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A B S T R A C T   

Establishing an efficient disaster management strategy against severe natural disasters is essential 
to mitigate and relieve their catastrophic consequences. In order to understand the situation 
during such devastating events, it is crucial to incorporate individuals' behaviors and their de
cision-making processes, which requires an amalgamation of information from various sources 
such as survey data, information regarding location and intensity of disasters, government's 
policies, and supplies in the affected region. This work proposes a dynamic-data-driven model for 
individual decision-making processes capable of tracking people's preference value over time, 
incorporating dynamic environmental changes using Bayesian updates. An agent-based simula
tion was used to model each of the components vital to devise an effective disaster management 
strategy. Moreover, the proposed model allows deriving quantitative relationships among peo
ple's evacuations, their demographic information, and risk perception based on environmental 
changes, including traffic status, gas outage, and government notice. For this study, the authors 
considered Florida's situations during hurricanes Irma, Michael, and Dorian in 2017, 2018, and 
2019. What-if analyses were also conducted to find the best disaster management policy for 
government agencies to minimize the hurricane's effect, which will help prepare for future dis
aster situations.  

1. Introduction 

Throughout the world, people face various types of natural disasters, such as hurricanes, wildfire, floods, or earthquakes. Careful 
pre-planning of procedures is vital to efficient evacuation in these situations, but as the lack thereof leads to higher evacuation times 
and an increase in casualties. Broadcasts through social media, television, and other sources further complicate critical situations and 
lead to people's deviations from the plans provided by government agencies. One example of a difficulty that can arise is a shortage of 
resources: an individual deciding to evacuate may influence others’ desire to fill their inventory, triggering a mass surge in demand 
for daily supplies including food, water, fuel, and road space. The cost of resources escalates as a result of the unpredictable increase 
in demand and shortage in markets, and government agencies are unable to regulate the supply [28]. As human behavior differs from 
person to person, broadcasted information from government agencies profoundly influences people's decisions to evacuate as well as 
their buying behavior under disaster circumstances [21]. Typically, these agencies provide different levels of alerts based on a careful 
assessment of the disaster impact and effects. To provide timely warnings and to optimize the allocation and organization of 
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resources, disaster management strategies are essential. The digital age has provided a useful medium for broadcasting messages in 
real-time through social media, and taking into account the behavioral aspects of the individual's decision-making process can 
significantly increase the efficacy of these transmissions. Thus, for the development of an efficient disaster management strategy, it 
becomes necessary to consider the disaster characteristics from various information sources as well as human behaviors during the 
disaster situation. 

Among different natural disasters, a hurricane is one of the most devastating disasters, especially in the southern part of the 
United States. Every year approximately four to five hurricanes hit the Florida region, forcing people to evacuate. Among recent 
hurricanes to hit Florida, Hurricane Irma was the most intense hurricane to strike the continental US [78]. Table 1 summarizes the 
damage and causalities caused by Category 5 hurricanes in the last four years. Strong hurricanes have been observed every year, 
which necessities an efficient management strategy to relieve any damages from them. According to Table 1, the direct damage was 
always appraised more than a billion dollars whenever Category 5 hurricane landed in the US. Thus, it necessities to devices effective 
disaster management policies to relieve the consequences by hurricanes. 

Due to the involvement of a variety of agent types (hurricanes, people, counties, etc.) in a disaster situation, a comprehensive 
simulation model to represent the behavior of these agents is of paramount importance. Over the years, agent-based simulation (ABS) 
has become a powerful tool in predicting the behavior of individual agents as well as representing the collective behavior of a specific 
group of people, representing human behavior in a disaster situation. By considering different states of people in the environment, 
ABS facilitates a high-fidelity representation of the people's decision situations under different scenarios. Since ABS can provide 
independent reasoning and analysis capabilities to each agent, higher levels of accuracy can be achieved in mimicking the behavior of 
agents (e.g., individuals, groups of people, and government agencies). Moreover, ABS offers added value by imparting autonomous 
behaviors to different environmental factors raised by natural disasters, especially hurricanes. 

This paper aims to propose a highly comprehensive and scalable simulation, enabling the prediction of evacuation behaviors in 
disaster management applications, especially hurricanes. The significant contributions of this work can be summarized as follows: 
first, a generalized simulation model is developed, addressing heterogeneity and stochasticity of evacuation decisions using the 
cognitive decision-making framework. The framework enables the simulation model to consider the effects of people's demographic 
factors on their evacuation decisions. Second, a data-driven simulation approach has been incorporated by considering the dynamic 
changes in the environmental factors, including gas shortage, hurricane movement, and evacuation orders, while integrating them 
into human decision-making. Finally, case studies from Hurricanes Irma, Michael, and Dorian validated the outcome of the performed 
analysis, which would greatly assist in devising an efficient strategy for government agencies under various "what-if" scenarios. 

The remaining four sections of this paper are organized as follows: Section 2 provides a comprehensive literature review sum
marizing research works in the domain of evacuation decision making, simulation modeling, and analysis on disaster management 
applications. The individual decision-making framework, simulation modeling, and implementation using the ODD protocol has been 
illustrated in great detail in Section 3. Section 4 demonstrates the analysis based on different “what-if” experiments to devise new 
strategies for the effective delivery of the best disaster response. In conclusion, the authors summarize the novel aspects and key 
findings of the proposed works and possible future extensions in this domain. 

2. Literature review 

A major challenge faced by local and federal government agencies during a disaster situation is devising an efficient disaster 
management strategy that would minimize supply shortages and traffic congestion on the roads. Solving such problems requires in- 
depth understanding and reasoning behind people's decisions related to evacuation during such situations. Hurricanes, in particular, 
have gained significant research attention for evacuation procedures due to their severity and impact, especially considering geo
graphical areas and different combinations of population types. After the Federal Emergency Management Agency (FEMA) started 
analyzing people's behavior during hurricanes in 1991 [2], evacuation behavior modeling has been studied by many researchers over 
the last decades. Major subjects in hurricane situations include three primary questions: evacuation decision (whether one evacuates 
or not), evacuation time (when to evacuate), and route choice (what kinds of routes chosen during the hurricane). The authors have 
summarized this behavior research in Table 2. 

In the research regarding evacuation decision, Fu and Wilmot [19] used the sequential logit model to tackle evacuation decisions 
based on the demographic information. Hasan et al. [26] analyzed evacuation decisions accounting for people's previous hurricane 
experiences and conducted an extensive case study of Hurricanes Andrew, Ivan, and Katrina. The local or state authorities' evacuation 
notices and information from news media were also analyzed by Huang et al. [30], while Huang et al. [30] considered the number 
and type of vehicles on evacuation decisions. Gudishala and Wilmot [23] proposed a time-dependent logit model to estimate people's 

Table 1 
List of recent category 5 Hurricanes (NHC Data Archive [79]).        

Nominal Damage (Billions $) Year Storm Classification Casualties  

Matthew $15.1 2016 Category 5 > 600 
Irma $64.5 2017 Category 5 > 134 
Maria $91.6 2017 Category 5 > 3054 
Michael $25.1 2018 Category 5 > 74 
Dorian $8.28 2019 Category 5 > 68 
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evacuation decisions over time. Murray-Tuite and Wolshon [51] studied traffic demand modeling considering gas supplies and social 
cues. Dixon et al. [16] derived the relationship between household information and evacuation decisions, while Cimellaro et al. [71] 
considered the level of people's anxiety for the determination of input parameters based on experimental data. Goodie et al. [22] 
conducted a detailed survey after the catastrophic hurricanes such as Harvey and Irma using logistic regression. Yang et al. [68] 
performed the analysis to evaluate the evacuation threshold, which measures people's initial tendency for evacuation. Pham et al.  
[53] also studied previous hurricane experiences, proving the effect of "unnecessary evacuation." 

The critical aspect of behaviors under hurricane is to incorporate time and location factors in decisions. Notably, there is a 
significant relationship between evacuation time and the choice of evacuation routes, a vital consideration for the development of 
effective disaster management policy. Chen et al. [9] used a zone-based analysis approach to provide the optimal route management 
policy under hurricanes, while Elliott and Pais [18] analyzed survey data to examine the relationship between evacuation time and 
demographic information. Lindell and Prater [39] performed an analysis of evacuation time, providing the empirical probability 
distribution to demonstrate evacuation time behaviors. Wu et al. [67] analyzed the factors which determine the evacuation time and 
found that personal experiences, traffic conditions, and cost are the essential elements. Akbarzadeh and Wilmot [1] developed a time- 
dependent route choice model considering accessibility, distance, level of service in each highway, and road type. In a related study 
on tsunamis, Wang et al. [65] analyzed the evacuation time and speed of humans using an agent-based approach. Urbina and 
Wolshon [64] considered all possible evacuation roads in Florida, including I-10, I-75, and SR 528, while Sadri et al. [59] used the 
logit model to illustrate the routing decisions under a hurricane. 

