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A general framework for
decentralized optimization with first-order methods

Ran Xin, Shi Pu, Angelia Nedić, and Usman A. Khan

Abstract—Decentralized optimization to minimize a finite sum
of functions has been a significant focus within control and
signal processing research due to its relevance to optimal control
and signal estimation problems. More recently, the emergence
of large-scale data science and machine learning has led to a
resurgence of activity in this area. In this paper, we discuss
decentralized first-order methods, which have found tremendous
success in emerging machine learning problems where such
methods, due to their simplicity, serve as the first method
of choice for many complex inference and training tasks. In
particular, we provide a general framework of decentralized
first-order methods that is applicable to undirected and directed
communication networks alike, and show that much of the
existing work on optimization and consensus can be related
explicitly to this framework. We further extend the discussion
to decentralized stochastic first-order methods that rely on
stochastic gradients at each node and describe how variance
reduction, previously shown to have promise in the centralized
settings, are able to improve the performance of decentralized
methods when combined with gradient tracking. We motivate
and demonstrate the effectiveness of the first-order methods in
discussion on machine learning and signal processing problems
that arise in decentralized environments.

I. INTRODUCTION

Minimizing a cost function to select an optimal action
or decision has been an important problem in mathematics,
science, and engineering. The cost function, say F : Rp → R,
typically quantifies the risk in fitting data or measurements
under a model parameterized by x ∈ Rp. An optimal model
or decision x∗ is chosen as the one that minimizes the corre-
sponding risk F . Optimization theory and algorithms provide
the fundamental tools to address such problems. Examples
include the classical signal estimation and optimal control
problems where the goal in the former is to minimize the
estimation error and in the latter is to minimize the cost of
control actions. More recently, with the advent of modern
computational machinery, complex nonlinear problems, such
as image classification, natural language processing, and deep
learning, have enabled a resurgence of interest in the domain
of optimization theory and methods.
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Classical optimization methods for minimizing a (smooth)
function F are built on a simple observation that moving along
its negative gradient −∇F decreases the function value. Thus,
given x and ∇F (x), both in Rp, a step to decrease F (x)
is x+ = x−α∇F (x), if α, which controls the size of the step
taken in the descent direction, is small enough, i.e., we have
that F (x+) ≤ F (x). The algorithm that recursively applies
this step is well-known as gradient descent and it finds a
minimizer of the corresponding cost function under certain
conditions on the function F and the step-size α. Moreover,
gradient descent is a first-order method as it only uses the
gradient information of the cost function, in contrast to for
example second-order methods that typically compute at each
iteration the inverse of the Hessian ∇2F of the cost.

In this article, our focus is on decentralized optimization,
or decentralized optimization, in networks where data samples
are available across multiple nodes, such as machines, sen-
sors, robots or mobile devices, and the nodes communicate
with each other according to a peer-to-peer network, without
a central coordinator, to solve the underlying optimization
problem. Such problems are prevalent in modern-day machine
learning where for example a large collection of images is
stored on multiple machines in a data center for the purpose
of image classification. Moreover, classical applications like
sensor networks and robotic swarms also fit in this paradigm
where the sensors and robots collect measurements in order
to learn an underlying phenomenon, navigate an environment,
or decide on an optimal control action. In such settings, the
data samples available at the ith node lead to a local cost fi,
and the global goal of the networked nodes is to agree on a
minimizer of the average cost F = 1

n

∑n
i=1 fi based on the

entire data across n nodes. In related applications of interest,
raw data sharing among the nodes is often not permitted due
to limited communication resources and/or the private nature
of the local data, such as text messages or medical images.

Decentralized first-order methods thus rely on information
exchange among the nodes to build the solution of the
global optimization problem. Each node i iterates on a local
variable xik that estimates the minimizer x∗, at iteration k,
and updates this estimate as a function of the neighboring
estimates and local gradients. In other words, the nodes do
not share their data (local gradients) and only communicate
their estimates of the minimizer (and other auxiliary variables).
Early work along these lines can be found in [1] that is
built on average consensus and in [2] where a diffusion
principle is used for agreement. More recent developments
include gradient tracking where the local descent ∇fi at
each node i is replaced with a local iterative tracker of the
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global descent∇F . Thus, as these trackers approach the global
gradient, each local iterate xik descends in the global direction
and converges exponentially (linearly on the log scale ) to x∗

for smooth and strongly convex cost functions (in a similar
way as the centralized gradient descent). Our primary focus in
this article is on the class of smooth and strongly convex cost
functions for the ease of illustrating the key technical ideas.
We emphasize however that most of the algorithms described
herein apply to non-convex problems directly.

The first half of this article is devoted to decentralized first-
order methods based on gradient tracking where the focus is on
a recently introduced algorithm, AB [3] or Push-Pull [4],
that utilizes a novel application of both row and column
stochastic weights to achieve linear (on the log scale) con-
vergence for smooth and strongly convex cost functions. Since
doubly stochastic weights are not required in AB/Push-Pull,
it is applicable to arbitrary undirected and directed net-
works alike. We further describe how AB/Push-Pull uni-
fies much of the existing work (over both undirected and
directed networks) on decentralized first-order methods that
use gradient tracking and subsumes some non-trivial average
consensus algorithms as special cases. Similarly, we empha-
size the push and pull aspects of the information exchange
in AB/Push-Pull, enabled by the column and row stochastic
weights, respectively, and show how AB/Push-Pull unifies
various communication architectures.

The second half of this article is devoted to decentralized
stochastic first-order methods detailing the current state-of-the-
art and open problems where some progress has been made
only recently. In decentralized stochastic methods, each node
has access only to an imperfect local gradient, which results
from either an incomplete knowledge of the true gradient or
sampling a small subset from a large number of local data
samples. In this context, we describe how gradient tracking,
previously successful in non-stochastic cases, does not lead
to the same performance improvement and show that exact
linear convergence to the global minimum (for smooth and
strongly convex problems) can be obtained when gradient
tracking is further combined with what is known as variance
reduction in centralized optimization. We emphasize that much
of the existing work on decentralized stochastic problems has
focused on undirected networks and the results on directed
networks are rather restrictive.

A. Literature Survey
Decentralized optimization has been a topic of significant

research, see e.g., [1]–[12]. Optimization in undirected net-
works based on average consensus [13]–[15] includes [1],
[16]–[19] that are built on doubly stochastic network weight
matrices. Relevant work that builds on diffusion can be found
in [2], [20], [21]. For general directed networks, the con-
struction of doubly stochastic weights may be infeasible and
optimization over directed networks thus builds on consensus
with row and/or column stochastic weights. To this aim,
the methods in [22]–[30] use push-sum consensus [31]–[33]
that requires a division with a certain eigenvector of the
corresponding weight matrix. In contrast, the methods in [24],
[25] are based on surplus consensus [34] that circumvent

eigenvector division by employing both row and column
stochastic weights simultaneously.

Decentralized stochastic optimization can be divided into
two types: (i) streaming, where an imprecise (stochastic) gradi-
ent is drawn from a underlying probability distribution at each
node; or (ii) batch, where a finite collection of data samples
is already available at each node and a stochastic gradient
is computed from samples drawn randomly from the data.
Early work on decentralized problems with streaming data
can be found in [7], [35]–[41]. Stochastic optimization over
batch data have garnered a strong activity in the centralized
settings where modern methods hinge on certain variance-
reduction techniques that leverage the finite-sum structure
of the cost function to accelerate the standard stochastic
gradient descent (SGD); related work includes SAG [42],
SVRG [43], SAGA [44], Katyusha [45], and SARAH [46].
Existing variance-reduced decentralized optimization methods
can be found in [47]–[52].

Although not discussed in this paper, second-order methods
and algorithms based on the curvature of the cost functions can
be found in [53]–[57]. Similarly, ADMM (alternating direction
method of multipliers) and other primal-dual methods have
also been used in decentralized optimization [58]–[66]. See
also related work in [67]–[69], which considers methods based
on dual gradients. Work to incorporate communication and
computation imperfection and trade-offs, for example, time-
varying and random graphs, asynchronous methods, quantiza-
tion, and gradient sparsification can be found in [70]–[78].

B. Outline of the Article

We now describe the rest of this article. In Section II,
we provide examples and preliminaries on convex functions,
communication graphs, and nonnegative matrices. Section III
discusses early work on decentralized gradient descent and
shows its applicability to directed networks with the help
of row and column stochastic weights. We then describe
gradient tracking and introduce the AB/Push-Pull algorithm
in Section IV, which further includes a sketch of the anal-
ysis, communication architectures, and accelerated methods.
Section V describes how AB/Push-Pull provides a general
framework to capture many first-order methods based on
gradient tracking. We then begin the discussion on decentral-
ized stochastic first-order methods over both undirected and
directed graphs in Sections VI and VII. We show how gradient
tracking alone is unable to ensure exact linear convergence in
this setting (Section VI), which is subsequently achieved when
gradient tracking is further combined with variance reduction
(Section VII). Section VIII provides a detailed numerical study
on the performance, speed-up, and convergence of related
algorithms. Finally, Section IX concludes the article.

The goal of this article is to provide an in-depth overview
of decentralized first-order methods and to further expose the
reader with rigorous yet intuitive arguments to follow the tech-
nical analysis. In several remarks distributed throughout this
article, we highlight the analysis techniques, practical aspects,
and other salient features of the corresponding algorithms.
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C. Notation
We use lowercase letters to denote scalars in R, lowercase

bold letters to denote vectors, and uppercase letters to denote
matrices. For a vector x ∈ Rp, we denote its ith element
by [x]i. For a set S , we use |S| to denote its cardinality. For
a sequence of real numbers {ak}k≥0, we denote ak → a
as limk→∞ ak = a. The matrix Ip is the p × p identity,
and 1p (resp. 0p) is the p-dimensional column vector of all
ones (resp. zeros). For two matrices X,Y , X ⊗ Y denotes
their Kronecker product. We use ‖·‖2 to denote the Euclidean
norm of a vector. The spectral radius of a matrix X is denoted
by ρ(X) while its spectral norm is denoted by |||X |||. A strictly
positive vector x ∈ Rp, denoted as x > 0, is such that each
of its elements is positive. For w := [w1, · · · , wp]> > 0 and
an arbitrary vector x := [x1, · · · , xp]>, the weighted infinity
norm of x is defined as ‖x‖w∞ = maxi |xi|/wi and ||| · |||x∞ is
the weighted matrix norm induced by the vector norm ‖ · ‖w∞.

