Distributed gradient methods for convex

machine learning problems in networks

Angelia Nedi¢

Abstract

In this paper we overview distributed gradient methods for solving convex machine learning prob-
lems of the form min,cgn % S, fi(z) in a system consisting of m agents that are embedded in a
communication network. Each agent ¢ has a collection of data captured by its privately known objective
function f;(z). The distributed algorithms considered here obey two simple rules: privately known agent
functions f;(x) cannot be disclosed to any other agent in the network, and every agent is aware of the local
connectivity structure of the network, i.e., it knows its one-hop neighbors only. While obeying these two
rules, the distributed algorithms that agents execute should find a solution to the overall system problem
with the limited knowledge of the objective function and limited local communications. We overview
such algorithms that typically involve two update steps: a gradient step based on the agent local objective
function and a mixing step that essentially diffuses relevant information from one to all other agents in

the network.

I. INTRODUCTION

Artificial intelligence is emerging as the driving technology that will enable future automated trans-
portation, smart cities and smart power grids, as well as robots that will replace humans in hazardous
workplaces and situations. At the core of this technology are the devices that can collect data (i.e.,
collect measurements from their surrounding), process data and communicate in order to share estimates
for optimal and reliable system performance. Machine learning is at the core of the data processing, while
the communication among the devices allows for collaborative learning from all the data within the system
without the need to share the data locally stored at the devices. As such, these systems are inherently
distributed, as the data collection is distributed, central for the development of these technologies are

distributed computational models and coordination mechanisms relying on local communications.
The School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85281 USA (e-

mail: Angelia.Nedich@asu.edu). The work has been partially funded by the NSF grant CCF-1717391 and the Navy award
N000141612245.

February 17, 2020 DRAFT

One possible architecture that can support operations in such distributed systems is the peer-to-peer
architecture, which can also serve as a primitive for building more complex hierarchical architectures.
In a peer-to-peer architecture, the consensus protocol has attracted a lot of interest and research for
synchronization, formation control, learning and coordination of multi-robot tasks, to name a few. A
common ground for addressing these problems is provided by distributed computational models (including
machine learning in particular) that use a consensus mechanism as a virtual coordinator.

The goal of the paper is to overview the framework of distributed consensus-based gradient methods
for convex machine learning problems over static graphs, both directed and undirected. These methods
will be discussed in relation to the standard machine learning problem of minimizing the average of the

sum of functions,

1 p
min — " fi(@),)
i=1

ZER™ P
where each function f;(z) represents the loss associated with a given data point. Specifically, given a
collection {(z;,y;),i =1,...,p} of data points, where z; € R" is a feature vector and y; € {—1,+1} is

its corresponding label, a nonlinear classification problem consists of solving the following minimization

problem:
i (eote) + 3 tos) @
min | ep(x) + = T Zi, Yi
TER™ P p po s Ziy Yi)
where ¢ > 0 is a regularization parameter, © = (x1,...,Z,) is a vector, and the regularizing function p(z)

is a strongly convex function (such as the Euclidean norm), and #(x; z;, ;) is a loss function associated
with the data point (z;,v;) € R"*1. The loss function /(z; z,y) is typically convex but not necessarily

differentiable. For linear classifiers, a common choice is the logistic regression loss function, given by:
l(z;2,y) = log (1 + e_y<x’z>) ,

with (z,z) being the inner product of the vectors = and z, i.e., (x,z) = Z?zl:rjzj. The resulting
problem, is known as the logistic regression (linear) classifier problem. Another common choice is the
hinge-loss function

E(x; Zay) = max{O, 1- Yy <$7 Z>},

giving rise to the maximum margin (linear) classifier problem.
As seen from the preceding discussion, the machine learning problem (2) falls under the general
formulation in (1), where a function f;(x) = ep(x) + €(x; 2z;, y;) is associated with a data point (z;, y;).

When the number of data points p is not too large, the problem in (1) can be solved using the iterative

February 17, 2020 DRAFT

gradient method, as follows: We start with some initial guess 2. At iteration %k, we have iterate z* and

we compute the gradient
12
=Y Vi) 3)
P

k+1

of the objective function at the current iterate. Then, we obtain the new iterate x by moving away

from the point z* along the opposite direction of the gradient with some positive stepsize oy,
P
o
Rl — Lk ?]9 val(xk)
i=1

Convergence of this simple gradient method is known for the (positive) stepsize sequence {«y } satisfying

the following two conditions:

o0 o0
Zak:oo and Zai<oo.
k=0 k=0

These conditions are satisfied for example with the stepsize ay = % or more generally with the stepsize
of the form ayj, = %, where a > 0 is arbitrary while b € (%, 1]. When the objective function is convex,
the gradient method with such a diminishing stepsize produces an iterate sequence {z*} converging to
an optimal point z* that solves the problem in (1), provided that an optimal point exists (e.g. see [1]).
We note that, under some additional assumptions on the objective function, the gradient method with a
suitably chosen constant stepsize o > 0 (i.e., ax = « for all k) produces a sequence of iterates {z*}
converging to the solution of the problem (see for example textbook [2]).

When the number p of the data points is large, computing the full gradient in (3) becomes expensive
(time consuming) and alternative approaches have been developed, including the stochastic gradient
method that uses V f;, (z*) (with an index 4, € {1,2,...,p} selected uniformly at random) instead of
the full gradient. To improve the convergence properties of this basic stochastic gradient method, variance
reduced methods have been proposed including SVRG [3] and SAGA [4].

The gradient method and its aforementioned stochastic variants are centralized in the sense that they
are applicable to the situations where all the data is located at a single location or the data can be
accessed from a central location. In what follows, we will consider the machine learning problem in the
case when the data is spatially distributed among several locations and there is no central entity that
can access all the data. Moreover, we assume that the data is private and cannot be shared among the
data centers - a situation that arises in applications dealing with a medical data for example. Each data
center is viewed as an agent capable of processing its data points locally and exchanging some estimates
(extracted from its private data) with the other agents (data centers) over a communication graph. The
agents communicate in order to coordinate their local computations with the other agents in the system,

so as to jointly solve their aggregate problem (to be specified shortly).

