2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS)

Investigating Controller Evolution and Divergence
through Mining and Mutation*

Balaji Balasubramaniam*, Hamid Bagherif, Sebastian Elbaum?, Justin Bradley®
*Department of Information Technology, Central Community College, Grand Island, NE, USA
bbalasubramaniam@cccneb.edu
TDepartment of Computer Science and Engineering, University of Nebraska—Lincoln, Lincoln, NE, USA

hbagheri@cse.unl.edu,
jr'Department of Computer Science, University of Virginia, Charlottesville, VA, USA

selbaum@virginia.edu

Abstract—Successful cyber-physical system controllers evolve
as they are refined, extended, and adapted to new systems and
contexts. This evolution occurs in the controller design and also in
its software implementation. Model-based design and controller
synthesis can help to synchronize this evolution of design and
software, but such synchronization is rarely complete as software
tends to also evolve in response to elements rarely present in
a control model, leading to mismatches between the control
design and the software. In this paper we perform a first-of-its-
kind study on the evolution of two popular open-source safety-
critical autopilot control software — ArduPilot, and Paparazzi,
to better understand how controllers evolve and the space of
potential mismatches between control design and their software
implementation. We then use that understanding to prototype a
technique that can generate mutated versions of code to mimic
evolution to assess its impact on a controller’s behavior.

We find that 1) control software evolves quickly and controllers
are rewritten in their entirety over their lifetime, implying that
the design, synthesis, and implementation of controllers should
also support incremental evolution, 2) many software changes
stem from an inherent mismatch between continuous physical
models and their corresponding discrete software implementa-
tion, but also from the mishandling of exceptional conditions,
and limitations and distinct data representation of the underlying
computing architecture, 3) small code changes can have a
dramatic effect in a controller’s behavior, implying that further
support is needed to bridge these mismatches as carefully verified
model properties may not necessarily translate to its software
implementation.

I. INTRODUCTION

Controllers, most typically feedback controllers, compute
inputs to a system based on observations of the system state
[1]. These controllers are typically represented as mathematical
models and subsequently implemented in software and executed
as periodic tasks in a computer system. Successful robotic,
vehicle, and other controlled cyber-physical systems (CPS)
evolve, as do their controllers. Conceptually, this evolution
occurs at two distinct levels as shown in Figure 1. At
the control design level, that evolution may occur on the
mathematical representations or higher level models in the
chosen representation (e.g., Simulink, MATLAB, Octave). At
this level it is common to observe model changes meant to
refine the control law as the logical conditions under which

* This work was supported in part by NSF awards #1638099 and #1853374.

jbradley@cse.unl.edu

a system should operate are realized, as the assumptions or
levels of abstraction of the model are refined, or the model is
revised to fit another system.

At the software level of the controller we observe at
least three types of changes. First, software changes that
directly map to the same changes in the control design. These
changes constitute the primary target for tools supporting
model-based design [2], [3] or controller synthesis [4]. Second,
software changes that are meant to complete pieces of the
implementation that were not defined in the design, either
because of the higher level of modeling abstraction that was
employed, or because it was not cost-effective to define them
at the design level. Third, changes driven by the need to
integrate the software controller files with a larger software
ecosystem that goes beyond the controller itself, or by software
maintenance needs.

The frequency of each type of software change varies
across systems. For selected safety-critical software with large
development resources, most changes can occur at the design
level and be automatically verified and transferred to code with
high fidelity (as shown by the arrow in Figure 1 going from
the design model to the partial implementation of that model
in software). For most projects, however, many changes occur
just in the software as the controller design concentrates on the
key building blocks providing a partial model of the system.
Furthermore, the design necessarily abstracts many of the
computing elements and context that must then be implemented
in software. Sometimes these software changes make it back to
the model through some mechanism like an issue tracker (dotted
arrow). Most often, however, implementation changes do not

Software Changes

Y

Software
Implementation

Model Changes

“ “Feedback ~

’

Partial
Implementation

Generates

Fig. 1: Evolution of control design and software.

2642-9500/20/$31.00 ©2020 IEEE
DOI 10.1109/ICCPS48487.2020.00022

151

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 15,2020 at 19:36:17 UTC from IEEE Xplore. Restrictions apply.

make it back or cannot be incorporated into the design model.
This causes a divergence as the changes in the implementation
of the control system may invalidate the properties so carefully
proven at the design level.

In spite of the prevalence and impact of this software
evolution, we, as a community, know very little about how
the controllers that we so carefully craft change during their
evolution, particularly at the software level. Our courses on
control design, our textbooks, the tools we use, and the most
promising research efforts largely ignore the evolution of
controllers. We are distinctly aware of the inherent mismatches
between the physical and software worlds (e.g., continuous vs.
discrete, infinite vs. finite), but lack an understanding of how
those mismatches manifest as the software changes [5], [6].

In this work, we shed light on this evolution by performing
a first-of-its-kind case study exclusively on control software to
show how and in what way it evolves. To do this, we examine
964 commits to the popular autopilot control software systems
(i.e., ArduPilot [7] and Paparazzi UAV [8]) used on a wide
range of Unmanned Air Systems (UAS). First, to provide a
baseline for how much a controller evolves, we report metrics
capturing to what extent controller-related evolution happens
in these controllers. Our results show that controllers were
entirely rewritten over nine times throughout their lifetime.
Implication. This means as control software matures it may
have little code in common with the original. Unless a tight
correspondence between model and software is enforced over
the many small changes (e.g., bug fixes, new features, etc.)
made, the evolved model and control software may diverge
drastically over its lifetime. This suggests that techniques such
as control synthesis and model-based design techniques and
tools must focus on accommodating this type of evolution.

We then identify 4 categories that capture the evolutionary
changes resulting from inherent mismatches between sys-
tem models and controllers, and their software implemented
counterparts. Our results show that although some changes
stem from an inherent mismatch between the continuous
time/space physical model and its corresponding discrete
software implementation, the majority of the changes were
associated with handling exceptional conditions, and with the
limitations and distinct data representation of the underlying
computing architecture. Implication. This points to an un-
explored opportunity for automated synthesis and software
development techniques that can bridge these mismatches
appearing during software evolution that may render carefully
verified model properties invalid at the control software level.

Last, we explore the effects of software evolution in the
performance of 3 controllers designed with Simulink. To do
this, we developed a novel mutation technique that generates
versions of the original code with mutated regions reflecting the
categorized changes we observed in ArduPilot and Paparazzi
UAV. The technique takes as input the code that is automatically
generated by the Simulink toolset from carefully crafted control
models, and can be configured to generate different types
and numbers of mutants. The results demonstrate how small
and typical software changes can dramatically impact control

performance. Implication. A robustness measure, similar to
traditional control theory robustness [9], can be developed to
help control and software engineers improve controller designs
as software complexity increases in modern CPSs.

To summarize, this paper makes the following contributions:

« We present an empirical study investigating control
software to better understand its evolution

« We contribute a novel controller change categorization
scheme and suite of controller-aware mutation operators
derived from widely-used, safety-critical control software.

e We show how to exploit derived mutation operators
that can map software changes directly to controller
performance, paving the way for design of controllers
robust to software changes.