II. PROBLEM FORMULATION AND MOTIVATION

In this section, we describe the canonical form of the
decentralized optimization problems and emphasize real-world
scenarios where such problems are applicable and essential.
Decentralized optimization is finite-sum minimization formu-
lated over networked nodes. Formally, the goal of the nodes
is to solve in a cooperative manner

Problem P0: min
x∈Rp

F (x), F (x) :=
1

n

n∑
i=1

fi(x),

where each fi is only locally accessible and processed by
node i and is not shared with any other node. The coop-
eration (information exchange) among the nodes is peer-to-
peer without the existence of a central coordinator and is
typically modeled as a communication graph, see Fig. 1. In
many cases of practical interest, each local cost fi can be
further decomposed as a weighted sum over local data samples
available at node i, i.e.,

fi(x) :=

mi∑
j=1

ζi,j · fi,j(x), (1)

where ζi,j > 0 is a weight assigned to each data sample.
The paradigm of decentralized optimization preserves the
privacy of local data and achieves data parallelism, thus acting
effectively as a means for flexible parallel computation. We
provide some illustrative examples of this formulation in the
following Section II-A. For preliminaries on related technical
concepts, see Section II-B.

f1(x)
f2(x)

fi(x)

Fig. 1. Decentralized optimization over a general directed network.

A. Examples
The finite-sum minimization problems of the form P0 are

quite prevalent in the areas on signal processing, control, and
machine learning. We provide some examples below.

1) Signal-plus-noise model
In classical signal processing, we are often interested in

finding an unknown signal x ∈ Rp based on measure-
ments yi = h>i x + vi, obtained by a collection of sensors
indexed by i, where hi ∈ Rp is the sensing matrix and vi ∈ R
is some unknown noise. Each sensor thus is tasked to find
an x that minimizes the squared error (yi−h>i x)2. However,
since the problem may be ill-conditioned and the collected
measurements are noisy, collaboration among the sensors leads
to a much more robust estimate. The resulting formulation is

min
x∈Rp

1

n

n∑
i=1

fi(x), fi(x) := (yi − h>i x)2,

which is also known as the least-squares problems.

2) Linear models for binary classification
The decentralized nature of Problem P0 is more clear

when we consider high-dimensional and potentially private or
proprietary user data. For example, consider a set of n users
interested in learning a classifier to distinguish between male
and female faces. Each user i holds a collection of mi images,
vectorized as zi,j ∈ Rp, that are labeled yi,j =+1 for a male
face, or yi,j = −1 for a female face. The classification may
be made via a linear classifier, i.e., a hyperplane y = x>z+ b
that separates the data samples from two classes. Clearly, a
classifier trained on the collection of all images across all
users will have superior performance than any locally-trained
classifier whose performance significantly depends on the size
and quality of the local data samples. However, bringing all of
the images to a central server is expensive depending on the
resolution and size of the images and further requires sharing
personal information. This discussion motivates the use of
decentralized optimization framework to solve the following
logistic regression problem:

min
x∈Rp,b∈R

1

n

n∑
i=1

1

mi

mi∑
j=1

f̃i,j(x) +
λ

2
‖x‖2,

f̃i,j(x) :=

mi∑
j=1

ln
[
1 + exp

(
−(x>zi,j + b)

)
yi,j
]
,

where the logistic loss f̃i,j quantifies the error in the linear
classifier and λ

2 ‖x‖
2, for some λ > 0, is a regularization term

to prevent the overfitting of the data.

3) Empirical risk minimization
Problem P0 also arises as an approximation of expected

risk minimization, see e.g., [79] for additional details. In this
context, the problem of interest is to find some model h,
parameterized by x ∈ Rp, that maps an input z ∈ Rdz to its
corresponding output y ∈ Rdy . The setup requires defining
a loss function l(h(z;x),y) that quantifies the mismatch
between the model prediction h(z;x), under the parameter x,
and the actual output data y. Assuming that the data (z,y)
belongs to an underlying distribution P , the goal here is to
find the optimal parameter x∗ that minimizes the expected loss
over P , i.e., minx∈Rp E(z,y)∼P l(h(z;x),y). However, the dis-
tribution P is often intractable in practice and each node i usu-
ally has access to a large set of data samples {zi,j ,yi,j}mi

j=1,
which can be considered as the independent and identically
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distributed (i.i.d.) realizations from P . The average loss across
all nodes and all data thus serves as an appropriate surrogate
for the expected risk and the corresponding problem is often
called empirical risk minimization, i.e.,

min
x∈Rp

1

n

n∑
i=1

1

mi

mi∑
j=1

fi,j(x), fi,j(x) := l(h(zi,j ;x),yi,j).

This formulation captures a wide range of machine learning
models, including deep neural networks.

B. Preliminaries
We now briefly describe some mathematical concepts that

aid the technical discussion in this paper.

1) Convex functions
A convex function f : Rp → R is such that for any 0<γ<1

and ∀x1,x2 ∈ Rp,

f(γx1 + (1− γ)x2) ≤ γf(x1) + (1− γ)f(x2). (2)

The above definition says that a convex function always stays
below a line that connects any two points on the function. If f
is differentiable, an equivalent definition of convexity is that
it lies above all of its tangents, i.e., ∀x1,x2 ∈ Rp,

f(x2) ≥ f(x1) +∇f(x1)>(x2 − x1), (3)

where∇f(x1) denotes the gradient (derivative) of f at x1. The
convexity conditions above are general and do not guarantee
the existence of a global minimum. The notion of strong
convexity, as defined next, ensures that the global minimum
of f exists and is unique. A function f : Rp → R is µ-strongly
convex if ∀x1,x2 ∈ Rp,

f(x2) ≥ f(x1) +∇f(x1)>(x2 − x1) + µ
2 ‖x2 − x1‖22, (4)

for some µ > 0. It can be verified that strong convexity is
stronger than (3) in the sense that it further imposes a quadratic
lower bound. Finally, a function f : Rp → R, not necessarily
convex, is L-smooth if for some L > 0 and ∀x1,x2 ∈ Rp,

‖∇f(x1)−∇f(x2)‖2 ≤ L‖x1 − x2‖2, (5)

which implies that

f(x2) ≤ f(x1) +∇f(x1)>(x2 − x1) + L
2 ‖x2 − x1‖22. (6)

Clearly, an L-smooth function is controlled by a quadratic
upper bound. We denote the class of functions that are both µ-
strongly convex and L-smooth as Sµ,L. Note that each f ∈
Sµ,L is subject to both the lower and upper quadratic bounds
in (4) and (6); we thus always have µ ≤ L. The ratio κ := L/µ
is called the condition number of f and the functions with
large κ are said to be ill-conditioned. A rather simple example
of a function in this class Sµ,L is f(x) = x>Qx + b>x + c,
for x ∈ Rp and a positive-definite matrix Q ∈ Rp×p; see [80]
for more details on convex functions.

In this article, the algorithms in question are discussed under
the assumption that fi ∈ Sµ,L,∀i ∈ V . Thus, the global cost
is also such that F := 1

n

∑n
i=1 fi ∈ Sµ,L (unless explicitly

mentioned otherwise) and we denote the unique minimizer
of F as x∗. We refer to the appropriate literature where the
results are generalized to other classes, for example, L-smooth
but possibly non-convex functions.

2) Communication Graph
We now define a graph to formally characterize the in-

formation exchange among the nodes in the communication
network. Consider n nodes interacting over a potentially
directed graph G = {V, E}, where V = {1, . . . , n} is the set
of nodes, and E ⊆ V ×V is a collection of ordered pairs (i, r)
such that node r can send information to node i, i.e., i ← r.
Since G is not necessarily undirected, i ← r ; i → r.
Let N in

i denote the set of incoming neighbors of node i, i.e.,
nodes that can send information to node i. Similarly, N out

i

denotes the set of outgoing neighbors, i.e., nodes that receive
information from node i. We assume that i ∈ N in

i ∩ N out
i .

When the graph is undirected, we denote Ni := N in
i = N out

i .
A directed graph is said to be strongly connected if there exists
a directed path between any two nodes. Given a nonnegative
matrix M = {mir} ∈ Rn×n, the directed graph induced
by the matrix M is denoted by GM = {{1, 2, . . . , n}, EM},
where (i, r) ∈ EM if and only if mir > 0. Conversely, given
a directed graph G = {V, E}, we say W = {wir} is a weight
matrix associated with G if wir > 0 whenever there is a
directed link from node r to node i.
3) Nonnegative matrices

A nonnegative (resp. positive) matrix is such that all of
its elements are nonnegative (resp. positive). A matrix is row
stochastic (resp. column stochastic) if it is nonnegative and
all of its rows (resp. columns) sum to one and it is doubly
stochastic if it is both row and column stochastic. The spectral
radius of row, column, and doubly stochastic matrices is one,
and one is also an eigenvalue of the corresponding matrix. A
nonnegative matrix M is irreducible if its induced graph GM
is strongly connected and M is further primitive1 if its trace
is positive. By Perron-Frobenius theorem, for a primitive and
row stochastic matrix A, we denote its positive left eigenvector
corresponding to the eigenvalue 1 as πA such that π>A1n = 1.
Similarly, for a primitive and column stochastic matrix B,
we denote its positive right eigenvector corresponding to the
eigenvalue 1 as πB such that 1>nπB = 1. Clearly,

A1n = 1n, π>AA = π>A, BπB = πB , 1>nB = 1>n ,

and it can be shown that

A∞ := lim
k→∞

Ak = 1nπ
>
A, B∞ := lim

k→∞
Bk = πB1

>
n .

Additional details on these concepts can be found in [81].

III. DECENTRALIZED GRADIENT DESCENT

The classical first-order method to minimize a differentiable
function F : Rp → R is the gradient descent algorithm [82]:

xk+1 = xk − α · ∇F (xk), ∀k ≥ 0, (7)

where {xk}k≥0 is a sequence of estimates of a minimizer
of F and α > 0 is a constant step-size. When F is L-
smooth (but not necessarily convex) and α ∈ (0, 1

L ], we have
that ‖∇f(xk)‖ → 0, i.e., gradient descent finds a critical
point2 of F asymptotically. When F is further µ-strongly
convex, i.e., F ∈ Sµ,L as considered in this article, then a

1Formally, a nonnegative matrix is primitive if it is irreducible and only
has one non-zero eigenvalue of maximum modulus [81].

2A vector x∗ ∈ Rp is called a critical point of F if ∇F (x∗) = 0p.
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critical point x∗ is further the unique global minimum of F .
In this case, we have that ‖xk − x∗‖ ≤ (1− µα)k‖x0 − x∗‖
for any α ∈ (0, 1

L ], i.e., gradient descent converges to x∗ at
a linear (on the log-scale) rate [80], [82]. In the rest of this
article, we discuss various decentralized methods of gradient
descent type that are suitable for many practical problems.