There are many possible approaches to modeling human behaviors, but the authors chose the agent-based modeling (ABM) 
approach. The main advantage of using ABS is that it allows human-behavior models as well as variant environmental settings to be 
combined into a unified model. Furthermore, agents’ behaviors, including their actions and reactions, can be modeled using 
straightforward rules or logics such as state diagrams or dynamic equations. From the literature, the authors found much relevant 
research using ABS for behavior modeling in a disaster situation. Since the natural disaster is a complicated situation involving many 
factors in one event, Kullu et al. [34] deployed a communication model using autonomous agents in crowd simulation, while Kar
bovskii et al. [32] proposed a multimodal ABS for mass gathering during the evacuation. These approaches are often called mac
roscopic simulations, which consider several macro-level factors, including socioeconomic factors, the intensity of events, and un
certainties. 

Table 3 summarizes agent-based modeling (ABM) approaches used in the different evacuation situations under hurricanes, 
earthquakes, and tsunamis. Under the hurricane situation, the primary modeling object regards traffic modeling. For example, Chen 
et al. [9] used ABM for predicting evacuation time and resource management policy, while Liang et al. [38] used a hierarchical 
modeling approach for traffic estimation. Feng and Lin [73] focused on the effects on the evacuation order, whereas Gehlot et al. [20] 
combined ABM with network optimization for dynamic load balancing. Yang et al. [68] used zone-based spatial modeling to estimate 
people's evacuation threshold. For earthquakes, the spatial and temporal data modeling are often combined with ABM. GIS data was 
utilized for crowd evacuation modeling [13], while D'Orazio et al. [14] considered different phases for policy generation. In terms of 
policy generation, Hashemi and Alesheikh [27] evaluated different scenarios to find the optimal management policy, while Liu et al.  
[42] incorporated the interaction among people. ABM is also an effective tool for studying tsunamis due to its large-scale and 
catastrophic consequences. Sahal et al. [74] offer micro and macro modeling approaches for people's shelter selection and their 
accessibility over time. Development of disaster management policy is also a significant research topic for tsunamis, including studies 
such as those by Mas et al. [45] and Mostafizi et al. [49]. The latter one especially considered social vulnerability to access the 
community's resilience. 

One of the significantly related research themes that have emerged is the application of social networks data analytics to de
monstrate interaction among people in disasters. Sadri et al. [59] focused on the role of social networks as an information source to 
estimate evacuation behaviors, whereas Kryvasheyeu et al. [33] employed the sensor network approach to analyze the dynamics of 

Table 2 
Summary of literature on evacuation behaviors.     

Types of Behaviors Authors Major Findings  

Evacuation Decisions Gudishala and Wilmot [23] Prediction using time-dependent logit model  
Hasan et al. [25,26] Modeling of heterogenous evacuation behavior based on household information  
Huang et al. [30] Effects of demographics on evacuation decisions  
Murray-Tuite and Wolshon [51] Summary and classification of all relevant literatures on evacuation decision  
Yin et al. [69] Estimation of travel demand using probability distribution 

Departure Time Elliott and Pais [18] Departure time prediction in hurricane Katrina  
Hasan et al. [24] Effects of demographics on departure time in Katrina  
Liang et al. [38] Traffic estimation using multi-level simulations (micro vs. macro)  
Lindell and Prater [39] Determination of behavioral variables for departure time estimation  
Mesa-Arango et al. [46] Discrete choice model for time estimation  
Wang et al. [65] Evacuation time and speed in the simulation model 

Route Choice Akbarzadeh and Wilmot [1] Time-dependent route choice model  
Chen et al. [9] Optimal route management policy using zone-based approach  
Sadri et al. [60] Effects of demographic information on route choice  
Sadri et al. [72] Effects of destination and agent interactions on route choice  
Wu et al. [67] Derivation of the factors for route choice 
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social networks during hurricane Sandy. Many researchers have followed suit, examining the effects of social connections by studying 
the structure and dynamics of social networks [11,54]. The emerging use of social media complicates the problem, as people now 
experience physical and social stimuli via different forms of information sources and messaging systems (Morss et al. [48]). More 
recently, due to the advance of the usage of mobile equipment, Stowe et al. [62] applied classification methods using twitter data 
while Long et al. [43] recorded smartphone data to keep track of evacuation behavior patterns during hurricanes. 

Validation of such models has been rigorously discussed by many researchers to check the quality of input data and the reasonable 
assumptions of scenarios. Zhu et al. [70] have studied the effects of typical assumptions, including the time of the day and the 
evacuation rate, by introducing different possible scenarios during the hurricane. Bukvic and Owen [5] have listed significant 
constraints considered for the development of such models, including demands in evacuation, personal risks, and hurricane intensity 
factors, among others. The Monte Carlo technique, along with ABM for parameter estimation was used, [3], especially Zhu et al. [70] 
incorporated Markov Chain Monte Carlo (MCMC) simulation into ABM to address the randomness of the agents. 

Evacuation behaviors have been studied using different methodologies, such as advanced statistics, decision analysis, and opti
mization. Huang et al. [29] conducted a statistical analysis on official warnings, vulnerable residential areas, storm conditions, social 
interactions, and other factors influencing the evacuation decisions of the people living in affected regions. Sarwar et al. [61] used a 
binary logit model to evaluate a household's evacuation decisions, while Dosa et al. [17] used an instrumental variable analysis. In 
terms of decision analysis, Kailiponi [31] applied a multi-attribute utility theory to analyze evacuation decisions, and Liu et al. [41] 
implemented the cumulative prospect theory to study emergency response decisions. From the optimization viewpoint, Saadatseresht 
et al. [58] used an evolutionary optimization algorithm the find the optimal allocation strategies, while a spatial optimization model 
was used to derive the evacuation risk of the transportation network in the emergency [10]. Even heuristic algorithms were used to 
derive the level of overall flow in the network during the evacuation [63], and a robust optimization approach was used to derive an 
optimal evacuation plan under uncertainties during evacuation [52]. 

From the literature, the authors found that it is crucial to incorporate variations in the individual/behavioral rules ("hetero
geneity") and interaction/random factors ("stochasticity"). Moreover, many researchers have pointed out ABM's limited reproduci
bility and expressiveness. Thus, this work adopted the ODD (Overview, Design Concepts, and Details) framework to demonstrate 
these issues. The ODD framework was introduced within Ecology society to demonstrate the behavior of agents and their relationship 
to the environment (Grimm et al. [75]). ODD has three primary contents: overview, design concepts, and details; each containing has 
sub-modules which have been updated to complement ABM's lack of reproducibility. (Grimm et al. [76]). The overview module 
demonstrates the purpose of the model, while the design concepts module supports underlying methodologies and overall framework. 
The Details module illustrates the setting and initialization of the simulation system, which can improve the simulation's reprodu
cibility. The extended model is called ODD + D (Decision) [50] to incorporate individual decision-making frameworks in ABS. The 
significant contribution of their work is an incorporation of the decision-making, adaption, and learning of the framework. [50]. In 
this work, the authors have followed the ODD+D framework by incorporating decision-making and learning. 

3. Simulation modeling 

This section focuses on the simulation modeling of the agent-based approach following the ODD (Overview, Design, and Details) 
framework. Section 3.1 describes the overview of the simulation model, including the purpose, primary composition of the agents 
with parameters, and variables. The methodological details of the individual decision-making framework in terms of perception, 
sensing, and learning are explained in Section 3.2. Section 3.3 conveys the simulation implementation details in terms of in
itializations, parameter evolution, and model execution. This section will help ensure the extensibility and scalability of the proposed 
work for different disaster management applications. 

Table 3 
Summary of literature on agent-based modeling in different disasters.     

