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Abstract— A class of nonlinear matched filters is introduced
suitable for detection problems using Chen–Fliess functional
series. Such series can be viewed as a noncommutative analogue
of Taylor series. They are written in terms of a weighted sum
of iterated integrals indexed by words over a noncommuting
set of symbols. The primary goal is to identify within this class
the set of filters which maximizes the signal-to-noise ratio at a
given time instant in order to provide a statistic for detecting
a known signal.

I. INTRODUCTION

Detection of a known signal in additive noise is a fun-

damental problem in communications, radar, biomedical

applications, and most recently in gravitational-wave as-

tronomy [2]. For wide-sense stationary noise, the optimal

linear detector has an impulse response satisfying a certain

Fredholm type integral equation so as to maximize the signal-

to-noise ratio (SNR) at a given time instant. This provides a

test statistic suitable for hypothesis testing. For the case of

additive white noise, the impulse response matches in some

sense the signal to be detected [34], [36]. The solution is

independent of the noise distribution, but in the Gaussian

case it coincides with the correlation receiver derived from

likelihood functions, which is known to be the optimal

detector over the class of all linear and nonlinear filters.

When the assumption of linearity is relaxed, there is the

potential for improved detection performance in the non-

Gaussian case, but the complexity of the filter becomes an

issue. A number of authors have considered using Volterra

series to develop filters [5]–[7], [20], [27], [30]–[32]. But

determining the optimal kernel functions beyond the second-

order case is a largely intractable problem. Others have taken

numerical approaches to provide detectors that are locally

optimal in some information theoretic sense [10], [25], [26]

or approach the optimal filter asymptotically [3], [4]. Despite

an extensive literature on the subject, the general problem

appears far from settled.

The objective of this paper is to propose a matched filter

approach to the nonlinear detection problem using Chen–

Fliess series. Such series can be viewed as a noncommutative

analogue of Taylor series for functional maps. They are

written in terms of a weighted sum of iterated integrals

indexed by words over a noncommuting set of symbols [11],

[12]. Chen–Fliess series are widely used in control theory to

describe the input-output map of a dynamical system with

real analytic vector fields and an affine dependence on the

input [19], [28]. They contain as a special case all Volterra

series with real analytic kernel functions. Therefore, any

linear or bilinear time-invariant system can be written in
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terms of a Chen–Fliess series. It should also be noted that

these series are distinct from the eigenfunction series used to

provide formal solutions to integral equations [18], [36]. The

specific goal here is to identify within the class of all input-

output maps having Chen–Fliess series representations, the

set of filters which maximizes the SNR at a given time instant

in order to provide a statistic for detecting a known signal.

This does not automatically imply that any corresponding

detector will necessarily be optimal in any sense, however,

the intuitive appeal is obvious. Intrinsically this approach

is for the continuous-time case, but the proposed filter can

be approximated and implemented in discrete-time to any

desired accuracy modulo some numerical limitations. Finally,

it should be stated that the approach taken here has some

aspects in common with a class of pattern classification

techniques based on the signature of a path [17], [23], [24].

Analogous to Chen–Fliess series, the signature is written in

terms of iterated integrals of the coordinates functions of the

path. However, a path is translation invariant and involves

a normalization of its speed, features not available in the

present context. In addition, the concept of SNR does not

play a central role in typical applications like text recognition

[37].

The paper is organized as follows. In the next section, the

mathematical preliminaries are presented in a concise manner

to make the presentation self-contained. The main results are

given in Section III, and a discrete-time implementation of

the proposed filter is developed in the subsequent section.

The conclusions and directions for future results are sum-

marized in the final section.

II. PRELIMINARIES

Let X = {x0, x1, . . . , xm} be a nonempty finite set of

noncommuting symbols. X0 corresponds to the case where

m = 0. Each element of X is called a letter, and any finite

sequence of letters from X , η = xi1 · · ·xik , is called a word

over X . Its length is |η| = k. In particular, |η|xi
is the

number of times the letter xi ∈ X appears in η. The set

of all words of length k is denoted by Xk, while the set

of all words including the empty word, ∅, is written as X∗.

