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Abstract  26 

The development of deep convolutional neural networks (CNNs) has recently led to great 27 
successes in computer vision and CNNs have become de facto computational models of 28 
vision. However, a growing body of work suggests that they exhibit critical limitations beyond 29 
image categorization. Here, we study one such fundamental limitation, for judging whether 30 
two simultaneously presented items are the same or different (SD) compared to a baseline 31 
assessment of their spatial relationship (SR). In both human subjects and artificial neural 32 
networks, we test the prediction that SD tasks recruit additional cortical mechanisms which 33 
underlie critical aspects of visual cognition that are not explained by current computational 34 
models. We thus recorded EEG signals from human participants engaged in the same tasks 35 
as the computational models. Importantly, in humans the two tasks were matched in terms of 36 
difficulty by an adaptive psychometric procedure: yet, on top of a modulation of evoked 37 
potentials, our results revealed higher activity in the low beta (16-24Hz) band in the SD 38 
compared to the SR conditions. We surmise that these oscillations reflect the crucial 39 
involvement of additional mechanisms, such as working memory and attention, which are 40 
missing in current feed-forward CNNs.  41 
 42 
Keywords: Visual reasoning, spatial relationship, EEG oscillations, ERPs, deep neural 43 

networks.  44 

Significance statement 45 

Convolutional neural networks (CNNs) are currently the best computational models of 46 
primate vision. Here, we independently confirm prior results suggesting that CNNs can learn 47 
to solve visual reasoning problems involving spatial relations much more easily than 48 
problems involving sameness judgments. We hypothesize that these results reflect different 49 
computational demands between the two tasks and conducted a human EEG experiment to 50 
test this hypothesis.  Our results suggest a significant difference – both in evoked potentials 51 
and in the oscillatory dynamics– of the EEG signals measured from human participants 52 
performing these two tasks. We interpret this difference as the signature for the fundamental 53 
involvement of recurrent mechanisms implementing cognitive functions such as working 54 
memory and attention. 55 

 56 

 57 

 58 
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1. Introduction  59 

The field of artificial vision witnessed an impressive boost in the last few years, driven 60 
by the striking results of deep convolutional neural networks (CNNs). Such hierarchical 61 
neural networks process information sequentially – through a feedforward cascade of 62 
filtering, rectification and normalization operations. The accuracy of these architectures is 63 
now approaching – sometimes exceeding – that of human observers on key visual 64 
recognition tasks including object (He, Zhang, Ren, & Sun, 2016) and face recognition (P. J. 65 
Phillips et al., 2018). These advances suggest that purely feedforward mechanisms suffice to 66 
accomplish remarkable results in object categorization, in line with previous experimental 67 
studies on humans (VanRullen & Thorpe, 2001) and animals (Hollard & Delius, 1982; 68 
Vogels, 1999). However, despite the remarkable accuracy reached in these recognition 69 
tasks, the limitations of CNNs are becoming increasingly evident (see Serre, 2019 for a 70 
recent review). Beyond image categorization tasks, CNNs appear to struggle to learn to 71 
solve relatively simple visual reasoning tasks otherwise trivial for the human brain (Kim, 72 
Ricci, & Serre, 2018; Stabinger, Rodríguez-Sánchez, & Piater, 2016). A recent study (Kim et 73 
al., 2018) thoroughly investigated the ability of CNN architectures to learn to solve various 74 
visual reasoning tasks, and found an apparent dichotomy between two sorts of problems: on 75 
the one hand, tasks that require judging the spatial relations between items (Spatial 76 
Relationship – SR); on the other, those that require comparing items (Same-Different – SD). 77 
Importantly, Kim and colleagues demonstrated that CNNs can more easily learn the first 78 
class of problems compared to the second one.  79 

