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Distributed gradient methods for convex

machine learning problems in networks
Angelia Nedić

Abstract

In this paper we overview distributed gradient methods for solving convex machine learning prob-

lems of the form min

x2Rn
1
m

P
m

i=1 fi(x) in a system consisting of m agents that are embedded in a

communication network. Each agent i has a collection of data captured by its privately known objective

function f
i

(x). The distributed algorithms considered here obey two simple rules: privately known agent

functions f
i

(x) cannot be disclosed to any other agent in the network, and every agent is aware of the local

connectivity structure of the network, i.e., it knows its one-hop neighbors only. While obeying these two

rules, the distributed algorithms that agents execute should find a solution to the overall system problem

with the limited knowledge of the objective function and limited local communications. We overview

such algorithms that typically involve two update steps: a gradient step based on the agent local objective

function and a mixing step that essentially diffuses relevant information from one to all other agents in

the network.

I. INTRODUCTION

Artificial intelligence is emerging as the driving technology that will enable future automated trans-

portation, smart cities and smart power grids, as well as robots that will replace humans in hazardous

workplaces and situations. At the core of this technology are the devices that can collect data (i.e.,

collect measurements from their surrounding), process data and communicate in order to share estimates

for optimal and reliable system performance. Machine learning is at the core of the data processing, while

the communication among the devices allows for collaborative learning from all the data within the system

without the need to share the data locally stored at the devices. As such, these systems are inherently

distributed, as the data collection is distributed, central for the development of these technologies are

distributed computational models and coordination mechanisms relying on local communications.
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One possible architecture that can support operations in such distributed systems is the peer-to-peer

architecture, which can also serve as a primitive for building more complex hierarchical architectures.

In a peer-to-peer architecture, the consensus protocol has attracted a lot of interest and research for

synchronization, formation control, learning and coordination of multi-robot tasks, to name a few. A

common ground for addressing these problems is provided by distributed computational models (including

machine learning in particular) that use a consensus mechanism as a virtual coordinator.

The goal of the paper is to overview the framework of distributed consensus-based gradient methods

for convex machine learning problems over static graphs, both directed and undirected. These methods

will be discussed in relation to the standard machine learning problem of minimizing the average of the

sum of functions,

min

x2Rn

1

p

pX

i=1

f
i

(x), (1)

where each function f
i

(x) represents the loss associated with a given data point. Specifically, given a

collection {(z
i

, y
i

), i = 1, . . . , p} of data points, where z
i

2 <n is a feature vector and y
i

2 {�1,+1} is

its corresponding label, a nonlinear classification problem consists of solving the following minimization

problem:

min

x2Rn

 
c⇢(x) +

1

p

pX

i=1

`(x; z
i

, y
i

)

!
, (2)

where c > 0 is a regularization parameter, x = (x
1

, . . . , x
n

) is a vector, and the regularizing function ⇢(x)

is a strongly convex function (such as the Euclidean norm), and `(x; z
i

, y
i

) is a loss function associated

with the data point (z
i

, y
i

) 2 Rn+1. The loss function `(x; z, y) is typically convex but not necessarily

differentiable. For linear classifiers, a common choice is the logistic regression loss function, given by:

`(x; z, y) = log

⇣
1 + e�yhx,zi

⌘
,

with hx, zi being the inner product of the vectors x and z, i.e., hx, zi =

P
n

j=1

x
j

z
j

. The resulting

problem, is known as the logistic regression (linear) classifier problem. Another common choice is the

hinge-loss function

`(x; z, y) = max{0, 1� y hx, zi},

giving rise to the maximum margin (linear) classifier problem.

As seen from the preceding discussion, the machine learning problem (2) falls under the general

formulation in (1), where a function f
i

(x) = c⇢(x) + `(x; z
i

, y
i

) is associated with a data point (z
i

, y
i

).

When the number of data points p is not too large, the problem in (1) can be solved using the iterative
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gradient method, as follows: We start with some initial guess x0. At iteration k, we have iterate xk and

we compute the gradient
1

p

pX

i=1

rf
i

(xk) (3)

of the objective function at the current iterate. Then, we obtain the new iterate xk+1 by moving away

from the point xk along the opposite direction of the gradient with some positive stepsize ↵
k

:

xk+1

= xk � ↵
k

p

pX

i=1

rf
i

(xk).

Convergence of this simple gradient method is known for the (positive) stepsize sequence {↵
k

} satisfying

the following two conditions:
1X

k=0

↵
k

= 1 and
1X

k=0

↵2

k

< 1.

These conditions are satisfied for example with the stepsize ↵
k

=

1

k

, or more generally with the stepsize

of the form ↵
k

=

a

k

b , where a > 0 is arbitrary while b 2 (

1

2

, 1]. When the objective function is convex,

the gradient method with such a diminishing stepsize produces an iterate sequence {xk} converging to

an optimal point x⇤ that solves the problem in (1), provided that an optimal point exists (e.g. see [1]).

We note that, under some additional assumptions on the objective function, the gradient method with a

suitably chosen constant stepsize ↵ > 0 (i.e., ↵
k

= ↵ for all k) produces a sequence of iterates {xk}

converging to the solution of the problem (see for example textbook [2]).

