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Abstract

The development of deep convolutional neural networks (CNNs) has recently led to great
successes in computer vision and CNNs have become de facto computational models of
vision. However, a growing body of work suggests that they exhibit critical limitations beyond
image categorization. Here, we study one such fundamental limitation, for judging whether
two simultaneously presented items are the same or different (SD) compared to a baseline
assessment of their spatial relationship (SR). In both human subjects and artificial neural
networks, we test the prediction that SD tasks recruit additional cortical mechanisms which
underlie critical aspects of visual cognition that are not explained by current computational
models. We thus recorded EEG signals from human participants engaged in the same tasks
as the computational models. Importantly, in humans the two tasks were matched in terms of
difficulty by an adaptive psychometric procedure: yet, on top of a modulation of evoked
potentials, our results revealed higher activity in the low beta (16-24Hz) band in the SD
compared to the SR conditions. We surmise that these oscillations reflect the crucial
involvement of additional mechanisms, such as working memory and attention, which are

missing in current feed-forward CNNs.

Keywords: Visual reasoning, spatial relationship, EEG oscillations, ERPs, deep neural

networks.

Significance statement

Convolutional neural networks (CNNs) are currently the best computational models of
primate vision. Here, we independently confirm prior results suggesting that CNNs can learn
to solve visual reasoning problems involving spatial relations much more easily than
problems involving sameness judgments. We hypothesize that these results reflect different
computational demands between the two tasks and conducted a human EEG experiment to
test this hypothesis. Our results suggest a significant difference — both in evoked potentials
and in the oscillatory dynamics— of the EEG signals measured from human participants
performing these two tasks. We interpret this difference as the signature for the fundamental
involvement of recurrent mechanisms implementing cognitive functions such as working

memory and attention.
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1. Introduction

The field of artificial vision witnessed an impressive boost in the last few years, driven
by the striking results of deep convolutional neural networks (CNNs). Such hierarchical
neural networks process information sequentially — through a feedforward cascade of
filtering, rectification and normalization operations. The accuracy of these architectures is
now approaching — sometimes exceeding — that of human observers on key visual
recognition tasks including object (He, Zhang, Ren, & Sun, 2016) and face recognition (P. J.
Phillips et al., 2018). These advances suggest that purely feedforward mechanisms suffice to
accomplish remarkable results in object categorization, in line with previous experimental
studies on humans (VanRullen & Thorpe, 2001) and animals (Hollard & Delius, 1982;
Vogels, 1999). However, despite the remarkable accuracy reached in these recognition
tasks, the limitations of CNNs are becoming increasingly evident (see Serre, 2019 for a
recent review). Beyond image categorization tasks, CNNs appear to struggle to learn to
solve relatively simple visual reasoning tasks otherwise trivial for the human brain (Kim,
Ricci, & Serre, 2018; Stabinger, Rodriguez-Sanchez, & Piater, 2016). A recent study (Kim et
al., 2018) thoroughly investigated the ability of CNN architectures to learn to solve various
visual reasoning tasks, and found an apparent dichotomy between two sorts of problems: on
the one hand, tasks that require judging the spatial relations between items (Spatial
Relationship — SR); on the other, those that require comparing items (Same-Different — SD).
Importantly, Kim and colleagues demonstrated that CNNs can more easily learn the first
class of problems compared to the second one.