The latter forms a monoid under catenation. The set of all

words with prefix or suffix η ∈ X∗ is written as ηX∗ and

X∗η, respectively. Any mapping c : X∗ → R
ℓ is called a

formal power series. The value of c at η ∈ X∗ is written

as (c, η) and called the coefficient of η in c. Typically, c
is represented as the formal sum c =

∑

η∈X∗(c, η)η. The

subset of X∗ defined by supp(c) = {η : (c, η) 6= 0} is

called the support of c. The set of all formal power series

over X taking coefficients in R
ℓ is denoted by R

ℓ〈〈X〉〉.
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A. Chen–Fliess series: continuous-time case

Given a c ∈ R
ℓ〈〈X〉〉 one can associate a causal m-input,

ℓ-output system, Fc, in the following manner. Let p ≥ 1
and t0 < t1 be given. For a Lebesgue measurable function

u : [t0, t1] → R
m, define ‖u‖p = max{‖ui‖p : 1 ≤ i ≤ m},

where ‖ui‖p is the usual Lp-norm for a measurable real-

valued function, ui, defined on [t0, t1]. Let Lm
p [t0, t1] denote

the set of all measurable functions defined on [t0, t1] having

a finite ‖ · ‖p norm and Bm
p (Ru)[t0, t1] := {u ∈ Lm

p [t0, t1] :
‖u‖p ≤ Ru}. Assume C[t0, t1] is the subset of continuous

functions in Lm
1 [t0, t1]. Define inductively for each η ∈ X∗

the map Eη : Lm
1 [t0, t1] → C[t0, t1] by setting E∅[u] = 1

and letting

Exiη[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0) dτ,

where xi ∈ X , η ∈ X∗, and u0 = 1. The Chen–Fliess series

corresponding to c is

Fc[u](t) =
∑

η∈X∗

(c, η)Eη[u](t, t0). (1)

It can be shown that if there exists K,M ≥ 0 such that

|(c, η)| ≤ KM |η| |η|!, ∀η ∈ X∗, (2)

then the series defining Fc converges absolutely and uni-

formly for sufficient small R, T > 0 and constitutes a well

defined Fliess operator mapping Bm
p (R)[t0, t0 + T ] into

Bℓ
q(S)[t0, t0 + T ], where the numbers p, q ∈ [1,∞] are

conjugate exponents, i.e., 1/p+ 1/q = 1 [16]. Furthermore,

the input-output map y = Fc[u] can often be realized by an

input affine analytic state space model

ż = f(z) + g(z)u, z(0) = z0

y = h(z)

in local coordinates about z0 such that for any word η =
xik · · ·xi1 ∈ X∗

(c, η) = Lgi1
· · ·Lgik

h(z0),

where Lgih denotes the Lie derivative of h with respect to

vector field gi [11], [12], [19], [28]. The concept of a Fliess

operator is also well defined when the applied input is an

L2-Itô stochastic process [9] or a Poisson process [8].

B. Chen–Fliess series: discrete-time case

A discrete-time version of a Chen–Fliess series is also

available. Here inputs are assumed to be sequences of vectors

from the normed linear space

lm+1
∞ (N0) := {û = (û(N0), û(N0 + 1), . . .) : ‖û‖∞ <∞},

where û(N) := [û0(N), û1(N), . . . , ûm(N)]T , N ≥ N0

with ûi(N) ∈ R, |û(N)| := maxi∈{0,1,...,m} |ûi(N)|,
and ‖û‖∞ := supN≥N0

|û(N)|. The subspace of finite

sequences over [N0, Nf ] is denoted by lm+1
∞ [N0, Nf ]. Given

a generating series c ∈ R
ℓ〈〈X〉〉, the corresponding discrete-

time Chen–Fliess series is defined as

F̂c[û](N) =
∑

η∈X∗

(c, η)Sη[û](N)

for any N ≥ N0, where

Sxiη[û](N) =
N
∑

k=N0

ûi(k)Sη[û](k)

with xi ∈ X , η ∈ X∗, and û ∈ lm+1
∞ [N0]. By as-

sumption, S∅[û](N) := 1. It is known that the class of

truncated, discrete-time Fliess operators acts as a set of

universal approximators with computable error bounds for

their continuous-time counterparts [13]. Specifically, select

some fixed u ∈ Lm
1 [0, T ] with T > 0 finite. Choose an

integer L ≥ 1, let ∆ := T/L, and define the sequence of

real numbers

ûi(N) =

∫ N∆

(N−1)∆

ui(t) dt, i = 0, 1, . . . ,m, (3)