When the number p of the data points is large, computing the full gradient in (3) becomes expensive

(time consuming) and alternative approaches have been developed, including the stochastic gradient

method that uses rf
ik(x

k

) (with an index i
k

2 {1, 2, . . . , p} selected uniformly at random) instead of

the full gradient. To improve the convergence properties of this basic stochastic gradient method, variance

reduced methods have been proposed including SVRG [3] and SAGA [4].

The gradient method and its aforementioned stochastic variants are centralized in the sense that they

are applicable to the situations where all the data is located at a single location or the data can be

accessed from a central location. In what follows, we will consider the machine learning problem in the

case when the data is spatially distributed among several locations and there is no central entity that

can access all the data. Moreover, we assume that the data is private and cannot be shared among the

data centers - a situation that arises in applications dealing with a medical data for example. Each data

center is viewed as an agent capable of processing its data points locally and exchanging some estimates

(extracted from its private data) with the other agents (data centers) over a communication graph. The

agents communicate in order to coordinate their local computations with the other agents in the system,

so as to jointly solve their aggregate problem (to be specified shortly).
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The outline of the rest of the paper is as follows: Section II will provide a basic gradient algorithm

with weighted-averaging consensus step for minimizing the average-sum objective function for the case

when the computing agents communicate over an undirected communication graph. The basic idea of the

algorithm will be explained as two-level approximation of a centralized gradient method, with insights

on how and when these approximations are good enough for the method to work. The core references

here are [5], [6], [7], [8], [9], [10]. Section III will be an analog of Section 2 for the directed graphs,

where one resorts to a push-sum consensus instead of a weighted-averaging consensus. Key references

include [11], [12], [13], [14], [15], [16].

II. DISTRIBUTED GRADIENT METHOD FOR UNDIRECTED GRAPHS

We consider the case when the data points pertinent to the same phenomena or a task are collected at

m distinct centers that need not be colocated. We refer to these centers as agents, labeled by 1, 2, . . . ,m,

and we let agent i have the set S
i

of data points. The learning problem corresponding to the aggregate

data of the system of all agents has the form as in (2), where p is the total number of data points at

all agents, i.e., p = |S
1

|+ · · ·+ |S
m

|, with |S| denoting the cardinality of a finite set S. To account for

the agent specific data, by aggregating the data per agent, the problem in (2) can be re-formulated, as

follows:

min

x2Rn

1

m

mX

i=1

f
i

(x), (4)

where

f
i

(x) =
m

p

X

s2Si

(c ⇢(x) + `(x; z
s

, y
s

)) . (5)

Note that problem (4)–(5) is equivalent to the problem in (2). We will assume that the function f
i

:

Rn ! R is the private loss function known only to agent i. Further, we will assume that the m agents

are communicating over an undirected network represented by a graph G = ([m], E), where [m] =

{1, 2, . . . ,m} denotes the set of agents and E denotes the set of undirected edges. We write {i, j} to

represent an edge connecting agents i and j.

The agents want to solve the problem in (4) collaboratively in the sense that they are willing to share

some estimates with their immediate neighbors in the graph, but they are not willing (or not allowed) to

share their data, which essentially means they do not reveal their loss functions f
i

.

Given the communication graph G = ([m], E), the problem can be reformulated as follows:

min

xi2Rn
,i2[m]

1

m

mX

i=1

f
i

(x
i

)

subject to x
i

= x
j

for all {i, j} 2 E . (6)
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This reformulation is obtained from problem (4) by assigning a copy x
i

of the decision variable x to each

agent, and by imposing the requirement that these copies should be all the same, i.e., x
i

= x for all agents

i 2 [m]. This system of equations is then replaced with an equivalent system of equations requiring that

x
i

= x
j

for all i, j 2 [m]. When the graph G is connected1, the system of pairwise equations x
i

= x
j

for

all i, j 2 [m] is equivalent to the system of graph compatible equations x
i

= x
j

for all {i, j} 2 E . Thus,

when the graph G is connected, the problems in (4)–(5) and (6) are equivalent. Reformulation (6) serves

as a departure point for the discussion of distributed first-order methods for machine learning problems

which use a consensus-type update to enforce the equal-decision constraints in problem (6).

The objective function of problem (6) is decoupled, as each f
i

depends on its own variable x
i

, but

these variables are coupled through edge-based constraints. The idea is to distribute the problem among

the agents, by allowing each agent to know its neighbors in the graph, that is every agent i is aware of

the agents j such that {i, j} 2 E , which constitute the set N
i

of the neighbors of i in the graph, i.e.,

N
i

= {j | {i, j} 2 E}. Using the local agent knowledge of the graph and the functions, every agent i

can solve its own “local part” of the overall problem. However, in order for the agents to collectively

solve the overall problem, each agent needs to align its variables with the variables x
j

corresponding to

its neighbors j 2 N
i

.

