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The goal of this review is to bring together material from

cognitive psychology with recent machine vision studies to

identify plausible neural mechanisms for visual same-different

discrimination and relational understanding. We highlight how

developments in the study of artificial neural networks provide

computational evidence implicating attention and working

memory in the ascertaining of visual relations, including same-

different relations. We review some recent attempts to

incorporate these mechanisms into flexible models of visual

reasoning. Particular attention is given to recent models jointly

trained on visual and linguistic information. These recent

systems are promising, but they still fall short of the biological

standard in several ways, which we outline in a final section.
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Introduction
Probing contemporary machine vision architectures for

their ability to represent sameness or difference is at

times a difficult endeavor since the whole of machine

vision has so clearly been shaped by an alternative task:

natural image classification. Image classification and

same-different discrimination tasks are, in turn, shaped

by radically different impulses. The former seeks to

associate particular collections of image features to pre-

defined category labels. In other words, image classifica-

tion is inherently semantic. The latter, following the

maxim of Delius [1], seeks to detect the sameness of

objects in a visual scene ‘regardless the particular quali-

ties of [stimuli].’ In other words, same-different
www.sciencedirect.com 
discrimination systematically [2] generalizes beyond indi-

vidual examples to the abstract relation itself. Same-

different discrimination, and visual reasoning more

broadly, is therefore syntactic in nature. Contemporary

machine vision has struggled to reconcile this divide

(see [3] for a technical summary).

Often, even arguing that such a divide exists is rather

difficult in light of machine vision’s stupendous recent

progress. The last decade has seen remarkable successes

in image categorization, to the point where freely avail-

able and easily usable software is capable of classifying

millions of natural images into thousands of image cate-

gories, arguably surpassing humans’ ability [4] (see [5] for

a recent review). Progress has been equally impressive for

face recognition where state-of-the-art machine vision

systems can identify a face from a database containing

millions of distractors at levels comparable to facial foren-

sic experts [6].

Spurred by the impressive progress in image categoriza-

tion, machine vision scholars have turned to the modeling

of visual reasoning, including types of reasoning relying

on the robust same-different discrimination so evident in

animal behavior (Figure 1a). The behaviors that fall under

this rubric typically involve the comparison of natural or

synthetic (Figure 1b) objects in complex scenes and

manifest in numerous machine vision subdomains, from

fluid intelligence tests such as visual progressive matrices

(V-PROM) [9�,10] and the so-called abstraction and rea-

soning corpus (ARC) [11] to natural language visual

reasoning (NLVR) [12] and visual question answering

(VQA) [13,14]. VQA, which concerns machine learning

algorithms that can answer queries about a data set of

images provided to the system in the form of text strings,

exemplifies the implicit importance of same-different

judgments. A typical question posed to a VQA system

might involve counting objects of a given shape, color, or

purpose. The question ‘How many different fruits [are in

front of the window]?’ in Figure 1c requires the ability to

group objects by sameness and separate them by

difference.

Despite its implicit presence in the field, same-different

discrimination has received relatively little dedicated

attention from machine vision practitioners. Below, we

review what few explicit treatments of this behavior exist

in the literature as well as its implicit presence in the

rapidly developing field of VQA. We will discuss the

various mechanisms used for same-different reasoning
Current Opinion in Behavioral Sciences 2021, 37:47–55
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Same-different discrimination in the animal kingdom and beyond. (a) An important study from [7] suggests that newborn ducklings could imprint

on the abstract relation of visual sameness from a single example. Image used with permission from Dr. Antone Martinho-Truswell. (b) Earlier,

Fleuret et al. [8] showed that humans could detect numerous visual rules (an image obeying a same-different rule is depicted) with minimal

reinforcement while taking the so-called Synthetic Visual Reasoning Test (SVRT). Machine learning algorithms of the day performed significantly

worse. (c) Computer vision modelers have begun to address same-different discrimination and more general visual reasoning problems involving

the understanding of visual variability. A ‘visual question answering’ (VQA) problem involving the understanding of sameness and visual variability

is pictured. (d) A far loftier goal is the computer modeling of general visual reasoning, exemplified by Raven’s progressive matrices, which are the

subject of a recent machine learning study by Barrett et al. [9�].
in machine vision models, how these mechanisms corre-

spond to the attentive [15,16] and mnemonic [17] proce-

dures speculated to underlie same-different detection in

biological vision, and to what degree these mechanisms

meet the cognitive standards set by Delius [1] and Fodor

[2]. We argue that, despite the promising adoption of

important psychological mechanisms by recent VQA

models, machine vision has not adequately grappled with

the problem of abstract, flexible same-different reason-

ing, focusing instead on models that learn particular
notions of sameness corresponding to specific image

features. We conclude by speculating on neurophysiolog-

ically-plausible computational mechanisms which might

improve the performance of machine learning models on

same-different discrimination and visual reasoning more

generally (Figure 1d).