where N ∈ {1, 2, . . . , L}. Assume u0 = 1 so that û0(N) =
∆. The truncated, discrete-time Fliess operator with gener-

ating series c ∈ R〈〈X〉〉 is

ŷ(N) = F̂ J
c [û](N) :=

∑

η∈X≤J

(c, η)Sη[û](N), (4)

where X≤J := ∪J
k=0X

k and J,N ≥ 1. In this set-

ting, an explicit and generally tight upper bound on
∣

∣

∣
Fc[u](T )− F̂ J

c [û](L)
∣

∣

∣
is given in [13, Theorems 6 and 7]

in terms of J , L, and the series growth rate parameters

K and M appearing in (2). Finally, there are at least two

methods for realizing the input-output map ŷ = F̂c[û]. The

first applies only for rational generating series and employs

state space models [13]. The second approach is based on

Chen series and is completely general [14], [15], [35]. In this

paper, the latter approach is taken in all the software used

for the simulations. Specifically, (4) is first rewritten as an

inner product ŷ(N) = c
T
S[û](N), where c ∈ R

l is a column

vector containing all the coefficients of c in some fixed order

{η1, η2, . . . , ηl}, l := card(X≤J ), and S[û](N) ∈ R
l is the

corresponding set of iterated sums. It is then shown in [15],

[35] that the update equation for S[û](N) has the form

S[û](N + 1) = SJ(N + 1)S[û](N), N ≥ 0,

where S[û](0) := e1 = [1 0 · · · 0]T ∈ R
l, and SJ (N + 1)

has a certain recursive structure given by S0(N + 1) = 1,
and for J ≥ 0

S
J+1(N + 1) =





1 0 · · · 0

û(N + 1)⊗ (SJ(N + 1)e1)
block diag(SJ(N + 1),

. . . ,SJ(N + 1))



 ,

where ‘⊗’ denotes the Kronecker matrix product, and the

block diagonal matrix is comprised on m+ 1 blocks. Once

J is fixed, the structure of SJ(N+1), which depends only on

û(N+1), is also fixed and can be pre-computed to efficiently

implement the update equation.

III. NONLINEAR MATCHED FILTER

Set X = {x0, x1} and pick a total ordering on X∗ so that

X∗ =
[

η1 η2 · · ·
]T
.
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TABLE I

FILTER TYPE BASED ON SUPPORT OF GENERATING SERIES

W filter type

X≤J = ∪J
k=0X

k finite approximation

X∗
H

= {η ∈ X∗ : |η|x1
> 0} homogeneous

X
≤J

H
= X≤J ∩X∗

H
finite approximation, homogenous

XL = X∗
0x1X

∗
0 linear

XLTI = X∗
0x1 linear time-invariant

{x1} single integrator/summer

For any c ∈ R〈〈X〉〉 and u ∈ L1[0, T ] define

c =
[

(c, η1) (c, η2) · · ·
]T
.

E[u](t) =
[

Eη1
[u](t, t0) Eη2

[u](t, t0) · · ·
]T
.

In which case, (1) can be written as

Fc[u](t) = c
T
E[u](t).

It will be useful to consider special classes of Fliess operators

corresponding to certain filter types. For example, if it is

desirable that Fc be homogeneous, i.e., Fc[0] = 0, then

the support of c should contain no words of the form xj0
since E

x
j
0

[0](t) = tj/j! for t ∈ [0, T ]. In which case, X∗

everywhere above can be replaced with the set of words

X∗
H := {η ∈ X∗ : |η|x1

> 0}, and the homogeneity property

is assured. Other important classes of operators and their

corresponding word sets are given in Table I.

Let T > 0 and assume that s ∈ L1[0, T ] is a known signal.

Let W ⊆ X∗ be an arbitrary fixed word set. Suppose n(t) is

a zero mean random process with Eηi
[s+n](T ) being a well

defined random variable for each ηi ∈W . Let y = Fc[u] be

any operator with supp(c) ⊆ W . Define ys = Fc[s] and

ys+n = Fc[s+ n]. The input and output (power) signal-to-

noise ratios at t = T are taken, respectively, to be

SNR2
i =

s2(T )

E{n2(T )}

SNR2
o =

y2s(T )

E{(ys+n(T )− ys(T ))2}
,

where E{·} denotes expected value. Any filter Fc that

maximizes SNR2
o is said to be matched to s. The following

theorem describes a matched filter in this continuous-time

setting.