As a mechanism for alignment of the variables, a consensus algorithm is used. The consensus algorithm

is a distributed method that the agents can use to asymptotically agree on a decision vector. Specifically,

each agent starts with an arbitrary vector x
i

(0). At iteration k, every agent sends its current iterate xk
i

to its neighbors j 2 N
i

and receives xk
j

from its neighbors j 2 N
i

. After this, every agent i, executes

the consensus update step:

xk+1

i

= a
ii

xk
i

+

X

j2Ni

a
ij

xk
j

, (7)

where a
ii

> 0 and a
ij

> 0 are such that a
ii

+

P
j2Ni

a
ij

= 1. The positive scalars a
ij

, j 2 N
i

[ {i} are

referred to as convex weights, and the vector xk+1

i

is said to be a convex combination (or a weighted

average) of the points x
j

, j 2 N
i

[ {i}. Note that the positive weights a
ij

, j 2 N
i

[ {i}, are selected by

agent i.

To have a more compact representation of the consensus method, let us define an m⇥m weight matrix

A with entries

a
ii

> 0 and a
ij

> 0 with a
ii

+

P
j2Ni

a
ij

= 1 and a
ij

= 0 when j 62 N
i

[ {i}. (8)

1For any two distinct agents i and j, there is a path from i to j in the graph G.

February 17, 2020 DRAFT



6

In view of the fact that the nonnegative matrix A has a positive entry in the ij-th position only when

{i, j} is a link in the graph G, we will say that such a matrix A is compatible with the structure of the

graph G. Using the weights a
ij

defined in (8), the consensus algorithm in (7) assumes the following

form: for every i 2 [m],

xk+1

i

=

mX

j=1

a
ij

xk
j

. (9)

The sum of the entries in each row of the matrix A is equal to 1. Such a non-negative matrix is referred

to as row-stochastic.

An illustration of a connected star-graph with four agents is given in Figure 1. As an example of

4

1

3

2

Fig. 1. A star-graph with 4 agents.

a row-stochastic matrix A that is compatible with the structure of the graph in Figure 1 consider the

following:

A =

2

6666664

1

2

0 0

1

2

0

1

2

0

1

2

0 0

1

2

1

2

1

4

1

4

1

4

1

4

3

7777775
.

This matrix is constructed using an equal-weight rule, whereby each agent i gives the same weight to

itself and all of its neighbors j 2 N
i

.

When the graph G = ([m], E) is connected, and the matrix A is row-stochastic and compatible with

the graph structure (i.e., it satisfies the relations in (8)), the iterate sequences {xk
i

}, i 2 [m], generated by

the consensus algorithm converge to a same limit point x̃. The limit point x̃, referred to as a consensus

or an agreement point, is given as a convex combination of the initial values {x0
i

, i 2 [m]}, i.e.,

x̃ =

mX

i=1

⇡
i

x0
i

.

The weight vector ⇡ = [⇡
1

, . . . ,⇡
m

] is the unique (normalized) left-eigenvector of the matrix A corre-

sponding to the eigenvalue � = 1, i.e., ⇡A = ⇡. The convergence result is obtained by viewing the matrix
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A as a one-step transition matrix of a Markov chain and employing the ergodicity theory for Markov

chains. The detailed proof of the convergence of the consensus algorithm can be found in [5], where the

consensus method was originally proposed. If the matrix A is doubly stochastic, then ⇡
i

=

1

m

for all i

and, consequently, the consensus point is the average of the initial values, i.e., x̃ =

1

m

P
m

i=1

x0
i

.

Using the consensus method as a mechanism for alignment of the agent variables, a distributed

optimization method with a local information exchange can be constructed by executing two steps -

a mixing (consensus) step (8) and a gradient-based step. At the beginning of a typical iteration k, every

agent sends to its neighbors its current iterate xk
i

to its neighbors j 2 N
i

and receives xk
j

from its

neighbors j 2 N
i

. Then, every agent i, executes the following two update-steps:

vk
i

=

mX

j=1

a
ij

xk
j

,

xk+1

i

= vk
i

� ↵
k

rf
i

(vk
i

), (10)

where the weights a
ij

satisfy the same relations as in the consensus method (i.e., the relations in (8)), and

↵
k

> 0 is a stepsize. We note that the vector vk
i

is a convex combination of the points x
j

, j 2 N
i

[ {i}.

After obtaining vk
i

through the mixing step, every agent i performs a gradient update step using vk
i

to

obtain its new iterate xk+1

i

. The algorithm in (10) is distributed since every agent updates using a gradient

of its own private function, and is local in the sense that it relies on local information exchange. The

method is also often referred to as the consensus-based gradient method, due to its use of a mixing step

that resembles the distributed consensus process.

Distributed algorithm (10) can be viewed as an extension of the gradient method, where the mixing

step is introduced to align the agents’ iterates. This mixing step plays a role of ”virtual coordinator” of

the agents iterates in a system that does not have a central coordinator. To shed more light into this, lets

take a look at what is happening with the iterates of the distributed gradient method on the system level.