February 17, 2020 DRAFT

The outline of the rest of the paper is as follows: Section II will provide a basic gradient algorithm
with weighted-averaging consensus step for minimizing the average-sum objective function for the case
when the computing agents communicate over an undirected communication graph. The basic idea of the
algorithm will be explained as two-level approximation of a centralized gradient method, with insights
on how and when these approximations are good enough for the method to work. The core references
here are [5], [6], [7], [8], [9], [10]. Section IIl will be an analog of Section 2 for the directed graphs,
where one resorts to a push-sum consensus instead of a weighted-averaging consensus. Key references

include [11], [12], [13], [14], [15], [16].

II. DISTRIBUTED GRADIENT METHOD FOR UNDIRECTED GRAPHS

We consider the case when the data points pertinent to the same phenomena or a task are collected at
m distinct centers that need not be colocated. We refer to these centers as agents, labeled by 1,2, ..., m,
and we let agent 7 have the set S; of data points. The learning problem corresponding to the aggregate
data of the system of all agents has the form as in (2), where p is the total number of data points at
all agents, i.e., p = [S1| + -+ + |Sm|, with |S| denoting the cardinality of a finite set S. To account for

the agent specific data, by aggregating the data per agent, the problem in (2) can be re-formulated, as

follows:
1 G
min — ; fi(z),)
where
filw) = 3 (epla) + 0 20, 14)))
p s€S;

Note that problem (4)—(5) is equivalent to the problem in (2). We will assume that the function f; :
R™ — R is the private loss function known only to agent . Further, we will assume that the m agents
are communicating over an undirected network represented by a graph G = ([m], &), where [m] =
{1,2,...,m} denotes the set of agents and £ denotes the set of undirected edges. We write {7, j} to
represent an edge connecting agents ¢ and j.

The agents want to solve the problem in (4) collaboratively in the sense that they are willing to share
some estimates with their immediate neighbors in the graph, but they are not willing (or not allowed) to
share their data, which essentially means they do not reveal their loss functions f;.

Given the communication graph G = ([m],), the problem can be reformulated as follows:

. 1

z; €ER" i€[m] —
subject to x; =x; forall {i,j} € £. (6)

February 17, 2020 DRAFT

This reformulation is obtained from problem (4) by assigning a copy z; of the decision variable x to each
agent, and by imposing the requirement that these copies should be all the same, i.e., x; = x for all agents
i € [m]. This system of equations is then replaced with an equivalent system of equations requiring that
x; = x; for all 4, j € [m]. When the graph G is connected!, the system of pairwise equations z; = x; for
all i, j € [m] is equivalent to the system of graph compatible equations x; = x; for all {i,j} € £. Thus,
when the graph G is connected, the problems in (4)—(5) and (6) are equivalent. Reformulation (6) serves
as a departure point for the discussion of distributed first-order methods for machine learning problems
which use a consensus-type update to enforce the equal-decision constraints in problem (6).

The objective function of problem (6) is decoupled, as each f; depends on its own variable x;, but
these variables are coupled through edge-based constraints. The idea is to distribute the problem among
the agents, by allowing each agent to know its neighbors in the graph, that is every agent ¢ is aware of
the agents j such that {i,j} € &, which constitute the set N; of the neighbors of i in the graph, i.e.,
N; = {j | {i,j} € E}. Using the local agent knowledge of the graph and the functions, every agent i
can solve its own “local part” of the overall problem. However, in order for the agents to collectively
solve the overall problem, each agent needs to align its variables with the variables x; corresponding to
its neighbors j € N;.

As a mechanism for alignment of the variables, a consensus algorithm is used. The consensus algorithm

is a distributed method that the agents can use to asymptotically agree on a decision vector. Specifically,
k

each agent starts with an arbitrary vector x;(0). At iteration k, every agent sends its current iterate x;
to its neighbors j € N; and receives a:f from its neighbors j € N;. After this, every agent i, executes
the consensus update step:
$§+1 = anmf + Z aijxé?, (7
JEN;
where a; > 0 and a;; > 0 are such that a;; + EjeM a;; = 1. The positive scalars a;;, j € N; U {i} are
k+1

referred to as convex weights, and the vector z;" is said to be a convex combination (or a weighted
average) of the points x;, j € N; U {i}. Note that the positive weights a;;, j € N; U {3}, are selected by
agent 1.

To have a more compact representation of the consensus method, let us define an m x m weight matrix

A with entries

a;; > 0 and Qij > 0 with a;; + ZjEM Qij = 1 and Q5 = 0 when j %/\/’Z U {’L} (8)

"For any two distinct agents 4 and j, there is a path from i to j in the graph G.

February 17, 2020 DRAFT

In view of the fact that the nonnegative matrix A has a positive entry in the j-th position only when
{i,j} is a link in the graph G, we will say that such a matrix A is compatible with the structure of the
graph G. Using the weights a;; defined in (8), the consensus algorithm in (7) assumes the following

form: for every i € [m],
m
:Uf“ = Zal-jx?.)
Jj=1

The sum of the entries in each row of the matrix A is equal to 1. Such a non-negative matrix is referred
to as row-stochastic.

An illustration of a connected star-graph with four agents is given in Figure 1. As an example of

T

Fig. 1. A star-graph with 4 agents.

a row-stochastic matrix A that is compatible with the structure of the graph in Figure 1 consider the

following:))
1 1

2 00 3

1 1

a2 202

00 1 3

11 1 1

| 4 4 1 4 |

This matrix is constructed using an equal-weight rule, whereby each agent ¢ gives the same weight to
itself and all of its neighbors j € N;.