Theorem 1: The maximum value of SNR2
o is achieved

when c = R−1
E[s](T ) and is equivalent to

SNR2
o = E[s](T )TR−1

E[s](T ) = c
TRc,

where R is assumed to be a positive definite autocorrelation

matrix with components

Rij = E{(Eηi
[s+ n](T )− Eηi

[s](T ))

(Eηj
[s+ n](T )− Eηj

[s](T ))}.
Proof: Define the mean-square performance index

J = E{(ys+n(T )− ys(T ))
2} = c

TRc.

Then SNR2
o is maximum when J is minimized subject to

a fixed value of ys(T ). That is, the problem reduces to a

constrained quadratic optimization problem with Lagrangian

L = J− µys(T ) = c
TRc− µcTE[s](T ),

where µ is the Lagrange multiplier. A necessary and suffi-

cient condition for a minimum is:

dL

dc
= 2Rc− µE[s](T ) = 0

d2L

dc2
= 2R > 0.

The optimal filter follows from the first equation,

c = (µ/2)R−1
E(s)(T ),

so that

ys(T ) = c
T
E(s)(T ) = (µ/2)E[s](T )TR−1

E[s](T )

and

J = c
TRc = (µ/2)2E[s](T )TR−1

E[s](T ).

Therefore,

SNR2
o =

y2s(T )

J
= E[s](T )TR−1

E[s](T )

as claimed. Note that the factor µ/2 above can be dropped

without affecting SNR2
o.

It should be stated first that the performance of the

matched filter will be highly dependent on the specific class

of filters considered, i.e., on W . In fact, it is not immediately

evident that for every possible filter class one has SNR2
o >

SNR2
i as desired. On the other hand, as in the classical

case [36], the theorem holds for all noise distributions. Of

course the maximum value of SNR2
o will be distribution

dependent. In the special case of linear filters (W = XL),

the performance index simplifies by superposition to J =
E{y2

n(T )}. If one is free to design s then the following

corollary is useful.

Corollary 1: Consider the class of linear filters {Fc :
supp(c) ⊂ XL}, and assume R is fixed. The maximum

value of SNR2
o is achieved for the matched filter where

s ∈ L1[0, T ] satisfies E[s](T ) = p with p the eigenvector

corresponding to the smallest eigenvalue of R−1. Specifi-

cally, if c = λmin(R)p then

SNR2
o,max = λ−1

min(R)‖E[s](T )‖2

and

sup
s′∈L1[0,T ]

E[s′](T )TR−1
E[s′](T ) ≤ SNR2

o,max.

Proof: The proof follows directly from Theorem 1 and

standard results regarding quadratic forms.

No claim is made above that for a given R such an s
actually exists. In addition, as the dimension of R grows, it

is likely to become ill-conditioned so that this upper bound

may not be achievable in practice.

Example 1: Assume W = X∗. If R = (N0/2)I , then

c = (2/N0)E[s](T )
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and

SNR2
o = (2/N0)E[s](T )TE[s](T ).

In this case, the coefficients of the filter match the iterated

integrals of s modulo a constant.

Example 2: Consider a causal linear time-invariant (LTI)

filter with impulse response h. If h is assumed to be real

analytic at t = 0 then

ys(T ) =

∫ T

0

h(T − t)s(t) dt

=

∞
∑

i=0

hi

∫ T

0

(T − t)i

i!
s(t) dt

=

∞
∑

i=0

hiExi
0
x1
[s](t).

(The final step requires that the integration by parts formula

be applied i times.) Therefore, the filter can be written in

terms of a Fliess operator, Fc, where the generating series is

c =
∑

i≥0 hix
i
0x1. That is, W is equal to the set of linear

time-invariant words

XLTI =
[

x1 x0x1 x20x1 · · ·
]T
.

For this case, the coefficients hi = (c, xi0x1) for the optimal

filter are given by Theorem 1 to be c = R−1
E[s](T ), where

now

Rij = E{Exi
0
x1
[n](T )E

x
j
0
x1
[n](T )}

=

∫ T

0

∫ T

0

(T − t)i

i!

(T − s)j

j!
Rn(t, s) dt ds

with Rn(t, s) being the autocorrelation function for n. In

the white noise case where Rn(t, s) = (N0/2)δ(t− s) (and

thus, SNR2
i = 0), it follows directly that

Rij =
N0

2

(

i

j

)

T i+j+1

(i+ j + 1)!
.