Models without selective attention
A primary goal of machine vision research for the last

40 years has been the design of architectures that can
Current Opinion in Behavioral Sciences 2021, 37:47–55 
extract features which are both selective for natural object

categories and invariant to irrelevant image nuisances like

object position, lighting and pose [18,19]. The result of

these decades of research tackling this ‘selectivity-invari-

ance dilemma’ [20] is the modern-day deep convolutional

neural network (CNN), an artificial neural network

roughly inspired by the hierarchical organization of the

visual cortex [21] (see Figure 2a). These neural architec-

tures simultaneously build up selectivity to natural object

categories and invariance to nuisance variables via a

bottom-up cascade of local filtering (convolution) and

pooling operations across numerous layers of processing

(see [25] for a recent review). Such systems have success-

fully accounted for the feedforward, pre-attentive pro-

cesses responsible for our ability to recognize objects in

rapid categorization tasks [26] and associated monkey

electrophysiology [27]. See [5,28] for very recent reviews.

Already, the psychologist will note differences between

the problems of object recognition and same-different
www.sciencedirect.com
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Figure 2
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A taxonomy of neural network architectures for visual reasoning. Black dots are neurons with receptive fields centered at different retinal locations.

Single-headed arrows represent feedforward processes — possibly through several layers of neurons (not shown). Double-headed arrows are

feedback (also called recurrent) connections through which information flows dynamically over time. (a) Convolutional neural network (CNN).

Retinotopically organized visual features are extracted by multiple convolutional layers (not shown) and then globally pooled in order to determine

if an image contains the relation ‘same’ (S) or ‘different’ (D). Spatially localized visual features must preserve enough fine-level information about

individual items in the retinal image to support same-different discrimination during global processing. (b) Relation network [22�]. A ‘relation

network’ incorporates an intermediate module between the retinotopic and global processing stages wherein the similarity of features for every

pair of receptive field locations is computed. These similarities are then pooled and collectively processed in the global stage. (c) Attention

networks. Attention networks [23] attenuate (light gray) and enhance (dark gray) the output of feature detectors in order to selectively route

relevant information. (d) Memory networks. Modern architectures for VQA [24] use working memory to store relevant information during the course

of sequential attention. Information is stored as persistent neural activity in feedback circuits, depicted here as double-headed arrows both within

and between layers.

www.sciencedirect.com Current Opinion in Behavioral Sciences 2021, 37:47–55
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discrimination and how these differences manifest com-

putationally. Specifically, object recognition requires

visual representations that are highly selective for natural

object categories, whereas same-different discrimination

should ideally operate independently of particular visual

attributes. There is also an uneasy relationship between

‘sameness’ and ‘invariance’: the recognition of two

objects as being the same up to a given transformation

seems intuitively quite different than their being recog-

nized as belonging to the same invariant object category.

Nevertheless, beginning with [29,30�], several studies

have compared the behavior of CNNs trained on same-

different discrimination tasks versus other visual recog-

nition tasks. An important visual recognition challenge

used by both groups to evaluate CNNs is the Synthetic

Visual Reasoning Test (SVRT) of [8], a collection of

23 different visual reasoning problems (including multi-

ple variations on same-different), posed on simple binary

images (Figure 1b). For the CNNs considered, perfor-

mance was found to be uniformly worse on same-different

problems than on reasoning problems involving spatial

information alone, such as detecting if two random curves

in an image are concentric [29,30�]. These results suggest

that CNNs could be used to elucidate a fundamental

difference between spatial and same-different reasoning.