II. RELATED WORK

Most work at the intersection of software and control has
examined the impacts of the disparity between the continuous
mathematical models representing physical systems and con-
trollers and the fundamentally discrete nature of computing [10].
Such research focuses on the effects of computation (e.g.,
quantization, delay) on the controller and seeks to find ways
to incorporate them into controller design [1]. This is the
substance of digital control theory [11].

However, the control community does not generally examine
the role the software development process plays in impacting
control design. But examining control software and its evolution
could have far reaching impacts. For example, in the process
of software maintenance, a year after the controller design,
if a key calculation alters the precision by changing fabs ()
to fabsf()! does this impact system stability? Does a
software change to limit stack size, a limitation of the computer
architecture, cause a function call chain to fail, impacting
controller performance? A study of control software evolution
can provide insight into how these effects could be mitigated
either in the control model or in the software evolution process.

This motivation has led to some work focusing on software
and control systems. Feron has examined how to integrate
proofs of important control system properties, such as stability,
directly into software [12]. This can alert the software
developer when sensitive code is being modified, and provide
a mechanism for verification processes to assess correctness.
But unless the annotation process is less costly, the sources
of unsoundness controlled, and the tools well integrated into
the developer’s environment and workflow, such strategies will
struggle to gain mainstream acceptance [13], [14].

In safety-critical systems, model-based design strategies
ideally create a 1:1 correspondence between the model and the
software [10], [15], [16]. This strategy has been included in the
most recent revisions of DO-178C “Software Considerations
in Airborne Systems and Equipment Certification” [17] and its
supplements [18]. This is done by building models in MATLAB,
Simulink, Stateflow, or other tools, verifying these models, and
then autogenerating corresponding code. In this paradigm the

I fabs operates on type double while fabsf operates on type float.

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 15,2020 at 19:36:17 UTC from IEEE Xplore. Restrictions apply.

code autogeneration tool must be certified to produce provably
correct results. While this strategy links the model and software
it may only exist in domain-specific applications [3], and
may not link third-party software libraries, drivers, or other
specialized pieces of code used in development of the system,
or may be incomplete. Indeed, the vast majority of control
systems onboard UASs - a safety critical system - are not
developed using model-based design, but rather, use hand
coded controllers such as ArduPilot.

The software engineering community has developed tech-
niques to cope with the validation and verification of systems
that includes control software (e.g., [19]-[23]), or their sound
application to assist in self-adaptation [24]. Unfortunately,
outside of highly regulated safety-critical systems, use of these
strategies is limited due to high costs. This is particularly
noticeable in the extremely active UAS industry where open
source autopilots (e.g., ArduPilot [7], Paparazzi UAV [§],
PX4 [25]) are used extensively on various types of hardware
with contrastingly very light regulations and rigor in design
and test processes.

Software evolution has been an active research topic for
decades, and the realization that successful systems evolve and
how it evolves has led to laws of software evolution [26], and
a rich suite of techniques to understand, handle, and support
changes associated with all the entities involved in the software
development process [27]. The focus of the study in this paper
is on analyzing the evolution of control software developed
independently of model-based design [16], synthesis [20], or
domain-specific annotations in code [12].

Following established practices [28], we analyzed two
bodies of small, open-source, unregulated, safety-critical control
software for which there are hundreds of available code changes
recorded with commit level granularity. We have chosen these
bodies of software for two key reasons. First, a large and
increasing portion of critical software development with wide-
reaching impacts is being developed in lightly controlled
development and largely unregulated environments — such as
the UAS industry. Second, understanding how the software
evolves and reasoning about where mismatches with the model
are likely to occur can pinpoint areas that future studies and
techniques must target.

Finally, our mutation technique builds on a large body of
work on mutation testing, which aims to evaluate the strength
of a test suite in terms of the percentage of code versions with
seeded code changes it can detect. Those versions are called
mutants, and a test suite is said to kill a mutant when the

! 585
1 Fcommits

—>
i
II 379
IIcommits

585
commits

—>

379
commits

What is the

size, frequency, Is it associated

with control
system?

and complexity
of the
commits?

489

commits

=

275

commits

presence of the change is detected by the test suite. There is
a large number of mutation approaches available [29], [30],
as well as several analyses to improve the effectiveness and
efficiency of the mutation process [31], [32]. Unlike all prior
work, we utilize mutation in our setting as a way to mimic the
evolution we observed in widely-used safety-critical control
software, and then to assess the impact of those mutations on
controller operations.

III. STUDY

The following research questions will provide a foundation
for understanding and characterizing control software evolution,
and will underscore future tools that incorporate this knowledge
into a framework for controller development:

RQ1: How does the software implementing a control system
evolve? We seek to quantify the degree and nature of changes
in control software in the absence of an explicit control model.

RQ2: To what degree can the changes in the control software
be captured by a control model or constitute mismatches
between the model and the software? We conservatively focus
on characterizing the space of software changes that are rarely
part of the control model.

RQ3: What are the impacts of software evolution in the
performance of controllers? We are principally concerned with
studying the mismatches that arise between control models and
control software.

A. Analysis Artifacts

We required artifacts that included significant control soft-
ware systems with many available versions reflecting their
evolution. The first artifact is the popular ArduPilot [7], that
provides a sophisticated control system for autopilot support
that can operate on a variety of vehicles including airplanes,
multirotors, helicopters, and boats?. It has over nine years of
well maintained history, and its code base is accessible through
a git repository [33] that stores the code changes committed
by the developers since 2010. As of May 2019, the repository
includes 448 contributors that have committed almost 38,000
changes. The latest version of ArduPilot contains approximately
250k lines of code (LOC)? in C/C++. We focus our analysis on
the evolution of the core control files that provide coverage of
functionality associated with position and attitude control. We
2The ArduPilot website reports that over one million vehicles use this code
base, including companies like 3DR, PrecisionHawk, AgEagle, Insitu Boeing,
Kespry, branches of the US military, and NASA among others.

3LOC - Lines of Code - is a count of lines in the text of source code excluding
comment lines [34].

1]

I 396
Il commits
I :
I

I 154
Il commits

102
commits

1

I

I

I

I

What is the type ||
of mismatch? [/

I

17 |
I

I

I

I

Canit be
implemented in
control model?

Does it impact the
control system?

commits

Fig. 2: Overview of the study analysis process to address the first two research questions.

153

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 15,2020 at 19:36:17 UTC from IEEE Xplore. Restrictions apply.

analyzed 585 commits*, where each commit included changes
to at least one of the target files.

The second artifact is Paparazzi UAV [8], which has over 13
years of development history. Paparazzi UAV provides autopilot
capabilities for fixed-wing, and rotorcraft vehicles. The code
base is accessible through a git repository [35]. As of May
2019 there are 99 contributors and ~15,400 changes. The latest
version of Paparazzi UAV contains approximately 212k LOC
in C/C++. We again selected control files central to position
and attitude control, and analyzed 379 commits, where each
commit included changes to at least one of the target files.