Types of Disaster Authors Modeling Objects  

Hurricane Chen et al. [9] Evacuation time and route management policy  
Yin et al. [69] Estimation of travel demand using probability distribution  
Liang et al. [38] Traffic estimation using hierarchical modeling  
Feng and Lin [73] Analysis of the effects of the evacuation order  
Gehlot et al. [20] Dynamic load balancing for network optimization  
Yang et al. [68] Personal evacuation threshold using a zone-based approach 

Earthquake Crooks and Wise [13] Crowd evacuation modeling with GIS data  
Hashemi and Alesheikh [27] Different scenarios for policy generation  
D'Orazio et al. [14] Evacuation phases, motions, and time  
Liu et al. [42] Agent interaction and the effect of environmental change 

Tsunami Sahal et al. [74] Multi-level simulations for the prediction of the selection of shelters and measurement of the accessibility  
Mas et al. [45] Evaluation of evacuation plans and mitigation efforts  
Wang et al. [65] Assessment of the mortality rate with milling time, interaction, and walking speeds  
Mostafizi et al. [49] Vulnerability assessment to network resilience, Evaluation of resource allocation policy 

S. Lee, et al.   Simulation Modelling Practice and Theory 106 (2021) 102193

4



3.1. Overview 

3.1.1. Purpose 
The purpose of the simulation model is to generalize the decision-making model while incorporating dynamic changes of pre

ference value over time. The proposed model can be used in various decision support tools for different applications but is parti
cularly suited for disaster management. Two key features of the proposed approaches are the representation of heterogeneous human 
behavior and the dynamic evolution of behaviors under uncertain situations while combing both static and dynamic aspects of the 
environment to keep track of human decisions. As the perception of risk differs among people, we used a descriptive modeling 
approach named Extended Decision Field Theory (EDFT), which is explained in Section 3.2. EDFT interprets the evolution of peoples’ 
preference values over time as a stochastic process, which helps to understand time-dependent human behavior. The authors also 
provided the rationale to convert people's demographic information to determine the parameters of EDFT, better representing het
erogeneous behaviors of people under the disaster. Also, a data-driven feature is also implemented using the Bayesian parameter 
updates during the simulation run within the EDFT framework. Therefore, the proposed framework encompasses evacuation be
haviors concerning two perspectives, i.e., heterogeneity and stochasticity. 

3.1.2. Agents, parameters, and variables 
Table 4 illustrates all types of agents and their parameters and variables. The person agent represents the residents living in the 

affected area under the disaster. In the simulation model, they are all the residents living in Florida during Hurricane Irma. From the 
literature review, it is evident that heterogeneous agents are used to representing evacuation behaviors in order to increase the 
fidelity of the simulation under hurricanes [55,56]. All the demographic information is incorporated into the parameter values, which 
do not change over time during the simulation runs. The authors assume that agents make evacuation decisions based on their 
decision criteria to reflect realistic situations during the hurricane. Variables of people agents are related to their decision-making 
model DFT, as people's decisions are affected by weight values and their subjective evaluation of the alternatives concerning each 
criterion. The authors modeled those values as variables to incorporate agents' heterogeneous behavior and dynamic data-driven 
updates of human decisions under the disaster. 

In addition to the person agent, the simulation model considers three agents: gas station, county, and hurricane. The first two 
agents represent the gas station owner/manager and the local government. The county agent focuses on replicating the release of the 
evacuation order based on the population size, proximity, and strength of hurricanes, and evacuation orders to minimize economic 
loss and fatalities. Though the authors used the data in the case study, it could be used as an independent variable in the what-if 
analysis. Since irregular buying patterns are regularly observed during the disaster situation, the authors decided to incorporate the 
behavior of one of the essential commodities for the evacuation, the gas station. The parameters of the gas station agent are their 
capacity and location, and the simulation model tracks the gas stock level of gas station agents and determines the status of closure 
since our interest is to predict the number of gas stations that face a gas shortage. For the study, the authors considered all evacuation 
notifications released by all counties in Florida. Finally, the work uses GIS-based location information embedded within AnyLogic 
software, and all the spatial information governed the agent-movement. 

3.1.3. Process overview (flowchart and state diagram) 
Fig. 1(a) shows the flowchart of evacuation decision-making. Once the simulation starts, the initialization parameters are assigned 

based on the demographic and environmental factors. The next major step is to decide whether or not to evacuate, determined based 
on the EDFT (Section 3.2) and dynamic parameter evolution (Section 3.3). After the decision has been made, subsequent decisions 
pertaining to a suitable time and route selection are required for an effective disaster management plan. The chosen combination of 
the aforementioned decision points (governed by EDFT) provides an estimate of the population choosing shelters or state-level 
evacuation, while another population is comprised of people choosing not to evacuate due to a variety of reasons and staying at their 
initial location. The significant outcomes of the process would classify people based on their evacuation decision, and subsequently, 
their final location and deliberation until the determination of the final location. This work focuses more on evacuation decisions 
under the EDFT framework. 

Fig. 1(b) shows a state chart as an ABS implementation tool for a flowchart of human evacuation decision-making behavior. A 
state diagram is a common representation of different states of behavior for any decision-makers in the agent-based modeling 
paradigm. The human evacuation decision is governed by different states and their state transitions within the state-chart. Once a 
people agent decides on evacuation, it also decides for a final location (e.g., shelter or state-level evacuation) and evacuation time. 

Table 4 
Agents, parameters, and variables.     

Entities Parameters Variables  

People Age, Income, Locations, Properties in the area, Work duty Weight values, Evaluation of alternatives, Status of evacuation 
County Population Distance from the hurricane landfalls, Station of evacuation orders 
Gas Station Capacity, Location Fuel status, Status of closure 
Hurricane NA Hurricane path, Hurricane strength 
Shelter Capacity, Location Status of occupancy 

S. Lee, et al.   Simulation Modelling Practice and Theory 106 (2021) 102193

5



Fi
g.

 1
. (

a)
 F

lo
w

ch
ar

t 
of

 e
va

cu
at

io
n 

de
ci

si
on

-m
ak

in
g 

(b
) 

St
at

e-
ch

ar
t r

ep
re

se
nt

at
io

n.
  

S. Lee, et al.   Simulation Modelling Practice and Theory 106 (2021) 102193

6



The composite states within the state chart demonstrate these sequential decision-making procedures, while each decision point is 
recorded during the model execution. The detailed methodology behind each of the composites is explained in Section 3.2. 

3.2. Design concepts 

This section describes the individual decision-making model Decision Field Theory (DFT) used for the proposed simulation model. 
Consequent sub-sections detail how DFT conveys the important factors for decision-making processes, including learning, sensing, 
and interaction within the Extended DFT (EDFT). The theoretical development of EDFT is briefly described for the demonstration of 
heterogeneity and stochasticity. These findings provide the rationale to assign realistic parameter values in the simulation, which will 
be discussed in Section 3.3. 

3.2.1. Individual decision-making framework: DFT 
A realistic evacuation decision-making model is an essential component of the proposed simulation model. Since different at

tributes affect people's decisions, a multi-attribute decision-making model will facilitate the estimation of people's behavior. This 
paper used Decision Field Theory (DFT) to model people's behavior under the hurricane situation. After Decision Field Theory (DFT) 
was introduced by Busemeyer and Townsend [7], this cognition-based decision-making framework has been widely adopted for 
human behavior modeling in different applications [6]. 

DFT keep tracks of the individual's preference values =P p p[ , , ]n1 of the possible options (n number of options given) at each 
decision point. In the evacuation application, before a person selects whether or not to evacuate at every decision point, DFT is used 
to measure preference values based on their quantified values of decision criteria (M) (m number of attributes are considered by 
persons) and their weights (W). The dimension of matrix M is n by m. Eq. (1) shows the formula of DFT, and (2) is a vector 
representation. 
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S is the stability matrix considering the effect of the preference at the previous preference state, which can be regarded as a memory 
effect. In the stability matrix S, the diagonal element sii represents the forgetting process from the previous preference state and the 
off-diagonal element sij for i  ≠  j denotes the inhibitory competitions to be selected between alternatives. Diagonal elements (sii) are 
set to 0.9, meaning that the previous preference value is highly influential to the current value. On the other hand, non-diagonal 
values sij is set to −0.01, implying that they slightly have a negative influence on the opposing option, according to literature [6]. M 
is the value matrix representing the subjective evaluation of people on each attribute at each decision time, W is the weight vector 
regarding the importance weight of each attribute, and C is the contrast matrix regarding the competition to be selected as a final 
decision between options [6, 8]. In the contrast matrix, = =c and c n i j1 1/( 1)ii ij , where n is the number of options so 
that increasing preference for one option will decrease the preference for the alternative options. This configuration results in the 
preference value summing up to zero [6]. Thus, if the decision-maker has two options for choice, the preference value to one option 
increases while the other decreases. 

Fig. 2(a) illustrates sample paths of two competing alternatives’ preference values. Under the evacuation situation, P1 and P2 

represent the options 1) to evacuate and 2) not to evacuate, respectively. According to the construction of the C matrix in Equations 
(2), the increase in one of the preference values leads to a decline in the other's preference value, while satisfying the sum of two 
preference values become zero. Therefore, if there are two options in the evacuation decision (for example, either to evacuate or not), 
only one of the preference values needs to be checked. Within the DFT framework, people's decisions are invoked by setting either 
threshold value or decision time, as shown in Figure 2(b). If the preference value exceeds some predetermined value (colored in 
purple), then the person chooses the option whose preference value is larger. On the other hand, people choose the alternative with 
higher preference value at a specific given time. 