When the graph G = ([m/],£) is connected, and the matrix A is row-stochastic and compatible with
the graph structure (i.e., it satisfies the relations in (8)), the iterate sequences {xf},z € [m], generated by
the consensus algorithm converge to a same limit point . The limit point z, referred to as a consensus

or an agreement point, is given as a convex combination of the initial values {z9,i € [m]}, i.e.,

m
T = Z .
i=1
The weight vector m = [y, ..., 7T,] is the unique (normalized) left-eigenvector of the matrix A corre-

sponding to the eigenvalue A = 1, i.e., mA = 7. The convergence result is obtained by viewing the matrix

February 17, 2020 DRAFT

A as a one-step transition matrix of a Markov chain and employing the ergodicity theory for Markov
chains. The detailed proof of the convergence of the consensus algorithm can be found in [5], where the
consensus method was originally proposed. If the matrix A is doubly stochastic, then m; = % for all ¢
and, consequently, the consensus point is the average of the initial values, i.e., T = % py x?.

Using the consensus method as a mechanism for alignment of the agent variables, a distributed
optimization method with a local information exchange can be constructed by executing two steps -
a mixing (consensus) step (8) and a gradient-based step. At the beginning of a typical iteration k, every
agent sends to its neighbors its current iterate xf to its neighbors j € N; and receives x? from its

neighbors j € N;. Then, every agent 7, executes the following two update-steps:

m
k k
uo=) ayal,
j=1
k+1 k k
i = uf — Vi), (10)

where the weights a;; satisfy the same relations as in the consensus method (i.e., the relations in (8)), and
k

ay > 0 is a stepsize. We note that the vector v; is a convex combination of the points z;, j € N; U {i}.
After obtaining vf through the mixing step, every agent ¢ performs a gradient update step using vf to
obtain its new iterate xf“. The algorithm in (10) is distributed since every agent updates using a gradient
of its own private function, and is local in the sense that it relies on local information exchange. The
method is also often referred to as the consensus-based gradient method, due to its use of a mixing step
that resembles the distributed consensus process.

Distributed algorithm (10) can be viewed as an extension of the gradient method, where the mixing
step is introduced to align the agents’ iterates. This mixing step plays a role of “virtual coordinator” of
the agents iterates in a system that does not have a central coordinator. To shed more light into this, lets
take a look at what is happening with the iterates of the distributed gradient method on the system level.
Consider the iterate sequences {x%},i € [m], produced by the method at all agents in the system. By
taking the average of these iterates (cf. (10)) across all the agents, at any given instance, we have

lixk“ — livk — %ivf.(vk) — ii (iw) zk — %ivf.(vk)
mi:li _mz‘zlZ mos Zl_mj:1 i=1 Y)Y mos A
where the second equality is obtained by using the definition of vf in (10) and by exchanging the order

of the resulting two sums. When the matrix A is doubly stochastic?, we have Yot a; =1 for all j,

thus yielding
1 < k1 _ L SR k
=Dt =—) = Y VAW,
i=1 j=1 i=1

2The sum of its entries in each row and each column is equal to 1.

February 17, 2020 DRAFT

By letting Z* denote the iterate average across the agents at time %, i.e.,

1 m
frA—— g xf,
m

i=1

the preceding relation can be written as

=2k~ ST v b, (11)
=1

m <
Relation (11) is nearly the same as the (centralized) gradient method update for solving problem (6),
with only difference being that the gradient of f; is computed at the point vf‘ instead of the point Z*.

More concretely, by adding and subtracting the correct gradients, for the averaged iterates we have

ghtl = gk _ 2k ini(a’:k) +ek, b=k zm: <Vfi(fk) - Vfi(“f)) :
i=1 1=1

m m <

The averaged iterates Z**! will follow an erroneous gradient method, where the error is proportional to
the average gradient difference V f;(z%) — V f;(vF), as long as we can ensure that the error € remains
small. In fact, under some additional assumptions on the functions and the stepsize, the mixing step can
ensure that the error €, does not blow up.

The role of the mixing matrix A is critical since it guarantees that the following properties hold under
suitable conditions on the stepsize and the functions f; (such as the convexity):
(1) the averaged iterate sequence {Z*} converges to a solution z* of problem (6) and

(2) the disagreement sequence {|lz¥ — z*||} converges to zero for every agent 1.
k

Thus, the iterates z7,i € [m], generated by the distributed method track the averaged process with
increasing accuracy, while the average process converges to a solution of the problem. Consequently, the
iterate sequences {xf },i € [m], all converge to the same point and this common point is a solution of
the problem (6).

From the view point of the consensus process in (9), the distributed gradient method in (10) can be
interpreted as a consensus-based process that is affected by two forces: the consensus force represented
by the mixing step (influenced by the matrix A) and the agent-based gradient forces coming from the
objective functions f;. In this case, the gradients steer the limiting consensus point to a solution z* of
problem (6).

The consensus algorithm was originally proposed in [5] to model opinion dynamic leading to an
agreement in a team of individuals. It was later used for estimation, control and optimization starting
with works in [17], [18], [6]. In contrast to the machine learning problem considered in this paper, the
optimization problem considered in [18], [6] involves a non-separable objective, i.e., the problem of the

form

min Tlye..y L
x:(xlv'":l“m)ER" f(L ’ m)7

February 17, 2020 DRAFT

where the decision vector x € R™ is partitioned among m agents. The first variants of distributed
gradient methods that employ a mixing (consensus) step to solve the problem with a separable structure
(i.e., in the form of a machine learning problem (4)) was pioneered in [7], [8]. Subsequently, many
distributed methods have been developed such as those with a faster convergence [19], [20] and with
emphasis on the communication and the computation tradeoffs [21], [22]. A recent survey [10] gives a
thorough review of the consensus problem, and variations and extensions of the distributed method that
account for the implementations over time-varying graphs, over networks with delays and with noisy (or
quantized) communication links, the method with noisy (stochastic) gradient evaluations, as well as some
asynchronous implementations.