Consider the iterate sequences {xk
i

}, i 2 [m], produced by the method at all agents in the system. By

taking the average of these iterates (cf. (10)) across all the agents, at any given instance, we have

1

m

mX

i=1

xk+1

i

=

1

m

mX

i=1

vk
i

� ↵
k

m

mX

i=1

rf
i

(vk
i

) =

1

m

mX

j=1

 
mX

i=1

a
ij

!
xk
j

� ↵
k

m

mX

i=1

rf
i

(vk
i

),

where the second equality is obtained by using the definition of vk
i

in (10) and by exchanging the order

of the resulting two sums. When the matrix A is doubly stochastic2, we have
P

m

i=1

a
ij

= 1 for all j,

thus yielding
1

m

mX

i=1

xk+1

i

=

1

m

mX

j=1

xk
j

� ↵
k

m

mX

i=1

rf
i

(vk
i

).

2The sum of its entries in each row and each column is equal to 1.
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By letting x̄k denote the iterate average across the agents at time k, i.e.,

x̄k =

1

m

mX

i=1

xk
i

,

the preceding relation can be written as

x̄k+1

= x̄k � ↵
k

m

mX

i=1

rf
i

(vk
i

). (11)

Relation (11) is nearly the same as the (centralized) gradient method update for solving problem (6),

with only difference being that the gradient of f
i

is computed at the point vk
i

instead of the point x̄k.

More concretely, by adding and subtracting the correct gradients, for the averaged iterates we have

x̄k+1

= x̄k � ↵
k

m

mX

i=1

rf
i

(x̄k) + ✏k, ✏k =

↵
k

m

mX

i=1

⇣
rf

i

(x̄k)�rf
i

(vk
i

)

⌘
.

The averaged iterates x̄k+1 will follow an erroneous gradient method, where the error is proportional to

the average gradient difference rf
i

(x̄k) �rf
i

(vk
i

), as long as we can ensure that the error ✏
k

remains

small. In fact, under some additional assumptions on the functions and the stepsize, the mixing step can

ensure that the error ✏
k

does not blow up.

The role of the mixing matrix A is critical since it guarantees that the following properties hold under

suitable conditions on the stepsize and the functions f
i

(such as the convexity):

(1) the averaged iterate sequence {x̄k} converges to a solution x⇤ of problem (6) and

(2) the disagreement sequence {kxk
i

� x̄kk} converges to zero for every agent i.

Thus, the iterates xk
i

, i 2 [m], generated by the distributed method track the averaged process with

increasing accuracy, while the average process converges to a solution of the problem. Consequently, the

iterate sequences {xk
i

}, i 2 [m], all converge to the same point and this common point is a solution of

the problem (6).

From the view point of the consensus process in (9), the distributed gradient method in (10) can be

interpreted as a consensus-based process that is affected by two forces: the consensus force represented

by the mixing step (influenced by the matrix A) and the agent-based gradient forces coming from the

objective functions f
i

. In this case, the gradients steer the limiting consensus point to a solution x⇤ of

problem (6).

The consensus algorithm was originally proposed in [5] to model opinion dynamic leading to an

agreement in a team of individuals. It was later used for estimation, control and optimization starting

with works in [17], [18], [6]. In contrast to the machine learning problem considered in this paper, the

optimization problem considered in [18], [6] involves a non-separable objective, i.e., the problem of the

form

min

x=(x

1

,...,xm)2Rn
f(x

1

, . . . , x
m

),
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9

where the decision vector x 2 Rn is partitioned among m agents. The first variants of distributed

gradient methods that employ a mixing (consensus) step to solve the problem with a separable structure

(i.e., in the form of a machine learning problem (4)) was pioneered in [7], [8]. Subsequently, many

distributed methods have been developed such as those with a faster convergence [19], [20] and with

emphasis on the communication and the computation tradeoffs [21], [22]. A recent survey [10] gives a

thorough review of the consensus problem, and variations and extensions of the distributed method that

account for the implementations over time-varying graphs, over networks with delays and with noisy (or

quantized) communication links, the method with noisy (stochastic) gradient evaluations, as well as some

asynchronous implementations.

The mixing step of the distributed method in (10) is also referred to as a diffusion, as it allows for

the local agent information to diffuse over the entire network. The mixing step and the gradient update

step in (10) can be exchanged, leading to an alternative variant of the distributed method

vk
i

= xk
i

� ↵
k

rf
i

(xk
i

),

xk+1

i

=

mX

j=1

a
ij

vk
i

. (12)

Viewing the gradient update step as an adaptation, the distributed method in (10) is also referred to

as combine-then-adapt (CTA) diffusion strategy, while the method in (12) is referred to as adapt-then-

combine (ATC) diffusion strategy. One can find an elegant exposure of these strategies in [9], and follow

the references therein for technical details of their analysis.

The convergence rate of the distributed method in (10) is of the order of O(

log kp
k

) in the number k

of iterations, which is dictated by the use of the diminishing stepsize satisfying the typical conditions

in gradient methods, namely
P1

k=0

↵
k

= 1 and
P1

k=0

↵2

k

< 1. A centralized gradient method for a

convex minimization problem that uses such a diminishing stepsize ↵
k

converges in the order of O(

1p
k

).