This prompts the question of how biological visual systems handle such tasks so 80 
efficiently. Kim et al. (2018) suggest that SR and SD tasks tap into distinct computational 81 
mechanisms, thus leading to the prediction that different cortical processes are also involved 82 
when humans perform the two tasks: SR tasks can be successfully solved by feedforward 83 
processes, whereas SD tasks seem to require additional computations, such as working 84 
memory and attention. Here, we tested this hypothesis in two steps: first, we confirmed and 85 
extended Kim’s results by comparing the performance of CNNs on an experiment in which 86 
we directly contrasted SD and SR tasks on the same stimulus set. Second, we recorded 87 
electrophysiological responses (EEG) in healthy human participants for the same 88 
experiment, after having matched the difficulty level via an adaptive psychometric procedure. 89 
We hypothesized that the additional computations required by the SD task, as compared to 90 
SR tasks, would elicit differences in evoked potentials (e.g. P300 modulations, which have 91 
been related to attentional mechanisms (Nash & Fernandez, 1996)) and brain rhythms 92 
related to working memory (such as beta-band oscillations (Benchenane, Tiesinga, & 93 
Battaglia, 2011; Lundqvist, Herman, Warden, Brincat, & Miller, 2018)). We found indeed that, 94 
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in addition to a variation in evoked potentials, the SD task elicited higher activity in specific 95 
beta-band oscillatory components in the occipital-parietal areas, which are typically 96 
associated with attention- and memory-related processes. We emphasize that the goal of the 97 
present study was not to identify the precise neural computations involved in the two tasks 98 
(which would naturally require a broader experimental set-up than a single EEG study), but 99 
rather to validate the hypothesis that SD involves additional computations relative to SR 100 
(even when the two tasks are equally difficult). We hope that this demonstration can be a first 101 
step towards characterizing the processes taking place in visual cortex during visual 102 
reasoning tasks, and designing more reliable and more human-like computational models.  103 

2. Materials & Methods  104 

2.1 Participants and pilot experiment 105 
Twenty-eight participants (aged 21–34 years old with a mean age of 26.6 ± 3.7, 11 106 

women, 5 left-handed), volunteered to join the experiment. All subjects reported normal or 107 
corrected to normal vision and had no history of epileptic seizures or neurological disorders. 108 
Participants were pooled in two groups of 14 each: one group performed a pilot experiment, 109 
while the second one was tested on a final version of the task. The only difference between 110 
the pilot and the main study was the QUEST adaptive procedure used to match the difficulty 111 
level between conditions, which was not implemented in the pilot experiment. However, in 112 
both studies we found the very same result (see below, specifically fig. 4 and 5). In the main 113 
experiment, we kept the same number of participants to replicate the effect, after having 114 
removed the behavioral difference in task difficulty via the QUEST algorithm.  This study 115 
complies with the guidelines of the research center where it was carried out, and the protocol 116 
was approved by an external committee (ethics approval number N° 2016-A01937-44). All 117 
participants gave written informed consent before starting the experiment, in accordance with 118 
the Declaration of Helsinki, and received monetary compensation for their participation. 119 

2.2 Experimental design 120 
The experiment was composed of 16 experimental blocks of 70 trials each, with a 121 

total duration of about 1 hour. Each trial lasted ~2 seconds (Fig. 1A): 350ms after the onset 122 
of a black fixation cross (0.6° width), 2 shapes were displayed for 30ms on opposite sides of 123 
the screen, distant 2*ρ from each other with an angle of ±(45° + θ) with respect to the 124 
horizontal midline (ρ being the distance from the center of the screen, and θ the angular 125 
difference with the diagonal; see Fig. 1B). Each shape was selected from a subset of 36 126 
hexominoes, a geometric figure composed of 6 contiguous squares (see Fig. 1B) One 127 
second after the onset of the hexominoes, the fixation cross turned blue, cuing participants to 128 
respond. In half of the blocks, participants had to report whether the two shapes were the 129 
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same or different (Same-Different – SD condition); in the remaining blocks participants had to 130 
judge whether the two stimuli were aligned more horizontally or vertically (Spatial Relation – 131 
SR condition). Shapes were displayed at opposite sides of the screen along two main 132 
possible orientation axes sampled at random for every trial (either 45° and 225° or -45° and -133 
225°). Both stimuli positions were jittered by a random offset Δx and Δy in both the x and y 134 
axis and a rotation θ from the main axis. The same offsets were applied to both shapes, so 135 
they did not affect the angle between stimuli. The aim of such offsets was to prevent 136 
participants in the SR condition from determining the configuration of the two stimuli 137 
(orientation task) by merely judging the position of a single stimulus: without the random 138 
offsets, considering for example the top-right corner position, if the item were below/above 139 
the (imaginary) screen diagonal line, the overall orientation would be horizontal/vertical, 140 
without the need to consider the position of the corresponding bottom-left item. The offset 141 
then compelled participants to consider the relative position of both hexominoes at once. 142 
Importantly, in the main experiment (compared to the pilot experiment) the difficulty of the 143 
two tasks was controlled by an adaptive psychometric procedure (QUEST method, Watson & 144 
Pelli, 1983), which varied the eccentricity of the two stimuli ρ (in the SD blocks) or θ (in the 145 
SR blocks) to maintain an overall accuracy level of 80% throughout the whole experiment. In 146 
fact, larger (smaller) values of ρ made the stimuli more (less) eccentric and the task more 147 
(less) difficult; similarly, smaller (larger) values of θ set the stimuli closer to (farther from) the 148 
45° diagonal line, making the task more (less) difficult. We modified one parameter per 149 
condition (i.e., per block), while the other was kept constant (using the same value as in the 150 
preceding block). After participants responded, they received feedback on their performance: 151 
the fixation cross turned green (red) in case of a correct (incorrect) answer. Throughout the 152 
experiment the condition blocks were alternated, the first block being the SD condition for all 153 
participants. Before starting the first block, participants performed one training block per 154 
condition. The purpose of this training was 1) to familiarize participants with the experimental 155 
conditions, 2) to initialize the ρ and θ parameters in the QUEST method for the first 156 
experimental block (initial values were respectively ρ = 5.4° of visual angle and θ=6° of 157 
rotation). All experiments were performed on a cathode ray monitor, positioned 57 cm from 158 
the subject, with a refresh rate of 160 Hz and a resolution of 1280 × 1024 pixels. The 159 
experiment was coded in MATLAB using the Psychophysics Toolbox (Brainard, 1997). The 160 
stimuli were presented in black on a gray background. Throughout the experiment we 161 
recorded EEG signals.  162 