Neither ArduPilot nor Paparazzi UAV have formal models of
the controller, and do not practice complete model-based design.
These controllers are maintained and modified primarily
at the code-level. This is common practice among small
companies, researchers, and hobbyists in areas not subject
to strict regulation and certification requirements. Because
ArduPilot and Paparazzi UAV provide safety-critical software
to unmanned systems without a rigorous certification/verifi-
cation process, they provide an excellent example of control
software development that may be (at best) weakly linked to a
mathematical model with provable guarantees.

B. Analysis Process

Figure 2 depicts a high-level overview of the study analysis
process to address the first two research questions, which
consists of a set of filtering and analysis steps. The process
to answer RQI starts by systematically querying the git
repositories to quantify the degree of changes in terms of size,
frequency, and people involved. To do this, we downloaded
the latest repositories, and developed a set of scripts, in
combination with the git client management tool Giteye [36],
to collect the data.

To better understand the changes, we devised a procedure
to identify commits that are most likely associated with
changes to the control system. This procedure focused on
the developers’ comments and code changes, and was partially
automated through a syntactic file search using common control
keywords (e.g., control, derivative, error, feedforward, filter,
frame, frequency, gain, integral, kalman, proportional) and
also keywords specific to the target autopilot controller (e.g.,
acceleration, altitude, distance, pitch, roll, yaw, waypoint, speed,
velocity). This process also took into consideration the online
documentation explaining the roles of key configurable parame-
ters and variable naming practices. Although we were biased
in our selection toward conservatively including potentially
impactful changes, our process is incomplete and a more
rigorous strategy of what, precisely, constitutes a ‘“control
software” change is needed.

The resulting commits (489 for ArduPilot and 275 for
Paparazzi UAV) were further analyzed to discriminate between
changes deemed semantically equivalent such as those caused
by documentation, refactoring, or abstraction to ease the
maintenance of the software without directly impacting the

“In git, a commit consists of one or more changed files identified as a single
change unit by the developer and assigned a single identification.

154

functionality. For example, code found to be repeated may
be extracted into a function call. This, theoretically, has no
impact on the controller as it is purely a software maintenance
change. This filtering left 396 ArduPilot and 154 Paparazzi
UAV commits/changes impacting the controller directly.

The process to answer RQ2 (cf. Figure 2) filtered the re-
maining commits by making a qualitative analysis to determine
whether the change could have been handled in a control model.
Since neither ArduPilot nor Paparazzi UAV have formal control
models, our assessment consists of a conservative judgement of
whether, if a mathematical model of the control system would
be available, such a model could accommodate a given change.
It is conservative in that, when in doubt, we assume that a
control model could handle such a change. Our judgment of
what can be modeled is based on traditional control theory
[11], modern model-based design strategies [3], [16], and
emerging research [37]. More specifically, unless the changes
are tightly associated with: 1) the computing architecture, 2) the
representations of data in that architecture, 3) the discretization
of time and space to function in that architecture, or 4) the
handling of anomalies due to that software functions, we
assume it could be represented in a control model. When
we determine that a control model would not typically include
such a change, we assume it constitutes a mismatch between
model and code that could have an impact on the system
behavior. We then proceed to classify each change into one of
four categories that emerged as we analyzed these mismatches
and grouped them according to their characteristics, defined
in Table I. This classification procedure was costly, with
some changes requiring minutes and others requiring hours
and the participation of multiple authors. Furthermore, this
classification process was iterative as new mismatches emerged
that either did not fit existing categories or fit multiple ones.

To address RQ3, we introduce a technique and corresponding
tool we have developed to help mimic and analyze the software
controller evolution and its impacts. Mutation analysis is a
practice used to assess the robustness of software test suites
apropos small, isolated changes in the software [29]. The
tool, an overview of which is shown in Figure 5, generates
code from Simulink models, mutates the code, compiles it,
executes a test suite, and compares the output to the output
of the original design. Our test suite for each mutant is a step
response characterized by key control design quantities. The
tool mutates the generated code according to our categories
shown in Table I. We are primarily concerned with studying
the mismatches that occur between control models and control
software. As a result, the tool is focused on mutating code
generated from Simulink because: i) model-based design is
an increasingly important methodology but the evolution of
model-based designs and corresponding generated code needs
more study, and ii) model-based design should maintain a 1:1
correspondence between the design and generated code, but
many changes that could be made in the code may not be
represented in the design.

Our mutation tool is capable of handling C and C++
programming languages. This is done by constructing the

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 15,2020 at 19:36:17 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Definitions and Examples of Categories for Mismatches Between Models and Software

Category ArduPilot ‘ Paparazzi UAV
Definition: A software change resulting from features or limitations of the computing architecture, including software and hardware. Such
changes are often intended to better fit or utilize existing resources such as memory, energy, or bandwidth.
Resource The horizontal feedforward gain is defined as 0. This is later used
Attributes for multiplication bit operation to determine the control command for
. .))) horizontal guidance navigation. Bit representations of control variables
This change stores variables in flash memory instead of static random cannot be represented in the control model.
access memory.
Commit id: 5de51d35588fa0080db7b8416924a900b405b4e9
Commit id: 452749149fd4d3e910e6ed22a6£861d5862a4b0 Committers comment: [guidance] fix IGAIN precision and
Committers comment: convert AC_PID library to AP_Param add VGAIN based on #682 this may introduce too large
RN horizontal guidance IGAIN in rotorcraft airframe files
+const AP_Param: :GroupInfo AC_PID::var_info[] PROGMEM={ R
+ AP_GROUPINFO ("P", AC_PID, _kp), +#ifndef GUIDANCE_H_VGAIN
+ AP_GROUPINFO("I", AC_PID, _ki), +#define GUIDANCE_H_VGAIN 0
+ AP_GROUPINFO ("D", AC_PID, _kd), +#endif
guidance_h_cmd_earth.x pd_x +
((guidance_h_vgain % guidance_h_speed_ref.x) >> 17) +
((guidance_h_again * guidance_h_accel_ref.x) >> 8);
Definition: A software change that modifies a measured value or a numerical calculation in order to more closely mimic continuous
mathematics. Such changes often consist of utilizing improved functions in advanced math libraries or newer sensor devices, and simply
. using types with more bits for representation.
Precision
and Replaces fast_atan with atanf to improve accuracy and precision
Accuracy for calculating the target pitch angle. . . .
Replaces int32 with float to improve accuracy and precision for
Commit id: 872583f4412adel6a3le8bTbd0363c294a20d301 calculating the angular rate set point.
Committers comment:AC_AttitudeControl removed
— fast_atan Commit id: 0c95b9%e26edabal085f210b41d0a8325b607d%ada
- Committers comment: [rotorcraft] converted PI rate
—_pitch_target = constrain_float (fast_atan(controller to floating point closes #1624
— —accel_forward/ (GRAVITY_MSS x 100)) * -
— (18000/M_PI_F),-lean_angle_max, lean_angle_max) ; - struct Int32Rates stabilization_rate_sp;
+_pitch_target = constrain_float (atanf (+ struct FloatRates stabilization_rate_sp;
<~ —accel_ forward/ (GRAVITY_MSS x 100)) *
<~ (18000/M_PI_F),-lean_angle_max,lean_angle_max) ;
Definition: A software change resulting from the intrinsic discrete nature of the computing system in representing time and space. Such
changes often consist of handling the inherent mismatch between continuous and discrete paradigms in representing and manipulating time in
the calculations of derivatives and integrals, in the manipulation of variables associated with the vehicle location or motion, or in governing
Time the periodic execution of certain pieces of code (e.g., tasks).
and . . L
Space This change alters the time representation from seconds to milliseconds 'll“éu}sl chanlge Iailllters the execution frequency of the navigation task from
Model to more frequently check the position controller activity. z to 16 Hz.
X . Commit id: 624ce9%eea923bff55e3c913363e9b42fe9cdbaab
Comm}t id: 88ec13b10d?13d72cdb0b24ba2e1244e6ed37734 Committers comment: navigation function in guidance;
Committers comment: fix build frequency set at 16 Hz
L ip e soscomoerve o see) || sunoncopvery (50, nav_serioais task 108200
— — — : + RunOnceEvery (32, nav_periodic_task());
Definition: A software change resulting from the handling of anomalous conditions that would otherwise result in computational failures. Such
changes often consist in additional support for conditions to adhere to either mathematical laws (e.g., dividing by zero), or computational
laws (e.g., unexpected input, seg fault, etc.).
Exception
Handling This change prevents a divide by zero error by ensuring the variable