3.2.2. Sensing and learning by EDFT 
During a disaster situation, the environmental status may be highly variable, causing decision-makers under the situation to 

continually update their subjective evaluation of options with respect to decision criteria. Thus, it is necessary to incorporate dynamic 
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changes in perception over time. Among the variant models of DFT, Extended Decision Field Theory (EDFT) [35] allows con
sideration of the dynamic change of the environmental setting. The main difference between the original DFT and EDFT models is the 
evaluation matrix M: M in the DFT model remains the same over time, while M(t + h) in the EDFT model changes over time. Based 
on the research on DFT, the expected preference value can be derived theoretically (Busemeyer and Diederich [6]), while the 
expectation of EDFT can only be derived under rigorous assumptions, including independence of M and W [36]. Fig. 3 demonstrates 
the preference evolution over time in DFT (colored in Red) and in EDFT (colored in Blue) using the same random seed. The evolution 
of EDFT shows a high level of variability compared to that of DFT because EDFT considers dynamic changes of both weight values 
and subjective evaluation over time, as shown in Fig. 3. In this way, the EDFT is able to thoroughly represent people's perception of 
environmental changes using sensing and learning capabilities. Eq. (3) and (4) show the formula and the vector representation of 
EDFT, respectively. 
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Fig. 2. Illustration of preference evolution within DFT: (a) Evolution of preference values with two alternatives (b) Decisions by threshold (purple 
line) or time (green line). 

Fig. 3. Two exemplary sample paths showing evolution differences of DFT (red line) and EDFT (blue line).  
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3.2.3. Interaction by EDFT 
As research shows that social interaction among people significantly affects evacuation decisions under hurricanes [4,40,59], the 

authors examined the incorporation of social interaction within the EDFT framework by applying the DeGroot's model [37], as shown 
in Eqs. (5) and (6). Consider that there are k number of agents with two alternatives within the network, assuming that all agents 
interact based on the adjacency matrix. Then, the matrix P̄ can be constructed with a dimension of 2k ×  1, enlisting all the 
preference values of all agents. Once people update preference values, their subjective sensing, and learning from EDFT (in  
Section 3.2.3) updates the values again by incorporating social interaction. These procedures will keep iterating until either of two 
termination criteria - time or threshold - is satisfied. Eq. (5) and (6) shows the formula and the interaction process within the EDFT 
framework. 
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Collins et al. [11] demonstrated the effects of social connections on evacuation decisions under Hurricane Irma. Two important 
findings from work are that people's evacuation decisions are significantly affected if they have more social connections or if they 
have dense social connections ([12,47]). The authors examined these findings within the EDFT framework under the three different 
network structures shown in Fig. 4(a), (b), and (c). 

Fig. 5 shows the evolution of five agents’ preference values over time. If there is no interaction among the five agents, no strong 
correlation among the agents’ preference value is observed (Fig. 5(a)). However, as the level of interaction increases from Fig. 5(b) to 
5(c), their preference values show an increasing correlation pattern among, illustrating the validity of the EDFT framework for the 
incorporation of social interaction under the disaster situation. 

3.2.4. Prediction and stochasticity under EDFT 
One merit of using EDFT is its capability of predicting people's preference value. If W and M are independent and stationary, the 

limiting expectation of preference values can be shown as Eqn 6a. [36]. Moreover, if W is assumed to follow iid Gaussian Distribution  
[57], the choice probability under the two alternatives decision scenario can be analytically derived as Eq. (7) [36]. 

=P I S C M WE t E Elim [ ( )] ( ) [ ] [ ]
t

1
(6a)  

=Pr X X Y dp dp[ | , ]
exp

2p p p p

p p

y x:{ 0}

(( ) ( ))
2

x y x y

x y x y 2

(7) 

where ζx and ζy are limiting expected preference values of options X and Y in Eqn 6a, and λ is the sum of two diagonal values of the 
limiting covariance matrix while subtracting two times of its non-diagonal element. Using them, the simulation model can predict the 
people's decision and their expected value at the end, enabling the prediction of human behaviors. In Section 3.3.2, the authors 
demonstrate the relationship between the expectation of weight vectors and the demographic datasets using the choice probability to 
assign the appropriate values to the weight vectors in EDFT. 

3.3. Details 

This section demonstrates the details of the proposed simulation model with subsections, including initiation, input data and 
parametrization, parameter evolution, and model execution. Section 3.3.1 describes the simulation model's initial setting with 
particular attention to the implementation logic of the EDFT model. The next section shows the reasoning of the updates of EDFT 

Fig. 4. Three types of networks: (a) No interaction (b) Ring structure (c) Clique.  
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parameters, especially the weight vector. Data-driven parameter updates from environmental changes are explained in Section 3.3.2, 
and the four model execution phases of mitigation, preparedness, response, and recovery are explained in Section 3.3.4. 

3.3.1. Initialization 
Determination of alternatives and their decision criteria precede the implementation of EDFT. The two options for people under 

the hurricane period are whether to evacuate or not. First, the decision criteria for evaluations of alternatives must be determined. 
The authors collected recent survey data regarding evacuation decisions from the literature review, enlisting all the literature whose 
survey data is used for the model development in Table 5. All the reasons for evacuation or non-evacuation from the survey are listed 
in the last column of Table 6. These are then classified into four categories: “Safety,” “Information,” "Efforts,” and “Protection” to 
derive direct attributes based on their common characteristics. For example, from the survey and corresponding analysis, people are 
more likely to evacuate when they receive orders from authorities or news media. Those two factors are correlated and can be 
classified as an "Information" attribute. The direct attributes of safety and information increase the likelihood of people's evacuation. 
On the other hand, the other attributes, “Efforts” and “Protection,” decrease the possibility of evacuation. Thus, these four decision 
criteria are defined and represented as wi, where i  ∈ {1, 2, 3, 4}, respectively. The weight values are assumed to follow an in
dependent Gaussian distribution to characterize the heterogeneity of a person agent, by setting that all wi follow N(0.25, 0.025) 
before normalizing the values, as shown in Eqs. (8) and (9). This setting assures that one decision criterion has no precedence over the 
others at the simulation model start-up. 

=W w N w N w N w N[ (0.25, 0.025), (0.25, 0.025), (0.25, 0.025), (0.25, 0.025)]1 2 3 4 (8)  

= =
+ + + + + + + + + + + +
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w
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w
w w w w
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1

1 2 3 4

2

1 2 3 4

3

1 2 3 4

4

1 2 3 4 (9) 

The initialization of M requires an understanding of the attributes’ effects on two options. For example, those who own pets or 
businesses where they live are less likely to evacuate than others, making them not evacuating option better according to the 
“Protection” criteria. This illustrates how the evacuating option can be positively rated for “Safety” and “Information” criteria, while 
it is negatively rated with respect to “Efforts” and “Protection” criteria. The sign of mij values of M are determined based on this 
observation, while their scales are set to between 0 and 1. The initial values of M elements are given to follow a Beta distribution 
with = = 1, which indeed is Uniform (0, 1) distribution. The assigned values of the matrix M are summarized in Table 7. 

Note that these initial values of W and M force the expected value of CMW to be zero vectors under the independence assumption 
of W and M, as shown in Eq. (8). 

= = =CMW M WE CE E[ ] [ ] [ ] 1 1
1 1

0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

0.25
0.25
0.25
0.25

0
0

(8) 

As seen in Eq. (8), the expected preference values of both options remain zero under the initial setup. The next two sections show how 

Table 5 
Survey data used from literature for model development.      

Authors Studied Hurricanes Authors Studied Hurricanes  

Pham et al., [53] Hurricane Matthew Sarwar et al., [61] Hurricane Ivan 
Martin et al., [44] Hurricane Matthew and Irma Collins et al., [11] Hurricane Irma 
Goodie et al., [22] Hurricane Harvey Zhu et al., [70] Hurricane Irene and Sandy 
Yang et al., [68] Hurricane Georges Wong et al., [66] Hurricane Irma 
Bian et al., [4] Hurricane Katrina Dixon et al., [16] Hurricane Ike 

Table 6 
Development of alternatives and decision criteria from the survey.      