Thus, the distributed method is slower due to the log k term, which in turn is due to the extra mixing

step in (10) that copes with the distributed knowledge of the overall objective function. Moreover, the

hidden constant factor in O(

log kp
k

) depends critically on the graph G connectivity structure and the spectral

properties of the mixing matrix A. A more in depth discussion on how the graph topology affects the

performance of the method can be found in a recent survey [23].

We conclude this section by summarizing the basic advantages and limitations of the distributed

method (10). The method is considered to be slow since its convergence rate is in the order of O(

log kp
k

)

(resulting from the use of a diminishing stepsize). However, the method is suitable for the situations

where noise or errors are present due to noisy links or failure-prone links, or due to the use of stochastic

gradients. In such situations, the diminishing stepsize is beneficial as it attenuates the noise.
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Two major limitations of the method (10) are:

(1) It requires the use of a doubly stochastic matrix A in order to solve the problem of minimizing the

average sum 1

m

P
m

i=1

f
i

(x) of the agent objectives. The construction of such a matrix in a distributed

fashion is a nontrivial problem when the underlying communication graph G is directed, as pointed out

in [24]. To avoid this obstacle, one can consider a distributed gradient method that employs an alternative

consensus process in the mixing step, which does not require a doubly stochastic matrix, as discussed in

Section III.

(2) In general, the method does not converge with a constant stepsize (i.e., ↵
k

= ↵ for all k), which has

been observed in [25]. Therefore, it can not match the performance of the centralized gradient methods

that use such stepsizes and have a convergence rate faster than O(

1p
k

). A remedy for this drawback is

provided by allowing the agents to exchange and mix both the decision vectors and some suitably defined

estimates of the gradient directions, as seen in Section IV.

III. DISTRIBUTED GRADIENT METHOD FOR DIRECTED GRAPHS

When the underlying communication graph G is directed, the distributed method of Section II requiring

a doubly stochastic matrix A cannot be easily implemented since the construction of the matrix A in a

distributed way becomes computationally expensive. To deal with directed graphs, one can resort to a

different consensus algorithm that makes use of a column stochastic weight matrix A, and combine it

with a gradient method.

Specifically, the consensus algorithm is built using a column stochastic matrix A that is compatible

with the given directed graph G, i.e., for all j 2 [m],

a
jj

> 0 and a
ij

> 0 with a
jj

+

P
i2N out

j
a
ij

= 1 and a
ij

= 0 when i 62 N out

j

[ {j}, (13)

where N out

j

is the set of all out-neighbors of agent j, i.e., the agents i that can be reached from j by a link

(j, i) 2 E); formally N out

j

= {i | (j, i) 2 E}. In this case, agent j chooses the weights in the jth column

of A and ensures that its entries sum to 1. A common choice is to let all the values a
ij

, i 2 N out

j

[ {j},

be same and equal to the cardinality of the set N out

j

[ {j}.

Having such a matrix A, a consensus method is constructed that has two variables. In particular, each

agent i maintains variables xk
i

and yk
i

at time k. At time k+1, each agent j sends a
ij

xk
j

and a
ij

yk
j

to all

of its out-neighbors i 2 N out

j

. After that every agent i updates by simply summing the x- and y-variables

it has received from its in-neighbors , i.e.,

xk+1

i

=

X

j2N in

i [{i}

a
ij

xk
j

,
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yk+1

i

=

X

j2N in

i [{i}

a
ij

yk
j

, (14)

where N in

i

is the set of in-neighbors of agent i, i.e.,

N in

i

= {j | (j, i) 2 E}.

The algorithm in (14) is known as the push-sum method since every agent pushes some information

along its outgoing links, while it sums the incoming information. The algorithm will lead to consensus,

as long as the graph G is strongly connected3 and the y-variables are initiated with y0
i

= 1 for all i. The

x-variables can be vectors, while y-variables are always scalars. The variable that reaches a consensus

is in fact a ratio of x- and y-variables at each agent, that is the variables

zk
i

=

xk
i

yk
i

for all i 2 [m],

converge to a common consensual point as the number k of the iterations increases to infinity. For this

reason, the method is also referred to as a ratio consensus. The first push-sum algorithm has been proposed

in [11] for a randomized gossip-type implementation. Subsequently, it has been further investigated in [26],

[12], [27], [28] for networks with time-varying communication structure including the case of unreliable

(packet-dropping) links.

One can use the push-sum consensus to construct a distributed gradient method for solving machine

learning problem (6), where each function f
i

is a private local objective function of agent i. Starting

with arbitrary variables x0
i

, i 2 [m] and y0
i

= 1 for all i, the algorithm proceeds as follows: each agent j

sends a
ji

xk
j

and a
ji

yk
j

to its out-neighbors (i.e., the agents i that can be reached by a link (j, i) 2 E)).