This change checks whether the input variable to the PID controller
is infinite or undefined before using it to calculate the PID terms of
the controller.

Commit id: ae77c¢18al1933dcb00eb9fc838872119b2250915¢c
Committers comment: Input to the PID controller is
protect against NaN and INF.

+ // don’t pass in inf or NaN
+ if (isfinite (input)) {

is greater than zero before being used to calculate the navigation ratio
for the vehicle controller.

Commit id: 7f91efa2854fee702a6601256dea5ff195e58£80
Committers comment: Fixed Error preventing AGR climb
from working. Navigation would not blend.

+if (AGR_BLEND_START > AGR_BLEND_END &&
<~ AGR_BLEND_END > 0) {

+nav_ratio = AGR_CLIMB_NAV_RATIO + (
< AGR_CLIMB_NAV_RATIO) % (1 —
— (fabs (altitude_error) - GR_BLEND_END) /
< (AGR_BLEND_START - AGR_BLEND_END)) ;

i =

abstract syntax tree (AST) [38] of each program. We use Clang

3.8.2 and LLVM 4.0 for this and use the Mat chFinder class

of Clang to process the AST. To support repeatability, we have
built this software infrastructure inside an operating-system-

155

level virtualization, called docker (version 1.13.1).

To study the effects of the mutated software code, we used
three different, complex system design models developed in
Simulink: an automotive cruise control, a helicopter, and a

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 15,2020 at 19:36:17 UTC from IEEE Xplore. Restrictions apply.

Boeing 747. The automotive cruise controller contains 14
Matlab blocks, and is available at [39]. The helicopter system
contains 40 blocks, and is provided by MATLAB [40]. The third
system is an airspeed controller for a Boeing 747 containing
465 blocks [41].

Mutation Tool. Figure 5 shows the overall architecture
of the mutation tool, which contains three main phases. In
the first phase, it generates the C code from the Simulink
models and automatically derives AST for the generated code.
It then parses the AST to identify the locations where the
code could be mutated. Mutation templates, obtained from
software abstractions of our mismatch categories in Table I,
are used to identify where code can be mutated. The templates
are constructed such that many locations in the code can be
mutated by a single template in a variety of ways. The tool
randomly chooses a location and applies the mutation.

In total, we have implemented 21 unique template mutators
for the three categories of Precision and Accuracy, Exception
Handling, and Time and Space Model as detailed in Table III.
The Resource Attributes category in Table I is excluded due
to the tight dependence on specific hardware configurations.

In the second phase, the tool compiles and executes the
mutated code to obtain a step input response from the mutated
code to compare against the original model. We quantify the
control performance via 8 traditional control step response
metrics: rise time, settling time, settling min, settling max,
overshoot, undershoot, peak, and peak time [11].

Finally, in the third phase, we verify whether the mutated
code has altered the performance of the controller. This was
done by comparing the step response characteristics values
with their counterparts obtained by running the original system.

C. Threats to validity

This study has shortcomings that may impact the validity
of the findings. First, the scope of the study is limited to
the software side of controller evolution. This choice was
intentional and allowed us to quickly leverage readily available
data while decoupling the evolution occuring in software
from that which would occur in a model. Future studies of
controller design evolution, controller design coupled with
control software, and impact on system performance will
provide a broader understanding of the topic.

Second, our study is focused on two control software
systems. This choice was opportunistic in that Ardupilot
and Paparazzi have been widely deployed, so findings in
these code bases can still be valid for similar systems (e.g.,
LibrePilot [42], PX4 [25]). Likewise, even though the cost
of analyzing hundreds of commits limited the scope of files
studied, those files perform different controller tasks and were
designed by different groups of developers. As a result, we
anticipate these findings will also apply to other files designed
by other developers. We also acknowledge that the granularity
of changes we studied (i.e., commits) may not expose all code
changes made by developers.

Third, our analysis had a quantitative aspect that is partially
automated and highly reproducible, and a qualitative aspect that

in many instances required us to make judgment calls. Such
judgment calls are subject to many biases, which we tried to
reduce by defining clear criteria for filtering and classification,
by having multiple authors check different parts of the results,
and by iterating and revisiting the results as anomalies emerged.
We have prepared a website with the mutation docker and
detailed data’.

IV. RESULTS

In this section, we report and interpret the results of our
study that we have conducted in the context of this work.
Answers to RQ1 — How Much do Controllers Evolve?

We quantify the evolution of the selected ArduPilot and
Paparazzi UAV control files, and the results thereof are captured
in Table II, summarizing the control software evolution across
various files for each subject system. Specifically, it reports on
initial and final LOC, # of commits, LOC changed, and people
involved for each of the files of interest. Changes were made
by 28 developers who changed 15,066 LOC over 964 commits
throughout the lifetime of the files. The guiding principle in this
analysis is to examine the evolution of control software, and as
a result, throughout the presented results we focus on changes
to the software which excludes the first commit representing
the initial implementation.