 163 

2.3 EEG recording and pre-processing 164 
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We recorded brain activity using a 64-channel active BioSemi electro-165 
encephalography (EEG) system (1,024 Hz digitizing rate, 3 additional ocular electrodes). The 166 
pre-processing was performed in MATLAB using the EEGlab toolbox (Delorme & Makeig, 167 
2004). First, the data was downsampled to 256 Hz. A notch filter [47Hz - 53Hz] was then 168 
applied to remove power line artifacts. We applied an average-referencing and removed slow 169 
drifts by applying a high-pass filter (>1 Hz). We created the data epochs aligning the data to 170 
the onset of the fixation cross. Finally, we performed an ICA decomposition in order to 171 
remove components related to eye movements and blink artifacts: we visually inspected the 172 
data and removed from 2 to 5 components per subject with a conservative approach (we 173 
removed only components in the frontal regions clearly related to eye movements’ activity).  174 

2.4 Computational modeling and code accessability 175 
We extended a previous computational study (Kim et al., 2018) from which we chose 176 

the parameters of the convolutional feedforward network trained on the SD and SR tasks. 177 
Each task was run 10 times, randomly initializing the networks’ parameters and the stimuli 178 
used in the training and test set. The network was fed with 50x80 pixel images. Two 179 
hexominoes (width and height of 2 to 5 pixels) were placed at opposite sides of the screen 180 
(see Fig. 1A and ‘Experimental design’). The dictionary of hexominoes was composed of 35 181 
items, which were randomly split between a training (30 items) and a test set (5 items) at 182 
each iteration. Both the training, validation and test sets were composed of 1,000 stimuli (i.e. 183 
different combinations of the hexominoes, with slightly different eccentricity and/or offset 184 
relative to the diagonal). The network consisted of 6 convolutional layers. Each layer 185 
contained 4 channels of size 2x2, with stride of 1. All convolutional layers used a ReLu 186 
activation function with stride of 1 and were followed by pooling layers with 2x2 kernels and a 187 
stride of 1. Eventually, two fully connected layers with 128 units preceded a two-dimensional 188 
classification layer with a sigmoid activation function. As a regularizer we set a dropout rate 189 
of 0.3 in each layer of the network. We used binary cross-entropy as a loss function, the 190 
Adaptive Moment Estimation (Adam) optimizer (Kingma & Ba, 2015) and a learning rate of 191 
10e-4. Each simulation was run over 70 epochs with batch size of 50. All simulations were 192 
run in TensorFlow (GoogleResearch, 2015). The Siamese network had the same exact 193 
convolutional architecture as described above; additionally, the difference between features-194 
vectors of each separate item (computed on an input image where this item was shown 195 
alone) was fed to the classifier to perform the SD task. All networks count ~7e06 parameters.  196 
All the code and data required to replicate the simulations are available at a github repository 197 
(https://github.com/artipago/SD-SR). The code has been run on a Window PC on Python 198 
using the “Tensorflow”, “Keras”, “Scipy” and “Numpy” libraries. 199 
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 200 