After this communication step, all agents update their x- and y-variables as follows:

vk+1

i

=

X

j2N in

i [{i}

a
ij

xk
j

,

yk+1

i

=

X

j2N in

i [{i}

a
ij

yk
j

,

zk+1

i

=

vk+1

i

yk+1

i

,

xk+1

i

= vk+1

i

� ↵
k

rf(zk+1

i

). (15)

3For every two distinct nodes i and j there exist directed paths connecting i to j and j to i.
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The method will be referred to as gradient-push method. To gain the intuition behind this algorithm,

consider dividing the update relation for xk+1

i

by yk+1

i

, which in view of the definition of zk+1

i

in (15)

yields
xk+1

i

yk+1

i

= zk+1

i

� �k
i

rf(zk+1

i

),

where �k
i

=

↵k

y

k+1

i

> 0. As the z-variables converge to a common point x̃ and the stepsize ↵
k

is diminishing,

under suitable conditions on the gradients of the function f
i

(such as boundedness), the ratio x

k+1

i

y

k+1

i

also

converges to the point x̃. Additionally, the convexity of the functions f
i

and the correct selection of the

stepsize ↵
k

are important to ensure that the consensual point x̃ is in fact a solution to the aggregate-agent

learning problem of minimizing the average sum 1

m

P
m

i=1

f
i

(x) of their local objective functions (i.e.,

the problem in (4)). While the intuition behind the gradient-push method in (15) is simple, its formal

analysis is quite involved.

The work in [13], [14] is the first to provide a distributed method that makes use of the push-sum

consensus protocol to cope with directed graphs. There, the dual-averaging method of Nesterov has been

used in the construction and its convergence properties have been established for a static directed graph.

Subsequently, in [15] a simple (sub)gradient method using the push-sum consensus has been proposed

for a general sequence of time-varying directed graphs, and later on extended to a stochastic method

in [16]. The work in [15], [16] establishes the convergence rate of O(

log kp
k

) and O(

log k

k

) for the case

when the functions f
i

are convex and strongly convex, respectively. We note that, while the work in [15],

[16] uses the special weight matrix A
k

(equal-out-neighbor weights), it is straightforward to extend it to

the case of an arbitrary sequence of column stochastic matrices that are compliant with the topology of

the underlying graphs, and have nonzero entries that are uniformly lower-bounded away from zero. A

more comprehensive review of the literature and the results for the push-pull consensus based methods

is given in a recent survey paper [23].

The gradient-push method in (15) suffers from the same slow convergence as that of the distributed

gradient method (10) due to their use of the diminishing stepsize. The advantages of the gradient-push

method are the same as those of the distributed gradient method, mainly in noisy settings. If the stepsize

is constant, both distributed gradient method (10) and gradient-push method (15) may fail to converge,

while the constant step is desirable for a faster convergence. Thus, these algorithms are not readily

rendering accelerated variants that can perform nearly as fast as the centralized gradient method.

Another explanation for the inability of these methods to be faster can be observed from their somewhat

greedy (local) view of the objective function. In particular, in both of the distributed methods (cf. (10)

and (15)) the agents use mixing (with their neighbors) for the decision variables, but the decision variables
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are updated at every agent i using only a local objective function gradient rf
i

. Thus, with respective to

the global objective function, which is proportional to
P

m

i=1

f
i

(x), the agents perform a greedy update.

To enhance the performance of these methods, the agents need to be less greedy, as we will see in the

next section.

IV. GRADIENT-TRACKING ALGORITHMS

In this section, we assume that the agents are ”aware” that they comprise of a system, while they need

not be aware of the global connectivity structure nor the global objective function
P

m

i=1

f
i

(x). However,

by being aware that there is a system objective, in addition to mixing their decision variables, they also

use and mix directions that serve as estimates of the global objective gradient. This extra mixing step of

directions needs to be properly constructed to track the gradients of the system objective.

Suppose that the graph G is undirected, and the mixing matrix is compatible with the graph (see (8)),

then ideally, if the agents had access to all the objective functions, each agent would implement the

distributed method in (10) by using the gradient of the system objective i.e., every agent i would execute

the following two steps:

vk
i

=

mX

j=1

a
ij

xk
j

,

xk+1

i

= vk
i

� ↵

m

mX

i=1

rf
i

(vk
i

).

The stepsize here is fixed since we are interested in a faster gradient methods that do not use diminishing

step. In the absence of the knowledge of all functions f
i

, every agent can track the aggregate function

gradients, by employing a direction dk
i

, and tracking the average of these directions. In particular, every

agent will update as follows: at time k+ 1, the agents have xk
i

and dk
i

, and exchange these vectors with

their neighbors in the graph. Then, they will compute xk+1

i

and dk+1

i

, as follows:

xk+1

i

=

mX

j=1

a
ij

xk
j

� ↵dk
i

,

dk+1

i

=

mX

j=1

a
ij

dk
j

+rf
i

(xk+1

i

)�rf
i

(xk
i

). (16)

We note that each agent still computes the gradients of its own local objective function f
i

, but through the

mixing of the directions in (16), it tracks the sum of the gradients of the overall system function objective.

Subtracting the past gradient rf
i

(xk
i

) in (16) is used to ensure that only new gradient information,

captured by the difference rf
i

(xk+1

i

)�rf
i

(xk
i

) influences the direction update.

To ensure the correct gradient-tracking, the method has to be initialized with

d0
i

= rf
i

(x0
i

) for all agents i 2 [m],
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while x0
i

can be arbitrary. With such an initialization, when the matrix A is column stochastic, the

directions dk+1

i

satisfy4
mX

i=1

dk+1

i

=

mX

i=1

rf
i

(xk+1

i

).