The Growth metric, shown in row 8 of Table II, assesses
how much the software grows over its lifetime. Growth is
computed as (X;Y) % where X is the number of lines of code,
excluding comments, in the latest commit (row 4 in Table II)
and Y is the number of lines of code (excluding comments)
in the earliest commit (row 3 in Table II). Growth captures
the net lines of code changed including changes stemming
from model clarifications, new features, bug fixes, and software
maintenance. As an example for this metric, AC_PID. cpp had
54 lines of code initially, and in the latest commit has 141 lines
of code, a growth of 161%. The ArduPilot files have an average
growth rate of 131% while the Paparazzi UAV files average
growth rate is 198%, implying that the initial implementations
for both systems required significant changes to complete
them and refine them, and more generally that these control
files, like any successful software, grow in complexity as they
evolve. In some cases, like for AP_Baro.cpp, we notice a
dramatic growth of almost ~600% to abstract common features,
support more devices, and improve calibration. Other files like
AC_PosControl.cpp exhibit a more stable development
from the start with only ~10% growth.

Growth does not, however, capture the amount of change
occurring in a file. To measure this, code churn is defined as the
total number of lines of code changed (row 6 in Table II) [43].
For example, the code churn for AC_AttitudeControl.-
cpp is 3350 lines of code with an average of over 26 lines
changed per each of its 127 commits. To further emphasize
the seriousness of code churn for control software, we use a
metric we call “Rewrite Rate”, that captures how many times
the original controller has been essentially rewritten from a
software perspective. Rewrite Rate is computed as %, where

Shttps:/nimbus.unl.edu/CE/controllerevolution.html

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 15,2020 at 19:36:17 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Overview of Control Software Evolution

ArduPilot Paparazzi UAV

b o o e 5 . 80 o N b 0D R 0 &s

. O 0 Rag) @ o - . o © | o Y 0 o

a a - P oo = H = 1o — oA — | < Q

[o~ 2 0o o © -~ o T -~ o T | =] © |

&%) n O < O 0 = m Q o0 3 Q 0 3 4 Q2 0 o T O o O

J o J Jdg 4 J o ol & i Sta%0 5300 e &0
Filename(—) < o < c o < 50 & < O Total | © © » IR A= B TRy] S Q & Total
Initial commit 1/28/12 2/14/14 2/14/14 4/13/13 6/27/12 10/19/06 07/26/09 02/10/09 02/10/09 08/21/10
Latest commit ~ 2/18/17 4/27/17 6/22/17 7/9/17 /717 02/19/17 03/22/16 ~ 04/27/16 12/23/17 12/27/17
Initial LOC 54 601 152 166 55 1028 | 135 89 36 126 77 463
Latest LOC 141 661 440 754 382 2378 | 323 195 150 546 168 1382
Commits 37 134 127 185 102 585 72 52 60 159 36 379
Code churn 463 1672 3350 3252 1043 9780 | 707 636 757 2859 327 5286
Developers 6 3 3 4 6 8 10 5 5 12 5 20
Growth (%) 161.1 10.0 189.5 354.2 594.6 1313 | 139.3 119.1 316.7 3333 118.2 198.5
Rewrite Rate 8.57 2.78 22.04 19.59 18.96 9.51 | 5.24 7.15 21.03 22.69 4.25 11.42

Z is the code churn and Y is LOC in the earliest commit.
Note that high growth does not necessarily mean high churn.
For instance, AP_Baro. cpp in the ArduPilot project exhibits
the highest growth of all files, but AC_AttitudeContr—
ol.cpp shows the highest code churn. About half of the
analyzed files represent Rewrite Rates of around or above 20,
indicating those control files have almost nothing in common
with the original versions. To give perspective, even the file
with the lowest growth rate, AC_PosControl.cpp, has been
rewritten almost three times.

For control designers this implies that a controller imple-
mented in software may significantly diverge from the
original design without a correspondence to the model
unless those ties are continuously enforced. It also means
that if a tight correspondence between the model and software
is not enforced, a large amount of time must be spent updating
the controller to correspond with the software (dashed arrow
in Figure 1) or most likely the model will become obsolete
along with its proven guarantees.

Answers to RQ2 — What Evolution Results from Model
and Software Mismatches?

If control models and software evolve independently it is
critical to understand what kind of changes prevent a 1:1
correspondence between them. We classified the 102 ArduPilot
commits and the 17 Paparazzi UAV commits from the last stage
of Figure 2 into the four categories defined in Table I. These
categories represent the primary mismatches resulting from the
incongruences between control models of the physical system
and the computational paradigm of software implementation.
In the right hand column are examples to clarify the types
of changes in these categories. The mismatched commits and
classifications distribution are shown in Figure 3. Each commit
could have an arbitrary number of LOC changed, and hence a
single commit may have multiple mismatches and be classified
into more than one category.

Overall, from Figure 3, the distribution of mismatches
is similar across ArduPilot and Paparazzi UAV. However,
the quantity in ArduPilot is five times larger than Paparazzi
UAV despite having smaller growth, rewrite rate, and fewer
developers involved (cf. Table II). This is due, in part, to
the larger number of commits that affect the control model
in ArduPilot, and that, in Paparazzi UAV, some control

elements were externalized into a separate configuration file
(e.g., sampling periods) to isolate potential changes to the
system.

Observing the categories, “Precision & Accuracy” was
the biggest source of mismatches between model and soft-
ware (cf. Figure 3), accounting for 41% of the ArduPilot
and 40% of the Paparazzi UAV mismatches. This implies
developers prioritized improvements to the precision and
accuracy of calculations to either 1) more closely mimic
continuous mathematical assumptions of infinite precision,
or, 2) prioritize improvement in computational system
performance while sacrifing precision and accuracy. We
observe that some of these changes were not particulary
complex (changing an int to float), while others involved
utilizing special functions from a math software library. Still
others, like switching fabs to fabsf, seem to sacrifice
precision presumably to be consistent in the use of float
to represent decimals and avoid unnecessary conversions
potentially saving unnecessary computations at runtime. These
mismatches were pervasive throughout the evolution of all files.

“Time and Space Model” mismatches are concerned with
accounting for and tracking discrete time in control software.
While we considered discretized space in the same category,
which would be more prominent in control software incor-
porating, for example, a computer vision component, we did
not observe any discretized space mismatches in this set of
files. Ensuring consistency between periodic execution of a
controller and associated computation of discrete derivative and
integral equivalents is critical for correct control performance.

ArduPilot
Total Mismatches: 102

Paparazzi UAV
Total Mismatches: 17

35%

- 10% |

M Resource Attributes
® Time and Space Model

M Precision and Accuracy
Exception Handling

Fig. 3: Mismatches across ArduPilot and Paparazzi UAV.

157

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 15,2020 at 19:36:17 UTC from IEEE Xplore. Restrictions apply.

We observed many changes that focused on improving this
consistency in a programming language (C/C++) that does
not natively provide semantic support for timing [44]. Most
of these mismatches occur in the navigation/guidance (AC_W—
PNav.cpp and guidance_h.c), and position controller
(AC_PosControl.cpp) portions of the controller software.
Our results reporting on the number of changes involving
timing provide further support for Lee’s claims that timing
in computation is a major obstacle to the development of
combined cyber-physical models in which determinism is
preserved [44]. Although many of these mismatches could be
incorporated into the model by using MATLAB toolboxes such
as “TrueTime” [45] or checked using other timing verification
strategies like UPPAAL [46], these are often costly and continue
to be underutilized in many development environments like
the one we have studied.