Fig.1: Stimuli and simulation results. A) The stimuli were the same in the simulations and in the human 201 
experiments. The items were displayed at opposite sides of the screen (either 45° and 225° or -45° and -225°). 202 
Both item positions were jittered by a random amount in both the x and y axis (Δx and Δy in the picture) to 203 
make the task non-trivial for human participants (i.e. preventing participants from performing the SR task 204 
considering only the position of one item, thus ignoring the spatial relationship between the two items). The 205 
items used are hexominoes (right panel). Minimum and maximum item height and width are 1.2° – 3.6° and 206 
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1.2° – 2.7° of visual angle respectively, and 2 to 5 pixels used for the simulations (image size was 50 x 80 207 
pixels).B) Example of stimuli position for the same-different task (SD - left column) and spatial relation task (SR 208 
- right column). For the sake of illustration the ratio between the screen and hexominoes size has been 209 
modified (stimuli here look bigger than in the real experiment).  C-D) Accuracy of the CNN network on the 210 
same-different (SD; light red) and spatial relationship (SR; blue) tasks, and of a Siamese network trained on the 211 
SD task (dark red). The Siamese network mimics segmentation in a feedforward network, by separating the 212 
items in two distinct channels of the network (see panel D). The left panel shows the training curves for each 213 
network (accuracy over epochs during training); we stopped the training when the validation accuracy reached 214 
90%. In the right panel we show the training accuracy at the last epoch and the test accuracy. The latter was 215 
evaluated using novel items never used for training, and it reveals that the CNN seems to only learn the 216 
required rule for the SR but not for the SD task, as shown in a previous study. Conversely, the Siamese network 217 
(CNN with segmentation) can solve the SD task, demonstrating that segmentation can allow the CNN to 218 
successfully accomplish this task. In both panels we show average values ± SE over 10 repetitions using 219 
different random initializations.  220 
 221 
2.5 Statistical analysis – behavior 222 

We analyzed both accuracy and reaction times (RT) by means of Bayesian ANOVA, 223 
considering the block condition (SR and SD, see above) as independent variables and the 224 
trial condition (whether the stimuli were same or different, or more horizontally or vertically 225 
aligned). The result of such analysis provides a Bayes Factors (BF), which quantifies the 226 
ratio between statistical models given the data. Throughout the paper, all BFs reported 227 
correspond to the probability of the alternative hypothesis over the null hypothesis (indicated 228 
as BF10). Practically, a large BF (~BF>5) provides evidence in favor of the alternative 229 
hypothesis (the larger the BF the stronger the evidence), whereas low BF (~BF<0.5) 230 
suggests a lack of effect (Masson, 2011; Smith, 2001). We performed all Bayesian analyses 231 
in JASP (JASP Team, 2018; Love et al., 2015).  232 

2.6 Statistical analysis – electrophysiology  233 
Regarding the EEG recording we performed 2 analyses: one in the time domain 234 

measuring Evoked Related Potentials – ERPs, and the other one in the frequency domain 235 
using a time-frequency transform. In the first case, we considered the ERPs recorded from 7 236 
midline electrodes (i.e., Oz, POz, Pz, CPz, Cz, FCz and Fz). After subtracting the baseline 237 
activity recorded during the 350ms before stimuli onset, we averaged the signals from the SD 238 
and SR blocks respectively (i.e., 8 blocks for each condition). Finally, we tested whether the 239 
difference between these signals differed from 0 by means of a point-by-point 2-tailed t test 240 
with a false discovery rate (FDR) correction for multiple comparisons (Hochberg, 1995). 241 
Regarding the time-frequency analysis, we computed the power spectra by means of a 242 
wavelet transform (1–50 Hz in log-space frequency steps with 1-20 cycles). After baseline 243 
correction (i.e., dividing by the averaged activity of the 350ms prior to the onset of the fixation 244 
cross), for each participant, we computed the difference in decibel of the two conditions point 245 
by point, averaging over all electrodes. As in the ERP analysis, we performed a point-by-246 
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point 2-tailed t test to identify the time-frequency regions which were significantly different. 247 
We applied a cluster-based permutation to correct for multiple comparisons (Maris & 248 
Oostenveld, 2007). First, we identified clusters composed of t values t>3.5 (p<0.01), and for 249 
each one we computed the respective global sum. In order to estimate the null distribution 250 
over the combined t values, we performed the same procedure 500 times after shuffling the 251 
subject by subject SD-SR assignment. Eventually, we obtained the p values for each non-252 
shuffled cluster given the null distribution. All EEG analyses were performed in Matlab; the 253 
wavelet transform was performed using the EEGlab toolbox (Delorme & Makeig, 2004).  254 