Thus, the averaged iterates x̄k =

1

m

P
m

i=1

xk
i

, satisfy

x̄k+1

= x̄k � ↵

m

mX

i=1

rf
i

(xk
i

),

which can be interpreted as generated by an erroneous “centralized gradient” method

x̄k+1

= x̄k � ↵

m

mX

i=1

rf
i

(x̄k) + e
k

, with error e
k

=

↵

m

mX

i=1

⇣
rf

i

(x̄k)�rf
i

(xk
i

)

⌘
.

These errors are well behaved even for the constant step due to an additional alignment of the directions

in (16). In particular, work in [29] studies the method for smooth convex functions with Lipschitz

continuous gradients5, and shows the convergence of the method in the order of O(

1

k

) when a constant

stepsize ↵ is suitably chosen.

Under additional requirement that each f
i

is strongly convex6, in [30] it is shown that the method

(with a carefully selected stepsize ↵) produces iterates xk
i

that converge to the point x⇤ minimizing the

global objective function 1

m

P
m

i=1

f
i

(x) with a geometric rate, i.e.,

kxk
i

� x⇤k  qkC for all agents i and all k � 0,

where q 2 (0, 1) and C are some constants that depend on the graph connectivity topology, the entries

of the matrix A, the stepsize ↵, and the parameters characterizing the function f
i

(such as the strong

convexity and Lipschitz gradient constants). Thus, the distributed method with the gradient tracking

mechanism matches the fastest convergence rate of the centralized gradient method (which is geometric).

When the graph G is directed, the gradient-push method can also be augmented to include a gradient

tracking mechanism. In particular, the gradient-push method in (15) assumes the form:

vk+1

i

=

X

j2N in

i [{i}

(a
ij

vk
j

� ↵dk
j

),

yk+1

i

=

X

j2N in

i [{i}

a
ij

yk
j

,

xk+1

i

=

vk+1

i

yk+1

i

,

4It can be shown by using the mathematical induction on k.
5A function f has Lipschitz continuous gradients with a constant L if krf(x)�rf(y)k  Lkx� yk for all x, y 2 Rn.
6A function f is strongly convex with a constant µ > 0 if hrf(x)�rf(y), x� yi � µkx� yk2 for all x, y 2 Rn.
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dk+1

i

=

X

j2N in

i [{i}

a
ij

dk
j

+rf(xk+1

i

)�rf(xk
i

). (17)

For a column stochastic matrix A and under the conditions of strong convexity and Lipschitz continuous

gradients of the functions f
i

, similar to that of the distributed gradient-tracking method in (16), this

algorithm also enjoys a geometric convergence rate. The convergence rate analysis of these distributed

gradient-tracking methods have been shown in [30] for a more general case where the underlying

communication graphs and the matrix sequence are time-varying.

Simultaneously and independently of [30], [29], the idea of tracking the gradients have been employed

in [31], where a class of distributed algorithms have been developed for solving non-convex problems

in networks. In summary, the distributed methods with gradient tracking in (16) and (17) can match the

best known convergence rates of centralized gradient methods. The main distinction between the two

methods is that the method in (16) works on undirected graphs, where the weight matrix A is required

to be doubly stochastic, while the method in (17) works on directed graphs, where the weight matrix A

is required to be column stochastic.

We note that each of the two tracking methods employs the same weight matrix A when mixing the

x-variables and the direction related d-variables. We next consider an interesting gradient-tracking method

that makes use of different matrices to mix the x- and d-variables. In particular, the method works for

a directed strongly connected graph G. At iteration k, every agent i has two vectors xk
i

and dk
i

. At the

time of iteration k+ 1, each i agent obtains (pulls) xk
j

� ↵
j

dk
j

from its in-neighbors j 2 N in

i

, and sends

(pushes) b
`i

dk
i

to each of its out-neighbors ` 2 N out

i

. Upon this information exchange, the agents update

as follows:

xk+1

i

=

X

j2N in

i [{i}

a
ij

(xk
j

� ↵
j

dk
j

) (A-pull),

dk+1

i

=

X

`2N out

i [{i}

b
ij

dk
j

+rf(xk+1

i

)�rf(xk
i

) (B-push). (18)

Note that in this method every agent uses its own stepsize ↵
i

which need not be coordinated with

the stepsizes of the other agents. For the algorithm to work properly, the initial directions are set to

d0
i

= rf
i

(x0
i

) for all i, while x0
i

2 Rn, i 2 [m], are arbitrary initial decision vectors.

Agent i chooses the positive weights a
ij

, j 2 N in

i

[ {i}, for its in-neighbors involved in the pull-step,

and also the positive weights b
`i

, ` 2 N out

i

[ {i}, for its out-neighbors involved in the push-step. By

defining these weights to be zero for all other pairs (i, j), we obtain m ⇥m matrices compatible with

the structure of graph G; specifically,

a
ij

> 0 for all j 2 N in

i

[ {i}, and a
ij

= 0 otherwise,
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b
`i

> 0 for all ` 2 N out

i

[ {i}, and b
`i

= 0 otherwise.