Often overlooked by control designers are the undefined
mathematical operations in engineered systems such as dividing
by zero, or multiplying by oco. In mathematical models
these exceptions are built into the assumptions of continuous
mathematics and are implicitly avoided. In software they
must be explicitly avoided with lines of code protecting
potentially undefined operations from causing the program to
end prematurely or perform incorrectly. This exception handling
also extends to software and computing architectural rules that
must be obeyed (e.g., handling NULL pointers). The combined
36 total mismatches in this category (row 4 of Table IV in
the Appendix) suggest that even software developers may take
implicit assumptions about exception handling for granted. As
the code evolves these exceptions are dealt with possibly in
response to failed test cases or bug reports.

0 2195 | O 0
10 2195 | © 0
20 2195 | 0 0
% 30 2195 | 0 0
"5 40 2195| 0 0
,_GE) 50 2195| 0 0
=4
‘5 60 2195 0 0
E 70 2195 [0.2439| 0
S 80 2195 [0.2439| 0O
90 2.195 |0.2439| ©
100 2195 | 1.829 | O

1 2 3 4 5 6 7 8
of metrics within threshold
Fig. 4: Percentage of live mutants across the performance
metrics for Boeing 747 airspeed controller.

Finally, computing architectural issues result in mismatches
we classified as “Resource Attribute”” Modern programming
language abstractions have helped reduce these mismatches
as compilers and libraries allow flexibility and optimizations
without special programmer knowledge, and operating systems
provide virtual memory and thread handling for executing
processes. The small number of mismatches in this category
is likely a result of the non-specialized hardware platform
for ArduPilot and Paparazzi UAV. Had the control software

required a specialized Digital Signal Processing (DSP) chip,
or Graphical Processing Unit (GPU) we would have expected
to see more mismatches in this category to accommodate
those special-purpose computing architectures. Nevertheless,
this category represents an important side-effect of software
implementations of controllers - unless the control model ex-
plicitly captures the details of each target hardware architecture,
programming language, 3"-party library or hardware driver,
and operating system there will likely be mismatches between
the model and implementation.

We further observe the number of mismatches per file is
correlated with code churn in the file, with AC_AttitudeC—
ontrol.cpp and guidance_h.c being the most affected.
Still, AC_AttitudeControl.cpp seems to be the excep-
tion, suggesting that other factors (e.g., abstractions, refactoring)
likely contributed to the evolution changes for AC_Attit-
udeControl.cpp. Generally, however, mismatch changes
track proportionally with the total number of changes.

Comparing AC_AttitudeControl.cpp and AC_WPN-
av.cpp reveals that despite having roughly similar starting
code size and total LOC changed in their lifetime, AC_Attit—
udeControl. cpp has only 30% as many mismatch changes.
AC_PosControl.cpp and AC_WPNav.cpp have similar
mismatch changes even though AC_WPNav.cpp was initially
much smaller but grew to be twice as large and have much
higher code churn. This is not surprising as AC_WPNav.c—
pp is the navigation code library that calculates the desired
velocity, and acceleration to reach the destination. When the
user provides the destination, AC_WPNav . cpp creates a flight
path using spline waypoints and ensures the vehicle operates
within the set range of acceleration, velocity, and speed, and
determines whether the vehicle has reached its target. Such a
software module is critical and difficult to develop correctly
due in part to the many calculations requiring many vehicle
and environmental parameters. Supporting this conclusion is
a similar observation for guidance_h. c in Paparazzi UAV
given its high relative mismatches, churn, and growth compared
with other Paparazzi UAV files. This is perhaps the apex of
joint model and software integration.

Answers to RQ3 — What are the Impacts of Software
Changes on Control Performance?

Using our mutation tool (cf. Figure 5), we generated a
total of 1539 mutants from the control models of the three
subject systems: an automotive cruise control, a helicopter, and
a Boeing 747. Table III provides details on the number of
mutants, the number compiled, and the number executed for
each system. The tool covered a considerable percentage of
the code, altering more than one-third of the code in each of
the systems. Compilation errors were the result of rare syntax
mismatches. Occasionally, a mutant would fail to execute due
to a runtime error. Overall, more than 97.6% of the mutants
(1503 mutants out of the 1539 mutants) were successfully
compiled and executed. This demonstrates the strength and
robustness of our mutation tool that relies on various categories
of mutation operators mined from the repositories of widely-
used, safety-critical control software.

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 15,2020 at 19:36:17 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Mutation output details for all three systems

Mutation Operator Mismatches Cruise control Helicopter Boeing 747
mutants # compiled # executed # mutants # compiled # executed # mutants # compiled # executed
int_T — uint32_T 2 2 2 6 6 6 3 3 3
int_ T — real_T 2 1 1 6 1 1 3 0 0
uint32_T — int_T . 0 0 0 0 0 0 3 3 3
real T — in_T precision T I I 3 3 3 16 16 16
d* — d*.0f Accuracy 75 74 74 109 108 108 263 258 258
d* — d*.0 75 74 74 109 108 108 263 258 258
d*.0f or d*.0 — d* 85 85 84 125 125 124 144 144 142
double F() — (float) F() 0 0 0 0 37 37 37
if(rtIsNaN(X)) — if(!rtIsNaN(X)) 0 0 0 3 3 2 3 3 3
if(rtIsInf(X)) — if(!rtIsInf(X)) Exception 0 0 0 0 0 0 2 2 2
insert if statment - check divide by 0 handling 0 0 0 0 0 0 18 16 16
multiply denominator by zero 24 24 24 24 24 24 31 31 31
datatype of time is multiplied by 1000 | Time 6 5 5 18 17 17 20 17 17
datatype of time in ifstmt() is negated and 4 4 3 4 4 3 0 0 0
variable of time is multiplied by 1000 | Space 2 2 2 2 2 2 3 3 3
variable of time in ifstmt() is negated Model 7 7 7 10 10 10 1 1 1
Total 283 279 277 416 408 406 840 822 820
Number of lines in file 279 449 1290
Number of unique mutated locations* 84 193 435
Total mutation coverage 30.10% 42.98% 33.72%

*Unique mutated location is the number of lines that got changed by the mutation tool.

We designed an oracle to classify the results as either “live”
or “dead.” Using the 8 step response quantities from the system
(cf. Section III-B), we classify a system as “live” if k out
of 8 step response metrics have an output value within a
certain threshold percent of the original design, where £ is
varied from 1 to 8. If not, the mutant is considered “dead.”
In this paradigm “live” mutants represent a controller that
does not exhibit performance variation within the threshold
percent — indicating a robustness to software changes. We varied
this threshold between 0% to 100% to capture the amount of
variation in a step response that might be considered acceptable.
Thresholds above 10% resulted in an inability to discriminate
performance as all mutants would either be live or dead.