3. Results 255 

3.1 Computational modeling 256 
We first extended the results by Kim et al. (2018) for our novel stimulus set: we 257 

trained two separate Convolutional Neural Networks (CNN) architectures to solve an SD and 258 
an SR task using a single stimulus set (Methods). The input to these networks was an image 259 
(50x80 pixels) in which two hexominoes (width and height of 2 to 5 pixels) were displayed at 260 
opposite sides of the screen (see Fig. 1A). The networks were trained to classify whether the 261 
two hexominoes were the same or not (SD task) or whether they were aligned more vertically 262 
or more horizontally with respect to the midline (SR task).  263 

 264 

 265 

Fig.2: Experimental design and human behavioral results. A) At the beginning of each trial a black fixation 266 
cross was displayed for 350ms. After 2 stimuli were shown for 30ms, participants waited an additional 970ms 267 
before providing the answer. The response was cued by the fixation cross turning blue. After the response, the 268 
color of the fixation cross provided feedback: green if the response was correct, red otherwise. B) Humans 269 
performed the SD and SR tasks with comparable levels of performance. In the left and right panels are shown 270 
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the averages ± SE for accuracy and reaction times, respectively. Each pair of connected markers represent an 271 
individual subject. The results for the same-different (in red) and spatial relationship (in blue) conditions are 272 
further broken down for each condition separately (same-different and vertical-horizontal). BF indicates the 273 
Bayes factor against the null hypothesis (difference between the two conditions). C) Changes over blocks of ρ 274 
(the distance between the stimuli - left panel) and θ (the angle between the stimuli and the meridian - right 275 
panel) as adjusted by the QUEST algorithm. 276 

We trained and tested the network on different sets of items (a training and test set, 277 
respectively) to assess the networks’ ability to generalize beyond training data. We trained 278 
and tested the networks 10 times – randomly initializing networks parameters and training – 279 
test set split each time. We report the mean accuracy and standard deviation over these 10 280 
repetitions in Fig. 1B. Our results are consistent with those from Kim et al. (2018): a CNN 281 
appears to be able to learn the abstract rule (as measured by the network’s ability to 282 
generalize beyond the shapes used for training) for SR tasks much more easily than SD 283 
tasks. The effortless ability of humans and other animals (Daniel, Wright, & Katz, 2015; 284 
Wasserman, Castro, & Freeman, 2012) to learn SD tasks suggest the possible involvement 285 
of additional computations that are lacking in CNNs, possibly achieving items identification or 286 
segmentation (e.g. via attention and working memory). In order to verify that segmentation 287 
could be a missing ingredient for the SD task, we implemented a variant of the CNN with 288 
built-in segmentation properties, and tested it on the SD task (it is not necessary to test it on 289 
the SR task, because generalization performance is already at ceiling). The new network 290 
used a Siamese architecture (Bromley et al., 1994) in which each item is processed 291 
separately and eventually combined before being passed to a classifier. Therefore this model 292 
mimics the effect of selective attention and item segregation by feeding to the network each 293 
item separately. The Siamese network could achieve the same training performance on the 294 
SD task as the standard CNN (even though the training took more epochs), however the 295 
network was able to generalize to the test set, while the standard CNN test accuracy was at 296 
chance. This supports the idea that item segmentation or individuation abilities are needed to 297 
achieve the SD task. Next, we test the prediction that SD tasks in humans also require 298 
additional computational mechanisms than SR tasks, by recording EEG signals from a pool 299 
of 28 participants (14 of which were tested on a pilot experiment –fig. 5) performing the same 300 
SD and SR tasks. 301 

3.2 Human behavior 302 
A first pilot group of 14 participants performed the SD and SR tasks as described in 303 

Figure 2A, but without any procedure for adjusting task difficulty (i.e. the QUEST method). 304 
The same EEG oscillatory differences between the two tasks as in the main experiment were 305 
observed (fig 5); however, concomitant differences in behavioral task performance left open 306 
the possibility that the oscillatory effects were caused by differences in task difficulty (fig. 5A). 307 
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Therefore, we replicated the experiment on another group of 14 subjects, this time with an 308 
adaptive procedure to equate behavioral performance between the SD and SR tasks. 309 