This prompts the question of how biological visual systems handle such tasks so
efficiently. Kim et al. (2018) suggest that SR and SD tasks tap into distinct computational
mechanisms, thus leading to the prediction that different cortical processes are also involved
when humans perform the two tasks: SR tasks can be successfully solved by feedforward
processes, whereas SD tasks seem to require additional computations, such as working
memory and attention. Here, we tested this hypothesis in two steps: first, we confirmed and
extended Kim'’s results by comparing the performance of CNNs on an experiment in which
we directly contrasted SD and SR tasks on the same stimulus set. Second, we recorded
electrophysiological responses (EEG) in healthy human participants for the same
experiment, after having matched the difficulty level via an adaptive psychometric procedure.
We hypothesized that the additional computations required by the SD task, as compared to
SR tasks, would elicit differences in evoked potentials (e.g. P300 modulations, which have
been related to attentional mechanisms (Nash & Fernandez, 1996)) and brain rhythms
related to working memory (such as beta-band oscillations (Benchenane, Tiesinga, &
Battaglia, 2011; Lundqvist, Herman, Warden, Brincat, & Miller, 2018)). We found indeed that,
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in addition to a variation in evoked potentials, the SD task elicited higher activity in specific
beta-band oscillatory components in the occipital-parietal areas, which are typically
associated with attention- and memory-related processes. We emphasize that the goal of the
present study was not to identify the precise neural computations involved in the two tasks
(which would naturally require a broader experimental set-up than a single EEG study), but
rather to validate the hypothesis that SD involves additional computations relative to SR
(even when the two tasks are equally difficult). We hope that this demonstration can be a first
step towards characterizing the processes taking place in visual cortex during visual

reasoning tasks, and designing more reliable and more human-like computational models.

2. Materials & Methods

2.1 Participants and pilot experiment

Twenty-eight participants (aged 21-34 years old with a mean age of 26.6 + 3.7, 11
women, 5 left-handed), volunteered to join the experiment. All subjects reported normal or
corrected to normal vision and had no history of epileptic seizures or neurological disorders.
Participants were pooled in two groups of 14 each: one group performed a pilot experiment,
while the second one was tested on a final version of the task. The only difference between
the pilot and the main study was the QUEST adaptive procedure used to match the difficulty
level between conditions, which was not implemented in the pilot experiment. However, in
both studies we found the very same result (see below, specifically fig. 4 and 5). In the main
experiment, we kept the same number of participants to replicate the effect, after having
removed the behavioral difference in task difficulty via the QUEST algorithm. This study
complies with the guidelines of the research center where it was carried out, and the protocol
was approved by an external committee (ethics approval number N° 2016-A01937-44). All
participants gave written informed consent before starting the experiment, in accordance with
the Declaration of Helsinki, and received monetary compensation for their participation.

2.2 Experimental design

The experiment was composed of 16 experimental blocks of 70 trials each, with a
total duration of about 1 hour. Each trial lasted ~2 seconds (Fig. 1A): 350ms after the onset
of a black fixation cross (0.6° width), 2 shapes were displayed for 30ms on opposite sides of
the screen, distant 2*p from each other with an angle of +(45° + 8) with respect to the
horizontal midline (p being the distance from the center of the screen, and 6 the angular
difference with the diagonal; see Fig. 1B). Each shape was selected from a subset of 36
hexominoes, a geometric figure composed of 6 contiguous squares (see Fig. 1B) One
second after the onset of the hexominoes, the fixation cross turned blue, cuing participants to

respond. In half of the blocks, participants had to report whether the two shapes were the
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same or different (Same-Different — SD condition); in the remaining blocks participants had to
judge whether the two stimuli were aligned more horizontally or vertically (Spatial Relation —
SR condition). Shapes were displayed at opposite sides of the screen along two main
possible orientation axes sampled at random for every trial (either 45° and 225° or -45° and -
225°). Both stimuli positions were jittered by a random offset Ax and Ay in both the x and y
axis and a rotation 8 from the main axis. The same offsets were applied to both shapes, so
they did not affect the angle between stimuli. The aim of such offsets was to prevent
participants in the SR condition from determining the configuration of the two stimuli
(orientation task) by merely judging the position of a single stimulus: without the random
offsets, considering for example the top-right corner position, if the item were below/above
the (imaginary) screen diagonal line, the overall orientation would be horizontal/vertical,
without the need to consider the position of the corresponding bottom-left item. The offset
then compelled participants to consider the relative position of both hexominoes at once.
Importantly, in the main experiment (compared to the pilot experiment) the difficulty of the
two tasks was controlled by an adaptive psychometric procedure (QUEST method, Watson &
Pelli, 1983), which varied the eccentricity of the two stimuli p (in the SD blocks) or 6 (in the
SR blocks) to maintain an overall accuracy level of 80% throughout the whole experiment. In
fact, larger (smaller) values of p made the stimuli more (less) eccentric and the task more
(less) difficult; similarly, smaller (larger) values of 8 set the stimuli closer to (farther from) the
45° diagonal line, making the task more (less) difficult. We modified one parameter per
condition (i.e., per block), while the other was kept constant (using the same value as in the
preceding block). After participants responded, they received feedback on their performance:
the fixation cross turned green (red) in case of a correct (incorrect) answer. Throughout the
experiment the condition blocks were alternated, the first block being the SD condition for all
participants. Before starting the first block, participants performed one training block per
condition. The purpose of this training was 1) to familiarize participants with the experimental
conditions, 2) to initialize the p and © parameters in the QUEST method for the first
experimental block (initial values were respectively p = 5.4° of visual angle and 6=6° of
rotation). All experiments were performed on a cathode ray monitor, positioned 57 cm from
the subject, with a refresh rate of 160 Hz and a resolution of 1280 x 1024 pixels. The
experiment was coded in MATLAB using the Psychophysics Toolbox (Brainard, 1997). The
stimuli were presented in black on a gray background. Throughout the experiment we
recorded EEG signals.