Positive Effects on the Choice of Notation in EDFT Direct Attributes Reasons considered from the survey  

Evacuating w1 Safety based on the perception of risks (Safety) Did not think the home was safe    
Hurricane was severe and its landfall was close  

w2 Beliefs on evacuation orders and forecasting 
(Information) 

Received mandatory or voluntary Orders    

Watched news and media's updates 
Not evacuating w3 Costs or efforts for evacuation (Efforts) Evacuation costs were high/Did not have enough 

money    
Did not want to sit in traffics/Did not want to 
leave  

w4 Desire to save personal properties (Protection) Had personal properties (houses, business, and 
pets)    
Had a requirement to go to work 
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these W and M values update once the data is imported during the simulation run to represent heterogeneity and stochasticity over 
time. 

3.3.2. Incorporation of demographics 
The proposed simulation model uses the demographic datasets of individuals in the hurricane-affected area. People's hetero

geneity is achieved by incorporating demographic information into the EDFT framework in the proposed simulation. This in
corporation requires an understanding of the relationship between demographic variables and their affecting attributes; thus, the 
authors assume that demographic variables affect the determination of weight values (W) within the EDFT framework, as shown in  
Table 8. For example, people living close to the shore have a higher priority on the “Safety” criterion than the others, while people 
with lower income will have a higher priority on the “Evacuation” criterion. Table 8 lists all demographic variables and their 
affecting attributes in the simulation. 

Based on the surveyed data regarding evacuation decisions in the literature listed in Table 5, it has been noted that logistic 
regression was often used to find the marginal effect of a demographic factor on the evacuation decision. This section demonstrates 
the reasoning to determine the input parameters of EDFT based on the demographic information, and the logistic regression model 
results from the literature. Consider the logistic regression model regarding evacuation decision, as shown in Eq. (9): 

= + + + +p
p

x x xln
1 l l0 1 1 2 2

(9) 

where p represents the evacuation probability, xi ∈ {1, 2, ⋅⋅⋅l} the independent variable of demographic information, βj ∈ {0, ⋅⋅⋅, l} effects of 
odds ratio per each independent variable, and l number of all demographic factors considered in the survey. As explained in  
Section 3.2.4, the limiting choice probability can be analytically traceable of an evacuation option within the EDFT framework. Recall  
Eq. (7) to demonstrate the choice probability under the evacuation scenario, as shown in Eq. (10): 
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where = = +I S C M WE E[ , ] ( ) [ ] [ ], 2T
1 2

1
11 22 12, and Ω represents the limiting covariance matrix of preference values  

[37,77] Thus, one can relate the logistic regression model to the limiting choice probability, as shown in Eq. (11). 
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If initial values of W and M discussed in Section 3.3.1 are plugged into the left part of Eq. (11), the odd-ratio becomes 1, and 
consequently, the logit value becomes 0 as shown in Eq. (12). Eq. (12) supports the initial setting of the proposed simulation, 
confining that any option is not preferred over the other. 

Table 7 
Initial values of M.       

Attr. Options Safety Information Efforts Protection  

Evacuating m11 ~ Beta(1, 1) m12 ~ Beta(1, 1) m Beta (1, 1)13 m Beta (1, 1)14
Not evacuating m Beta (1, 1)21 m Beta (1, 1)22 m23 ~ Beta(1, 1) m24 ~ Beta(1, 1) 

Table 8 
Major demographic variable and its corresponding direct attributes.       

Direct Attributes Safety (w1) Information (w2) Efforts (w3) Property (w4)  

Demographic Variables Location, Children Education Income, Vehicle ownership, Age 
(over 65) 

House/Business ownership, Job duty, Pets, Years of 
residence    
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Eq. (11) delivers the reasoning to change any result from the logistic regression to the input parameter W values in the proposed 
simulation model. The limiting choice probability within EDFT depends on the expected values of W. If an odds ratio or estimated 
coefficient of a particular demographic variable is given from survey data, the increase or decrease of the expectation of weight 
vectors can be set by equalizing the left and right-hand sides of Eq. (11). Table 9 shows examples of applying the odds ratio or 

Table 9 
Examples of the determination of W vector using logistic models.      

Logit Model [44] EDFT Model 

Predictor Variable (binary) Odds ratio Corresponding Direct Attributes Assigned expected weight value  

Resident status Monroe 4.6 Safety (w1) = +E w[ ] 0.25 0.411 1 
Resident status Broward 0.6  =E w[ ] 0.25 0.0921
Resident status Lee 1.9  = +E w[ ] 0.25 0.1431

Logic Model [61] EDFT Model 

Predictor Variable (binary) Coefficient Corresponding Direct Attributes Assigned expected weight value 

Mandatory evacuation order 0.307 Information (w2) = +E w[ ] 0.25 0.06472
Voluntary evacuation order 0.181  = +E w[ ] 0.25 0.03722

Table 10 
Changes in weight values based on odds-ratios or coefficients from the logit model.          

EDFT Logit Model EDFT Logit Model 
Increases in E[w ]i Evacuation Choice Probability Odd-ratio Coefficient Increases in E[w ]i Evacuation Choice Probability Odd-ratio Coefficient  

0.01 0.512 1.051 0.050 0.26 0.743 2.891 1.061 
0.02 0.525 1.104 0.099 0.27 0.749 2.989 1.095 
0.03 0.537 1.158 0.147 0.28 0.755 3.089 1.128 
0.04 0.548 1.214 0.194 0.29 0.761 3.192 1.161 
0.05 0.560 1.272 0.241 0.30 0.767 3.296 1.193 
0.06 0.571 1.331 0.286 0.31 0.773 3.403 1.225 
0.07 0.582 1.392 0.331 0.32 0.778 3.511 1.256 
0.08 0.593 1.455 0.375 0.33 0.784 3.622 1.287 
0.09 0.603 1.519 0.418 0.34 0.789 3.736 1.318 
0.10 0.613 1.585 0.460 0.35 0.794 3.851 1.348 
0.11 0.623 1.653 0.502 0.36 0.799 3.968 1.378 
0.12 0.633 1.722 0.543 0.37 0.803 4.088 1.408 
0.13 0.642 1.793 0.584 0.38 0.808 4.210 1.437 
0.14 0.651 1.866 0.624 0.39 0.813 4.334 1.467 
0.15 0.660 1.941 0.663 0.40 0.817 4.461 1.495 
0.16 0.669 2.018 0.702 0.41 0.821 4.589 1.524 
0.17 0.677 2.096 0.740 0.42 0.825 4.720 1.552 
0.18 0.685 2.177 0.778 0.43 0.829 4.854 1.580 
0.19 0.693 2.259 0.815 0.44 0.833 4.989 1.607 
0.20 0.701 2.344 0.852 0.45 0.837 5.127 1.635 
0.21 0.708 2.430 0.888 0.46 0.840 5.268 1.662 
0.22 0.716 2.518 0.923 0.47 0.844 5.411 1.688 
0.23 0.723 2.608 0.959 0.48 0.847 5.556 1.715 
0.24 0.730 2.700 0.993 0.49 0.851 5.703 1.741 
0.25 0.736 2.794 1.028 0.50 0.854 5.853 1.767    
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coefficient values of predictor variables from the survey to determine the W vector. Since all the weight values are normalized at 
every deliberation point, Table 10 focuses on the determination of W′ vector (before normalization) along with the corresponding 
odd-ratios or coefficient values of logistic regression. The proposed approach, therefore, generalizes the incorporation of odd ratios or 
coefficient values within logistic regression into the EDFT framework by setting the weight vector for different survey datasets. 

Table 11 shows three important demographic information of Florida, which were shown to be significant for evacuation decisions. 
The odds-ratios or coefficients of those significant demographic variables were converted to corresponding the expected weight 
values for the EDFT model. As explained previously, the three weights, safety, information, and efforts, are derived from demographic 
information such as age, education level, and income, respectively. The heterogeneity of agents was implemented by incorporating 
these values. In terms of demographic information for age groups, the region comprises 25.3% of people under the age of 19, whereas 
17.6% of people belong to the age group of greater than 65. Around 48.8% of the population have studied high school, whereas 8.1% 
of the people have studied post-college. A significant population belongs to the middle class with income between $15,000 to 
$50,000. Age group distribution in the region significantly affects individual safety during a disaster. In contrast, the belief in the 
information from different sources (e.g., social media and news) can be estimated by their education level. Also, the monetary efforts 
towards the evacuation are significantly impacted by the income level of the people. 

Since this study's focus is on people's decisions and their effect on evacuation patterns in Florida, it was also important to 
accurately represent the distribution of Florida residents. Census data is only taken once a decade, so other sources for population 
data were necessary. The demographic information for the simulation model was taken from the office of Economic and Demographic 
Research (FLOEDR), a Florida Legislature that creates a yearly estimate of the total population at the state and county level. Another 
essential part of the simulation model was determining how many people needed to be represented in the model, and estimates were 
also used to establish the ratio of residents in each county to the overall population in Florida. These values would influence the 
distribution of agents within each county of the model. Table 12 offers an example of how the information from FLOEDR was used for 
the model. The list is sorted from the highest populated counties to the least; Miami-Dade County held the largest proportion of the 
state's population at 12.97%, while Liberty County had the least at 0.03%. The relative population ratio of each county has been 
recorded and used to demonstrate the population distribution in the Florida area. 