Participants (N=14) in this main experimental task completed 16 blocks using the 310 
same stimuli as those used to train CNNs (Fig.1): in half of the blocks they were asked to 311 
report whether the two hexominoes were the same or not (SD conditions), in the other half 312 
whether the hexominoes were more vertically or horizontally aligned (SR conditions). The 313 
two conditions were interleaved in a block design. Participants were required to answer after 314 
one second from stimulus onset in order to disentangle motor from visual components in the 315 
EEG recordings (Fig. 2A). The QUEST algorithm was used to assure that participants’ 316 
accuracy was matched between the two tasks and remained constant throughout the whole 317 
experiment. This was done by adjusting two experimental parameters trial by trial (i.e., the 318 
hexominoes eccentricity in SD blocks, ρ, and the angle from the diagonal in SR blocks, θ; 319 
see Fig. 1A and 2C). Maintaining a comparable accuracy between the two tasks reduces the 320 
potential for confounds in the electrophysiological analysis due to differences in performance, 321 
vigilance or motivation. We confirmed the absence of any substantial behavioral difference 322 
between the SD and SR tasks (Fig. 2B) with a Bayesian ANOVA on both accuracy (BF10 = 323 
0.361, error < 0.001%) and RT (BF10 = 0.317, error < 0.89%). In addition, we also 324 
investigated each condition separately (Fig. 2B), comparing the difference between ‘same’ 325 
and ‘different’ trials (in SD blocks) and ‘vertical’ and ‘horizontal’ trials (in SR blocks) in both 326 
RT and accuracy. All comparisons revealed overall no differences between tasks, except for 327 
the accuracy of vertical and horizontal trials in the SR condition, in which the BF proved 328 
inconclusive (accuracy: SD - BF10 = 0.39, error < 0.012%; SR - BF10 = 1.80, error < 0.001%; 329 
RT: SD - BF10 = 0.333, error < 0.01%; SR - BF10 = 0.34, error < 0.01%).  330 

3.3 Human electrophysiology: evoked potentials  331 
After having confirmed that performance was equal in the two tasks, we characterized 332 

the evoked potentials (EP) in each task. First, we estimated the difference between SR and 333 
SD conditions considering 7 midline electrodes (Fig.3). The results of a point-by-point t-test 334 
corrected for multiple comparisons revealed a significant difference in central and posterior 335 
electrodes (mostly Pz and CPz) between 250ms after the onset of the stimuli and the 336 
response cue, and the opposite effect in frontal electrodes (FCz and Fz) from 750ms to 337 
1000ms, as confirmed by the topography (Fig.3). Overall these results indicate larger 338 
potentials in visual areas during the SD task than in the SR. Previous studies have shown a 339 
relation between EP amplitude (particularly P300 and late components) with attention 340 
(Itthipuripat, Cha, Byers, & Serences, 2017; Itthipuripat, Cha, Deering, Salazar, & Serences, 341 
2018; Krusemark, Kiehl, & Newman, 2016; Van Voorhis & Hillyard, 1977) and visual working 342 
memory (Fabiani, Karis, & Donchin, 1986; Kok, 2001; McEvoy, 1998). Our results are thus 343 
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consistent with a larger involvement of executive functions in the SD vs. SR task. In the 344 
following, we investigated whether this hypothesis is corroborated by corresponding 345 
oscillatory effects in the time-frequency domain in the main experiment.  346 

 347 

Fig.3: ERPs results. Each panel represents the difference between ERPs elicited in the SD and SR conditions for 348 
the 7 midline electrodes (average ± SE). Shown in red are the points for which a significant difference was 349 
found against zero. The results reveal a significant difference from 250ms after stimuli onset until the response 350 
cue (at 1000ms) in central parietal regions, and an opposite effect after 750ms in frontal regions. In the 351 
bottom-right panel the topography, computed over the 250ms – 1000ms interval, confirmed a larger activity in 352 
the SD than in the SR condition (positive difference, warmer colors) in the central-parietal regions, and an 353 
opposite effect (negative difference, colder colors) in the frontal regions (which –although not significantly– 354 
also included occipital regions).  355 