2.3 EEG recording and pre-processing
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We recorded brain activity using a 64-channel active BioSemi electro-
encephalography (EEG) system (1,024 Hz digitizing rate, 3 additional ocular electrodes). The
pre-processing was performed in MATLAB using the EEGIab toolbox (Delorme & Makeig,
2004). First, the data was downsampled to 256 Hz. A notch filter [47Hz - 53Hz] was then
applied to remove power line artifacts. We applied an average-referencing and removed slow
drifts by applying a high-pass filter (>1 Hz). We created the data epochs aligning the data to
the onset of the fixation cross. Finally, we performed an ICA decomposition in order to
remove components related to eye movements and blink artifacts: we visually inspected the
data and removed from 2 to 5 components per subject with a conservative approach (we

removed only components in the frontal regions clearly related to eye movements’ activity).

2.4 Computational modeling and code accessability

We extended a previous computational study (Kim et al., 2018) from which we chose
the parameters of the convolutional feedforward network trained on the SD and SR tasks.
Each task was run 10 times, randomly initializing the networks’ parameters and the stimuli
used in the training and test set. The network was fed with 50x80 pixel images. Two
hexominoes (width and height of 2 to 5 pixels) were placed at opposite sides of the screen
(see Fig. 1A and ‘Experimental design’). The dictionary of hexominoes was composed of 35
items, which were randomly split between a training (30 items) and a test set (5 items) at
each iteration. Both the training, validation and test sets were composed of 1,000 stimuli (i.e.
different combinations of the hexominoes, with slightly different eccentricity and/or offset
relative to the diagonal). The network consisted of 6 convolutional layers. Each layer
contained 4 channels of size 2x2, with stride of 1. All convolutional layers used a Relu
activation function with stride of 1 and were followed by pooling layers with 2x2 kernels and a
stride of 1. Eventually, two fully connected layers with 128 units preceded a two-dimensional
classification layer with a sigmoid activation function. As a regularizer we set a dropout rate
of 0.3 in each layer of the network. We used binary cross-entropy as a loss function, the
Adaptive Moment Estimation (Adam) optimizer (Kingma & Ba, 2015) and a learning rate of
10e-4. Each simulation was run over 70 epochs with batch size of 50. All simulations were
run in TensorFlow (GoogleResearch, 2015). The Siamese network had the same exact
convolutional architecture as described above; additionally, the difference between features-
vectors of each separate item (computed on an input image where this item was shown
alone) was fed to the classifier to perform the SD task. All networks count ~7e06 parameters.
All the code and data required to replicate the simulations are available at a github repository
(https://github.com/artipago/SD-SR). The code has been run on a Window PC on Python
using the “Tensorflow”, “Keras”, “Scipy” and “Numpy” libraries.
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Fig.1: Stimuli and simulation results. A) The stimuli were the same in the simulations and in the human
experiments. The items were displayed at opposite sides of the screen (either 45° and 225° or -45° and -225°).
Both item positions were jittered by a random amount in both the x and y axis (Ax and Ay in the picture) to
make the task non-trivial for human participants (i.e. preventing participants from performing the SR task
considering only the position of one item, thus ignoring the spatial relationship between the two items). The
items used are hexominoes (right panel). Minimum and maximum item height and width are 1.2° — 3.6° and



ot

4

drVianuscr:

=

UrorACCeEpT

=]

N

C

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

222
223
224
225
226
227
228
229
230
231
232

233
234
235
236
237
238
239
240
241
242
243
244
245
246

1.2° — 2.7° of visual angle respectively, and 2 to 5 pixels used for the simulations (image size was 50 x 80
pixels).B) Example of stimuli position for the same-different task (SD - left column) and spatial relation task (SR
- right column). For the sake of illustration the ratio between the screen and hexominoes size has been
modified (stimuli here look bigger than in the real experiment). C-D) Accuracy of the CNN network on the
same-different (SD; light red) and spatial relationship (SR; blue) tasks, and of a Siamese network trained on the
SD task (dark red). The Siamese network mimics segmentation in a feedforward network, by separating the
items in two distinct channels of the network (see panel D). The left panel shows the training curves for each
network (accuracy over epochs during training); we stopped the training when the validation accuracy reached
90%. In the right panel we show the training accuracy at the last epoch and the test accuracy. The latter was
evaluated using novel items never used for training, and it reveals that the CNN seems to only learn the
required rule for the SR but not for the SD task, as shown in a previous study. Conversely, the Siamese network
(CNN with segmentation) can solve the SD task, demonstrating that segmentation can allow the CNN to
successfully accomplish this task. In both panels we show average values + SE over 10 repetitions using
different random initializations.

2.5 Statistical analysis — behavior

We analyzed both accuracy and reaction times (RT) by means of Bayesian ANOVA,
considering the block condition (SR and SD, see above) as independent variables and the
trial condition (whether the stimuli were same or different, or more horizontally or vertically
aligned). The result of such analysis provides a Bayes Factors (BF), which quantifies the
ratio between statistical models given the data. Throughout the paper, all BFs reported
correspond to the probability of the alternative hypothesis over the null hypothesis (indicated
as BFqp). Practically, a large BF (~BF>5) provides evidence in favor of the alternative
hypothesis (the larger the BF the stronger the evidence), whereas low BF (~BF<0.5)
suggests a lack of effect (Masson, 2011; Smith, 2001). We performed all Bayesian analyses
in JASP (JASP Team, 2018; Love et al., 2015).

2.6 Statistical analysis — electrophysiology

Regarding the EEG recording we performed 2 analyses: one in the time domain
measuring Evoked Related Potentials — ERPs, and the other one in the frequency domain
using a time-frequency transform. In the first case, we considered the ERPs recorded from 7
midline electrodes (i.e., Oz, POz, Pz, CPz, Cz, FCz and Fz). After subtracting the baseline
activity recorded during the 350ms before stimuli onset, we averaged the signals from the SD
and SR blocks respectively (i.e., 8 blocks for each condition). Finally, we tested whether the
difference between these signals differed from 0 by means of a point-by-point 2-tailed t test
with a false discovery rate (FDR) correction for multiple comparisons (Hochberg, 1995).
Regarding the time-frequency analysis, we computed the power spectra by means of a
wavelet transform (1-50 Hz in log-space frequency steps with 1-20 cycles). After baseline
correction (i.e., dividing by the averaged activity of the 350ms prior to the onset of the fixation
cross), for each participant, we computed the difference in decibel of the two conditions point

by point, averaging over all electrodes. As in the ERP analysis, we performed a point-by-
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point 2-tailed t test to identify the time-frequency regions which were significantly different.
We applied a cluster-based permutation to correct for multiple comparisons (Maris &
Oostenveld, 2007). First, we identified clusters composed of t values t>3.5 (p<0.01), and for
each one we computed the respective global sum. In order to estimate the null distribution
over the combined t values, we performed the same procedure 500 times after shuffling the
subject by subject SD-SR assignment. Eventually, we obtained the p values for each non-
shuffled cluster given the null distribution. All EEG analyses were performed in Matlab; the

wavelet transform was performed using the EEGIab toolbox (Delorme & Makeig, 2004).