Figure 4 shows details for the Boeing 747 airspeed controller
(other artifacts produced similar results). Each cell represents
the percentage of live mutants with the number of metrics
within the corresponding threshold percent. For example,
consider Figure 4 (row 6, col 6), where 2.195% of mutants
were live with six performance metrics within 50% error.

Recalling that “live” mutants in our tool represent controller
mutants whose output does not differ from the model within
the specified parameters. Figure 4 indicates the robustness
of the specific controllers to software mutations—a software
parallel to the robustness characterization of controller gains in
traditional control theory [47]. More concretely, the airspeed
controller in Figure 4, is one of the least robust to software
changes given the sharp decline in live mutants for the number
of metrics above 5 within a certain threshold.

More generally, our observations suggest that at a particular
threshold all the mutants are either all live or all dead under the
same inputs. This shows the fragility of the control designs
which generate significantly different responses with just
a single change to the software. Interestingly, only a few
quantities in the system response were responsible for this

159

dramatic change. For example, in the cruise control system,
only the PeakTime quantity was not within the threshold limit.
In that system, all mutants were dead, but only PeakTime
was significantly impacted. For the helicopter system, only the
SettlingMin quantity was highly impacted by our mutations but
caused all the mutants to die. Our investigation further suggests
that these two controllers are not robust to software changes
and their inevitably accompanying evolution. For the Boeing
747, on the other hand, altitude was almost not affected by the
mutations. Airspeed was only mildly affected. This suggests a
controller that is robust to software changes and maintenance
that are part of a healthy controller evolution.

The key impact of our tool is that much like a change in
control gain can be directly mapped to a change in system
response [47], this tool moves us toward directly mapping
control software changes to a change in system response. This
opens the door for studying how to design controllers that lead
to robust software implementations.

V. CONCLUSIONS

A deeper understanding of the fypes and quantity of evolution
that occur in controllers can help the control and software
communities develop new models and development strategies
to maintain the integrity of key properties verified in the model
and/or software. We have directly studied this evolution in two
dominant open-source control software suites, ArduPilot and
Paparazzi UAV, used extensively in safety-critical UAS. Results
show that control software evolves quickly, with controllers
being entirely rewritten through their lifetime. We introduced
categories capturing some of the inherent mismatches between
typical control models and control software not previously
identified. To facilitate more rapid study of this evolution we
built a mutation tool that can rapidly change control code
and compare its performance against the original designs. The

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 15,2020 at 19:36:17 UTC from IEEE Xplore. Restrictions apply.

impact of this tool is the ability to map software changes
directly to controller performance, thereby paving the way for
studying the design of controllers robust to software changes.

(1]
(2]
(3]

(4]

(5]

(6]

(91
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

REFERENCES

B. Wittenmark, K. J. Astrom, and K.-E. Arzén, “Computer control: An
overview,” IFAC Professional Brief, vol. 1, 2002.

D. C. Schmidt, “Model-driven engineering,” COMPUTER-IEEE COM-
PUTER SOCIETY-, vol. 39, no. 2, p. 25, 2006.

G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-integrated
development of embedded software,” Proceedings of the IEEE, vol. 91,
no. 1, pp. 145-164, 2003.

J. Daafouz, P. Riedinger, and C. Iung, “Stability analysis and control
synthesis for switched systems: A switched Lyapunov function approach,”
IEEE transactions on automatic control, vol. 47, no. 11, pp. 1883-1887,
2002.

L. V. Nguyen, K. A. Hoque, S. Bak, S. Drager, and T. T. Johnson, “Cyber-
physical specification mismatches,” ACM Transactions on Cyber-Physical
Systems, vol. 2, no. 4, pp. 1-26, 2018.

T. T. Johnson, S. Bak, and S. Drager, “Cyber-physical specification
mismatch identification with dynamic analysis,” in Proceedings of the
ACM/IEEE Sixth International Conference on Cyber-Physical Systems,
2015, pp. 208-217.

ArduPilot, “ArduPilot Open Source Autopilot,” 2018. [Online]. Available:
http://ardupilot.org/

PaparazziUAV, “PaparazziUAV,” 2018. [Online]. Available: https:
/Iwiki.paparazziuav.org/wiki/Main_Page

M. Green and D. J. Limebeer, Linear robust control. Courier Corporation,
2012.

M. Zimmer, J. K. Hedrick, and E. A. Lee, “Ramifications of software
implementation and deployment: A case study on yaw moment controller
design,” in 2015 American Control Conference (ACC), July 2015, pp.
2014-2019.

G. F. Franklin, M. L. Workman, and D. Powell, Digital Control of
Dynamic Systems. Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA, 1998.

E. Feron, “From control systems to control software,” IEEE Control
Systems Magazine, vol. 30, no. 6, pp. 50-71, Dec. 2010.

B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Proceedings
of the 2013 International Conference on Software Engineering, ser. ICSE
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 672-681.

M. Christakis and C. Bird, “What developers want and need from program
analysis: An empirical study,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
2016. New York, NY, USA: ACM, 2016, pp. 332-343.

J. Porter, G. Karsai, P. Volgyesi, H. Nine, P. Humke, G. Hemingway,
R. Thibodeaux, and J. Sztipanovits, “Towards Model-Based Integration of
Tools and Techniques for Embedded Control System Design, Verification,
and Implementation.” in MoDELS Workshops. Springer, 2008, pp. 20-34.
T. Erkkinen and B. Potter, “Model-based design for DO-178B with qual-
ified tools,” in AIAA Modeling and Simulation Technologies Conference
and Exhibit, 2009.

L. Rierson, Developing Safety-Critical Software: A Practical Guide for
Aviation Software and DO-178C Compliance. CRC Press, 2013.

D. Cofer and S. Miller, “D0O-333 certification case studies,” in NASA
Formal Methods Symposium. Springer, 2014, pp. 1-15.

R. Majumdar, I. Saha, K. Ueda, and H. Yazarel, “Compositional
equivalence checking for models and code of control systems,” in 52nd
IEEE Conference on Decision and Control. 1EEE, 2013, pp. 1564-1571.
V. Braberman, N. D’Ippolito, N. Piterman, D. Sykes, and S. Uchitel,
“Controller synthesis: From modelling to enactment,” in Proceedings of
the 2013 International Conference on Software Engineering, ser. ICSE
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 1347-1350.

R. Matinnejad, S. Nejati, L. Briand, T. Bruckmann, and C. Poull, “Search-
based automated testing of continuous controllers: Framework, tool
support, and case studies,” Information and Software Technology, vol. 57,
pp. 705-722, Jan. 2015.

T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, HyTech: A model checker
for hybrid systems. Berlin, Heidelberg: Springer Berlin Heidelberg,
1997, pp. 460-463.

160

[23]

[24]

[25]
[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]
[35]
[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

M. Kwiatkowska, G. Norman, and D. Parker, “Controller dependability
analysis by probabilistic model checking,” Control Engineering Practice,
vol. 15, no. 11, pp. 1427 — 1434, 2007, special Issue on Manufacturing
Plant Control: Challenges and Issues.