When gradient descent is implemented at node i, without
any cooperation, to solve the decentralized optimization Prob-
lem P0, we note that (7) only finds the minimizer of fi but not
the minimizer of the global cost F = 1

n

∑n
i=1 fi, in general. A

decentralized method thus must have a means of fusing infor-
mation over the nodes in the network such that the estimate xik
at each node i is steered towards the global minimum x∗

of F . In other words, a decentralized optimization algorithm
requires two key ingredients: (i) Agreement: all nodes must
agree on the same estimate; and, (ii) Optimality: the agreement
must be on the global minimum. Agreement, required by
any decentralized algorithm, is typically achieved with the
help of average-consensus [13]–[15], when the underlying
graph is undirected, or by push-sum [31]–[33] or surplus
consensus [34] when the communication is directed. We next
discuss decentralized optimization methods that build directly
on top of these consensus algorithms.

A. Decentralized gradient descent: Undirected graphs
We start with the case of connected, undirected graphs

where the construction of doubly stochastic (network) weight
matrices in a decentralized manner is straightforward.3 A well-
known and perhaps the simplest decentralized solution for
Problem P0 is the Decentralized Gradient Descent (DGD) [1],
[2], [7] Let xik ∈ Rp denote the estimate of x∗ at node i and
iteration k. DGD runs the following iterations at each node i:

xik+1 =
∑
r∈Ni

wirx
r
k − αk · ∇fi(xik), ∀k ≥ 0, (8)

where wir is a weight that node i assigns to each xrk in its
neighborhood and the weight matrix W = {wir} ∈ Rn×n is
doubly stochastic. Note that when αk = 0, ∀k, DGD reduces
to the classical average consensus, where xik → 1

n

∑n
i=1 x

i
0,

∀i, i.e., all nodes agree on the average of their initial states.
To understand DGD, let us consider its vector-matrix form:

xk+1 = Wxk − αk · ∇f(xk), (9)

where W = W ⊗ Ip ∈ Rpn×pn, xk ∈ Rpn concatenates
the local xik’s, and ∇f(xk) ∈ Rpn concatenates the local
gradients ∇fi(xik)’s. Assuming that αk → 0, it can be shown
that each xik → xk, where xk := 1

n

∑n
i=1 x

i
k is the mean

iterate over the network, since DGD asymptotically reduces to
average consensus. Moreover, since W is column stochastic,
we get, after multiplying both sides of (9) by 1

n (1>n ⊗Ip), that

xk+1 = xk − αk ·
1

n

n∑
i=1

∇fi(xik). (10)

Observe that 1
n

∑n
i=1∇fi(xik) → ∇F (xk) as xik → xk,∀i.

Therefore, when αk → 0 and the weight matrix W is doubly
stochastic, we have that each xik → xk and xk converges to
the minimum of F = 1

n

∑n
i=1 fi, from (7), which guarantees

3Popular methods include Metroplis and Laplacian weights [70].

simultaneously the agreement and optimality requirement of
decentralized optimization. The rigorous analysis of DGD can
be found in [2], [16], [70]. We make a few remarks as follows.

Remark 1 (Performance of DGD–Rate/accuracy tradeoffs):
DGD converges sublinearly to the exact global minimum x∗

of Problem P0 for decaying step-sizes such that αk → 0.
Under a constant step-size α, DGD converges linearly, however,
to an inexact solution with accuracy O(α). Clearly, a larger
constant step-size leads to faster convergence albeit with worse
accuracy; see [16], [83], [84] for detailed analyses. We will
revisit this rate/accuracy tradeoff in Section IV and show that
this issue can be fixed by a technique called gradient tracking.

Remark 2 (Consensus + innovation and diffusion learning):
DGD-type algorithms of the form (8) are also known as “con-
sensus + innovation” and “diffusion learning” in the context of
signal estimation problems especially when the cost functions
are quadratic; see [7], [85]–[87] and references therein.

B. Decentralized gradient descent: Directed graphs
We now consider strongly connected, directed graphs where

the network weight matrices are either row stochastic or
column stochastic but not doubly stochastic, in general. As
a consequence, when the weight matrix in (8) is column
stochastic but not row stochastic, the nodes do not agree since
the right eigenvector corresponding to the eigenvalue of 1
is not 1n that is essential for agreement or consensus [25].
Similarly, when the weights are row stochastic but not column
stochastic, the nodes agree however on a sub-optimal solution
that is the minimum of a weighted average of local functions
(and not the mean). We formally discuss these issues next.

1) DGD with column stochastic weights
Let B = {bir} ∈ Rn×n be a primitive, column stochastic

weight matrix such that 1>nB = 1>n and BπB = πB . Consider
DGD (9) with B, i.e.,

xk+1 = Bxk − αk · ∇f(xk), (11)

where B = B ⊗ Ip. Recall that Bk → B∞ := πB1
>
n and

consider the convergence of (11) when αk = 0,∀k ≥ 0, i.e.,

xk → B∞x0 = (πB1
>
n ⊗ Ip)x0 = (πB ⊗ Ip)(1>n ⊗ Ip)x0,

which shows that xik → [πB ]i
∑n
r=1 x

r
0,∀i. In other words,

when the weights are only column stochastic, the nodes do not
agree because of the non-identical elements in πB . We observe
however that the scaled iterates xik/(n[πB ]i) converge to the
average of the initial states of the nodes, i.e., xik/(n[πB ]i)→
1
n

∑n
r=1 x

r
0,∀i, but since no node in the network has the

knowledge of the eigenvector πB , another set of iterations
is required to asymptotically estimate [πB ]i at node i. The
resulting algorithm is known as Gradient-Push [23], [88],
[89], which takes the following form at each node i:

zik+1 =
∑
r∈N in

i

birz
r
k, (12a)

xik+1 =
∑
r∈N in

i

birx
r
k − αk · ∇fi(wi

k), (12b)

wi
k+1 =

xik+1

zik+1

, (12c)
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6

where xi0 = wi
0 ∈ Rp is arbitrary and zi0 = 1,∀i. It is

straightforward to verify that zik → n[πB ]i,∀i, and thus
if αk → 0, wk achieves agreement. On the other hand, the
column stochasticity of B guarantees the optimality of the
Gradient-Push as discussed earlier for (10).
2) DGD with row stochastic weights

Consider DGD now with row stochastic weights A = {air}:
xk+1 = Axk − αk · ∇f(xk), (13)

where A = A ⊗ Ip. We have that A1n = 1n
and π>AA = π>A, where πA > 0 and Ak → A∞ := 1nπ

>
A.

In other words, the row stochasticity of the weight ma-
trix leads to an agreement among the nodes. In particular,
without gradient corrections, it is straightforward to show
that xik →

∑n
r=1[πA]rx

r
0, at each node i. In (13), as αk → 0,

we thus have that xik →
∑n
r=1[πA]rx

r
k := x̂k,∀i. Multiplying

both sides of (13) by (π>A ⊗ Ip), we obtain

x̂k+1 = x̂k − αk ·
n∑
r=1

[πA]r∇fr(xrk). (14)

From the above discussion, we conclude that each node
approaches x̂k, which converges to the minimum of a weighted
average of the local costs fi. The algorithm to find the
global minimum of F easily follows by dividing each ∇fi
by [πA]i. Similar to gradient-push, separate iterations however
are required to estimate the eigenvector πA since it is not
locally known at any node. The resulting algorithm [90],
termed as DGD-RS, is given by

xik+1 =
∑
r∈N in

i

airx
r
k − αk ·

∇fi(xik)

[eik]i
, (15a)

eik+1 =
∑
r∈N in

i

aire
r
k, (15b)

where xi0 ∈ Rp is arbitrary and ei0 ∈ Rn is a vector of
zeros with a one at the ith location. The iterations in (15b)
asymptotically estimate the eigenvector πA of A. To see that,
let Ek = [e1k . . . enk ]>, thus E0 = In. We note that

Ek+1 = AEk → A∞E0 = 1nπ
>
A,

that is to say eik → πA,∀i. However, implementing these
iterations requires each node to have a unique identifier in
order to select the appropriate element from πA.

Remark 3 (Column and row stochastic weights over directed
graphs): A column stochastic weight matrix B = {bir} is of-
ten constructed as bir = 1/|N out

i |,∀r ∈ N out
i . This formulation

requires each node to know its out degree, i.e., |N out
i |. A row

stochastic weight matrix A = {air} can be easily constructed
as air = 1/|N in

i |,∀r ∈ N in
i since each node can locally assign

weights to the information it receives.
Remark 4 (Average-consensus over directed graphs): It

can be easily verified that (12a)–(12c) recover the average
of the initial conditions xi0’s when αk = 0, ∀k. This algo-
rithm is well-known as push-sum that implements average-
consensus with the help of column stochastic weights [31],
[32]. Similarly, average-consensus with row stochastic weights
can be obtained by choosing αk = 0,∀k, and modifying (15a)
as xik+1 =

∑n
r=1 air

xr
k

[ei
k]i

; see also Section V-C.

Remark 5 (Eigenvector estimation): Based on the previous
discussion, we note that over directed graphs there is a certain
imbalance that is caused by not having 1n as either the left or
the right eigenvector corresponding to the eigenvalue 1 of the
corresponding weight matrices. When the weights are column
stochastic, this imbalance manifests itself in disagreement
of the estimates, whereas in the row stochastic case, this
imbalance causes convergence to the minimum of a weighted
sum of local cost functions. To overcome this imbalance, a
division by the appropriate eigenvector elements is required
that leads to separate iterations for eigenvector estimation. The
eigenvector estimation, an iterative procedure in itself, may
slow down the convergence of the corresponding algorithms
especially when the underlying graph is not well-connected.

IV. THE AB/PUSH-PULL FRAMEWORK

All three algorithms discussed in the previous section,
with doubly stochastic, column stochastic, and row stochastic
weights, converge sub-linearly with decaying step-sizes, i.e.,
with αk → 0. With a constant step-size, these methods
converge linearly albeit to a sub-optimal solution. The reason
for this sub-optimality is that x∗ is not a fixed point when
the step-size is a constant, as we explain in the following.
Consider (8) with a constant step-size (αk = α,∀k) and
with xik = x∗,∀i and some k, then

xik+1 =
∑
r∈N in

i

wirx
∗ − α · ∇fi(x∗) = x∗ − α · ∇fi(x∗) 6= x∗,

because ∇fi(x∗) 6= 0p, in general. Recall that x∗ mini-
mizes

∑n
i=1 fi and thus

∑n
i=1∇fi(x∗) = 0p holds for the

sum but not necessarily for the component functions. Clearly,
this issue disappears if ∇fi at each node is replaced by ∇F
but that is not possible since fi’s are distributed and private.