3. Results

3.1 Computational modeling

We first extended the results by Kim et al. (2018) for our novel stimulus set: we
trained two separate Convolutional Neural Networks (CNN) architectures to solve an SD and
an SR task using a single stimulus set (Methods). The input to these networks was an image
(50x80 pixels) in which two hexominoes (width and height of 2 to 5 pixels) were displayed at
opposite sides of the screen (see Fig. 1A). The networks were trained to classify whether the
two hexominoes were the same or not (SD task) or whether they were aligned more vertically

or more horizontally with respect to the midline (SR task).

A C 20
240
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1234565678
B 25
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Fig.2: Experimental design and human behavioral results. A) At the beginning of each trial a black fixation
cross was displayed for 350ms. After 2 stimuli were shown for 30ms, participants waited an additional 970ms
before providing the answer. The response was cued by the fixation cross turning blue. After the response, the
color of the fixation cross provided feedback: green if the response was correct, red otherwise. B) Humans
performed the SD and SR tasks with comparable levels of performance. In the left and right panels are shown
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the averages + SE for accuracy and reaction times, respectively. Each pair of connected markers represent an
individual subject. The results for the same-different (in red) and spatial relationship (in blue) conditions are
further broken down for each condition separately (same-different and vertical-horizontal). BF indicates the
Bayes factor against the null hypothesis (difference between the two conditions). C) Changes over blocks of p
(the distance between the stimuli - left panel) and 6 (the angle between the stimuli and the meridian - right
panel) as adjusted by the QUEST algorithm.

We trained and tested the network on different sets of items (a training and test set,
respectively) to assess the networks’ ability to generalize beyond training data. We trained
and tested the networks 10 times — randomly initializing networks parameters and training —
test set split each time. We report the mean accuracy and standard deviation over these 10
repetitions in Fig. 1B. Our results are consistent with those from Kim et al. (2018): a CNN
appears to be able to learn the abstract rule (as measured by the network’s ability to
generalize beyond the shapes used for training) for SR tasks much more easily than SD
tasks. The effortless ability of humans and other animals (Daniel, Wright, & Katz, 2015;
Wasserman, Castro, & Freeman, 2012) to learn SD tasks suggest the possible involvement
of additional computations that are lacking in CNNs, possibly achieving items identification or
segmentation (e.g. via attention and working memory). In order to verify that segmentation
could be a missing ingredient for the SD task, we implemented a variant of the CNN with
built-in segmentation properties, and tested it on the SD task (it is not necessary to test it on
the SR task, because generalization performance is already at ceiling). The new network
used a Siamese architecture (Bromley et al., 1994) in which each item is processed
separately and eventually combined before being passed to a classifier. Therefore this model
mimics the effect of selective attention and item segregation by feeding to the network each
item separately. The Siamese network could achieve the same training performance on the
SD task as the standard CNN (even though the training took more epochs), however the
network was able to generalize to the test set, while the standard CNN test accuracy was at
chance. This supports the idea that item segmentation or individuation abilities are needed to
achieve the SD task. Next, we test the prediction that SD tasks in humans also require
additional computational mechanisms than SR tasks, by recording EEG signals from a pool
of 28 participants (14 of which were tested on a pilot experiment —fig. 5) performing the same
SD and SR tasks.

3.2 Human behavior

A first pilot group of 14 participants performed the SD and SR tasks as described in
Figure 2A, but without any procedure for adjusting task difficulty (i.e. the QUEST method).
The same EEG oscillatory differences between the two tasks as in the main experiment were
observed (fig 5); however, concomitant differences in behavioral task performance left open
the possibility that the oscillatory effects were caused by differences in task difficulty (fig. 5A).

10
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Therefore, we replicated the experiment on another group of 14 subjects, this time with an

adaptive procedure to equate behavioral performance between the SD and SR tasks.