Kim et al. [30�] took an additional step in showing that the

ability of a CNN to learn a same-different discrimination

task was highly dependent on certain image nuisance

variables, namely, the amount of clutter in the scene and

the number of spatial arrangements the scene items could

take. For instance, they found that, as the number of

arrangements of two synthetic, random items in a stimu-

lus was increased, the maximum accuracy of a CNN

trained to detect their sameness would decrease. This

result suggests that CNNs do not represent sameness per
se, but rather instances of sameness in particular spatial

arrangements. Exactly how CNNs represent this spatially

dependent notion of sameness is not clear. Kim and

colleagues, for their part, speculated that CNNs learn

feedforward circuits encoding template matching mech-

anisms similar to those postulated for texture discrimina-

tion [31] which effectively ‘subtract’ image features at

two coarse locations in a receptive field and that these

circuits are exhaustively repeated for all possible pairs of

locations. Future experimental work is needed to test this

hypothesis explicitly.

Concurrent work [22�,24] has sought to build more flexi-

ble relational reasoning mechanisms into CNNs by aug-

menting them with a mechanism for exhaustively com-

paring features contained in all pairs of high-level

receptive fields. The resulting two-part ‘relation network’

architecture comprises a feature extractor which outputs a

retinotopic map of visual features organized in feature

columns followed by a relation module with circuits
Current Opinion in Behavioral Sciences 2021, 37:47–55 
hardwired to exhaustively compare every pair of extracted

feature columns (Figure 2b). This built-in similarity

mechanism mimics the exhaustive comparison which

[30�] hypothesized must be learned from scratch in

CNNs. The psychologist may also be familiar with a very

similar mechanism for computing the affinity between

localized image features in the form of the ‘finding

differences’ model from visual perception [32,33].

Though both models involve the exhaustive comparison

of image features on a retinotopic grid, the relation net is

capable of learning a complicated metric for feature

comparison, whereas the finding differences model relies

only on Euclidean distance. Further, the finding differ-

ences model attenuates the similarities between retino-

topically distant features, while the relation net makes no

such spatial assumption.

Though [22�] demonstrated a relative improvement in

the accuracy of their relation net compared to regular

CNNs in answering relational questions about synthetic

scenes, their system nevertheless suffered from a few

limitations. First, the system’s similarity-evaluation

mechanism was constrained by the coarse retinotopy of

the top convolutional layers, so it is unclear, for example,

how the system would perform same-different discrimi-

nation on objects small enough such that the pair would fit

within individual receptive fields. Moreover, the authors

only tested the ability of their model to detect relations

with particular perceptual cues (e.g. ‘Is the red object on

the left or right of the image?’. Emphasis added.) on

scenes with very few distinct items (as few as 12 in one

task) instead of the more perceptually abstract and bio-

logically relevant same-different discrimination. Indeed,

when Kim et al. [30�] evaluated a relation networks on

bona fide same-different discrimination, they found that

the system struggled to generalize to novel combinations

of shapes and colors not used during training. Further,

relation net accuracy was found to be as sensitive to the

number of object arrangements as a standard CNN.

Kim et al. [30�] argued that the tendency of feedforward

architectures to overfit to particular object attributes and

to be highly sensitive to object locations was rooted in

their lack of flexible spatial attention mechanisms. CNNs

tend to inflexibly approximate spatial attention in learned

feedforward circuits, which quickly exhausts their capac-

ity. Other feedforward neural networks, like the relation

network, approximate attention by exhaustively assessing

the similarity between all possible object pairs, but this

process is strongly dependent on the arbitrary resolution

of high-level receptive field maps. What is more, [30�]
found that the pathological sensitivity to object locations

in CNNs disappeared when objects in the scene were

segregated into different high-level receptive fields, sim-

ulating the effect of dynamic attention and feature bind-

ing. Since then, relational models incorporating dynamic,

non-feedforward mechanisms like attention and working
www.sciencedirect.com
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memory have become the norm in computer vision, as we

will see in the next section.

Models with attention and working memory
Though they have not seen as widespread of usage as

CNNs, relation networks nevertheless represent an impor-

tant realization among machine vision scientists on the

subject of visual reasoning: good visual representations

are often less important than good visual routines [18]. After

all, relation nets are little morethana built-in searchroutine.

This search could presumably operate ‘independent of the

particular qualities’ of visual features, as long as those

features preserve the veridical sameness or difference of

objects at the pixel level. This raises the natural question of

which visual routines mimic the flexibility and generality of

biological same-different discrimination.

Here, the machine vision scientist will benefit from a long

psychological and neuroscientific literature on same-differ-

ent discrimination and the dynamic visual routines which

undergird it. For example, it is widely accepted that visual

relation detection in biological agents requires the deploy-

ment of selective attention [15,16]. This fact was largely

recapitulated by Kim et al. [30�] who showed that same-

different discrimination was trivial for CNNs when objects

were forcibly segregated into different high-level receptive

fields (in essencemimicking the process ofspatialattention).
Figure 3

What is sitting on the desk
in front of the boys?