3.3.3. Incorporation of environmental changes 
Under the disaster situation, dynamic environmental changes can be the critical factors affecting evacuation decisions. These 

environmental factors include evacuation notices from local or federal authorities, gas shortage status around an agent's region, and 
changes in the hurricane's strength and/or path. Incorporation of such a change is crucial in developing a data-driven model for 
efficient disaster management. This section describes how dynamic changes of hurricane landfalls and strength, evacuation notice 

Table 11 
Demographic information of Florida (Census.gov/quickfacts).        

Age Percentage (%) Education Percentage (%) Income Percentage (%)  

Under 19 25.3 No diploma 20.1 <$15,000 16.3 
20 to 34 18.8 Highschool 28.7 $15,000~$35,000 28.7 
35 to 54 28.4 College 43.1 $35,000~$50,000 35.9 
55 to 64 9.7 Post-graduate 8.1 >$50,000 21.1 
Over 65 17.6     
Affecting Criteria: Safety Affecting Criteria: Information Affecting Criteria: Efforts (Cost) 

Table 12 
Top 20 Counties with the largest population in Florida (retrieved from FLODER).        

County Population Percentage (%) County Population Percentage (%)  

Miami-Dade County 2761,581 12.97 Brevard County 596,849 2.80 
Broward County 1951,260 9.16 Volusia County 547,538 2.57 
Palm Beach County 1485,941 6.98 Pasco County 539,630 2.53 
Hillsborough County 1436,888 6.75 Seminole County 467,832 2.20 
Orange County 1380,645 6.48 Sarasota County 426,718 2.00 
Pinellas County 975,280 4.58 Manatee County 394,855 1.85 
Duval County 950,181 4.46 Collier County 378,488 1.78 
Lee County 754,610 3.54 Osceola County 367,990 1.72 
Polk County 708,009 3.32 Marion County 359,977 1.69    
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Fig. 6. Prior-posterior distribution for elements of M (a) PDF of prior Beta (1, 1) (b) PDF of posterior Beta (5,3).  

Table 13 
Environmental factors dynamic changes of M elements.       

Criterion Safety Information Efforts Property  

Environmental factors Hurricane strength and landfalls Evacuation notice Gas shortage data Traffic data Off duty status 
Corresponding changes in M First column (m11, m21) Second column (m12, m22) Third column (m13, m23) Fourth column (m14, m24) 

Fig. 7. (a) Gas shortage in each county (b) Traffic flow in I-95 at the intersection with State Rd 824.  

Table 14 
Hazard based on proximity and intensity.      

Proximity Intensity Closest (<100 miles) Closer (100 miles to 300 miles) Moderate (300 miles to 500 miles)  

Category 4 and 5 (> 58 m/s) Catastrophic Critical Major 
Category 2 and 3 (> 43 m/s) Critical Major Minor 
Category 1 (> 33 m/s) Major Minor Negligible 
Tropical Strom (18 m/s) Negligible < Negligible < Negligible    
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status, gas shortage status, and off-duty status are embodied in the EDFT framework. The authors used the Bayesian approach to 
update the distribution of M elements using real-time data. 

As explained in Section 3.3.1, elements of +M t h( ) matrix are initially assumed to follow a Beta distribution with 
= = 1prior prior (Fig. 6(a)). These elements are updated based on the real-time hourly data sets during the simulation run, which are 

modeled as Bernoulli random variables (Xi ∈ {1, 2, ⋅⋅⋅h} ∈ {0, 1}). Then, the posterior distribution of M elements will follow a Beta 
distribution with = + Xposterior prior i i and = + h X( )posterior prior i i by the Bayesian approach, where h means the time 
duration under EDFT. By modeling environmental changes as a Bernoulli random variable, the update of distribution parameters of 
elements in +M t h( ) can capture the environmental change. For example, assume that the time duration of EDFT is set to six hours, 
and the simulation model keeps track of the hourly traffic level to see whether it increases or not. The increase in the hourly gas 
outage level can be modeled as a binary variable (Xi ∈ {0, 1}), and there exist six binary variables (X1, X2, X3, X4, X5, X6) within one 
deliberation time. Suppose that the hourly gas outage increases for the last four hours, then == X 4.i i1

6 Then, the evaluation results 
of evacuation and no-evacuation options with respect to the “Effort” criterion will be updated as = =m Beta m Beta(5, 3), (5, 3)13 23
as shown in Fig. 6(b). This real-time update of M enables the incorporation of a data-driven feature into EDFT while allowing the 
proposed model to represent the dynamic effect of environmental changes on the evacuation decision. 

Table 13 summarizes the possible factors of environmental changes and their corresponding changes of M. For example, as the 
distance between a hurricane and people changes over time, people's evaluation results of both options (evacuation vs. non-eva
cuation) with respect to the “Safety” criterion also shift over time, resulting in changes of the first column of M matrix. Repetitive 
adequate evacuation notice leads to a higher rate of the evacuation option concerning the “Information” criterion. However, if many 
gas stations face a shortage, higher efforts will be required for individuals to leave their area, leading to a decreased evaluation of the 
evacuation decision with respect to the “Efforts” criterion. Lastly, the percentage of businesses forced to close due to the safety reason 
can affect the rate of options for the “Property” criterion. 

Fig. 7(a) shows the percentage of gas stations facing outages in Florida during Hurricane Irma. The number of gas stations that 
faced shortages during the period was checked using a data set from GasBuddy (GasBuddy.com), which offers the percentage of gas 
stations without fuel at the county level rather than levels related to individual gas stations’ shortages. Every 6 or 12 h, the website 
posted the status of gas shortage in each county. According to Fig. 7(a), eight counties in Florida faced the gas outage problem of 
more than 40 percent of gas stations running out of gas. Fig. 7(b) shows the traffic volume in I-95 at the intersection with State Rd 
824 on an hourly basis from September 4 to 10. Green represents light traffic while red indicates heavy traffic; this graph illustrates 
that the traffic level peaked in the afternoon on September 5 and 6. Since both datasets show an increase or a decrease every hour, 
these hourly changes can be modeled as a Bernoulli random variable (increase: =X 1i , decrease: =X 0i ), therefore, the posterior 
distribution of M is as explained previously. 

Table 14 describes the hazard assessment based on the quantification of risk perception. The idea is borrowed from the US 
military system safety framework, demonstrating system safety in terms of occurrence and severity (Defense, D. D. MIL-STD-882E  
[15]). This matrix is widely used to appraise hazards in the evaluation of system safety. The authors tailored the matrix to fit the 
hazard assessment of hurricanes by evaluating risk perception with respect to hurricane strengths and landfalls. This table is used for 
the evolution of parameter M especially m11 and m12, representing the evaluation of evacuating and non-evacuating options with 
respect to safety criteria. 

For example, the model updates the m11 and m12 every hour if the hazard level changes. If the perception of 
risk moves from Minor threat to Major threat, then the corresponding Bernoulli random variable Xi and n become 1. Then the 
evaluation results of evacuating and non-evacuating options with respect to safety criteria are updated by assigning 

+ + + +Beta Beta( 1, 1 1)and ( 1, 1 1) to m11 and m21, respectively. These updates allow the simulation model to 
consider the dynamic changes in people's risk perception during the simulation run. 