Participants (N=14) in this main experimental task completed 16 blocks using the
same stimuli as those used to train CNNs (Fig.1): in half of the blocks they were asked to
report whether the two hexominoes were the same or not (SD conditions), in the other half
whether the hexominoes were more vertically or horizontally aligned (SR conditions). The
two conditions were interleaved in a block design. Participants were required to answer after
one second from stimulus onset in order to disentangle motor from visual components in the
EEG recordings (Fig. 2A). The QUEST algorithm was used to assure that participants’
accuracy was matched between the two tasks and remained constant throughout the whole
experiment. This was done by adjusting two experimental parameters trial by trial (i.e., the
hexominoes eccentricity in SD blocks, p, and the angle from the diagonal in SR blocks, 6;
see Fig. 1A and 2C). Maintaining a comparable accuracy between the two tasks reduces the
potential for confounds in the electrophysiological analysis due to differences in performance,
vigilance or motivation. We confirmed the absence of any substantial behavioral difference
between the SD and SR tasks (Fig. 2B) with a Bayesian ANOVA on both accuracy (BF =
0.361, error < 0.001%) and RT (BF4 = 0.317, error < 0.89%). In addition, we also
investigated each condition separately (Fig. 2B), comparing the difference between ‘same’
and ‘different’ trials (in SD blocks) and ‘vertical’ and ‘horizontal’ trials (in SR blocks) in both
RT and accuracy. All comparisons revealed overall no differences between tasks, except for
the accuracy of vertical and horizontal trials in the SR condition, in which the BF proved
inconclusive (accuracy: SD - BF1o= 0.39, error < 0.012%; SR - BF1,= 1.80, error < 0.001%;
RT: SD - BF4o=0.333, error < 0.01%; SR - BF 4, = 0.34, error < 0.01%).

3.3 Human electrophysiology: evoked potentials

After having confirmed that performance was equal in the two tasks, we characterized
the evoked potentials (EP) in each task. First, we estimated the difference between SR and
SD conditions considering 7 midline electrodes (Fig.3). The results of a point-by-point t-test
corrected for multiple comparisons revealed a significant difference in central and posterior
electrodes (mostly Pz and CPz) between 250ms after the onset of the stimuli and the
response cue, and the opposite effect in frontal electrodes (FCz and Fz) from 750ms to
1000ms, as confirmed by the topography (Fig.3). Overall these results indicate larger
potentials in visual areas during the SD task than in the SR. Previous studies have shown a
relation between EP amplitude (particularly P300 and late components) with attention
(Itthipuripat, Cha, Byers, & Serences, 2017; Itthipuripat, Cha, Deering, Salazar, & Serences,
2018; Krusemark, Kiehl, & Newman, 2016; Van Voorhis & Hillyard, 1977) and visual working
memory (Fabiani, Karis, & Donchin, 1986; Kok, 2001; McEvoy, 1998). Our results are thus

11
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consistent with a larger involvement of executive functions in the SD vs. SR task. In the
following, we investigated whether this hypothesis is corroborated by corresponding
oscillatory effects in the time-frequency domain in the main experiment.
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Fig.3: ERPs results. Each panel represents the difference between ERPs elicited in the SD and SR conditions for
the 7 midline electrodes (average + SE). Shown in red are the points for which a significant difference was
found against zero. The results reveal a significant difference from 250ms after stimuli onset until the response
cue (at 1000ms) in central parietal regions, and an opposite effect after 750ms in frontal regions. In the
bottom-right panel the topography, computed over the 250ms — 1000ms interval, confirmed a larger activity in
the SD than in the SR condition (positive difference, warmer colors) in the central-parietal regions, and an
opposite effect (negative difference, colder colors) in the frontal regions (which —although not significantly—
also included occipital regions).