The mixing step of the distributed method in (10) is also referred to as a diffusion, as it allows for
the local agent information to diffuse over the entire network. The mixing step and the gradient update

step in (10) can be exchanged, leading to an alternative variant of the distributed method

Tpa— xf—akai(xf),

m
A Zaiﬂf, (12)
j=1

Viewing the gradient update step as an adaptation, the distributed method in (10) is also referred to
as combine-then-adapt (CTA) diffusion strategy, while the method in (12) is referred to as adapt-then-
combine (ATC) diffusion strategy. One can find an elegant exposure of these strategies in [9], and follow
the references therein for technical details of their analysis.

The convergence rate of the distributed method in (10) is of the order of O(ki}ggk) in the number k

of iterations, which is dictated by the use of the diminishing stepsize satisfying the typical conditions
in gradient methods, namely » 7>,y = oo and > - oz% < 00. A centralized gradient method for a
convex minimization problem that uses such a diminishing stepsize a converges in the order of O(ﬁ)
Thus, the distributed method is slower due to the log k term, which in turn is due to the extra mixing

step in (10) that copes with the distributed knowledge of the overall objective function. Moreover, the

log k
vk

properties of the mixing matrix A. A more in depth discussion on how the graph topology affects the

hidden constant factor in O() depends critically on the graph G connectivity structure and the spectral

performance of the method can be found in a recent survey [23].

We conclude this section by summarizing the basic advantages and limitations of the distributed

logk)
vk

(resulting from the use of a diminishing stepsize). However, the method is suitable for the situations

method (10). The method is considered to be slow since its convergence rate is in the order of O(

where noise or errors are present due to noisy links or failure-prone links, or due to the use of stochastic

gradients. In such situations, the diminishing stepsize is beneficial as it attenuates the noise.

February 17, 2020 DRAFT

Two major limitations of the method (10) are:

(1) It requires the use of a doubly stochastic matrix A in order to solve the problem of minimizing the
average sum % ot fi(x) of the agent objectives. The construction of such a matrix in a distributed
fashion is a nontrivial problem when the underlying communication graph G is directed, as pointed out
in [24]. To avoid this obstacle, one can consider a distributed gradient method that employs an alternative
consensus process in the mixing step, which does not require a doubly stochastic matrix, as discussed in
Section III.

(2) In general, the method does not converge with a constant stepsize (i.e., o = « for all k), which has
been observed in [25]. Therefore, it can not match the performance of the centralized gradient methods
that use such stepsizes and have a convergence rate faster than O(ﬁ) A remedy for this drawback is

provided by allowing the agents to exchange and mix both the decision vectors and some suitably defined

estimates of the gradient directions, as seen in Section IV.

ITII. DISTRIBUTED GRADIENT METHOD FOR DIRECTED GRAPHS

When the underlying communication graph G is directed, the distributed method of Section II requiring
a doubly stochastic matrix A cannot be easily implemented since the construction of the matrix A in a
distributed way becomes computationally expensive. To deal with directed graphs, one can resort to a
different consensus algorithm that makes use of a column stochastic weight matrix A, and combine it
with a gradient method.

Specifically, the consensus algorithm is built using a column stochastic matrix A that is compatible

with the given directed graph G, i.e., for all j € [m],
aj; >0 and a;; > 0 with aj; + > cpemaij =1 and a;; =0 when s € NP" U {5}, (13)

where /\/’j‘?ut is the set of all out-neighbors of agent j, i.e., the agents ¢ that can be reached from j by a link
(j,1) € &); formally ./\/'jQut ={i| (4,4) € £}. In this case, agent j chooses the weights in the jth column
of A and ensures that its entries sum to 1. A common choice is to let all the values a;;,¢ € /\/f“t u{s},
be same and equal to the cardinality of the set N"* U {j}.

Having such a matrix A, a consensus method is constructed that has two variables. In particular, each
agent ¢ maintains variables xf and yf at time k. At time k£ + 1, each agent j sends aijxé‘? and aijyf to all
of its out-neighbors ¢ € N}mt. After that every agent ¢ updates by simply summing the z- and y-variables
it has received from its in-neighbors , i.e.,

k+1 Z ok
l’i = az]xj,

JeNr Ui}

February 17, 2020 DRAFT

gttt o= > agl, (14)
JENTULi)}

where A/ is the set of in-neighbors of agent i, i.e.,
N ={i | G.i) € €}

The algorithm in (14) is known as the push-sum method since every agent pushes some information
along its outgoing links, while it sums the incoming information. The algorithm will lead to consensus,
as long as the graph G is strongly connected® and the y-variables are initiated with y{ = 1 for all i. The
z-variables can be vectors, while y-variables are always scalars. The variable that reaches a consensus

is in fact a ratio of x- and y-variables at each agent, that is the variables

for all i € [m],

EES

converge to a common consensual point as the number k of the iterations increases to infinity. For this
reason, the method is also referred to as a ratio consensus. The first push-sum algorithm has been proposed
in [11] for a randomized gossip-type implementation. Subsequently, it has been further investigated in [26],
[12], [27], [28] for networks with time-varying communication structure including the case of unreliable
(packet-dropping) links.

One can use the push-sum consensus to construct a distributed gradient method for solving machine
learning problem (6), where each function f; is a private local objective function of agent 7. Starting

with arbitrary variables z?,i € [m] and y? =1 for all 7, the algorithm proceeds as follows: each agent j

k

sends a;;x;

and ajiyf to its out-neighbors (i.e., the agents ¢ that can be reached by a link (j,4) € £)).