This implies that the filter coefficients have to satisfy

E
x
j
0
x1
[s](T ) = [Rc]j+1 =

∞
∑

i=0

hi
N0

2

T i+j+1

i!j!(i+ j + 1)
, j ≥ 0.

Recall that the classical theory of matched filters for LTI

systems requires that s(t) = (N0/2)h(T − t) [34], [36].

Therefore,

E
x
j
0
x1
[s](T ) =

∫ T

0

(T − τ)j

j!

N0

2
h(T − τ) dτ

=

∞
∑

i=0

hi
N0

2

∫ T

0

τ i+j

i! j!
dτ

=

∞
∑

i=0

hi
N0

2

T i+j+1

i!j!(i+ j + 1)

as expected. In addition,

SNR2
o = c

TRc =
∞
∑

i,j=0

hi
i!

hj
j!

N0

2

T i+i+1

i+ j + 1

=
N0

2

∫ T

0

h2(t) dt =
2

N0

∫ T

0

s2(t) dt.

Example 3: For wide-sense stationary possibly nonwhite

noise, it is known the LTI filter maximizing SNR2
o is the

solution of the integral equation

s(T − t) =

∫ T

0

h(τ)Rn(t− τ) dτ, 0 ≤ t ≤ T

[36]. If s ∈ L2[0, T ] and {fj}j≥0 is a complete orthonormal

spanning set for L2[0, T ] with

∫ T

0

Rn(t− τ)fj(τ) dτ = λjfj(t), j ≥ 0,

then the optimal filter has the form

h(t) =

∞
∑

j=0

sj
λj
fj(t),

where sj :=
∫ T

0
s(T − t)f∗j (t) dt and provided that

∑

j≥0(|sj |/λj)
2 <∞. Take as an example the case of band-

limited white noise with spectral density S(ω) = N0/2 on

[−Ω,Ω] and zero otherwise. The corresponding autocorrela-

tion function

Rn(τ) =
N0

2

sin(Ωτ)

πτ
, (5)

has real-valued eigenfunctions fj(t) = ψj(t − T/2), where

the ψj are scaled versions of angular prolate spheroidal

wave functions, and positive real eigenvalues [21], [22], [33].

Computing h even for simple s is a nontrivial problem [1],

[29]. If the filter class is simplified, however, the problem is

more tractable as illustrated next.

Consider the optimal filter corresponding to W = {x1}
in Theorem 1. Assume s(t) = A > 0, and n has the

autocorrelation function (5). The optimal filter coefficient is

given by (c, x1) = R−1Ex1
[s](T ) = R−1AT , where

R = E{E2
x1
[n](T )} =

∫ T

0

∫ T

0

Rn(t− s) dt ds

= 2T

∫ T

0

Rn(τ) dτ − 2

∫ T

0

τRn(τ) dτ

= N0T

∫ T

0

sin (Ωτ)

πτ
dτ −

N0

π

∫ T

0

sin (Ωτ) dτ

= N0T

∫ ΩT
π

0

sin(πτ)

πτ
dτ +

N0

πΩ
(cos(ΩT )− 1)

≈
N0T

2

when ΩT = 2πk and k ≫ 0. Hence, the optimal filter is

y(t) = (c, x1)Ex1
[s+ n](t)

=
2A

N0

∫ t

0

(s+ n)(τ) dτ

for which

SNR2
o =

E2
x1
[s](T )

R
≈

2

N0
A2T
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≈
ΩT

π
SNR2

i . (6)

Therefore, SNR2
o ≫ SNR2

i .

Nonlinear filter examples are difficult to produce analyt-

ically as the statistic R is hard to compute directly. But

the filter design problem is tractable numerically using the

discrete-time version of the theory as described in the next

section.

IV. DISCRETE-TIME IMPLEMENTATION

Let L > 0 be a fixed integer and assume that ŝ ∈ l2∞[0, L]
is a known signal. Let W ⊆ X∗ be an arbitrary fixed word

set. Suppose n̂(N) is a zero mean discrete-time random

process with Sηi
[ŝ + n̂](L) a well defined random variable

for each ηi ∈W . Let

ŷ(N) = F̂c[û](N) = c
T
S[û](N)

with supp(c) ⊆W and

S[û](N) =
[

Sη1
[û](N) Sη2

[û](N) · · ·
]T
.