What are on the shelves
in the background?

Spatial
Attention

Architecture

Spatial
Attention

Architecture

The attention network described in [37] learns to select image regions that 

image. Heat maps shown reflect the strength of the attention modulation ap

the regions in front of the boys and provides the correct answer ‘laptops’. I

regions in the back and provides the correct answer ‘books’.
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Attention, it is typically regarded [17,34�], works in tandem

with working memory to produce the type of flexible rela-

tional processing observed across the animal kingdom.

Machine learning systems approximate biological atten-

tion by learning to scan images for target features or to

selectively attenuate neural activations with a suppressive

mask (Figure 2c). Attentional mechanisms have been

traditionally used in natural language processing, where

sequential processing of syntactic structures is the norm.

For example, Xu and Saenko [35] adapted an attentional

mechanism used originally in machine translation [36] to

a VQA task (Figure 3) in which image regions are scored

according to their relevance to the posed question, often

one concerning relations among objects. Regions with the

highest scores are selected for further processing while

other regions are simply filtered out. This type of atten-

tion has been influential in creating attentional VQA

models [37–40] which have significantly surpassed the

performance of earlier non-attentional models [41,13].

Today, almost all state-of-the-art VQA architectures

include some form of attention [42,24,43], mimicking

the spatial, feature-based and object-based attentional

procedures familiar from the psychophysics literature.

A less biologically plausible form of attention, so-called

‘key-query-value’ attention [44], has rapidly been gaining
Books

Laptops
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in popularity in VQA as a refinement of earlier systems [43

,45–47]. This approach uses the equivalent of multiple

attention spotlights to model fine-grained interactions

between key visual regions and key words in a question.

It also allows attention to be deployed to multiple loca-

tions, paralleling the process of shifting attention in

biological vision. This type of attention allows for global,

contextual processing. For instance, the representation of

an apple presented in a complex image will contain

contextual information about other aspects of the visual

scene. While the reported gains in accuracy for these

models have been significant, the complexity of these

systems has hindered researchers’ ability to interpret their

underlying neural computations. In addition, they often

require more training data and are computationally more

demanding [43,47]. Arguably, these systems are diverging

again from their biological cousins.

Other work has investigated the role of mnemonic mech-

anisms in relational understanding, resulting in so-called

‘memory-augmented networks’. These neural architec-

tures (Figure 2d) possess feedback/recurrent circuits

which can maintain neural activity through time in a

manner roughly consistent with biological working mem-

ory [48,49]. These memory mechanisms allow for the

temporary maintenance of information over several time

steps so that comparisons between same/different objects

can be computed over longer timescales, for instance,
Figure 4

Is she wearing
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1 2 3 4
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the

sphere
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behind
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brown
and 
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cubes

Memory-augmented attention architectures learn to answer a question thro

mechanisms select a region of interest to be held into a short-term/working

that are most ‘ring-like’ starting with the donut that is being eaten. A salienc

the ring is correctly located, and the system then correctly identifies a ‘wea

answer ‘yes’. Bottom: The model described in [51] on the CLEVR dataset [1

through a sequence of four steps by relating each selected spatial regions 
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between shifts of attention. A simple instance of this type

of memory-augmented architecture has been proposed by

Chowdhury et al. [50], who showed how an image repre-

sentation stored in recurrent loops could be modulated by

lexical information in the posed question via a word-by-

word update process. Later, Cadène et al. [24] proposed

a memory network specialized in relational questions

(Figure 4), where the can be solved by sequentially

storing relationships between the important regions of

the image. For instance, to assess the type of food that a

woman is eating in a picture, a first task would be to locate

the woman, a second task would be to locate the object

that she is eating using the ‘eating’ relationship, and

finally to assess the class of the eaten object.