After this communication step, all agents update their x- and y-variables as follows:

k41 Lk
v, = E ai;xy,

JENU{d}
k+1 k
7 — Z al]yj7
JENU{d}
k+1
e - &
i - kL
Y
k+1 _ k+l k+1
Z; = o —apVf(zT). (15)

3For every two distinct nodes ¢ and j there exist directed paths connecting i to j and j to i.

February 17, 2020 DRAFT

The method will be referred to as gradient-push method. To gain the intuition behind this algorithm,

consider dividing the update relation for xf“ by yf“, which in view of the definition of zf“ in (15)
yields
o k+1 k k+1
= AT ARG,

(2

(873

where fyf = JFh > (. As the z-variables converge to a common point Z and the stepsize o, is diminishing,

under suitable conditions on the gradients of the function f; (such as boundedness), the ratio % also
converges to the point Z. Additionally, the convexity of the functions f; and the correct selectioﬁ of the
stepsize oy, are important to ensure that the consensual point Z is in fact a solution to the aggregate-agent
learning problem of minimizing the average sum % Yo, fi(x) of their local objective functions (i.e.,
the problem in (4)). While the intuition behind the gradient-push method in (15) is simple, its formal
analysis is quite involved.

The work in [13], [14] is the first to provide a distributed method that makes use of the push-sum
consensus protocol to cope with directed graphs. There, the dual-averaging method of Nesterov has been
used in the construction and its convergence properties have been established for a static directed graph.
Subsequently, in [15] a simple (sub)gradient method using the push-sum consensus has been proposed

for a general sequence of time-varying directed graphs, and later on extended to a stochastic method

in [16]. The work in [15], [16] establishes the convergence rate of O(l‘:%“) and O(lol%k) for the case
when the functions f; are convex and strongly convex, respectively. We note that, while the work in [15],
[16] uses the special weight matrix Ay (equal-out-neighbor weights), it is straightforward to extend it to
the case of an arbitrary sequence of column stochastic matrices that are compliant with the topology of
the underlying graphs, and have nonzero entries that are uniformly lower-bounded away from zero. A
more comprehensive review of the literature and the results for the push-pull consensus based methods
is given in a recent survey paper [23].

The gradient-push method in (15) suffers from the same slow convergence as that of the distributed
gradient method (10) due to their use of the diminishing stepsize. The advantages of the gradient-push
method are the same as those of the distributed gradient method, mainly in noisy settings. If the stepsize
is constant, both distributed gradient method (10) and gradient-push method (15) may fail to converge,
while the constant step is desirable for a faster convergence. Thus, these algorithms are not readily
rendering accelerated variants that can perform nearly as fast as the centralized gradient method.

Another explanation for the inability of these methods to be faster can be observed from their somewhat
greedy (local) view of the objective function. In particular, in both of the distributed methods (cf. (10)

and (15)) the agents use mixing (with their neighbors) for the decision variables, but the decision variables

February 17, 2020 DRAFT

are updated at every agent ¢ using only a local objective function gradient V f;. Thus, with respective to
the global objective function, which is proportional to y ;" fi(x), the agents perform a greedy update.
To enhance the performance of these methods, the agents need to be less greedy, as we will see in the

next section.

IV. GRADIENT-TRACKING ALGORITHMS

In this section, we assume that the agents are “aware” that they comprise of a system, while they need
not be aware of the global connectivity structure nor the global objective function)", f;(x). However,
by being aware that there is a system objective, in addition to mixing their decision variables, they also
use and mix directions that serve as estimates of the global objective gradient. This extra mixing step of
directions needs to be properly constructed to track the gradients of the system objective.

Suppose that the graph G is undirected, and the mixing matrix is compatible with the graph (see (8)),
then ideally, if the agents had access to all the objective functions, each agent would implement the
distributed method in (10) by using the gradient of the system objective i.e., every agent ¢ would execute

the following two steps:

<

m
v, = aij:vj,
j=1

m
k+1 @ k
zt = Ui—azvfi(vi)
i=1

The stepsize here is fixed since we are interested in a faster gradient methods that do not use diminishing
step. In the absence of the knowledge of all functions f;, every agent can track the aggregate function
gradients, by employing a direction df, and tracking the average of these directions. In particular, every
agent will update as follows: at time k + 1, the agents have xf and df, and exchange these vectors with

their neighbors in the graph. Then, they will compute :Bf“ and df“, as follows:

mf“ = Zaijl“? - Oédf’
j=1

=3 aydf + Vi) - Vfilah). a6
j=1

We note that each agent still computes the gradients of its own local objective function f;, but through the
mixing of the directions in (16), it tracks the sum of the gradients of the overall system function objective.
Subtracting the past gradient Vf;(«¥) in (16) is used to ensure that only new gradient information,

k+1
%

captured by the difference V f;(z; ") — V f;(z¥) influences the direction update.

To ensure the correct gradient-tracking, the method has to be initialized with

d? = Vf;(2?) for all agents i € [m)],

February 17, 2020 DRAFT

while 1:? can be arbitrary. With such an initialization, when the matrix A is column stochastic, the

directions d™! satisfy*
m m
k+1 _ k+1
DAt =) Vi,
i=1 i=1
Thus, the averaged iterates 2% = L > 2% satisfy

m
_ _ [0
wk—f—l _ :Ek = vaz(xic)’
m i=1

which can be interpreted as generated by an erroneous “centralized gradient” method

m m
=2k~ EN"Vh@E) ber, witherror e = - Y (Vfi(gz’“) - Vfi(a:f)> .
m m
i=1 i=1
These errors are well behaved even for the constant step due to an additional alignment of the directions

in (16). In particular, work in [29] studies the method for smooth convex functions with Lipschitz
continuous gradients’, and shows the convergence of the method in the order of O(%) when a constant
stepsize « is suitably chosen.