A recently introduced scheme that is referred to as gradi-
ent tracking overcomes the aforementioned steady-state error
while keeping a constant step-size by replacing ∇fi, at each
node i, with an estimate of the global gradient ∇F [17],
[18], [27], [28], [91]–[93]. Formally, a new variable yik ∈Rp
tracks

∑n
i=1∇fi(xik) and the estimate xik descends in the

direction of yik. The task is thus to design an algorithm that
tracks a time-varying function

∑n
i=1∇fi(xik) such that its

components are distributed over the network. To this aim,
Dynamic Average Consensus (DAC) [94] is used that tracks
the sum

∑n
i=1 r

i
k of time-varying functions rik, assuming that

each rik approaches a constant.
The resulting algorithm, Decentralized Gradient Descent

with Gradient Tracking (GT-DGD), linearly converges to the
global minimum x∗ when each fi ∈ Sµ,`, GT-DGD (16a)–
(16b). GT-DGD is given by the following iterations: at each
node i and ∀k ≥ 0,

xik+1 =
∑
r∈N in

i

wirx
r
k − α · yik, (16a)

yik+1 =
∑
r∈N in

i

wiry
r
k +∇fi(xik+1)−∇fi(xik), (16b)

where xi0’s in Rp are arbitrary and yi0 = ∇fi(xi0),∀i.
Here, the fusion weights {wir} are chosen such that W =
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{wir} is primitive and doubly stochastic and thus GT-DGD
is only applicable to connected undirected (or balanced di-
rected) graphs. Intuitively, if we assume that xik → x∗ at
each i, then

∑n
i=1∇fi(xik) approaches a constant and we

have that yik →
∑n
i=1∇fi(xik) at each node i. Thus, the

iterates obtained via equation (16a) asymptotically descend
in the direction of global minimum. However, GT-DGD is
restricted to undirected graphs because the weights W are
doubly stochastic. Here, we recall that the row stochasticity
of W leads to agreement, while the column stochasticity
leads to optimality. Although row stochasticity and column
stochasticity are both required, we may ask whether they must
hold simultaneously for the weights in (16a) and (16b).

In particular, (16a) may be implemented with row stochastic
weights (that are not necessarily column stochastic) leading
to an agreement, while (16b) may be implemented with
column stochastic weights (that are not necessarily row
stochastic) ensuring optimality. This observation leads to
the AB/Push-Pull algorithm4 described formally in Algo-
rithm 1, written with the help of row and column stochastic
weights, A = {air}a and B = {bir}, respectively. Since the
implementation of AB/Push-Pull does not requite doubly
stochastic weights, the algorithm is applicable to both directed
and undirected graphs. When each fi∈Sµ,`, AB/Push-Pull
converges linearly to the global minimum x∗ of F [3], [4].

Algorithm 1 AB/Push-Pull: At each node i
Require: xi0 ∈ Rp,yi0 =∇fi(xi0), α > 0.

1: for k = 0, 1, 2, · · · do
2: State update: xik+1 =

∑
r∈N in

i
airx

r
k − α · yik

3: Gradient tracking update:
yik+1 =

∑
r∈N in

i
biry

r
k +∇fi(xik+1)−∇fi(xik)

4: end for

Remark 6 (Uncoordinated Step-sizes): The AB/Push-Pull
algorithm is applicable to the case when each node i chooses
a distinct step-size αi. Convergence requires the maximum
step-size maxi αi to be positive and sufficiently small while
all other step-sizes can in fact be chosen as 0; see [30], [95],
[96] for additional details. For the sake of argument, assume
that node 1 in an n-node network chooses an appropriate
step-size α1 > 0, while αi = 0, for i = 2, . . . , n, then
node 1 implements a descent in its state update while all
other nodes implement only the average-consensus part. The
descent direction y1

k at node 1 however comes from mixing
information among all nodes via the gradient tracking update
and x1

k at node 1 thus asymptotically descends in the global
direction. Because the rest of the network updates xik, i =
2, . . . , n without the gradient correction, we observe that the
overall scheme operates in a leader-follower mode where
node 1 acts as the leader while the remaining follower nodes
asymptotically converge to the leader state; see [97] for details
on the leader-follower algorithm.

A. Analysis
In this section, we briefly describe the main ideas to estab-

lish the linear convergence of AB/Push-Pull. To proceed,

4Algorithm 1 appeared simultaneously as AB in [3] and as push-pull in [4];
see Section IV-B for push and pull aspects of the underlying communication.

we write AB/Push-Pull in a compact form as follows:

xk+1 = Axk − αyk, (17)
yk+1 = Byk +∇f(xk+1)−∇f(xk), (18)

where A = A ⊗ Ip, B = B ⊗ Ip, and the global vectors
xk,yk, and ∇f(xk) concatenate the local vectors xik’s, yik’s,
and ∇fi(xik)’s, respectively. Following DGD, we may show
that xk → 1n ⊗ xk, where xk is some weighted network
average, and xk → x∗. However, there are two issues here.
First, the weight matrices are not doubly stochastic and hence
contraction in the Euclidean norm is not applicable. In particu-
lar, ‖W −W∞‖2 < 1 for a primitive doubly stochastic matrix
but not necessarily for a row or a column stochastic matrix.
Second, the descend is in the direction of yk, and xk is coupled
to the gradients via yk. The formal analysis thus requires an
alternate approach and is described in the following.

Step 1–Contracting norms: Our approach to establish
convergence of AB/Push-Pull is to first find contracting
norms for the row and column stochastic matrices. In this
context, note that since both A and B are primitive and
stochastic, we use their non-1n eigenvectors (corresponding
to eigenvalue 1), πA > 0 and πB > 0, respectively, to define
weighted Euclidean norms as follows: ∀x ∈ Rn,

‖x‖πA
:=
√
π1
Ax

2
1 + · · ·+ πnAx

2
n = ‖diag(

√
πA)x‖2 ,

‖x‖πB
:=
√

1
π1
B
x21 + · · ·+ 1

πn
B
x2n =

∥∥diag(
√
πB)−1x

∥∥
2
.

Subsequently, we denote ||| · |||πA
and ||| · |||πB

as the matrix
norms induced by ‖·‖πA

and ‖·‖πB
, respectively [81], i.e.,

|||X |||πA
=
∣∣∣∣∣∣diag(

√
πA)X diag(

√
πA)−1

∣∣∣∣∣∣
2
,

|||X |||πB
=
∣∣∣∣∣∣diag(

√
πB)−1X diag(

√
πB)

∣∣∣∣∣∣
2
,

∀X ∈ Rn×n. With the help of these induced matrix norms, it
can be shown that [98]

σA := |||A−A∞ |||πA⊗1p
< 1,

σB := |||B −B∞ |||πB⊗1p
< 1.

Step 2–Establish an LTI error dynamics: With the help
of the aforementioned contracting norms for the two weight
matrices A and B, we next describe the three errors embedded
in AB/Push-Pull in their respective norms:

(i) the agreement error ‖xk −A∞xk‖πA⊗Ip ;
(ii) the optimality gap ‖A∞xk − 1n ⊗ x∗‖2; and,

(iii) the gradient tracking error ‖yk −B∞yk‖πB⊗Ip .

These errors can be written in a vector

tk =

 ‖xk −A∞xk‖πA⊗Ip
‖A∞xk − 1n ⊗ x∗‖2
‖yk −B∞yk‖πB⊗Ip


that follows:

tk+1 ≤ Jαtk, (19)

where

Jα =

 σA 0 0
0 1 0
a6 0 σB

+ α

 a1 a2 a3
a4 −nµ(π>AπB) a6
a7 a8 a9

 ,
for some constants a1, . . . , a9; see [3], [4] for details.
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Step 3–Linear convergence: Clearly, if tk → 03, then xik’s
reach agreement and the agreement is on the global min-
imum x∗ of F , while the rate at which tk → 03 es-
tablishes the convergence rate of AB/Push-Pull. Given
that tk follows the LTI system in (19), linear convergence
off AB/Push-Pull to x∗ can be established by showing that
the spectral radius ρ(Jα) of Jα is less than one. There are
several ways to obtain ρ(Jα) < 1 for the matrix Jα given
above and we present the argument from [3]. First note that
when α = 0, J0 has three eigenvalues: σA, σB , 1, two of
which are strictly less than 1 as given by Step 1. Next, since
the eigenvalues of a matrix are a continuous function of its
elements, it can be shown that as the step-size α increases, the
eigenvalue of 1 strictly decreases. In particular, denote by q(α)
the eigenvalues of Jα as a function of α, we have that

d q(α)

dα

∣∣∣∣
α=0,q=1

= −nµ(π>AπB),

which is strictly negative because πA and πB are both strictly
positive, where n is the number of nodes and µ > 0 is the
strong convexity constant of F . In other words, the eigen-
value q(α) = 1 decreases as a function of α and ρ(Jα) < 1
for a sufficiently small α > 0.

B. Architectures
The AB/Push-Pull algorithm unifies different types of

decentralized and distributed architectures, including decen-
tralized, centralized, and semi-centralized architecture [4],
[95]. To illustrate, let graphs GA and GB be induced by the
two matrices A and B, respectively, i.e., air > 0 (resp.
bir > 0) if and only if there exists a link from node r to
node i in graph GA (reps. GB). Note that when implementing
the AB/Push-Pull algorithm, we have the flexibility to
design two different graphs GA and GB , rather than restricting
to using one single graph that is commonly considered in the
distributed optimization literature (see e.g. [27]). Such flexi-
bility is key to the unifying property of the AB/Push-Pull
algorithm. Formally, we require the following condition on the
graphs GA and GB> (the graph GB> is the graph GB with all
its edges reversed).

Assumption 1: The graphs GA and GB> each contain at least
one spanning tree. Moreover, there exists at least one node that
is a root of spanning trees for both GA and GB> .5

In light of the above condition, we explain how
AB/Push-Pull unifies different types of distributed archi-
tecture using examples from [4]. First, for the fully decen-
tralized architecture, suppose we have a directed and strongly
connected graph G. We can let GA = GB = G and design
the weights for A and B accordingly. Then we have a typical
peer-to-peer network structure which is fully decentralized.

For the case of (semi)-centralized architectures, which is
less straightforward, we consider a simple, four-node star net-
work G, as shown in Fig. 2. Clearly GA and GB> are identical
spanning tree with node 1 being their common root. Under

5This condition is weaker than assuming both GA and GB are strongly
connected but it requires some restrictions on graph topology. Note however
that the union of GA and GB is still required to be strongly connected, which
guarantees the essential information exchange among the nodes.

