopted by most of the agents. This ‘S’ curve phenomenon was observed in all types

of networks with different populations. 

It is also evident that the diffusion process within DFT-L propagates fastest in the random network and slowest in the

ring-lattice network, as shown in Fig. 5 . As the network complexity increases, the adoption rates and information diffusion
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Fig. 5. Adoption process in different settings. 

Fig. 6. Progressive, Neutral, and Conservative Society. 

 

 

 

 

 

 

 

 

 

 

 

 

increase as well. These two results observed in the adoption process verify the use of the proposed framework DFT-L in

analyzing the decision-making process in social networks. 

4.3. Comparison between DFT-L and DFT 

In this section, we detail the high validity of DFT-L compared to DFT in social networks. Through our analysis of the

asymptotic status of social networks within DFT-L and DFT, we demonstrate that DFT-L more thoroughly represents char-

acteristics of society. For the simulation configuration, we used the “opinion formation” setting instead of “leader and fol-

lowers.” In this setting, two alternatives for investment options (the national debt of the US and a hedge fund) are given to

agents to choose based on the criteria of expected profit and level of risk. There are three types of agents in the network:

risk-taking, risk-averse, and risk-neutral. Though all agents have no prior preference values for each option, each agent type

weighs the two criteria differently. Risk-loving agents are assigned their weight values of the level of risk from the Uniform

(0.6, 0.8) distribution, while the values of risk-neutral and risk-averse agents are assigned from the Uniform (0.4, 0.6), (0.2,

0.4) distributions, respectively [11,35] . Classifying agents based on their attitude to risk is a common approach to modeling

decision-making processes in marketing, psychology, computer science, and financial engineering [7] . 

Taking the different com ponents of agent types into consideration, we defined three different society types. In Fig. 6 ,

red, yellow, and green represent risk-averse, risk-neutral, and risk-loving agents, respectively. Based on the proportion of the
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Table 4 

Type III ANOVA results. 

Source of variation Sum of squares DF F value P - value 

Society Type(ST) 0.7276 2 493.57 < 2.2 ×10 −6 

Models 0.4574 1 223.67 < 2.2 ×10 −6 

ST ∗Models 0.9689 2 281.23 < 2.2 ×10 −6 

Residuals 0.2098 129 297.84 

Table 5 

Confidence interval of interesting factors. 

Model DFT-L DFT 

Statistics Estimates Lower CI Upper CI Estimates Lower CI Upper CI 

(Intercept) 0.598 0.5508 0.6452 0.5011 0.4944 0.5078 

Conservative −0.4627 −0.5295 −0.3960 −0.1925 −0.1857 −0.1667 

Progressive 0.3178 0.2510 0.3846 0.1478 0.1124 0.1315 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

agent type to the total population, societies are classified as follows: progressive (20%, 20%, 60%), conservative (60%, 20%,

20%) and neutral (33%, 33%, 33%). At the beginning of the simulation, no agent has any preference for national debt or hedge

funds. They will update their preference values by DFT-L or DFT with parameter values as in Table 2 , with the agent type

determining the weights of the criteria. If either one of the preference values for the two alternatives exceeds the threshold

value, then agents choose the alternative with the higher preference value. The output of the simulation is the proportion

of people who finally chose the hedge fund in the equilibrium status, and the goal is to explore how three society types and

different decision-making models (DFT/DFT-L) affect the response variable as it attains the equilibrium state. To accomplish

this, we utilized the two-factor factorial design method, and the ANOVA (Analysis of Variance) result (Type 3) is shown in

Table 4 . 

According to Table 4 , we conclude that both factors (society type and decision-making models) significantly affect the

number of people adopting the hedge funds. Furthermore, there is a significant interaction between models and society

types because the P values are substantially small, which demonstrates the validity of DFT-L. 

Regardless of the model implemented, the number of people that adopted the hedge fund is the largest in the progressive

society and the smallest in the conservative one. If there is no interaction among people (i.e., within the DFT model), we

can expect that the ratio of people who chose the hedge fund is 70% in the progressive network, since 60% of the risk-loving

people and half of the risk-neutral people (10%) will choose the hedge funds. Because we found that the selection of the

decision-making models between DFT-L and DFT significantly affects the adoption rate, we conducted another test to find

the confidence interval of interesting factors. Under both decision-making models, it is evident that in comparison with

a neutral society, adoption rates increase in a progressive society and decrease in a conservative society. However, DFT-L

shows society types affecting the adoption rates even further than DFT. Within the DFT framework, a progressive society

only increases the adoption rate of 15%, and a conservative society only decreases the rate of 19%; in DFT-L, these changes

have become significantly higher at 46% and 31%, respectively ( Table 5 ). Therefore, we can conclude that interaction among

people affects the agent’s final decision within DFT-L and intensifies embedded society characteristics at the final stage. 

Another phenomenon was observed under the DFT-L model. More than 90% chose the hedge funds in the progressive

network, while less than 10% of people chose them in the conservative network in the equilibrium state (see Fig. 7 ). The

simulation results reveal that DFT-L strengthens the societal characteristics and valdity compared to DFT in equilibrium.

Thus, DFT-L is able to demonstrate the bandwagon effect in social networks more thoroughly. Since the bandwagon effect is

known to be the main reason for information cascade in social networks, DFT-L can be used in analyzing irregular behaviors

such as information cascade in social networks while considering neighbor effects. Our observations show that the limiting

behaviors within DFT-L are affected by social characteristics. 