3.3.4. Model execution 
The timeline for the simulation model was set up according to the NSC report during hurricanes Irma, Michael, and Dorian. For 

example, the timeline for the Irma, Michael, and Dorian models are from August 31 to September 12, from October 7 to October 16, 
and from August 24 to September 10, respectively. Since the report published the locational information, we were able to represent 
the hurricane's movement over time, along with other agents. As a hurricane draws closer to Florida, counties issue voluntary and/or 
mandatory hurricane evacuation statutes indicating how important it is for people to leave that area. Some states issue voluntary 
notices which transition to mandatory, mandatory first, or do not issue any evacuation notice. Once the hurricane passes, evacuation 
notices are gradually changed then lifted, signifying that it is safe to return to certain counties. The simulation model reflects the 
accompanying changes in behavior: person agents gradually evacuate throughout the simulation model, and the evacuation peaks as 
the hurricane approaches Florida. The determination to evacuate or not runs through a state chart by incorporating EDFT. As groups 
of persons leave, some need gas before leaving and travel to a nearby gas station agent. Fuel levels of gas stations are tracked 
throughout the simulation using the state diagram. The amount of gas bought by people is assigned based on different levels of car 
possession, for which we used triangular distribution from 13 gallons to 40 gallons. If a gas station runs out of gas, it enters an 
“empty” state in which it must wait to be potentially refueled during the simulation run. 
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An evacuating person can choose to go to one of the evacuation points outside of Florida or a shelter agent. Simulation logic favors 
going to an evacuation point as space is limited in shelters, and shelters have restrictions. We have selected four evacuation points 
based on survey data. Using the AnyLogic Software feature, these points are mapped to the real GIS points, letting agents reach one of 
the points using the real road. The GIS search function was also used to create the initial population of gas stations for the model, with 
a total of 2791 gas stations found, each able to hold between 30,000 and 40,000 gallons. For people evacuating Florida, exit points at 
the edge of the state along significant interstates highway were determined using FDOT information and Google Maps data in 2017. 
Evacuation points were placed in large cities likely to be chosen by Florida residents during the hurricane along with state exit points 
along major interstates. 

Counties were used to show evacuation policy change over time. During hurricanes, each county is responsible for declaring 
voluntary or mandatory evacuation states. Each county agent in the simulation model represents the behavior of counties represented 
by GIS regions. At the start of the simulation, all counties are colored in transparent, indicating that there is no current evacuation 
notice to any county. During the simulation, if a county announces a voluntary evacuation, it turns yellow. Mandatory evacuations 
cause a county to turn red. After the hurricane, counties turn green as evacuation notices are removed (Fig. 8). The number of gas 
stations needed to be scaled down as well to match the estimated gas bought by 4074 people by considering the relative ratio to gas 
stations and the total population. The density of gas stations is related to the density of people; thus, the scaled-down population of 
gas stations shows a comparatively large number of gas stations in Miami-Dade County to the rest of the state, which is logical as the 
county houses the largest proportion of people, 13%. Hurricane movement was implemented in the simulation model using historical 
data and GPS locations during hurricane Irma to show the progress of the hurricane relative to agent decision-making in Florida. 
Information was gathered from a government hurricane report with other relevant information such as wind speed and air pressure, 
as shown in the NHC report (NHC report 2018 [78]), depicting the hurricane's motion toward its historical point, given in longitude 
and latitude, updated every 6 h. Using AnyLogic, the agent-based simulation model was developed to represent the evacuation 
behaviors during the hurricane. Fig. 8 depicts different agents and their status in the simulation model. 

In Fig. 8, the left figure provides an overview of the simulation setting, while the right figures show the changes in the evacuation 
order issued by each county in Florida (red: mandatory, yellow: voluntary, green: orders are officially removed). During the simu
lation execution, the total number of people who evacuated the city was tracked, then compared for accuracy against the actual 
number of people who evacuated Florida. The four phases of execution of the simulation model (initiation, evacuations start, eva
cuation peak, the hurricane passed by Florida) correspond to the four stages of disaster management: mitigation, preparedness, 
response, and recovery. In the first phase (initiation and mitigation), hurricane Irma forms in the Atlantic Ocean and approaches 
islands in the Caribbean, when people began to recognize the impending threat to Florida. This phase lasts from September 4–6, 
where most people have not started to consider evacuation with the exception of some counties beginning to issue both voluntary and 
mandatory evacuation notices. In the next phase, actual evacuation starts, which corresponds to the emergency preparedness stage, 
September 6 to the morning of September 7, where more counties recommend evacuation, and people begin to consider leaving 
Florida or going to the shelter. Some people may start evacuating during this time, but Hurricane Irma is still in the Caribbean area 
and not close enough for most people to consider leaving their homes. During the third phase from September 7–8, people begin 
evacuating in large volumes; this peak evacuation time corresponds to the response phase in disaster management. At this point, 
Hurricane Irma is approaching and passing over Cuba. More counties are declaring voluntary and mandatory evacuation notices, 
which leads to a significant increase in traffic followed later by the county's mandatory evacuation declaration based on updated 
hurricane path predictions. In the last phase, from September 9 to 15, hurricane Irma reaches and passes through Florida. Those who 
have not yet left evacuate to a shelter or attempt to stay in their homes. Traffic levels normalize after hurricane Irma moves through 
Florida. By this time, 49 of Florida's 67 counties have issued evacuation notices: 35 mandatories and 14 voluntaries. In Section 4, 
what-if analysis has been adopted to achieve higher accuracy of the developed simulation model for validation. 

4. Validation 

For the development of the proposed simulation, the construction of the environment is key in the precise estimation of people's 

Fig. 9. Paths and strengths of three Hurricanes (from the left: Irma, Michael, Dorian) [Images: In Wikipedia, retrieved November 15, 2019].  
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behavior. The first step was to collect all different types of data, including geographical regions, human behavior distributions, 
hurricane movements, gas shortages, and government notification information in order to develop and validate a model that can 
accurately reflect the series of events hurricane Irma, Michael, Dorian. These data sets came from research papers, government 
reports, news outlets, reputable survey companies, and government resource sites like the Federal Emergency Management Agency 
(FEMA: http://fema.gov). To correctly estimate the number of people that evacuated out of Florida during hurricane Irma, multiple 
survey data has been used [4,22,68]. Under the hurricane situation, people had four decision alternatives: 1) evacuate outside of 
Florida, 2) evacuate to another city within Florida, 3) not evacuate but stay in the shelter, and 4) stay at home. The survey revealed 
that only 31% of people evacuated outside of Florida. In Section 4, we compare the number of people evacuating outside of Florida in 
the simulation model to the real data for validation. 

Fig. 9 shows the path of three hurricanes (Irma, Michael, and Dorian) that hit Florida. The color of the dots along the hurricane 
path represents the intensity based on the Saffir-Simpson scale, which classifies hurricanes into five categories based on wind speed. 
Hurricanes classified as Category 5 have wind speeds of at least 70 m/s, whereas Category 4 hurricanes entail a wind speed of at least 
56 m/s. In Fig. 9, the red dots indicate that the maximum wind speed exceeds 70 m/s, signifying that all three hurricanes were 
classified as Category 5. On top of the strength, it is evident that hurricane Irma passed right over Florida while the other two 
hurricanes veered off to the left or the right from Florida.  

Fig. 10 shows three snapshots of evacuation behaviors in hurricanes Irma, Michael, and Dorian. Each county released different 
evacuation orders, either mandatory (red) or voluntary (yellow). For example, hurricane Irma was supposed to pass through the mid 
of Florida area. All the counties in the southern part of Florida and coastal counties were released mandatory orders at the initial 
phase of the hurricane. Since the southern part of Florida has a higher population density, hurricane Irma led to a higher number of 
evacuations compared to other hurricanes. According to the survey, articles, and government reports, around 31 percent of the total 
population in Florida evacuated during hurricane Irma [22]. In the case of hurricane Michael, the hurricane hit the northwestern part 
of Florida, where population density is lower compared to other parts (Fig. 10). Thus, around 22 counties released evacuation orders 
(mandatory or voluntary); the number of people living in those counties is less than 1 percent of the total population in Florida. Only 
12 counties released evacuation orders (mandatory in 5 counties, voluntary in 7 counties) during hurricane Dorian, but the relative 
population in these counties were quite large. This led to a higher evacuation rate during Dorian than Michael, so it is known that 
around 14 percent of the total population evacuated during Dorian. For validation, the authors incorporated the real data providing 
the number of hurricane-related evacuations that were simulated based on EDFT. Also, it was checked that the number of people 
evacuating during three hurricanes is significantly close to the actual number of people evacuated in three different hurricanes. 

In order to perform the validation, 50 runs of simulation under each hurricane situation was executed, and the percentage of 
people evacuating outside of Florida was compared with actual numbers. Since 4074 agents are used to represent the entire po
pulation in the simulation model, results were compared with the real evacuation results obtained. Thus, a null hypothesis was 
established to check whether the average number of people evacuating Florida in the simulation model is close to 1302, 41, 530 (i.e., 
31, 1, and 14 percent of the total people in the simulation) in the periods of hurricane Irma, Michael, and Dorian, respectively. 
Simultaneously, as shown in Fig. 11 (left), it is evident that people evacuated during Hurricane Irma is higher than hurricane Dorian, 
but the percentage of evacuation during Dorian is higher than that of hurricane Michael. Therefore, we conclude that the proposed 
simulation model can appropriately represent the actual evacuation behaviors in Florida during the hurricane periods of Irma, 
Michael, and Dorian. 