1

3

4 2

1

3

4 2

Fig. 2. On the left is the graph GA and on the right is the graph GB .

this setting, the weight matrices A and B in AB/Push-Pull
can be chosen as

A =

 1 0 0 0
0.5 0.5 0 0
0.5 0 0.5 0
0.5 0 0 0.5

 , B =

 1 0.5 0.5 0.5
0 0.5 0 0
0 0 0.5 0
0 0 0 0.5

 .
It can be seen from Fig. 2 that the central node 1’s information
regarding x1

k is pulled by the entire network through GA;
the other nodes only passively receive and use node 1’s
information. Meanwhile, node 1 has been pushed information
regarding yik (i = 2, 3, 4) from nodes 2, 3, and 4 through GB ;
the other nodes only actively comply with the request from
node 1. This motivates the algorithm’s name Push-Pull
in [4], [95]. Although nodes 2, 3, and 4 are updating yik’s
accordingly, they do not have to contribute to the optimization
process: due to the weights in the last three rows of B,
the values of yik’s for nodes 2, 3, and 4 will decrease to 0
geometrically fast. As a result, in this special case, the local
stepsize α for nodes 2, 3, and 4 can be set to 0. Without
loss of generality, suppose f1(x) = 0,∀x ∈ Rp. Then the
AB/Push-Pull algorithm represents a typical centralized
gradient method for minimizing

∑4
i=2 fi(x) where the master

node 1 utilizes the slave nodes 2, 3, and 4 to compute the
gradient information in a distributed fashion.

Taking the above as a toy example for illustrating the
centralized architecture, note that node 1 can be replaced
by a strongly connected subnet in GA and GB , respectively.
Similarly, all the other nodes can be replaced by subnets as
long as the information from the master layer in these subnets
can be diffused to all the slave layer nodes in GA, and the
information from all the slave layer nodes can be diffused to
the master layer in GB . The concept of rooted trees can be
used to understand the specific requirements on connectivities
of slave subnets. In general, the nodes are referred to as leaders
if their roles in the network are similar to the role of node 1 in
Fig. 2; and the other nodes are referred to as followers. After
replacing the individual nodes by subnets, all the subnets have
decentralized network structures, while the leader subnet and
the follower subnets form a master-slave relationship. This is
why such an architecture is called semi-centralized.

C. Acceleration
Given the simplicity of AB/Push-Pull, it is natural

to consider momentum-based improvements. One immediate
extension, based on the Polyak’s heavy-ball method [82],
is ABm [96] that is given by the following equations:

xik+1 =
∑
r∈N in

i

airx
r
k − α · yik + β · (xik − xik−1), (20a)

yik+1 =
∑
r∈N in

i

biry
r
k +∇fi(xik+1)−∇fi(xik), (20b)
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where xik − xik−1 is the heavy-ball momentum added at each
node, α and β are the step-size and momentum parameters,
respectively. It is shown in [96] that ABm converges linearly
for sufficiently small step-size and momentum parameters,
however, acceleration over AB is only shown numerically
and a detailed theoretical analysis remains an open problem.
Alternatively, the use of Nesterov’s momentum [80] is also
studied in the context of AB/Push-Pull. The corresponding
algorithm ABN [99] is given by the following equations:

sik+1 =
∑
r∈N in

i

airx
r
k − α · yik, (21a)

xik+1 = sik+1 + βk · (sik+1 − sik), (21b)

yik+1 =
∑
r∈N in

i

biry
r
k +∇fi

(
xik+1

)
−∇fi

(
xik
)
, (21c)

where βk is the momentum parameter. When the set of weights
above are both doubly stochastic, a closely related form
of ABN is studied in [100] where acceleration is analytically
shown. The analysis of ABN however remains an open problem
and acceleration is only shown numerically in [99].

V. AB/PUSH-PULL : A GENERAL FRAMEWORK

We now cast AB/Push-Pull as a general framework
that unifies much of the existing work on decentralized first-
order methods with gradient tracking. Clearly, GT-DGD (16a)–
(16b) is a special case of AB/Push-Pull when both sets of
weights are further doubly stochastic. We note that DGD also
follows from AB/Push-Pull when A is replaced by a doubly
stochastic matrix W and B is chosen as identity Inp. Below,
we relate AB/Push-Pull to other well-known algorithms in
the literature; see [96] for additional discussion.

A. GT-DGD with column stochastic weights
We recall AB/Push-Pull written compactly in (17)–(18),

where A = A ⊗ Ip is row stochastic B = B ⊗ Ip is column
stochastic, while both A and B are in addition primitive.
Define ΠA to be a diagonal matrix with πA ⊗ 1p on its
main diagonal where π>AA = π>A and A1n = 1n. Clearly,
we have ΠA = diag(πA)⊗ Ip. We first note that ΠAAΠ−1A is
column stochastic, i.e.,

1>np ·ΠAAΠ−1A = 1>np(diag(πA)⊗ Ip)(A⊗ Ip)Π−1A = 1>np.

Similarly, it can be verified that ΠAAΠ−1A ·πA⊗1p = πA⊗1p.
With the help of the invertible matrix ΠA, we define a state
transformation x̃k = ΠAxk and use (17)–(18) to obtain

x̃k+1 = B̃x̃k − αΠA · yk, (22)

yk+1 = Byk +∇f(Π−1A x̃k+1)− f(Π−1A x̃k), (23)

where B̃ := ΠAAΠ−1A is column stochastic as we noted
earlier. This state transformation shows that a decentralized op-
timization algorithm with only column stochastic weights (B
and B̃) is naturally embedded in AB/Push-Pull. However,
such an algorithm additionally requires the eigenvector vec-
tor πA of the weights B̃ in (22) to implement (23). Since π>A
is not locally known to any node, implementing (22) and (23)
require estimating this non-1n right eigenvector of the column
stochastic B̃; clearly not required in AB/Push-Pull because

of the row stochasticity of A. The resulting decentralized
algorithm at each node i is given by

xik+1 =
∑
r∈N in

i

b̃irx
r
k − α · yik, (24a)

zik+1 =
∑
r∈N in

i

b̃irz
r
k, (24b)

yik+1 =
∑
r∈N in

i

biry
r
k +∇fi(

xi
k+1

zik+1

)−∇fi(xi
k

zik
), (24c)

where {b̃ir} and {bir} are (possibly different) column
stochastic weights; the algorithm is initialized with an arbi-
trary xi0 ∈ Rp and yi0 = ∇fi(xi0), zi0 = 1. The above algo-
rithm essentially adds gradient tracking to gradient-push [23],
[88], [89] described earlier in (12a)–(12c).

Remark 7: The algorithm in (24a)–(24c) is well-known as
ADDOPT [28] and Push-DIGing [27], both of which add
push-sum consensus to GT-DGD implemented over directed
graphs with column stochastic weights. It is easy to see that
the general idea of push-sum consensus, explored over the DGD
framework in [23], [88], [89] or over the GT-DGD framework
as in ADDDOPT/Push-DIGing [27], [28], essentially results
from a state transformation in AB/Push-Pull.

B. GT-DGD with row stochastic weights
Following the previous discussion, we now perform a state

transformation on the yk-update such that the column stochas-
tic weight matrix B in AB/Push-Pull transforms into a row
stochastic matrix. Defining ΠB = diag(πB)⊗ Ip, it is easy to
verify that Ã := Π−1B BΠB = {ãir} is row stochastic, i.e.,

Π−1B BΠB1np = 1np, (π>B ⊗ 1p)Π
−1
B BΠB = π>B ⊗ 1p.

The applicable state transformation ỹk := Π−1B yk leads to

xik+1 =
∑
r∈N in

i

airx
r
k − α · ỹik, (25a)

eik+1 =
∑
r∈N in

i

ãire
r
k, (25b)

ỹik+1 =
∑
r∈N in

i

ãiry
r
k +

∇fi(xi
k+1)

[ei
k+1]i

− ∇fi(x
i
k)

[ei
k]i

, (25c)

after adding eigenvector estimation to estimate the non-1n
eigenvector vector of B corresponding to the eigenvalue 1,
where [eik]i is the ith element of eik ∈ Rn at node i.
The algorithm is initialized with an arbitrary xi0 ∈ Rp
and yi0 = ∇fi(xi0), while ei0 ∈ Rn is a vector of zeros with a
one at the ith location. The resulting algorithm is formally
studied in [29], [30] as FROST and is a gradient tracking
extension of DGD with row stochastic weights [90], described
earlier in (15a)–(15b).

C. Average-consensus
We now interpret AB/Push-Pull only for consensus

problems and show that it subsumes average-consensus over
strongly connected graphs as a special case. To show this, we
choose the cost function at each node i as

fi(x) = 1
2‖x− υi‖2, (26)
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for some υi ∈ Rp. Clearly, the minimum of F =
∑n
i=1 fi is

achieved at x∗ = 1
n

∑n
i=1 υi. Thus, AB/Push-Pull naturally

leads to the following average-consensus algorithm by noting
that ∇f(xk+1)−∇f(xk) = xk+1 − xk for the local functions
described in (26):[

xk+1

yk+1

]
=

[
A −αInp

A− Inp B − αInp

] [
xk
yk

]
, (27)

where xi0 = υi and y0
i = 0, ∀i. From the linear convergence

of AB/Push-Pull, as shown in Section IV-A, it follows that
the above equations converge linearly to the average of υi’s.
What is surprising is that the above form is closely related to
a well-known algorithm for average-consensus over directed
graphs known as surplus consensus [34]. In particular, surplus
consensus is obtained from the above equations after a state
transformation with diag (Inp,−Inp).

Remark 8 (Consensus over arbitrary graphs): Following
the discussion here, choosing the local functions fi’s as (26)
in GT-DGD [17], [18], or in ADDOPT/Push-DIGing [27],
[28], or in FROST [29], [30], leads to average-consensus, that
utilizes gradient tracking, with only doubly stochastic, column
stochastic, or row stochastic weights. The protocol that results
directly from AB/Push-Pull is surplus consensus, while
the one resulting from FROST has been considered in [33].
Following the state transformations of Sections V-A and V-B,
it is straightforward to verify that the algorithm in [33] is in
fact related to surplus consensus after a state transformation.

Remark 9: Recall that DGD (8) adds a gradient correction to
consensus with doubly stochastic weights and is applicable to
undirected graphs. Its extension, GP (12a)–(12c), to directed
graphs adds gradient correction to push-sum consensus [23],
[88], [89]. Similarly, we may use (27), or equivalently surplus
consensus [34], as the consensus layer and add a gradient
correction to enable decentralized optimization over directed
graphs. This idea was explored in [24], [25], however, the
convergence rate restrictions are similar to that of DGD.