3.4 Human electrophysiology: time-frequency analysis

We performed a time-frequency analysis to try to identify differences between conditions
observed in specific frequency bands commonly related to executive functions (e.g., visual
working memory). For this purpose, we computed a baseline-corrected log-scale ratio
between the two conditions (as shown in Fig. 4A), averaging over all electrodes.
Remarkably, a point-by-point 2-tailed t-test corrected with cluster-based permutation test
(Maris & Oostenveld, 2007) revealed a significantly larger activity in the low beta-band (16-
24Hz) in the SD condition between 250 and 950ms after stimuli onset (Fig. 4B). We further
quantify the magnitude of the effect by computing the effect size of a one sample t-test
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against zero averaging per each participant the values within the significant region
(t(13)=2.571, p=0.023, Cohen’s d=0.687). The topography of the effect spread mostly over
parietal and occipital regions (Fig. 4C), mimicking the topography of the EPs analysis. As
previously, these results confirm the prediction that the SD task may involve additional
computational mechanisms beyond feedforward computations, possibly indexed by the beta-
band oscillatory processes identified here. As previously, these results confirmed those from
the pilot experiment (figure 5D,E), confirming the robustness of the effect also in the
oscillatory domain. Below, we contextualize and substantiate our results in light of the

relevant literature.
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Fig.4: Time-frequency results. A) The difference between SD and SR power spectra is shown in the first panel.
White lines indicate the onset of the fixation cross, the stimuli and the response cue. B) The second panel
shows the corresponding t values (when testing the difference against zero). We observed a significant region
in the low beta band (16-24Hz), between 250ms and 950ms after stimulus onset. C) The topography of the
significant time-frequency window reveals the involvement of occipital-parietal regions.
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Fig.5: Pilot experiment results. A) Behavioral results of the pilot experiment: left and right panel shows
accuracy and reaction times for SD (red) and SR (blue) tasks. Differently than in the main task, in the pilot
experiment participants performed significantly better in the SD than in the SR task (compare the accuracy
between figure 5A and 2B). B) Difference between SD and SR evoked potentials. Red asterisk indicate time
window significantly different than zero C) Difference between SD and SR power spectra: white lines indicate
the stimulus onset and the response cue. D) Testing the SD-SR difference against zero reveals a significant
region in the low beta band (13-21Hz), before the response cue, in agreement with the results of the main
experiment —figure 4. We reported a large effect size for this effect (one sample t-test against zero averaging
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per each participant the values within the significant region, t(13)=7.049, p<0.001, Cohen’s d=1.820 E) As in
the main experiment, the SD-SR difference mostly involves occipital-parietal regions.

4. Discussion

In this study, we confirmed in a series of two experiments a prediction from the
computational study by Kim et al. (2018) that there exists an important dichotomy between
visual reasoning tasks: While spatial relation (SR) tasks can be solved by modern deep
convolutional neural networks (CNNs), same-different (SD) tasks pose a significant
challenge for these architectures, suggesting the need for additional computations beyond a
feedforward cascade of filtering, rectification and normalization operations. Importantly, the
result of these simulations does not allow us to formulate any prediction about the specific
cortical processes involved in the two tasks. Nonetheless, it demonstrates a fundamental
computational difference, which can be tracked in terms of its human brain neural correlates
while subjects solve SD vs. SR tasks (with difficulty objectively matched by an adaptive
psychometric procedure). Remarkably, in both the pilot and the main experiment we found
higher activity in the former task, in both evoked potentials and oscillatory components. We
interpret these differences as reflecting additional computations required by the SD task. We
can speculate that these additional computations involve working memory and attention

processes, which are lacking in feedforward architectures such as CNNs.

Additionally, it is possible to interpret our results in a broader context, by considering
other tasks supposed to involve spatial attention, such as visual search. Previous
experimental work suggested the need for re-entrant processes (Treisman & Gelade, 1980;
Wolfe, Cave, & Franzel, 1989), and how increased activity in specific oscillatory components
(i.e. low [22-34HZz] and high [36-56Hz] gamma bands) are characteristic of these processes
(Buschman & Miller, 2007; S. Phillips & Takeda, 2009). Accordingly, state-of-the-art
computational models performing visual search and related tasks (e.g. instance
segmentation) also employ attentional or recurrent mechanisms (Linsley, Ashok,
Govindarajan, Liu, & Serre, 2020), supporting the hypothesis that convolutional feedforward
networks can benefit from recurrent mechanisms in solving visual reasoning tasks (Kreiman
& Serre, 2020).