A. Filieri, H. Hoffmann, and M. Maggio, “Automated design of self-
adaptive software with control-theoretical formal guarantees,” in Pro-
ceedings of the 36th International Conference on Software Engineering,
ser. ICSE 2014. New York, NY, USA: ACM, 2014, pp. 299-310.
pixhawk, “Pixhawk Flight Controller Hardware Project,” 2018. [Online].
Available: https://pixhawk.org/start

M. M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proceedings of the IEEE, vol. 68, no. 9, pp. 1060-1076, Sept 1980.

T. Mens and S. Demeyer, Software Evolution, 1st ed. Springer Publishing
Company, Incorporated, 2008.

M. D’ Ambros, H. Gall, M. Lanza, and M. Pinzger, Analysing Software
Repositories to Understand Software Evolution. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 37-67.

Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37,
no. 5, pp. 649-678, Sept 2011.

R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and
G. Fraser, “Are mutants a valid substitute for real faults in software
testing?” in Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2014.
New York, NY, USA: ACM, 2014, pp. 654-665.

M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman,
“Chapter six - mutation testing advances: An analysis and survey,” ser.
Advances in Computers, A. M. Memon, Ed. Elsevier, 2019, vol. 112,
pp. 275 — 378.

T. Laurent, M. Papadakis, M. Kintis, C. Henard, Y. L. Traon, and
A. Ventresque, “Assessing and improving the mutation testing practice
of pit,” in 2017 IEEE International Conference on Software Testing,
Verification and Validation (ICST), March 2017, pp. 430-435.
Ardupilot development team, “Ardupilot git repository,” 2018, accessed:
2018-1-11. [Online]. Available: https://github.com/ArduPilot/ardupilot
V. Nguyen, S. Deeds-Rubin, T. Tan, and B. Boehm, “A SLOC counting
standard,” in Cocomo Ii Forum, vol. 2007, 2007, pp. 1-16.

Paparazzi development team, “Paparazzi git repository,” 2018, accessed:
2018-1-11. [Online]. Available: https://github.com/paparazzi/paparazzi
Giteye team, “Giteye,” 2019. [Online]. Available: https://www.collab.net/
products/giteye

S. A. Chowdhury, S. Mohian, S. Mehra, S. Gawsane, T. T. Johnson, and
C. Csallner, “Automatically finding bugs in a commercial cyber-physical
system development tool chain with slforge,” in Proceedings of the 40th
International Conference on Software Engineering. ACM, 2018, pp.
981-992.

I. Neamtiu, J. S. Foster, and M. Hicks, “Understanding source code
evolution using abstract syntax tree matching,” ACM SIGSOFT Software
Engineering Notes, vol. 30, no. 4, pp. 1-5, 2005.

U. of Michigan, “Cruise Control System Documentation,” 2018, accessed:
2018-10-11. [Online]. Available: http://ctms.engin.umich.edu/CTMS/
index.php?example=CruiseControl\ §ion=SimulinkModeling
MathWorks, “Helicopter System Documentation,” 2018, accessed:
2018-10-11. [Online]. Available: https://www.mathworks.com/help/
control/examples/multi-loop-control-of-a-helicopter.html

G. Campa, “Airlib,” 2018, accessed: 2018-10-11. [Online]. Available:
https://www.mathworks.com/matlabcentral/fileexchange/3019-airlib

L. Pilot, “LibrePilot — Open — Collaborative — Free,” 2018. [Online].
Available: https://www.librepilot.org/site/index.html

G. A. Hall and J. C. Munson, “Software evolution: Code delta and code
churn,” Journal of Systems and Software, vol. 54, no. 2, pp. 111-118,
2000.

E. A. Lee, “The past, present and future of cyber-physical systems: A
focus on models,” Sensors, vol. 15, no. 3, pp. 48374869, 2015.

D. Henriksson, A. Cervin, and K.-E. Arzén, “TrueTime: Simulation
of control loops under shared computer resources,” IFAC Proceedings
Volumes, vol. 35, no. 1, pp. 417-422, 2002.

K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,”
International Journal on Software Tools for Technology Transfer (STTT),
vol. 1, no. 1, pp. 134-152, 1997.

M. M. Seron, J. H. Braslavsky, and G. C. Goodwin, Fundamental
limitations in filtering and control. Springer Science & Business Media,
2012.

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 15,2020 at 19:36:17 UTC from IEEE Xplore. Restrictions apply.

APPENDIX

This appendix provides additional details of our analysis.

Figure 5 shows a block diagram of our mutation tool discussed
in Section III-B. Expanding on Figure 3, Table IV shows a
more detailed view of the distribution of mismatches in each
category for each file we analyzed.

Figure 6 captures the details of our mutation analysis for
the Boeing 747 altitude controller. Each cell represents the
percentage of live mutants with the number of metrics within
the corresponding threshold percent. In contrast to the airspeed
controller in Figure 4, the Boeing 747 altitude controller in
Figure 6 is the most robust controller we tested as evidenced by
the large percentage of live mutants for almost any threshold
and number of metrics.

oI
MATLAB - c i1 Mutator N 1o ¢
. . 1 1
Simulink —J\generatg, code ! (ASTMatcher, 111 Mutated)
model === ! P !
T I A P 1Ny code
1 N 1
! H N
1
. 1
el e
(Compile & | ! Compile &
v execute,’ 1 \ _execute,’
Legend PEETTS
---- Contribution Output | 'Compare_»~———— Output
—— Existing 7 Se---o

Fig. 5: Mutation Tool Architecture.

TABLE 1V: Classification Results of Mismatches Between Models

100

0 90.98| 88.9 | 88.9
10 98.17 -
20 98.54
30 98.78 o
40 98.9
50 98.9 04
60 98.9
70 98.9 g2
80 99.15
90 99.15 %0
100 99.15 98.54

8

1 2 3 4 5 6 7
of metrics within threshold

Fig. 6: Percentage of live mutants across the performance
metrics for Boeing 747 altitude controller.

and Software

ArduPilot Paparazzi UAV

| | Q, [I 10 | ¢] 6]

S 0 oo o) Q,] oo - - . .

o D T o 9 o DT DT L D < °

Q, o 3 0 . 3) © 5 © 3 © O | I

9] o FE > . N P N P -A N () o

. O Rl «j o e Rl | 0 [§) o

[a] [N + O Z M — P — PN — P o Q

= o Q i o © oD H P 0 - ©] |

. 5 ik e 5 % I %92 84 3 9

Category(}) / Filename (=) 2 83 28 & € Tow | 562 5% #5 & 8 Total
Resource Attributes 1 2 0 1 0 4 0 0 0 3 0 3
Precision and Accuracy 7 15 7 13 9 49 0 1 2 5 0 8
Time and Space Model 2 15 3 11 8 37 0 0 0 1 1 2
Exception Handling 4 6 2 12 5 29 1 1 0 5 0 7
Total Commits With Mismatches 12 29 11 32 18 102 1 2 2 11 1 17
161

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 15,2020 at 19:36:17 UTC from IEEE Xplore. Restrictions apply.