VI. DECENTRALIZED STOCHASTIC OPTIMIZATION

We now discuss stochastic first-order methods in Section VI
and VII with the help of local cost functions with a finite-sum
structure of (1). The discussion in Section VI, in particular,
easily extends to the case when local functions do not have
the finite sum structure; see Remark 14.

Recall from (1) that each node i possesses a total of mi

data samples leading to mi component functions {fi,ji}’s in
the local cost fi. The protocols discussed so far are batch op-
erations, i.e., they use the entire local fi and thus all local
data samples to compute the descent direction

∑mi

ji=1∇fi,ji ,
at each node i. Computing mi gradients at each node i can
be taxing particularly when the data is high-dimensional and
the cost functions are non-trivial. Computationally-efficient
schemes thus rely on stochastic policies to randomly select
a small subset of data from the local batch, over which the
descent direction is computed. The centralized algorithm based
on this idea is the well-known Stochastic Gradient Descent
(SGD); see [11] for a comprehensive review. Assuming that
the data is not distributed (n = 1), and the goal is to

minimize F = 1
m

∑m
j=1 fj , the centralized SGD is given by

xk+1 = xk − αk · ∇fτk(xk), ∀k ≥ 0, (28)

where τk is an index chosen uniformly at random from the
set {1, . . . ,m} at each k, and m is the total number of
component functions.

It can be verified that ∇fτk is an unbiased gradient estimate,
i.e., E[∇fτk(x)] = ∇F (x),∀x ∈ Rp, Moreover, it is assumed
that each stochastic gradient ∇fτk has bounded variance, i.e.,

E[‖∇fτk(xk)−∇F (xk)‖22] < σ2, ∀k ≥ 0,x ∈ Rp.

Under an additional assumption that F ∈ Sµ,`, it can be shown
that with a constant step-size α ∈

(
0, 1`
]
, the mean squared

error E
[
‖xk − x∗‖22

]
decays linearly, at the rate of (1− µα)

k,
to a neighborhood of x∗. Formally, we have [11],

E
[
‖xk − x∗‖22

]
≤ (1− µα)k +

ασ2

µ
, ∀k ≥ 0. (29)

The above equation says that the optimality gap decreases
to ασ2

µ at a linear rate with the exponent 1−αµ, where µ is the
strong convexity constant of the function F . Since α ∈ (0, 1` ]
and µ ≤ `, the exponent is always less than 1. The constant
steady-state error given by ασ2

µ implies the “inexact conver-
gence” of SGD due to the persistent gradient noise, i.e., the
variance σ2 does not vanish. A diminishing step-size, O( 1

k ),
overcomes this issue and leads to exact convergence albeit at a
slower rate. For example, with αk = 1

µ(k+1) , we have ∀k ≥ 0,

E
[
‖xk − x∗‖22

]
≤

max
{

2σ2

µ2 , ‖x0 − x∗‖22
}

k + 1
, (30)

which goes to zero [11] for smooth and strongly convex
functions, i.e., F ∈ Sµ,`. In other words, to reach an ε-
accuracy of x∗, i.e., E

[
‖xk − x∗‖2

]
≤ ε, the SGD method

with decaying step-sizes requires O(κ2ε−1) component gradi-
ent evaluations. Note that this rate is independent of the sample
size since SGD only computes one gradient per iteration. In
the following, we discuss the decentralized versions of SGD.

Remark 10 (GD vs. SGD): We note that gradient descent
(GD) (7) computes m component gradients per iteration, while
SGD (28) computes only one gradient. Due to this, SGD
requires O(κ2ε−1) component gradient evaluations to reach
an ε-accuracy of the global minimum x∗, and is independent
of the size m of the data, versus O(mκ lnε−1) required by GD
that uses the entire batch. It can be argued that SGD is often
more preferable in the big data regimes where m is very large
and low-precision solutions may suffice.

A. Decentralized Stochastic Gradient Descent (DSGD):
Undirected Graphs

We now go back to Problem P0 where the data is distributed
over n > 1 nodes and each node i possesses mi component
functions indexed by ji. Similar to DGD, each node i samples
from its local full batch and implements the following protocol
known as DSGD [2], [7], [35]:

xik+1 =
∑
r∈N in

i

wirx
r
k − αk · ∇fi,τ i

k
(xk), ∀k ≥ 0, (31)
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where τ ik is a distinct index at each node i and iteration k, cho-
sen uniformly at random from the local index set {1, . . . ,mi},
and the weights are such that W = {wir} is doubly stochastic.
Since the weight matrix is doubly stochastic, the underlying
graphs are restricted to be undirected or balanced directed.

As in the centralized case, it is straightforward to verify
that E[∇fi,τ i

k
(x)] = ∇fi(x),∀i and ∀x ∈ Rp, and we assume

that each local stochastic gradient has a bounded variance, i.e.,

E[‖∇fi,τ i
k
(xk)−∇fi(xk)‖22] < σ2, ∀i, k ≥ 0,x ∈ Rp.

Assuming that each local function is smooth and strongly con-
vex, i.e., fi∈Sµ,l,∀i, and that λ is the second largest singular
value of W , it can be shown that [101]: under a constant
step-size, αk = α ∈

(
0,O

(
(1−λ)µ
`2

)]
,∀k, the mean squared

error E[‖xik−x∗‖22] decays linearly, at a rate of (1−O(µα))
k,

to a neighborhood of x∗ such that

lim sup
k→∞

1

n

n∑
i=1

E
[∥∥xik − x∗

∥∥2
2

]
= O

(
ασ2

nµ
+
`2

µ2

α2σ2

1− λ
+
`2

µ2

α2b

(1− λ)
2

)
, (32)

where b := 1
n

∑n
i=1 ‖∇fi (x∗)‖22. With a diminishing step-

size αk = O( 1
k ), DSGD achieves an exact convergence [75],

[102]–[105], such that

1

n

n∑
i=1

E
[∥∥xik − x∗

∥∥2
2

]
= O

(
1

k

)
, ∀k ≥ 0. (33)

DSGD for smooth and nonconvex functions is studied in [38].

Remark 11 (SGD vs. DSGD): With a decaying step-size,
DSGD asymptotically achieves a network-independent conver-
gence rate that is exactly the same as the centralized SGD (see
[104], [105]). The network topology only affects the transient
time to reach this asymptotic rate (see [104] for a precise state-
ment). With a constant step-size in both cases, the convergence
becomes linear but there is a steady-state error. The steady-
state error (32) of DSGD depends on two additional terms as
compared to SGD (29). Both additional terms arise from the
decentralized nature of DSGD and include the factor (1 − λ)
that encodes the connectivity of the underlying (undirected)
graph, i.e., λ < 1 for connected graphs and is small for well-
connected graphs. However, the last term further includes the
constant b that captures the average deviation between the
local and global solutions. In particular, assume x∗i to be
the locally optimal solution such that ∇fi(x∗i ) = 0p,∀i. We
have b ≤ `

n

∑
i ‖x∗ − x∗i ‖2. Clearly, b is large when data

distributions at the nodes are diverse and the local optimal
is far from the global. This discrepancy motivates the use of
gradient tracking technique in DSGD as we discuss next.

B. DSGD with Gradient Tracking (GT-DSGD):
Undirected Graphs

As we describe in Section IV, the performance of
DGD (8) improves with the addition of gradient tracking in
GT-DGD (16a)-(16b). Similarly, we can add gradient tracking

in DSGD to obtain GT-DSGD described as follows:

xik+1 =
∑
r∈N in

i

wirx
r
k − αk · yik, (34a)

yik+1 =
∑
r∈N in

i

wiry
r
k +∇fi,τ i

k+1
(xik+1)−∇fi,τ i

k
(xik), (34b)

which has been recently studied in [106]–[108]. Following
the same idea as in GT-DGD, the descend direction yik is now
estimated with the help of local stochastic gradients. Under
the same assumptions of smoothness, strong convexity, and
bounded variance as in DSGD, the convergence of GT-DSGD
is summarized in the following [107]. With a constant step-
size, α ∈

(
0,O

(
(1−λ)µ
`2

)]
,∀k, E[‖xik−x∗‖22] decays linearly

at a rate of (1−O(µα))
k to a neighborhood of x∗ such that

lim sup
k→∞

1

n

n∑
i=1

E
[∥∥xik − x∗

∥∥2
2

]
= O

(
ασ2

nµ
+
`2

µ2

α2σ2

(1− λ)
3

)
.

(35)
With a decaying step-size αk = O( 1

k ), we have that

1

n

n∑
i=1

E
[∥∥xik − x∗

∥∥2
2

]
= O

(
1

k

)
, ∀k ≥ 0. (36)

Remark 12 (DSGD vs. GT-DSGD): With a constant step-
size, the performances of DSGD and GT-DSGD have distinct
features. On the one hand, the dependence on b does not exist
in GT-DSGD. This is intuitive because recall from Section IV
that each descend direction yik is towards an estimate of
the global descend; see also Remark 11. However, since the
estimate involves stochastic gradients (and not the local full
batch), the persistent variance σ2 contributes to a steady-state
error. On the other hand, the steady-state error in DSGD has
a better network dependence O((1 − λ)−2) when compared
with GT-DSGD O((1− λ)−3). In short, when the underlying
communication graph is relatively well-connected, GT-DSGD
that is independent of the difference of the local and the global
optimal solutions may be preferred over DSGD.

C. Decentralized Stochastic Optimization: Directed Graphs

When the underlying communication is over arbitrary
strongly connected directed graphs, we are unable to im-
plement doubly stochastic weights W = {wir} in DSGD
and GT-DSGD. An immediate extension is to use push-sum
with DSGD (that uses column stochastic weights) to obtain
Stochastic Gradient Push (SGP) [37], [39] that replaces the
local full batch

∑
ji
∇fi,ji in the algorithm described in (12a)–

(12c) with a stochastic gradient [39]. A similar technique
can be implemented with only row stochastic weights by
writing the algorithm described in (15a)–(15b) with stochastic
gradients. For the sake of brevity, we only describe the SAB
algorithm here that is a stochastic variant of AB/Push-Pull.
The basic algorithm is given by

xik+1 =
∑
r∈N in

i

airx
r
k − α · yik, (37a)

yik+1 =
∑
r∈N in

i

biry
r
k +∇fi,τ i

k+1
(xik+1)−∇fi,τ i

k
(xik), (37b)
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where A = {air} is row stochastic and B = {bir} is column
stochastic. SAB has been recently introduced in [98] where
it is shown that SAB converges linearly with a constant step-
size. However, an explicit characterization of the rate and the
analysis for the decaying step-sizes remain open problems.