Under additional requirement that each f; is strongly convex®, in [30] it is shown that the method
(with a carefully selected stepsize o)) produces iterates xf that converge to the point * minimizing the

global objective function % oty fi(z) with a geometric rate, i.e.,
|z — 2% < ¢*C for all agents ¢ and all £ > 0,

where ¢ € (0,1) and C are some constants that depend on the graph connectivity topology, the entries
of the matrix A, the stepsize «, and the parameters characterizing the function f; (such as the strong
convexity and Lipschitz gradient constants). Thus, the distributed method with the gradient tracking
mechanism matches the fastest convergence rate of the centralized gradient method (which is geometric).

When the graph G is directed, the gradient-push method can also be augmented to include a gradient

tracking mechanism. In particular, the gradient-push method in (15) assumes the form:

k41 _ Lk k
v; = E (aijvi — ady),
JeENPU{i}
k41 _ Lk
7 - Z aljyja
JeENPU{i}
k+1
o I
i - k41
Yi

*It can be shown by using the mathematical induction on k.
A function f has Lipschitz continuous gradients with a constant L if ||V f(z) — Vf(y)|| < L||z — y|| for all z,y € R™.

®A function £ is strongly convex with a constant x> 0 if (Vf(z) — Vf(y),z —y) > ullz — y||? for all z,y € R™.

February 17, 2020 DRAFT

ditt = Z aijd;? + V(i) — Vfah). (17)
JeENULi}
For a column stochastic matrix A and under the conditions of strong convexity and Lipschitz continuous
gradients of the functions f;, similar to that of the distributed gradient-tracking method in (16), this
algorithm also enjoys a geometric convergence rate. The convergence rate analysis of these distributed
gradient-tracking methods have been shown in [30] for a more general case where the underlying
communication graphs and the matrix sequence are time-varying.

Simultaneously and independently of [30], [29], the idea of tracking the gradients have been employed
in [31], where a class of distributed algorithms have been developed for solving non-convex problems
in networks. In summary, the distributed methods with gradient tracking in (16) and (17) can match the
best known convergence rates of centralized gradient methods. The main distinction between the two
methods is that the method in (16) works on undirected graphs, where the weight matrix A is required
to be doubly stochastic, while the method in (17) works on directed graphs, where the weight matrix A
is required to be column stochastic.

We note that each of the two tracking methods employs the same weight matrix A when mixing the
x-variables and the direction related d-variables. We next consider an interesting gradient-tracking method
that makes use of different matrices to mix the x- and d-variables. In particular, the method works for
a directed strongly connected graph G. At iteration k, every agent ¢ has two vectors xf and df . At the
time of iteration k£ + 1, each ¢ agent obtains (pulls) :1:9‘7 — ozjd;? from its in-neighbors j € Min, and sends

(pushes) bgidf to each of its out-neighbors ¢ € N°". Upon this information exchange, the agents update

as follows:
JI?—H = Z aij(.’IJ? - Oéjd?) (A‘PUH)a
JeNU{i}
ditt = 3 bydy + VEE) Vi) (Bpush). (18)
LeN?U{i}

Note that in this method every agent uses its own stepsize «; which need not be coordinated with
the stepsizes of the other agents. For the algorithm to work properly, the initial directions are set to
dY = V fi(2) for all i, while 2¥ € R",i € [m], are arbitrary initial decision vectors.

Agent ¢ chooses the positive weights a;;,j € /\G“ U {i}, for its in-neighbors involved in the pull-step,
and also the positive weights by;, ¢ € NP" U {i}, for its out-neighbors involved in the push-step. By
defining these weights to be zero for all other pairs (7,), we obtain m x m matrices compatible with

the structure of graph G; specifically,

aij > 0 for all j € N/® U {i}, and a;; = 0 otherwise,

February 17, 2020 DRAFT

be; > 0 for all £ € NP" U {i}, and by; = 0 otherwise.

The interesting aspect of the Apull-Bpush method is that the matrix A = [a;;] is row stochastic, while

the matrix B = [b;;] is column stochastic i.e.,

m m
Zaijzl, Zbg,L':l for all ¢ € [m].
j=1 =1

Here, we have coined the name of the algorithm to be Apull-Bpush to fairly capture an independent
development of two closely related methods, namely a push-pull method (cf. (18)) as given in [32] and
a variant proposed and analyzed in [33], which performs slightly different updates. In particular, the

algorithm in [33] is given by:

o= > agah
JeNr Ui}

B =S by (A VHEET - T (19)
teN Ui}

Both algorithms use a row stochastic matrix A in the updates of the x-variables and a column stochastic
matrix B = [b;;] in the updates of the directions. Also, with a suitably selected stepsizes both algorithms

converge linearly to the solution of the problem

when all the functions f; are strongly convex and have Lipschitz continuous gradients (see [33], [32] for
details).

In terms of communication requirements and the size of the variables exchanged among the agents, the
distributed method for undirected graphs (Section II), requires 2|€| communications per iteration since
each link in the graph is used twice in every update time; the x-variables exchanged are of size n. The
distributed method for directed graphs (Section III), requires |£| communications per iteration since each
link in the graph is used once in every update time; the variables exchanged are of size n+ 1 (x-variable
has size n and the auxiliary y-variable is scalar).

The distributed algorithm in (16) requires exchanging z- and d-variables with the total size of 2n,
and it requires 2|E| communications among the agents per iteration (since the graph is undirected). The
algorithm in (17) requires exchanging z- and d-variables, and an additional scalar y-variable giving a
total size of 2n + 1. It requires |E| communications among the agents per iteration (since the graph
is directed). Finally, the algorithm in (19) requires exchanging x- and d-variables with the total size
of 2n, and requires a subset of links forming a spanning tree -hence about 2m communications per

update (see [32] for precise assumptions). Overall, the communication requirements for the algorithms

February 17, 2020 DRAFT

in this section are similar to those for the algorithms of Section II and Section IIIl. However, in every
communication (directed or not), the algorithms of this section require twice larger size of the variables

exchanged than those of the algorithms of Section II and Section III.