The interesting aspect of the Apull-Bpush method is that the matrix A = [a
ij

] is row stochastic, while

the matrix B = [b
ij

] is column stochastic i.e.,
mX

j=1

a
ij

= 1,

mX

`=1

b
`i

= 1 for all i 2 [m].

Here, we have coined the name of the algorithm to be Apull-Bpush to fairly capture an independent

development of two closely related methods, namely a push-pull method (cf. (18)) as given in [32] and

a variant proposed and analyzed in [33], which performs slightly different updates. In particular, the

algorithm in [33] is given by:

xk+1

i

=

X

j2N in

i [{i}

a
ij

xk
j

� ⌘dk
i

,

dk+1

i

=

X

`2N out

i [{i}

b
ij

⇣
dk
j

+rf
j

(xk+1

j

)�rf
j

(xk
j

)

⌘
. (19)

Both algorithms use a row stochastic matrix A in the updates of the x-variables and a column stochastic

matrix B = [b
ij

] in the updates of the directions. Also, with a suitably selected stepsizes both algorithms

converge linearly to the solution of the problem

min

x2Rn

1

m

mX

i=1

f
i

(x)

when all the functions f
i

are strongly convex and have Lipschitz continuous gradients (see [33], [32] for

details).

In terms of communication requirements and the size of the variables exchanged among the agents, the

distributed method for undirected graphs (Section II), requires 2|E| communications per iteration since

each link in the graph is used twice in every update time; the x-variables exchanged are of size n. The

distributed method for directed graphs (Section III), requires |E| communications per iteration since each

link in the graph is used once in every update time; the variables exchanged are of size n+1 (x-variable

has size n and the auxiliary y-variable is scalar).

The distributed algorithm in (16) requires exchanging x- and d-variables with the total size of 2n,

and it requires 2|E| communications among the agents per iteration (since the graph is undirected). The

algorithm in (17) requires exchanging x- and d-variables, and an additional scalar y-variable giving a

total size of 2n + 1. It requires |E| communications among the agents per iteration (since the graph

is directed). Finally, the algorithm in (19) requires exchanging x- and d-variables with the total size

of 2n, and requires a subset of links forming a spanning tree -hence about 2m communications per

update (see [32] for precise assumptions). Overall, the communication requirements for the algorithms
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in this section are similar to those for the algorithms of Section II and Section III. However, in every

communication (directed or not), the algorithms of this section require twice larger size of the variables

exchanged than those of the algorithms of Section II and Section III.

V. SOME OPEN DIRECTIONS FOR FURTHER RESEARCH

We have discussed some of the basic distributed methods for solving machine learning problems.

The algorithms are obeying two main principles: the local knowledge of the graph structure (reflected

in communications with one-hop neighbors only) and (private) knowledge of its own objective function

only. To obey with these principles, the distributed algorithms considered here must use some form

of “mixing” or “diffusion” step that propagates the needed information from one to all the agents in

the network. This mixing step combined with some basic gradient method is the basic idea in all the

distributed methods discussed here. Other variants of distributed method can be constructed such as those

based on the ADMM approach (see the recent survey paper [23] for relevant literature).

In practice, there are several issues that arise in the implementations of the distributed methods due to

the use of a communication network, such as quantization and link delays. These two aspects are currently

of a great interest as they are the bottleneck for the efficiency of the methods. The effects of quantization

in distributed methods have been studied somewhat limited in the past decade [34], [35], [36], and very

recently in [37]. The effects of communication delays for distributed computational systems have been

considered in [38], while [39] considers the impact of delays in the weighted-average consensus method.

Very recently, a distributed algorithm that factors in link delays in communications have been proposed

and investigated in [40]. The method identifies and communicates more frequently over critical links, and

saves communication time by using other links less frequently. Such communication efficient approaches

have not yet been studied for the recently developed methods that employ a gradient-tracking mechanism

(i.e., the methods discussed in Section IV).

Despite the prolific research done on distributed methods over the past decade, there are still many

directions for further exploration. For example, the gradient-push method in (15) and its variant with

gradient-tracking mechanism in (17) have been analyzed for solving an unconstrained machine learning

problem (4) over time-varying undirected graphs [15], [30]. It is interesting to see how should these

methods be modified and analyzed for a constrained learning problem, where the constraint set X may

itself be distributed, that is, the set X has the form X = \m

i=1

X
i

and each X
i

is known to one agent

only, where X
i

is either simple (easy to be projected onto) or it is given as an intersection of a collection

of convex (algebraic) functional inequalities.
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Another direction of research is posed by the Apull-Bpush method in (18) which have been analyzed

for a static (directed) communication graph only [33], [32]. It would be desirable to see its performance

over time-varying directed graphs, which would extend the method to a more realistic scenarios when

the graph connectivity structure may change.

Yet another general direction of the research is the development and investigation of asynchronous

implementations of the distributed methods, where the agents’ information exchange and updates need not

be synchronous. Some random gossip- and broadcast-gossip methods have been studied in the literature,

but those studies are somewhat limited (see [23] for more detailed account of such randomized methods).
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