Remark 13 (Generalization of SAB): Clearly, following the
discussion in Section V, one can develop stochastic extensions
of ADDOPT/Push-DIGing [27], [28] and FROST [30],
where the former only use column stochastic weights while the
latter only uses row stochastic weights. These extensions rely
on eigenvector estimation as described before. Over directed
graphs, these variants have the promise of improved perfor-
mance when compared to the Stochastic Gradient Push [39]
because of the additional gradient tracking component. How-
ever, a formal analysis of SAB and the extensions based on
row- and column stochastic weights remain open problems.

Remark 14 (Stochastic first-order oracle): All methods
discussed in this Section, i.e., SGD, DSGD, GT-DSGD, SAB,
and their variants, are applicable to more general expected
risk minimization problems, which do not have the finite-
sum structure (1) on the local costs fi’s. In particular, each
local stochastic gradient can be replaced with a noisy sample
of the true gradient ∇fi(xik), instead of a randomly chosen
component function ∇fτ i

k
(xik). Formally, it is assumed that

each node is able to call a Stochastic First-order Oracle (SFO),
i.e., at each iteration k and node i, given xik ∈ Rp as
the input, the SFO returns a stochastic gradient in the form
of gi(xik, ξ

i
k) ∈ Rp, where ξik’s are random vectors, ∀i, k ≥ 0.

The stochastic gradients satisfy the following assumptions:
The set of random vectors {ξik}k≥0,i∈V are independent of
each other, and

(1) Eξik
[
gi(x

i
k, ξ

i
k)|xik

]
= ∇fi(xik),

(2) Eξik
[∥∥gi(xik, ξik)−∇fi(xik)

∥∥2
2
|xik
]
≤ σ2.

See [11], [109], [110] for additional details and discussion6.

VII. DECENTRALIZED STOCHASTIC FIRST-ORDER
METHODS WITH VARIANCE REDUCTION

This section focuses on problems where the local costs fi’s
have a finite-sum structure (1). In the centralized settings, the
corresponding problem minF = 1

m

∑
j fj , i.e., Problem P0

with one node (n = 1), has been a topic of significant
research recently. SGD (28) that has served as a promising
solution of such problems converges with a steady-state error
as shown in (29) with a constant step-size. This steady state
error is explicitly given by ασ2

µ and is a consequence of the
variance σ2 of the stochastic gradient. Since the variance is
persistent, a natural way to avoid it is to replace the stochastic
gradient in (28) with a more refined estimator of the full batch
gradient. Various variance-reduced methods are developed in
this context and have a key property that the variance of the
gradient estimator goes to zero asymptotically.

A popular variance reduction method is SAGA [44] that
replaces the descent direction ∇fτk in SGD (28) with with

6The bounded variance condition is sometimes relaxed to (see e.g., [101])
Eξi

k

[∥∥gi(xik, ξik)−∇fi(xik)∥∥22 |xik] ≤Mx‖xik‖
2+σ2, for some Mx>0.

the following estimator of the batch gradient [44], i.e.,

gk = ∇fτk(xk)−∇fτk(x̂τk) + 1
m

∑m
j=1∇fj(x̂j), (38a)

xk+1 = xk − α · gk, (38b)

where x̂j is the most recent iterate where ∇fj was evalu-
ated and τk is chosen uniformly at random from the index
set {1, . . . ,m}, at each iteration k. The gradient estimator gk
is implemented as follows. For an arbitrary x0 ∈ Rp, com-
pute ∇f1(x0),∇f2(x0), . . . ,∇fm(x0) and store them in a
table. At each k ≥ 0, draw an index τk, compute gk and re-
place the τk-th element of the table with ∇fτk(xk) while other
entries in the table remain unchanged. It can be shown that
the SAGA estimator is unbiased [44], i.e., E[gk] = ∇F (xk),
and has the property that

E[‖gk −∇F (xk)‖22]→ 0, (39)

as xk → x∗. Under the assumption that each component
function is smooth and strongly convex, i.e., fj ∈ Sµ,L,∀j, it
can be shown that with α = 1

3` , we have [44],

E
[
‖xk − x∗‖22

]
≤ C

(
1−min

{
1

4m ,
µ
3`

})k
, ∀k ≥ 0, (40)

for some constant C > 0. In other words, SAGA
achieves ε-accuracy of the global minimum x∗

with O
(
max{m,κ} lnε−1

)
component gradient evaluations,

where recall that κ = `
µ is the condition number of the global

cost F .
Remark 15 (SGD vs SAGA): We note that SAGA, par-

ticularly because of the variance reduction (40), achieves
linear convergence that is independent of the variance. It
is sometimes argued [11] that when low-precision solutions
suffice, the overhead of SAGA, in terms of gradient storage and
slow convergence in the beginning, may not be advantageous
enough in comparison with the simplicity of SGD iterations
that achieve a fairly decent solution very fast.

Remark 16 (Other variance-reduction methods): Other well-
known and popular variance reduction techniques include
SAG [42], SAGA [44], SVRG [43], S2GD [111], SARAH [46]
and SPIDER [112]. These methods mostly differ in terms of
the gradient estimator and lead to different computation and
storage trade-offs. See [11] for detailed comparison.

A. Decentralized Gradient Tracking and Variance Reduction:
GT-SAGA

Following the discussion so far, it is natural to extend
decentralized stochastic methods with the help of both gradient
tracking and variance reduction. Recall that the convergence
in DSGD, GT-DSGD, and SAB is inexact and adding variance
reduction to GT-DSGD or SAB potentially removes their
steady-state error. The protocol at node i is summarized as:

(i) Variance reduction: Draw a local stochastic gradient and
update the estimate gik of the local full batch;

(ii) Gradient tracking: Fuse the local full batch esti-
mates gik’s over nearby nodes to obtain yik+1;

(iii) Local descent: Update xik+1 with the new descent yik+1.
We can interpret the variance reduction step as intra-node
fusion where each node estimates its own local full batch,
while the gradient tracking step as the inter-node fusion where
the nodes fuse (the estimate of) their local full gradients over
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the network. In essence, the variability in the gradient selection
process is removed by performing these two fusions and the
overall descend is in the global direction, asymptotically.

Following AB/Push-Pull, the resulting algorithm over
directed graphs, termed as AB-SAGA, is described as follows.
Each node i starts with an arbitrary xi0 ∈ Rp, maintains a
local gradient table

[
∇fi,1(xi0), . . . ,∇fi,mi

(xi0)
]
, and com-

putes yi0 = ∇fi(xi0). Each node i then iteratively performs
the following steps at each k ≥ 0:

(i) Perform the xk-update:

xik+1 =
∑
r∈Ni

airx
r
k − αyik, (41)

where A = {air} is row stochastic;
(ii) Draw τ ik uniformly at random from {1, . . . ,mi};

(iii) Variance reduction:

gik+1 = ∇fi,τ i
k

(
xik+1

)
−∇f̂i,τ i

k
+

1

mi

∑mi

ji=1∇f̂i,ji , (42)

where f̂i,τ i
k

is the τ ik-th element in the gradient table;
(iv) Gradient tracking:

yik+1 =
∑
r∈Ni

bird
r
k + gik+1 − gik, (43)

where B = {bir} is column stochastic;
(v) Replace f̂i,τ i

k
with ∇fi,τ i

k
(xik+1) in the gradient table.

The analysis of AB-SAGA described above remains an open
problem for the general case of row stochastic and column
stochastic weight matrices, A = {air} and B = {bir}.

A special case when both weights are doubly stochastic
was introduced recently as GT-SAGA in [52], [113] that
is applicable to undirected or to balanced directed graphs.
Similar to the centralized SAGA [44], GT-SAGA converges
linearly to x∗ with a constant step-size. Formally, when
each fi,ji ∈ Sµ,`, and the step-size is chosen such that α =

min
{
O
(

1
µM

)
,O
(
m
M

(1−λ)2
κL

)}
, we have that ∀k ≥ 0,

1

n

n∑
i=1

E
[∥∥xik − x∗

∥∥2
2

]
≤ R

(
1−min

{
O
(

1
M

)
,O
(
m
M

(1−λ)2
κ2

)})k
, (44)

where m = mini{mi},M = maxi{mi}, and R > 0 is some
constant [52], [113]. In other words, GT-SAGA achieves ε-
accuracy of x∗ in

O
(

max
{
M, Mm

κ2

(1−λ)2

}
lnε−1

)
parallel local component gradient computations.

Remark 17 (DSGD, GT-DSGD, and GT-SAGA): Recapping
the performances of the decentralized stochastic first-order
methods over undirected graphs, we note that GT-SAGA does
not have a steady-state error due to variance-reduction [52],
[113]. However, the gradients tables result in an increased
storage cost O(pmi) at each node i. Given a desired accuracy,
applicable trade-offs between the convergence benefits of
the GT-SAGA versus the simplicity of other methods can be
formulated; see also [114] for a detailed review.

Remark 18 (Other decentralized VR methods): Decentral-
ized VR methods that do not explicitly employ gradient

tracking include DSA [47] that combines EXTRA [19] with
SAGA [44], diffusion-AVRG [48] that combines exact
diffusion [20] and AVRG [115], DSBA [49] that adds proximal
mapping [116] to each iteration of DSA, and ADFS [51]
that applies an accelerated randomized proximal coordinate
gradient method [117] to the dual formulation of Problem P0.
We note that when M ≈ m is very large, GT-SAGA improves
upon the convergence rate of these methods in terms of the
joint dependence on κ and M ≈ m, with the exception
of DSBA and ADFS. Both DSBA and ADFS achieve better
iteration complexity, however, at the expense of computing
the proximal mapping of a component function at each iter-
ation. Although the computation of this proximal mapping is
efficient for certain function classes, it can be very expensive
for general functions. VR methods that incorporate gradient
tracking include GT-SVRG [52], [118] and GT-SARAH [119]
where the former has certain advantages over GT-SAGA when
it comes to the storage cost while GT-SARAH considers non-
convex problems.

Remark 19 (Linear speedup of GT-SAGA): We note that
GT-SAGA has a low per-iteration computation cost and
achieves a linear convergence to x∗. In particular, it reaches ε-
accuracy of x∗ in O

(
max

{
M, Mm

κ2

(1−λ)2

}
lnε−1

)
parallel

local component gradient computations. This exact linear
convergence makes it particularly favorable in comparison
with DSGD and GT-DSGD when high-precision solutions are
desired. Interestingly, when each node has a large data set
such that M ≈ m > κ2

1−λ2 , the complexity of GT-SAGA
becomes O(M lnε−1), independent of the network, and is
thus n times faster than that of centralized SAGA where it
is O(nM lnε−1) [44]. Clearly, in this “big-data” regime,
GT-SAGA acts effectively as a means for parallel computa-
tion and achieves linear speed-up compared with centralized
variance-reduced methods. We also numerically show the
linear speedups of decentralized algorithms in Section VIII.