V. SOME OPEN DIRECTIONS FOR FURTHER RESEARCH

We have discussed some of the basic distributed methods for solving machine learning problems.
The algorithms are obeying two main principles: the local knowledge of the graph structure (reflected
in communications with one-hop neighbors only) and (private) knowledge of its own objective function
only. To obey with these principles, the distributed algorithms considered here must use some form
of “mixing” or “diffusion” step that propagates the needed information from one to all the agents in
the network. This mixing step combined with some basic gradient method is the basic idea in all the
distributed methods discussed here. Other variants of distributed method can be constructed such as those
based on the ADMM approach (see the recent survey paper [23] for relevant literature).

In practice, there are several issues that arise in the implementations of the distributed methods due to
the use of a communication network, such as quantization and link delays. These two aspects are currently
of a great interest as they are the bottleneck for the efficiency of the methods. The effects of quantization
in distributed methods have been studied somewhat limited in the past decade [34], [35], [36], and very
recently in [37]. The effects of communication delays for distributed computational systems have been
considered in [38], while [39] considers the impact of delays in the weighted-average consensus method.
Very recently, a distributed algorithm that factors in link delays in communications have been proposed
and investigated in [40]. The method identifies and communicates more frequently over critical links, and
saves communication time by using other links less frequently. Such communication efficient approaches
have not yet been studied for the recently developed methods that employ a gradient-tracking mechanism
(i.e., the methods discussed in Section IV).

Despite the prolific research done on distributed methods over the past decade, there are still many
directions for further exploration. For example, the gradient-push method in (15) and its variant with
gradient-tracking mechanism in (17) have been analyzed for solving an unconstrained machine learning
problem (4) over time-varying undirected graphs [15], [30]. It is interesting to see how should these
methods be modified and analyzed for a constrained learning problem, where the constraint set X may
itself be distributed, that is, the set X has the form X = N, X; and each X; is known to one agent
only, where X is either simple (easy to be projected onto) or it is given as an intersection of a collection

of convex (algebraic) functional inequalities.

February 17, 2020 DRAFT

Another direction of research is posed by the Apull-Bpush method in (18) which have been analyzed

for a static (directed) communication graph only [33], [32]. It would be desirable to see its performance

over time-varying directed graphs, which would extend the method to a more realistic scenarios when

the graph connectivity structure may change.

Yet another general direction of the research is the development and investigation of asynchronous

implementations of the distributed methods, where the agents’ information exchange and updates need not

be synchronous. Some random gossip- and broadcast-gossip methods have been studied in the literature,

but those studies are somewhat limited (see [23] for more detailed account of such randomized methods).

(1]
(2]
(3]

(4]

(5]
(6]

(7]

(8]

(9]

[10]

(11]

(12]

[13]

[14]

REFERENCES

D. Bertsekas, Nonlinear Programming, 2nd ed. Athena Scientific, Belmont, MA, 1999.

Y. Nesterov, Introductory lectures on convex optimization: A basic course. Springer Science & Business Media, 2013.
R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive variance reduction,” in NIPS, C. J. C.
Burges, L. Bottou, Z. Ghahramani, and K. Q. Weinberger, Eds., 2013, pp. 315-323.

A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast incremental gradient method with support for non-strongly
convex composite objectives,” in Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Weinberger, Eds. Curran Associates, Inc., 2014, pp. 1646-1654. [Online].
Available: http://papers.nips.cc/paper/5258-saga-a-fast-incremental-gradient-method-with-support-for-non-strongly-convex-
composite-objectives.pdf

M. DeGroot, “Reaching a consensus,” Journal of the American Statistical Association, vol. 69, no. 345, pp. 118-121, 1974.
J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous deterministic and stochastic gradient optimization
algorithms,” IEEE Transactions on Automatic Control, vol. 31, no. 9, pp. 803-812, 1986.

A. H. Sayed and C. G. Lopes, “Adaptive processing over distributed networks,” IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, vol. E90-A, no. 8, pp. 1504-1510, 2007.

A. Nedi¢ and A. Ozdaglar, “Distributed subgradient methods for multi-agent optimization,” IEEE Transactions on Automatic
Control, vol. 54, no. 1, pp. 48-61, 2009.

A. Sayed, Adaptation, Learning, and Optimization over Networks. Foundations and Trends in Machine Learning, 2014,
vol. 7.

A. Nedi¢ and J. Liu, “Distributed optimization for control,” Annual Review of Control, Robotics, and Autonomous Systems,
vol. I, pp. 77-103, 2018.

D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate information,” in Proceedings of the 44th
Annual IEEE Symposium on Foundations of Computer Science, 2003, pp. 482—491.

A. Dominguez-Garcia and C. Hadjicostis, “Distributed strategies for average consensus in directed graphs,” in Proceedings
of the 50th IEEE Conference on Decision and Control and European Control Conference, Dec 2011.

K. Tsianos, S. Lawlor, and M. Rabbat, “Push-sum distributed dual averaging for convex optimization,” in Proceedings of
the IEEE Conference on Decision and Control, 2012.

K. Tsianos, “The role of the network in distributed optimization algorithms: Convergence rates, scalability, communication /
computation tradeoffs and communication delays,” Ph.D. dissertation, McGill University, Dept. of Electrical and Computer

Engineering, 2013.

February 17, 2020 DRAFT

[15]

[16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

A. Nedi¢ and A. Olshevsky, “Distributed optimization over time-varying directed graphs,” IEEE Transactions on Automatic
Control, vol. 60, no. 3, pp. 601-615, 2015.

——, “Stochastic gradient-push for strongly convex functions on time-varying directed graphs,” IEEE Transactions on
Automatic Control, vol. 61, no. 12, pp. 3936 — 3947, 2016.