Computational evidence for the hypothesis that the SD task requires additional
computational mechanisms beyond those needed to solve the SR task is provided by the
results of the Siamese network simulations (Bromley et al., 1994). This feedforward network
processes each stimulus item in a separate (CNN) channel and then passes the processed
items to a single classifier network. Since each item is processed separately (the network is
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fed two images with only one item represented in each), this ‘oracle’ architecture performs
the task with item-segmentation processes automatically provided. Our results (as previously
shown on another dataset by Kim and colleagues (Kim et al., 2018) demonstrate that such a
feedforward network, once endowed with object individuation using the Siamese
architecture, can easily learn to solve the SD task. In other words, this model simulates the
beneficial effects of attentional selection, individuation and working memory by segregating
the representations of each item. Our EEG results are compatible with this interpretation,
with higher activity in the SD compared to the SR task, visible in both evoked potentials and
oscillatory frequency bands that have been previously related to attention and working

memory (Benchenane et al., 2011; Lundqyvist et al., 2018; Nash & Fernandez, 1996).

Previous work has shown that modulations of beta-band oscillations can be related to
selective attention mechanisms (Benchenane et al., 2011; Buschman & Miller, 2007; Lee,
Whittington, & Kopell, 2013; Richter, Coppola, & Bressler, 2018). Different attentional
mechanisms may indeed be involved in the two tasks: the SR task could be solved by first
grouping items and then determining the orientation of the group (Franconeri, Scimeca, Roth,
Helseth, & Kahn, 2012), whereas the SD task requires the individuation of the two items
before comparison. In addition, our results are also consistent with differences in memory
processes between the two tasks (de Fockert, G., Frith, & Lavie, 2001). One common
assumption is that items that are grouped together (as in the SR task) occupy only one
working memory slot (Clevenger & Hummel, 2014; Franconeri, Alvarez, & Cavanagh, 2013),
whereas non-grouped items would each hold one slot, resulting in a larger working memory
load. Previous literature showed that working memory can also be characterized by neuronal
oscillatory signatures. Recent studies, for example, have demonstrated an interplay between
beta and gamma band frequencies during working memory tasks (Lundqvist et al., 2016,
2018). Similarly, alpha and low beta bands, not only increase with working memory load
(Babiloni et al., 2004; Pesonen, Hamalainen, & Krause, 2007), but also in conjunction with
the inhibition of competing visual memories in selective memory retrieval (Park, Min, & Lee,
2010; Waldhauser, Johansson, & Hansimayr, 2012). Besides, previous studies have
reported that increased oscillatory activity in the alpha band is a signature of attentional
processes, and it can predict the likelihood of successful trials in many tasks (Handel,
Haarmeier, & Jensen, 2011; Klimesch, 2012; Nelli, Itthipuripat, Srinivasan, & Serences,
2017); however, in our current study we did not investigate differences between correct and
incorrect trials, but between different types of tasks (involving spatial relationship or
sameness judgment), after controlling for task difficulty . This could explain why alpha-band
amplitude differences were less prominent in our study. All considered, several lines of
evidence point towards beta oscillations as crucially involved in both attention and working
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memory related processes. These processes, therefore, might be part of the additional
computational mechanisms required for SD tasks compared to SR tasks. Future work could
more directly compare the attention and memory dependence of each task in human
subjects.

That feedforward neural networks are limited in their ability to solve simple visual
reasoning tasks is already being recognized by the computer vision and neuroscience
communities (Kar, Kubilius, Schmidt, Issa, & DiCarlo, 2019; Rajalingham, Issa, Schmidt, Kar,
& DiCarlo, 2017; Yamins, Hong, Cadieu, & Dicarlo, 2013). Current CNN extensions include
modules for integrating local and global features (Chen et al., 2018) as well as recurrent
neural architectures (Yang et al., 2018). Our results suggest that the human visual system
also deploys additional computations beyond feedforward processes to successfully solve
visual reasoning tasks. Rhythmic cortical oscillations in the beta-band represent the
signatures of these additional computations, which may involve selective attention and

working memory.
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