VIII. NUMERICAL EXPERIMENTS

In this section, we compare the performance of the decen-
tralized first-order methods discussed in this article with the
help of linear and logistic regression problems.

1) Decentralized state estimation in sensor networks
Consider a network of sensors deployed to estimate a state

vector x ∈ Rp, e.g., the location of a target. Each sensor i
obtains its local measurements yi ∈ Rpi as yi = Hix + ni,
where Hi ∈ Rpi×p is the local sensing matrix and ni ∈ Rp
is the random noise. The nodes cooperate to solve the follow-
ing decentralized optimization problem: minx∈Rp

∑n
i=1 ‖yi−

Hix‖2. We randomly generate an undirected graph of 100
nodes using the nearest neighbor rule, i.e., two nodes are
connected if they lie within a communication radius. The
directed geometric graph is obtained by making half of the
links in the undirected geometric graph to be one-directional.
Two sample graphs are shown in Fig. 3. We set the dimension
of the state x ∈ Rp to be p = 100 and generate the sensing
matrices and the state vector from Gaussian distribution with
zero-mean and a standard deviation of 10. The maximum rank
of the sensing matrices does not exceed 20, i.e., no node is

Page 13 of 20

PROCEEDINGS OF THE IEEE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



14

able to recover the state on its own.
In Fig. 5, we compare DGD, GT-DGD, and AB/Push-Pull

over an undirected graph. Note that doubly stochastic weights
are used for DGD and GT-DGD while row and column
stochastic weights are used in AB/Push-Pull. The same
constant step-size α = 10−5 is used for all of the al-
gorithms. As discussed before, DGD with a constant step-
size has inexact convergence while with a decaying step-
size has exact but sub-linear convergence. Both GT-DGD and
AB/Push-Pull converge linearly to the exact solution due
to gradient tracking. In Fig. 6, we compare Gradient-Push
(GP), ADDOPT/Push-DIGing (with only column stochastic
weights), FROST (with only row stochastic weights) and
AB/Push-Pull over a directed graph. GP being the extension
of DGD with push-sum consensus has inexact convergence with
a constant step-size while all of the other algorithms are based
on gradient tracking and converge linearly.

2) Decentralized training over multiple machines
We next consider decentralized logistic regression over the

directed exponential graphs [39], shown in Fig. 8, where
the goal is to classify hand-written digits 3 and 8 from
the MNIST dataset [120]. The class of directed exponential
graphs is weight-balanced (therefore admits doubly stochastic
weights), sparsely-connected (low-communication per node),
and possesses a strong algebraic connectivity. The nodes
cooperatively solve the following smooth and strongly convex
problem: minw,b F (w, b) = 1

nm

∑n
i=1

∑m
ji=1 fi,ji(w, b), with

fi,ji(w, b) = ln
[
1 + exp

{
−(w>xji + b)yji

}]
+
λ

2
‖w‖22,

where xji ∈ R784 is the feature vector and yji is the corre-
sponding binary label.

In our setup, a total number of 11968 training samples
are evenly distributed among all nodes. Each training sample
is normalized to a unit vector. We set the regularization
parameter λ = 1

nm [42]. The global minimum is found by
centralized Nesterov gradient descent. We plot the average
residual 1

n

∑n
i=1

(
F (xik)− F ∗

)
across all nodes for com-

parison. The hyper-parameters for all algorithms are tuned
manually for best performances.

Fig. 3. An undirected geometric graph (left) and a directed geometric graph
(right) generated by nearest neighbor rule.

We first show the performance over the directed exponential
graph with n = 8 nodes (thus m = 1496). Fig. 6 compares
DGD, GT-DGD, GT-DSGD, GT-DSGD, and GT-SAGA, all with
constant step-sizes, where one unit on the horizontal axis (or
epoch) represents m = 1496 parallel component gradient
evaluations, i.e., one effective pass of the local data. It can

be observed that in the first few epochs, stochastic gradient
methods, DSGD and GT-DSGD, make very fast progress and
significantly outperform their deterministic counterparts, DGD
and GT-DGD, and therefore are particularly favorable for
problems where low-precision solutions suffice. Over time,
however, stochastic methods drastically slow down and full
gradient methods that make steady progress across iterations
typically achieve high accuracy faster. Clearly, GT-SAGA that
uses both gradient tracking and variance-reduction exhibits
consistent fast linear convergence to the global minimum and
outperforms all other methods.

Finally, we study the speedup achieved by the decentralized
stochastic methods over their centralized counterparts in Fig. 7,
where we compare DSGD and GT-DSGD with centralized
SGD and GT-SAGA with centralized SAGA. Each iteration of
centralized SGD and SAGA evaluates one component gradi-
ent while each iteration of DSGD, GT-DSGD and GT-SAGA
evaluates n component gradients in parallel, i.e., one at each
node. The speedup can be described as the the ratio of the
number of iterations taken by the centralized method over
the corresponding decentralized method to achieve the same
accuracy (10−3 for comparisons with SGD and 10−15 for
comparison with SAGA). We conduct the experiment over
the directed exponential graphs with 4, 8, 6, and 32 nodes
shown in Fig. 8. It can be observed that a linear speedup is
achieved for all three decentralized approaches. In other words,
the decentralized methods are approximately n times faster
than their centralized counterparts and thus are particularly
favorable when data can be processed in parallel.

IX. CONCLUSIONS

In this article, we study decentralized first-order methods
with full and stochastic gradients over undirected and di-
rected graphs. We show that most of the existing work on
decentralized methods based on gradient tracking can be cast
in a unifying framework provided by the AB/Push-Pull
algorithm. On the stochastic front, we discuss how gradient
tracking is unable to achieve exact linear convergence, which
can be recovered with the addition of a recently introduced
variance-reduction technique. We provide numerical results to
illustrate the convergence behavior and performance of the
corresponding methods.
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Fig. 4. Decentralized state estimation over undirected geometric graph.
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Fig. 5. Decentralized state estimation over directed geometric graph.
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Fig. 6. Decentralized logistic regression over the directed exponential graph
with n = 8 nodes.
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Fig. 7. Linear speedup: DSGD and GT-DSGD vs. SGD to achieve an accuracy
of 10−3; GT-SAGA vs. SAGA to achieve an accuracy of 10−15.
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algorithms for smooth and strongly convex distributed optimization in
networks,” in ICML. JMLR. org, 2017, pp. 3027–3036.

Page 16 of 20

PROCEEDINGS OF THE IEEE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



17
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[89] A. Nedić and A. Olshevsky, “Distributed optimization over time-
varying directed graphs,” in 52nd IEEE Annual Conference on Decision
and Control, Dec. 2013, pp. 6855–6860.

[90] V. S. Mai and E. H. Abed, “Distributed optimization over weighted
directed graphs using row stochastic matrix,” in IEEE American
Control Conference, July 2016, pp. 7165–7170.

[91] P. Di Lorenzo and G. Scutari, “Next: In-network nonconvex optimiza-
tion,” IEEE Trans. on Sig. and Information Processing over Networks,
vol. 2, no. 2, pp. 120–136, 2016.

[92] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Convergence of asynchronous
distributed gradient methods over stochastic networks,” IEEE Trans-
actions on Automatic Control, vol. 63, no. 2, pp. 434–448, 2017.

[93] G. Scutari and Y. Sun, “Distributed nonconvex constrained optimization
over time-varying digraphs,” Mathematical Programming, vol. 176, no.
1-2, pp. 497–544, 2019.

[94] M. Zhu and S. Martı́nez, “Discrete-time dynamic average consensus,”
Automatica, vol. 46, no. 2, pp. 322–329, 2010.

[95] S. Pu, W. Shi, J. Xu, and A. Nedić, “Push-pull gradient methods for
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[106] S. Pu and A. Nedić, “A distributed stochastic gradient tracking
method,” in 2018 IEEE Conference on Decision and Control (CDC).
IEEE, 2018, pp. 963–968.
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Angelia Nedić has a Ph.D. from Moscow State Uni-
versity, Moscow, Russia, in Computational Math-
ematics and Mathematical Physics (1994), and a
Ph.D. from Massachusetts Institute of Technology,
Cambridge, USA in Electrical and Computer Sci-
ence Engineering (2002). She has worked as a
senior engineer in BAE Systems North America, Ad-
vanced Information Technology Division at Burling-
ton, MA. Currently, she is a faculty member of the
school of Electrical, Computer and Energy Engi-
neering at Arizona State University at Tempe. Prior

to joining Arizona State University, she has been a Willard Scholar faculty
member at the University of Illinois at Urbana-Champaign. She is a recipient
(jointly with her co-authors) of the Best Paper Awards at the Winter Simulation
Conference 2013 and at the International Symposium on Modeling and
Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt) 2015.
Her general research interest is in optimization, large scale complex systems
dynamics, variational inequalities and games.

Usman A. Khan is an Associate Professor of
Electrical and Computer Engineering (ECE) at Tufts
University, Medford, MA, USA. His research in-
terests include statistical signal processing, network
science, and decentralized optimization over au-
tonomous multiagent systems. Recognition of his
work includes the prestigious National Science
Foundation (NSF) Career award, an IEEE journal
cover, three best student paper awards in IEEE
conferences, and several news articles including two
in IEEE Spectrum. He received his B.S. degree in

2002 from University of Engineering and Technology, Pakistan, M.S. degree
in 2004 from University of Wisconsin-Madison, USA, and Ph.D. degree in
2009 from Carnegie Mellon University, USA, all in ECE. Dr. Khan is an IEEE
Senior Member and has been an elected full member of the Sensor Array and
Multichannel Technical Committee with the IEEE Signal Processing Society
since 2019 where he was an Associate member from 2010 to 2019. He was an
elected full member of the IEEE Big Data special interest group from 2017
to 2019. He was an Editor of the IEEE Transactions on Smart Grid from
2014 to 2017 and is currently an Associate Editor of the IEEE Control System
Letters, IEEE Transactions Signal and Information Processing over Networks,
and IEEE Open Journal of Signal Processing. He is the Lead Guest Editor for
the Proceedings of the IEEE Special Issue on Optimization for Data-driven
Learning and Control and a Guest Associate Editor for IEEE Control System
Letters Special Issue on Learning and Control both to appear in 2020. He
is the Technical Area Chair for the Networks track in IEEE 2020 Asilomar
Conference on Signals Systems and Computers.

Page 18 of 20

PROCEEDINGS OF THE IEEE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



1

Authors Response: 0007-SIP-2020-PIEEE
A general framework for decentralized optimization

Ran Xin, Shi Pu, Angelia Nedić, and Usman A. Khan
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