At the same time, we also checked the percentage of gas stations facing outages during these hurricanes, spreading the demand 
out over time based on the available information. Since the gas shortages were reported over time, the shortages in the model were 
validated at various time points during the simulation. Gas shortages were compared based on averages over all runs. Based on the 

Fig. 11. Percentage of people evacuated (left) and of gas outage (right).  
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survey and the data from Gasbuddy.com, the percentages of gas stations with outages were 25.11, 0.7, 24.77 in Irma, Michael, and 
Dorian, respectively. Even though the number of people that evacuated during Dorian is less than Irma, the gas outage is very similar 
(Fig. 11 (right)) for two reasons: 1) the path of Dorian was on track for Miami, which has a larger population; 2) despite not 
evacuating, people purchased more gas than necessary based on their hurricane experiences in 2017 and 2018. Thus, we conclude 
that in order to reduce gas outages, the government could place a restriction on gas purchases during the disaster. 

Since one of the goals of this study is to minimize the number of gas stations facing shortages during hurricanes, it is important to 
spread out the number of people evacuating over the hurricane time period. As the results above revealed that the number of 
evacuees during hurricane Michael was too small, only two cases are considered (Irma and Dorian) for the simulation. We considered 
two different scenarios based on the actions of the government. One possible action that the government could take to alleviate 
shortages would be releasing the evacuation order in waves so that the number of people leaving and purchasing gas is more evenly 
distributed. In practice, hurricane watch or warning order is released first before the mandatory order, but most of the evacuation 
decisions are made only after the mandatory evacuation order. 

Fig. 12 represents evacuation patterns under two different scenarios in hurricanes Irma (left) and hurricanes Dorian (right), 
respectively. The blue line in the left figure represents what might have happened if the government had released the mandatory 
orders as a series (August 30, September 2, and 5), allowing for demand to spread out and congestion to be reduced. The orange line 
shows the proportion to the people evacuating under the scenario that the government notification was released on September 5 in 
Irma. This increases the congestion level, as the orange-colored graph becomes sharp. Indeed, the orange line shows a sharp rise on 
September 5, indicating the time at which the government issued a single evacuation order and a correlating spike in congestion. The 
observed spike due to the evacuation order was also observed in evacuation literature [53], demonstrating that the proposed model is 
consistent with the literature and the real phenomenon. Though the series of mandatory evacuation orders increases the total number 
of people evacuating, the congestion level will be reduced. 

Similarly, this pattern remains the same in hurricane Dorian: observing the blue line, it is assumed that there are three orders 
given in a series on August 24, 27, and 30 (Fig. 12, right). However, with the single mandatory evacuation on Aug 30, the evacuation 
pattern increases sharply, leading to severe congestion. According to Pham et al. [53], hurricanes including Matthew shows a similar 
spike after the release of evacuation order, thus signifying the applicability of the proposed model to other hurricanes. The study 
supports reducing congestion by spacing out evacuation notices. As shown in the blue line, the evacuation spread out, and the 
congestion level will be decreased, whereas a one-time mandatory evacuation order will affect severe congestion. Therefore, the 
study strongly supports reducing congestion by spacing out mandatory orders. 

While issuing evacuation orders in waves is one clear step the government can take to minimize congestion during hurricanes, we 
have enriched our study by evaluating different policies for effectiveness: 1) do nothing 2) release an evacuation order several times 
(policy 1) 3) release evacuation orders in series (policy 1) and provide training (policy 2) together. In this context, training means 
increasing the proportion of “responsive” people. The null hypothesis is that the percentage of gas outages under different policies 
remains the same. Thus, the response variable (Y) is the percentage of gas stations facing outage, and the independent variable has 
three levels. As P-value is small enough according to the ANOVA results in Table 15, we reject the null hypothesis concluding that 
different policies will change the percentage of gas station outages. By imposing both polices 1 and 2 to the public, it decreases 18% 
of gas station outage on average compared to the scenario where no policy is released (Table 15, right). Thus, we can conclude that it 
is evident that enacting both policies will reduce the level of gas outages, as the government adopts two policies together. 

Finally, the authors checked the assumptions of residuals in the ANOVA. As in Fig. 13, the constant variance assumption is shown 
to be satisfied. From Levene's Homogeneity of Variance test, the P-value is 0.7867, which means there is not significant evidence to 
reject the null hypothesis. Also, according to the Q-Q plot, most residual points lie close to a 45 line, so it satisfies the normality 
assumption. From Shaprio's Normality test, it is found that the P-value is 0.66998, meaning we do not have significant evidence to 
reject the null hypothesis. Thus, we conclude that both stability and normality assumptions have been satisfied. 

Another critical factor for effective planning and managing disaster situations is connectedness among individuals in society. As 
mentioned earlier, a series of evacuation notices by the government significantly affect the number of evacuations. Along with a 
series of evacuation notice, the authors hypothesized that individuals within the society are well connected, which increases the rate 
of evacuations. The combination of a repeated evacuation notice and the well-connectedness of the society would help increase the 
evacuation rate while helping people make evacuation decisions at the early stage. To test this hypothesis, the authors considered two 
factors: the repeated evacuation notice and connectedness within society. The repeated evacuation notice was implemented by the 
repeated announcement of the same evacuation order three times. Connectedness within society was incorporated by changing the 
average number of degrees within the society from 0 to 3. ANOVA (Table 16) was performed to observe the main effects and 
interaction effects of the factors mentioned above, providing the effectiveness of the simulation model for better disaster management 
and broader managerial implications. 

Table 15 
ANOVA results (left) and confidence intervals (right) based on three different policies.             

Degree of Freedom Sum of Square Mean Square F-value P-value  Lower Bound Estimates Upper Bound  

Policy 2 3685.2 1842.6 995.03 <0.001⁎⁎⁎⁎ Policy 1 & 2 6.9238 8.1417 9.3596 
Residual 28 51.9 1.853   Policy 1 17.7988 18.6803 19.5618 
Total 30 3737.1 1844.45   No policy 25.2160 26.4626 27.7092 
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As shown in Table 16, the p-values corresponding to both factors are lower than any significance level (α = 0.1, 0.05, 0.01); they 
significantly affect the evacuation numbers within the region. Also, since the interaction factor is shown to be significant, one can find 
that if two different policies were released together, it could lead to better disaster management. Thus, it is evident that the well- 
connected and evacuation notice frequency can help the stakeholders make informed decisions about evacuation planning and 
efficiently manage the traffic conditions during the evacuation. 

5. Conclusion 

This paper presents a dynamic data-driven simulation for modeling and analysis of a disaster situation for devising an efficient 
disaster management policy. The situations during different hurricanes in Florida were modeled by the amalgamation of data sets 
such as evacuations, gas outage, hurricane characteristics, and geographic regions, providing a high-fidelity simulation model to 
study and analyze hurricanes as well as other types of disaster situations. The static as well dynamic data were incorporated into 
individual decision-making framework to analyze and observe the dynamic evolution of preference values over time for different 
types of unforeseen events. To endorse the robustness and validity of the proposed approach, case studies of three major hurricanes – 
Irma, Dorian, and Michael - have been incorporated to perform a risk assessment for catastrophic, critical, and major threat disaster 
situations, respectively. Moreover, the disaster-affected regions were evaluated for the implementation of different policies to reduce 
casualties and asset loss. Based on the conducted what-if analysis, training and well-organized disaster evacuation strategy would 
significantly contribute to smooth evacuations. Thus, the proposed simulation paradigm will facilitate stakeholders in government, 
homeland security, and the population to make informed decisions about disaster management and evacuation policies. 

This work establishes a high degree of correspondence between the real evacuation patterns and the simulation patterns during 
hurricane Irma. Due to the incorporation of spatial and temporal analysis, the proposed approach expedites the evaluation of al
ternative governmental strategies to reduce the congestion on the roads and to devise effective resource allocation during disasters. 
There can be many ways of extending the proposed work to gain deeper insights for effective disaster management. Firstly, the 
proposed approach can be enlarged by incorporating the numerical weather prediction framework such as Weather Research and 
Forecasting (WRF), which can perform the operational forecasting of the disasters' meteorological aspects. This extension will help 
perform rich experimentation by considering different scenarios for hurricane parameters such as paths and speed. Secondly, the 
utilization of locally distributed multi-level simulations (at the city-level, county-level, and state-level) will facilitate a hierarchical 
modeling approach to maintain each module's coherence and increase the interplay among those modules. Finally, the proposed 
simulation model can be extended for different types of disasters as well as locations. For instance, one can examine the model within 
other hurricane vulnerable states such as Texas and Louisiana. Moreover, policies dedicated to a specific type of disaster can be 
derived by testing the model within wildfires, earthquakes, or tsunamis. These examinations will bring a generalization of the 
proposed simulation model. 
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