Another stream of research [52�] uses additional ‘external’

memory more akin to episodic memory and consisting of

multi-dimensional representations [53–55] that can be

read and written by a neural network. External memory

systems, in this sense, function like long-term storage in a

computer. These systems are particularly useful in

modeling the long-term dependencies inherent in rela-

tional questions. Memory-augmented VQA architectures

have been especially successful in modeling this type of

relational understanding because of their ability to pro-

gressively decompose questions and relations into their

subparts. Progressive decodings of each subpart are writ-

ten in memory until a final deduction is produced.
yes

purple
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ugh a sequence of computational steps. At each step, attention

 memory. Top: The architecture proposed in [24] selects image regions

y map is continuously updated until the third region selection where

ring’ relationship with the hand. Finally, the system provides the correct

4] provides the correct answer to a complex synthetic question

to each words of the question.
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Concluding remarks: towards abstract same-
different discrimination
The aforementioned attention and memory network mod-

els are stepping stones towards the flexible relational rea-

soning that so epitomizes biological intelligence. However,

current work falls short of the — in our view, correct —

standards for biological intelligence set by experimentalists

like Delius [1] or theorists like Fodor [2]. In the parlance of

classical cognitive science, same-different discrimination is

perhaps one of the most convincing examples of productive,

systematic and compositional cognition in the sense that the

representational capacities for the detection of sameness are

‘unbounded under appropriate idealization’ [2, p. 21], gen-

eralize widely and easily even across modalities, and mani-

fest hierarchically in the case of relational matching [56].

Contrarily, state-of-the-art machine-vision models are rou-

tinely trained on data sets generated from a small dictionary

of synthetic shapes or natural objects, making the systems

susceptible to overfitting to particular image features. In our

view, this ‘semantic contamination’, is the machine vision’s

most daunting challenge in same-different modeling and,

indeed, general visual reasoning. Not only has this problem

not been adequately solved, but it has not even been

seriously investigated, since, to our knowledge, there is

no large-scale study of contemporary neural architectures’

ability to perform same-different discrimination in which

object variability is systematically controlled.

Compare the behavior of machine learning systems to

that of bees, which can learn a robust notion of sameness

which not only generalizes across visual stimuli but also

extends automatically to other modalities, including

olfaction [57]. Ducklings, on the other hand, can learn

at birth the abstract relation of visual sameness from a

single ‘imprinting’ example [7] (Figure 1a). Without the

ability to recognize sameness to the standard of bees and

ducks, let alone humans [58,8], there would seem to be

little hope of realizing the dream of creating truly intelli-

gent visual reasoning machines (Figure 1).

Of course, it is one thing to open old wounds [59,60] with

general claims about the power and flexibility of biological

cognition in the context of relational reasoning, but it is quite

another to propose concrete solutions. On this front, we

believe that it will be fruitful to investigate neural models

dealing with data structures which naturally encode relations

among abstract objects, like graphs in the case of graph neural

networks [61]. We are especially intrigued by the linguistic

information employed by VQA systems as there is ample

evidence for an intimate connection between linguistic and

visual representations of relations in human psychophysics

[62]. For instance, studies have examined attentional shifts in

response to the structure of sentences describing a visual

relation [63,64], how the acceptability of linguistic descrip-

tions of visual relations is influenced by scene structure [65],

how the correspondence between linguistic and visual repre-

sentationschanges in thepresenceofdistractors [66], andhow
www.sciencedirect.com 
reaction time for relation detection is influenced by subject-

object structure in a linguistic description of a scene [67].

Further, evidence from [30�] implicating featuring grouping

in same-different detection suggests that models which can

dynamically bind features to particular objects, like Capsu-

leNets [68], offer a promising direction. These networks use

correlations between multi-dimensional pre-synaptic and

post-synaptic activity to selectively route features belonging

to single objects in stimuli involving multiple overlapping

components. The idea of using multi-dimensional neural

activity to encode Gestalt representations was later explored

by Vankov and Bowers [69]. We believe such a mechanism is

a natural prerequisite forbehaviors involving the comparison

of objects in real-world scenes, including same-different

discrimination. One notable attempt at using binding in a

relational reasoning task comes from [70��], although the

authors only used synthetic shapes arranged in a grid to test

their system, making their system vulnerable to the pro-

blems highlighted  by Kim et al. [30�]. Exactly how such a

routing mechanism could be implemented in the brain,

however, is unknown, though there is interesting recent

evidence implicating cortical oscillations [71,72,34�].

We are not currently wedded to any implementational

strategy for same-different discrimination in neural net-

works. Our point here has simply been to argue that this

behavior may be vastly more important to machine vision

than previously believed and that it would do the compu-

tational modeler well to consider arguments for the beha-

vior’s primacy. A careful consideration of the psychologi-

cal arguments surrounding same-different discrimination

marks an important opportunity for machine vision,

which, in our view, should strive to meet the criteria

set forth by cognitive scientists [1,2]. This is a high

standard, but one we believe is worth meeting.
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