4.4. Advanced analysis of DFT-L 

In this section, we demonstrate factors that affect the time until attainment of the equilibrium state. The response vari-

able (Y) is the number of deliberation steps until equilibrium is achieved, while four types of independent variables (Society

Type, Network Type, Weights, and Learning as shown in Table 3 ) are considered in ANOVA. In order to choose significant

variables, we first conducted ANOVA with all first-order terms of the four variables. After determining significant variables,

we performed 5 simulation runs for ANOVA with interaction among selected variables. 

Table 6 displays the results of the ANOVA simulations, most notably that society type (described in Section 4.3 ) and net-

work type (described in Section 4.2 ) played a significant role in the time taken to achieve an equilibrium. The interaction

effect between society and network type is not significant enough to affect the average convergence time (as shown in the

third row). Thus, another set of experiments was conducted to estimate the time to equilibrium based on each society and
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Fig. 7. Adoption rate of hedge fund in different society within DFT/DFT-L. 

Table 6 

Type III ANOVA results. 

Factors Sum of squares DF F value P value 

Society Type (ST) 9469.9 2 370.5617 < 2.2 ×10 −16 

Network Type (NT) 6182.2 2 241.9113 < 2.2 ×10 −16 

ST ∗NT 83.0 4 1.6243 0.1893 

Residuals 460 36 

Table 7 

Confidence interval of interesting factors. 

Factors Estimates Lower CI Upper CI 

(Intercept) 78.911 76.4289 81.3933 

Society Type: Conservative −30.4 −33.1191 −27.6808 

Society Type: Progressive −31.133 −33.8524 −28.4142 

Network Type: ring 28.467 25.7475 31.1858 

Network Type: small world 11.000 8.2808 13.7191 

 

 

 

 

 

 

 

 

 

 

 

 

 

network time, not considering those interaction effects. The output of this additional test ( Table 7 ) shows that in both con-

servative and progressive networks, there exists a significant reduction by 30 deliberation periods to the convergence when

compared to the neutral network. These observations demonstrate that the equilibrium is achieved faster in the progressive

and conservative societies than in a neutral society. In the case of the neutral society, since the proportion of the population

favoring each option is well balanced, it takes a longer time for people to make a choice. In the progressive and conserva-

tive societies with the majority of the population having a higher preference of one option over the other, the opinion of

the society is formed and stabilized faster. The longest time to achieve equilibrium state is in the ring network (around 28

deliberation periods on average), and the time in the small world network is also longer (around 11 deliberation periods

on average) than in the random network (See Table 7 ). Our findings validate that DFT-L explains the dynamic behavior of

opinion formation in a more realistic way. 

4.5. Validation using real data 

In this section, we validate the proposed models for well-known social networks using two different types of networks:

1) Zachary’s Karate network [47] and 2) American College Soccer network [39] . First, we demonstrate that the diffusion pro-

cess of the Karate network lies between the diffusion behaviors of random and ring networks, as we described in Section 4.2 .

Since the network complexity ( ρ) of the Karate network is between 0 and 1 (0 < ρ < 1), the diffusion behavior in the Karate
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Fig. 8. (a) Karate network [47] (b) and its diffusion behavior. 

Fig. 9. American College Football Network [39] . 

Table 8 

Type III ANOVA result. 

Factors SS DF F value P value 

Society Types 4.4133 2 526.78 < 2.2 ×10 −16 

Models 0.0999 1 23.84 < 4.9 ×10 −6 

Interaction 0.8827 2 105.36 < 2.2 ×10 −16 

Residuals 0.3519 84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

network should be similar to that of the small world network. We generated a random and a ring network with 34 agents

(the same number of agents in Karate network) and compared the diffusion process. As seen in Fig. 8 , the diffusion process

in Karate network lies between ring and random network. 

Second, using the same configuration in Section 4.3 ., we tested the significance of effect on number of people adopt-

ing the hedge fund using factors like society type and decision-making models. This analysis was performed on American

College soccer network ( Fig. 9 ). Table 8 represents the test results. 

Based on our findings, we conclude that both factors (society type and decision-making models) significantly affect the

number of people adopting hedge funds within a real social network. The interaction factor is also significant, which is also

shown in Table 8 . Thus, the DFT-L model provides a generalized approach to describe different types of behaviors in random

and real social networks. 

5. Conclusions 

In this paper, we proposed Decision-Field Theory with Learning (DFT-L), which is an extension to Decision Field The-

ory (DFT) in conjunction with DeGroot’s social learning model. The extension allows us to analyze long-term deliberation

decision-making processes. By proving relevant lemmas, we showed that asymptotic behavior could be derived with reason-

able assumptions within DFT-L. We also demonstrated that DFT-L could exploit the advantages of both DFT and DeGroot’s

model without losing any validity. DFT-L is a symmetrical way to model social network behaviors combining individual

decision-making processes with interaction effects in the long term. Simulation experiments were conducted to demonstrate

the validity of the DFT-L and its comparison with DFT. The simulation results revealed that DFT-L is capable of representing

and analyzing irregular behaviors in social networks. In summary, the contributions of this paper are the following: the ap-

proach to using Decision Field Theory in the social network setting, the proposed model having a simple structure without
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losing high validity and benefits of original DFT and DeGroot’s model, a formal derivation of asymptotic status, and thorough

validation and demonstration of the model via agent-based simulation. 

Possible future works which the authors are currently pursuing are two-fold: applying network dynamics in analyzing

decision-making processes and applying group detection methods to enhance the representation of people’s interactions. 

In our setting in this paper, the social network structure is fixed over time after it is generated. This assumption can be

resolved if one analyzes the network with high variability. Moreover, we only considered interactions within groups, not

between groups in this paper. Therefore, if a group detection technique is incorporated into the model, multi-layer decision-

making processes can also be represented in this framework. 
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