 356 

3.4 Human electrophysiology: time-frequency analysis 357 
We performed a time-frequency analysis to try to identify differences between conditions 358 
observed in specific frequency bands commonly related to executive functions (e.g., visual 359 
working memory). For this purpose, we computed a baseline-corrected log-scale ratio 360 
between the two conditions (as shown in Fig. 4A), averaging over all electrodes. 361 
Remarkably, a point-by-point 2-tailed t-test corrected with cluster-based permutation test 362 
(Maris & Oostenveld, 2007) revealed a significantly larger activity in the low beta-band (16-363 
24Hz) in the SD condition between 250 and 950ms after stimuli onset (Fig. 4B). We further 364 
quantify the magnitude of the effect by computing the effect size of a one sample t-test 365 
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against zero averaging per each participant the values within the significant region 366 
(t(13)=2.571, p=0.023, Cohen’s d=0.687). The topography of the effect spread mostly over 367 
parietal and occipital regions (Fig. 4C), mimicking the topography of the EPs analysis. As 368 
previously, these results confirm the prediction that the SD task may involve additional 369 
computational mechanisms beyond feedforward computations, possibly indexed by the beta-370 
band oscillatory processes identified here. As previously, these results confirmed those from 371 
the pilot experiment (figure 5D,E), confirming the robustness of the effect also in the 372 
oscillatory domain.  Below, we contextualize and substantiate our results in light of the 373 
relevant literature. 374 

   375 
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Fig.4: Time-frequency results. A) The difference between SD and SR power spectra is shown in the first panel. 376 
White lines indicate the onset of the fixation cross, the stimuli and the response cue. B) The second panel 377 
shows the corresponding t values (when testing the difference against zero). We observed a significant region 378 
in the low beta band (16-24Hz), between 250ms and 950ms after stimulus onset. C) The topography of the 379 
significant time-frequency window reveals the involvement of occipital-parietal regions.  380 

 381 

 382 

 383 

Fig.5: Pilot experiment results. A) Behavioral results of the pilot experiment: left and right panel shows 384 
accuracy and reaction times for SD (red) and SR (blue) tasks. Differently than in the main task, in the pilot 385 
experiment participants performed significantly better in the SD than in the SR task (compare the accuracy 386 
between figure 5A and 2B). B) Difference between SD and SR evoked potentials. Red asterisk indicate time 387 
window significantly different than zero C) Difference between SD and SR power spectra: white lines indicate 388 
the stimulus onset and the response cue.  D) Testing the SD-SR difference against zero reveals a significant 389 
region in the low beta band (13-21Hz), before the response cue, in agreement with the results of the main 390 
experiment –figure 4. We reported a large effect size for this effect (one sample t-test against zero averaging 391 
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per each participant the values within the significant region, t(13)=7.049, p<0.001, Cohen’s d=1.820  E) As in 392 
the main experiment, the SD-SR difference mostly involves occipital-parietal regions. 393 

 394 

4. Discussion  395 

In this study, we confirmed in a series of two experiments a prediction from the 396 
computational study by Kim et al. (2018) that there exists an important dichotomy between 397 
visual reasoning tasks: While spatial relation (SR) tasks can be solved by modern deep 398 
convolutional neural networks (CNNs), same-different (SD) tasks pose a significant 399 
challenge for these architectures, suggesting the need for additional computations beyond a 400 
feedforward cascade of filtering, rectification and normalization operations. Importantly, the 401 
result of these simulations does not allow us to formulate any prediction about the specific 402 
cortical processes involved in the two tasks. Nonetheless, it demonstrates a fundamental 403 
computational difference, which can be tracked in terms of its human brain neural correlates 404 
while subjects solve SD vs. SR tasks (with difficulty objectively matched by an adaptive 405 
psychometric procedure). Remarkably, in both the pilot and the main experiment we found 406 
higher activity in the former task, in both evoked potentials and oscillatory components. We 407 
interpret these differences as reflecting additional computations required by the SD task. We 408 
can speculate that these additional computations involve working memory and attention 409 
processes, which are lacking in feedforward architectures such as CNNs.  410 

Additionally, it is possible to interpret our results in a broader context, by considering 411 
other tasks supposed to involve spatial attention, such as visual search. Previous 412 
experimental work suggested the need for re-entrant processes (Treisman & Gelade, 1980; 413 
Wolfe, Cave, & Franzel, 1989), and how increased activity in specific oscillatory components 414 
(i.e. low [22-34Hz] and high [36-56Hz] gamma bands) are characteristic of these processes 415 
(Buschman & Miller, 2007; S. Phillips & Takeda, 2009). Accordingly, state-of-the-art 416 
computational models performing visual search and related tasks (e.g. instance 417 
segmentation) also employ attentional or recurrent mechanisms (Linsley, Ashok, 418 
Govindarajan, Liu, & Serre, 2020), supporting the hypothesis that convolutional feedforward 419 
networks can benefit from recurrent mechanisms in solving visual reasoning tasks (Kreiman 420 
& Serre, 2020). 421 