Define ŷŝ = F̂c[ŝ] and ŷŝ+n̂ = F̂c[ŝ + n̂]. The input and

output (power) signal-to-noise ratios at N = L are taken,

respectively, to be

SNR2
i =

ŝ2(L)

E{n̂2(L)}

SNR2
o =

ŷ2ŝ(L)

E{(ŷŝ+n̂(L)− ŷŝ(L))2}
.

The following theorem is the discrete-time version of Theo-

rem 1. Its proof is exactly analogous.

Theorem 2: The maximum value of SNR2
o is achieved

when c = R−1
S[ŝ](L) and is equivalent to

SNR2
o = S[ŝ](L)TR−1

S[ŝ](L) = c
TRc, (7)

where R is assumed to be a positive definite autocorrelation

matrix with components

Rij = E{(Sηi
[ŝ+ n̂](L)− Sηi

[ŝ](L))

(Sηj
[ŝ+ n̂](L)− Sηj

[ŝ](L))}.
Example 4: Consider the case where ŝ(N) = A ∈ R

+

for all N ∈ {1, . . . , L}, and n̂ is a sequence of zero mean

independent Gaussian random variables. The latter can be

viewed as samples in the sense of (3) of a band-limited

(not necessarily Gaussian) white noise process n on some

interval [0, T ] as described in Example 3 with ∆ = T/L and

Ω = π/∆. Note the random variable Sη[ŝ+ n̂](L) will not

be Gaussian when |η|x1
> 1. In this example, the filter type

will be homogeneous truncated discrete-time Fliess operators

corresponding to W = X≤J
H = X≤J ∩X∗

F , J = 1, 2, 3. For

the particular case where J = 1, the corresponding discrete-

time match filter is equivalent to the classical matched filter

in white noise since W = {x1}, and thus (6) provides a

reference point (LTI MF (theory) in Figure 1) against which

the nonlinear filters (J = 2, 3) can be compared. The statistic

R is also estimated by Monte Carlo simulation, and the

SNR2
o is computed from (7) as shown in Figure 1 when

A = 1, T = 1 and L = 20 (LTI MF (MC) in Figure 1).

Fig. 1. Input SNR versus output SNR in Example 4

Fig. 2. Statistic q4 = E{n4} for three different distributions as a function
of input SNR

In the case where J = 2, R can be computed directly as

shown in (8), where qi := E{ni}. The rows and columns are

indexed by X≤2
H = {x1x0, x1, x0x1, x

2
1}. For the case under

consideration, q3 = 0 and q4 = 3σ4
n. It is important to note

that while R has full rank, rank(R) → 3 as σn → 0 since in

the limit column 4 = column 2×(AT (L+1)/L). Therefore,

Theorem 2 can only be applied practically by replacing the

matrix inverse of R with the pseudo-inverse to solve the

problem in a least-squares sense. (These numerical results

were also confirmed independently for each R by solving the

quadratic optimization problem min
c∈R4 c

TRc+c
T
S[A](L)

via the MatLab command quadprog.) This theoretical value

of SNR2
o is also shown in Figure 1 (J = 2 MF (theory)).

Note that this only upper bounds the value found by esti-

mating R via Monte Carlo simulation (J = 2 MF (MC)).

Computing theoretical results for the J = 3 is not feasible,

but the outcome is likely the same, that is, the higher-order

filter increases SNR2
o as shown in Figure 1 (J = 3 MF

(MC)), but not to the degree predicted by computing R
explicitly and applying (7). Finally, it is noted that if the

distribution of the noise is changed, the results shown in

Figure 1 are altered very little. Observe that the only change
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(8)

in R as shown in (8) will be q4. This statistic is shown in

Figure 2 for three distributions as a function of SNRi. These

differences are not significant enough to affect SNRo.

ACKNOWLEDGEMENT

This research was supported by the National Science

Foundation under grant CMMI-1839378.

V. CONCLUSIONS AND FUTURE WORK

A class of nonlinear matched filters was introduced using

Chen–Fliess functional series which maximizes the SNR at a

given time instant in order to provide a detection test statistic

for a known signal. The theory generally predicts higher SNR

as the filter order is increased, but these predictions only

provide upper bounds for the cases tested due to the numeri-

cal rank deficiency of the autocorrelation matrix. Noise with

nonsymmetric distributions should be investigated (q3 6= 0),

and the new test statistics should next be evaluated for

detection performance.
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