V. Borkar and P. Varaiya, “Asymptotic agreement in distributed estimation,” IEEE Transactions on Automatic Control,
vol. 27, no. 3, pp. 650-655, 1982.

J. Tsitsiklis, “Problems in decentralized decision making and computation,” Ph.D. dissertation, Dept. of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, 1984.

A. 1. Chen and A. Ozdaglar, “A fast distributed proximal-gradient method,” in Proceedings of the IEEE 50th Annual
Allerton Conference on Communication, Control, and Computing, 2012, pp. 601-608.

D. Jakoveti¢, J. Xavier, and J. Moura, “Fast distributed gradient methods,” IEEE Transactions on Automatic Control,
vol. 59, no. 5, pp. 1131-1146, May 2014.

K. Tsianos, S. Lawlor, and M. Rabbat, “Communication/computation tradeoffs in consensus-based distributed optimization,”
in Proc. Advances in Neural Information Processing Systems, Lake Tahoe, USA, Dec. 2012, pp. 1943-1951.

A. Berahas, R. Bollapragada, N. Keskar, and E. Wei, “Balancing communication and computation in distributed
optimization,” IEEETransactions on Automatic Control, pp. 3141-3155, 2018.

A. Nedié, A. Olshevsky, and M. Rabbat, “Network topology and communication - computationtradeoffs in decentralized
optimization,” Proceedings of the IEEE, vol. 106, no. 5, pp. 953-976, 2018.

B. Gharesifard and J. Cortés, “Distributed strategies for generating weight-balanced and doubly stochastic digraphs,”
European Journal of Control, vol. 18, no. 6, pp. 539-557, 2012.

W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: an exact first order algorithm for decentralized consensus optimization,”
SIAM Journal on Optimization, vol. 25, no. 2, pp. 944-966, 2015.

F. Benezit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli, “Weighted gossip: distributed averaging using non-doubly
stochastic matrices,” in Proceedings of the 2010 IEEE International Symposium on Information Theory, Jun. 2010.

C. N. Hadjicostis and T. Charalambous, “Average consensus in the presence of delays in directed graph topologies,” /[EEE
Transactions on Automatic Control, vol. 59, no. 3, pp. 763-768, 2014.

C. N. Hadjicostis, N. H. Vaidya, and A. D. Dominguez-Garcia, “Robust distributed average consensus via exchange of
running sums,” IEEE Transactions on Automatic Control, vol. 61, no. 6, pp. 1492-1507, 2016.

G. Qu and N. Li, “Harnessing smoothness to accelerate distributed optimization,” IEEE Transactions on Control of Network
Systems, vol. 5, no. 3, pp. 1245-1260, 2018.

A. Nedi¢, A. Olshevsky, and W. Shi, “Achieving geometric convergence for distributed optimization over time-varying
graphs,” SIAM Journal on Optimization, vol. 27, no. 4, pp. 2597-2633, 2017.

P. Di Lorenzo and G. Scutari, “Next: In-network nonconvex optimization,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 2, no. 2, pp. 120-136, 2016.

S. Pu, W. Shi, J. Xu, and A. Nedié, “Push-pull gradient methods for distributed optimization in networks,” 2018, arXiv
preprint at https://arxiv.org/abs/1810.06653.

R. Xin and U. A. Khan, “A linear algorithm for optimization over directed graphs with geometric convergence,” [EEE
Control Systems Letters, vol. 2, pp. 315-320, 2018.

M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms for distributed optimization,” IEEE Journal on Selected

Areas in Communications, vol. 23, no. 4, pp. 798-808, 2005.

February 17, 2020 DRAFT

20

[35] A. Nedi¢, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “Distributed subgradient methods and quantization effects,” in
Proceedings of the 47th IEEE Conference on Decision and Control, 2008, pp. 4177-4184.

[36] A. Kashyap, T. Bagar, and R. Srikant, “Quantized consensus,” Automatica, vol. 43, no. 7, pp. 1192-1203, 2007.

[37] A. Koloskova, S. Stich, and M. Jaggi, “Decentralized stochastic optimization and gossip algorithms with compressed
communication,” in International Conference on Machine Learning, 2019, pp. 3478-3487.

[38] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: Numerical methods, 1st ed. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1989.

[39] A. Nedi¢ and A. Ozdaglar, “Convergence rate for consensus with delays,” Journal of Global Optimization, vol. 47, pp.
437-456, 2010.

[40] J. Wang, A. K. Sahu, Z. Yang, G. Joshi, and S. Kar, “MATCHA: Speeding up Decentralized SGD via Matching
Decomposition Sampling,” 2019, available on arxiv at https://arxiv.org/pdf/1905.09435.pdf.

Angelia Nedi¢ received her Ph.D. from Moscow State University, Moscow, Russia, in Computational Mathematics and Mathe-
matical Physics (1994), and a Ph.D. from Massachusetts Institute of Technology, Cambridge, USA, in Electrical and Computer
Science Engineering (2002). She has worked as a senior engineer in BAE Systems North America, Advanced Information
Technology Division at Burlington, MA. She is a faculty member of theschool of Electrical, Computer and Energy Engineering
at Arizona State University, Tempe. Prior to joining Arizona State University, she has been a Willard Scholar faculty member at
the University of Illinois at Urbana-Champaign. She is a recipient (jointly with co-authors) of the Best Paper Award at the Winter
Simulation Conference 2013 and the Best Paper Award at the International Symposium on Modeling and Optimization in Mobile,
Ad Hoc and Wireless Networks (WiOpt) 2015. Her general research interest is in optimization, large scale complex systems
dynamics, equilibrium and variational inequality problems. She serves as Associate Editor for SIAM Journal on Optimization,

Operations Research, and IEEE Transactions on Signal and Information Processing over Networks.

February 17, 2020 DRAFT