Computational evidence for the hypothesis that the SD task requires additional 422 
computational mechanisms beyond those needed to solve the SR task is provided by the 423 
results of the Siamese network simulations (Bromley et al., 1994). This feedforward network 424 
processes each stimulus item in a separate (CNN) channel and then passes the processed 425 
items to a single classifier network. Since each item is processed separately (the network is 426 
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fed two images with only one item represented in each), this ‘oracle’ architecture performs 427 
the task with item-segmentation processes automatically provided. Our results (as previously 428 
shown on another dataset by Kim and colleagues (Kim et al., 2018) demonstrate that such a 429 
feedforward network, once endowed with object individuation using the Siamese 430 
architecture, can easily learn to solve the SD task. In other words, this model simulates the 431 
beneficial effects of attentional selection, individuation and working memory by segregating 432 
the representations of each item. Our EEG results are compatible with this interpretation, 433 
with higher activity in the SD compared to the SR task, visible in both evoked potentials and 434 
oscillatory frequency bands that have been previously related to attention and working 435 
memory (Benchenane et al., 2011; Lundqvist et al., 2018; Nash & Fernandez, 1996).  436 

Previous work has shown that modulations of beta-band oscillations can be related to 437 
selective attention mechanisms (Benchenane et al., 2011; Buschman & Miller, 2007; Lee, 438 
Whittington, & Kopell, 2013; Richter, Coppola, & Bressler, 2018). Different attentional 439 
mechanisms may indeed be involved in the two tasks: the SR task could be solved by first 440 
grouping items and then determining the orientation of the group (Franconeri, Scimeca, Roth, 441 
Helseth, & Kahn, 2012), whereas the SD task requires the individuation of the two items 442 
before comparison. In addition, our results are also consistent with differences in memory 443 
processes between the two tasks (de Fockert, G., Frith, & Lavie, 2001). One common 444 
assumption is  that items that are grouped together (as in the SR task) occupy only one 445 
working memory slot (Clevenger & Hummel, 2014; Franconeri, Alvarez, & Cavanagh, 2013), 446 
whereas non-grouped items would each hold one slot, resulting in a larger working memory 447 
load. Previous literature showed that working memory can also be characterized by neuronal 448 
oscillatory signatures. Recent studies, for example, have demonstrated an interplay between 449 
beta and gamma band frequencies during working memory tasks (Lundqvist et al., 2016, 450 
2018). Similarly, alpha and low beta bands, not only increase with working memory load 451 
(Babiloni et al., 2004; Pesonen, Hämäläinen, & Krause, 2007), but also in conjunction with 452 
the inhibition of competing visual memories in selective memory retrieval (Park, Min, & Lee, 453 
2010; Waldhauser, Johansson, & Hanslmayr, 2012). Besides, previous studies have 454 
reported that increased oscillatory activity in the alpha band is a signature of attentional 455 
processes, and it can predict the likelihood of successful trials in many tasks (Händel, 456 
Haarmeier, & Jensen, 2011; Klimesch, 2012; Nelli, Itthipuripat, Srinivasan, & Serences, 457 
2017); however, in our current study we did not investigate differences between correct and 458 
incorrect trials, but between different types of tasks (involving spatial relationship or 459 
sameness judgment), after controlling for task difficulty . This could explain why alpha-band 460 
amplitude differences were less prominent in our study. All considered, several lines of 461 
evidence point towards beta oscillations as crucially involved in both attention and working 462 
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memory related processes. These processes, therefore, might be part of the additional 463 
computational mechanisms required for SD tasks compared to SR tasks. Future work could 464 
more directly compare the attention and memory dependence of each task in human 465 
subjects. 466 

That feedforward neural networks are limited in their ability to solve simple visual 467 
reasoning tasks is already being recognized by the computer vision and neuroscience 468 
communities (Kar, Kubilius, Schmidt, Issa, & DiCarlo, 2019; Rajalingham, Issa, Schmidt, Kar, 469 
& DiCarlo, 2017; Yamins, Hong, Cadieu, & Dicarlo, 2013). Current CNN extensions include 470 
modules for integrating local and global features (Chen et al., 2018) as well as recurrent 471 
neural architectures (Yang et al., 2018). Our results suggest that the human visual system 472 
also deploys additional computations beyond feedforward processes to successfully solve 473 
visual reasoning tasks. Rhythmic cortical oscillations in the beta-band represent the 474 
signatures of these additional computations, which may involve selective attention and 475 
working memory.  476 
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