
Investigating Controller Evolution and Divergence

through Mining and Mutation*

Balaji Balasubramaniam∗, Hamid Bagheri†, Sebastian Elbaum‡, Justin Bradley†

∗Department of Information Technology, Central Community College, Grand Island, NE, USA

bbalasubramaniam@cccneb.edu
†Department of Computer Science and Engineering, University of Nebraska–Lincoln, Lincoln, NE, USA

hbagheri@cse.unl.edu, jbradley@cse.unl.edu
‡Department of Computer Science, University of Virginia, Charlottesville, VA, USA

selbaum@virginia.edu

Abstract—Successful cyber-physical system controllers evolve
as they are refined, extended, and adapted to new systems and
contexts. This evolution occurs in the controller design and also in
its software implementation. Model-based design and controller
synthesis can help to synchronize this evolution of design and
software, but such synchronization is rarely complete as software
tends to also evolve in response to elements rarely present in
a control model, leading to mismatches between the control
design and the software. In this paper we perform a first-of-its-
kind study on the evolution of two popular open-source safety-
critical autopilot control software – ArduPilot, and Paparazzi,
to better understand how controllers evolve and the space of
potential mismatches between control design and their software
implementation. We then use that understanding to prototype a
technique that can generate mutated versions of code to mimic
evolution to assess its impact on a controller’s behavior.

We find that 1) control software evolves quickly and controllers
are rewritten in their entirety over their lifetime, implying that
the design, synthesis, and implementation of controllers should
also support incremental evolution, 2) many software changes
stem from an inherent mismatch between continuous physical
models and their corresponding discrete software implementa-
tion, but also from the mishandling of exceptional conditions,
and limitations and distinct data representation of the underlying
computing architecture, 3) small code changes can have a
dramatic effect in a controller’s behavior, implying that further
support is needed to bridge these mismatches as carefully verified
model properties may not necessarily translate to its software
implementation.

I. INTRODUCTION

Controllers, most typically feedback controllers, compute

inputs to a system based on observations of the system state

[1]. These controllers are typically represented as mathematical

models and subsequently implemented in software and executed

as periodic tasks in a computer system. Successful robotic,

vehicle, and other controlled cyber-physical systems (CPS)

evolve, as do their controllers. Conceptually, this evolution

occurs at two distinct levels as shown in Figure 1. At

the control design level, that evolution may occur on the

mathematical representations or higher level models in the

chosen representation (e.g., Simulink, MATLAB, Octave). At

this level it is common to observe model changes meant to

refine the control law as the logical conditions under which

* This work was supported in part by NSF awards #1638099 and #1853374.

a system should operate are realized, as the assumptions or

levels of abstraction of the model are refined, or the model is

revised to fit another system.

At the software level of the controller we observe at

least three types of changes. First, software changes that

directly map to the same changes in the control design. These

changes constitute the primary target for tools supporting

model-based design [2], [3] or controller synthesis [4]. Second,

software changes that are meant to complete pieces of the

implementation that were not defined in the design, either

because of the higher level of modeling abstraction that was

employed, or because it was not cost-effective to define them

at the design level. Third, changes driven by the need to

integrate the software controller files with a larger software

ecosystem that goes beyond the controller itself, or by software

maintenance needs.

The frequency of each type of software change varies

across systems. For selected safety-critical software with large

development resources, most changes can occur at the design

level and be automatically verified and transferred to code with

high fidelity (as shown by the arrow in Figure 1 going from

the design model to the partial implementation of that model

in software). For most projects, however, many changes occur

just in the software as the controller design concentrates on the

key building blocks providing a partial model of the system.

Furthermore, the design necessarily abstracts many of the

computing elements and context that must then be implemented

in software. Sometimes these software changes make it back to

the model through some mechanism like an issue tracker (dotted

arrow). Most often, however, implementation changes do not

Fig. 1: Evolution of control design and software.

151

2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS)

2642-9500/20/$31.00 ©2020 IEEE
DOI 10.1109/ICCPS48487.2020.00022

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 15,2020 at 19:36:17 UTC from IEEE Xplore. Restrictions apply.

make it back or cannot be incorporated into the design model.

This causes a divergence as the changes in the implementation

of the control system may invalidate the properties so carefully

proven at the design level.

In spite of the prevalence and impact of this software

evolution, we, as a community, know very little about how

the controllers that we so carefully craft change during their

evolution, particularly at the software level. Our courses on

control design, our textbooks, the tools we use, and the most

promising research efforts largely ignore the evolution of

controllers. We are distinctly aware of the inherent mismatches

between the physical and software worlds (e.g., continuous vs.

discrete, infinite vs. finite), but lack an understanding of how

those mismatches manifest as the software changes [5], [6].

In this work, we shed light on this evolution by performing

a first-of-its-kind case study exclusively on control software to

show how and in what way it evolves. To do this, we examine

964 commits to the popular autopilot control software systems

(i.e., ArduPilot [7] and Paparazzi UAV [8]) used on a wide

range of Unmanned Air Systems (UAS). First, to provide a

baseline for how much a controller evolves, we report metrics

capturing to what extent controller-related evolution happens

in these controllers. Our results show that controllers were

entirely rewritten over nine times throughout their lifetime.

Implication. This means as control software matures it may

have little code in common with the original. Unless a tight

correspondence between model and software is enforced over

the many small changes (e.g., bug fixes, new features, etc.)

made, the evolved model and control software may diverge

drastically over its lifetime. This suggests that techniques such

as control synthesis and model-based design techniques and

tools must focus on accommodating this type of evolution.

We then identify 4 categories that capture the evolutionary

changes resulting from inherent mismatches between sys-

tem models and controllers, and their software implemented

counterparts. Our results show that although some changes

stem from an inherent mismatch between the continuous

time/space physical model and its corresponding discrete

software implementation, the majority of the changes were

associated with handling exceptional conditions, and with the

limitations and distinct data representation of the underlying

computing architecture. Implication. This points to an un-

explored opportunity for automated synthesis and software

development techniques that can bridge these mismatches

appearing during software evolution that may render carefully

verified model properties invalid at the control software level.

Last, we explore the effects of software evolution in the

performance of 3 controllers designed with Simulink. To do

this, we developed a novel mutation technique that generates

versions of the original code with mutated regions reflecting the

categorized changes we observed in ArduPilot and Paparazzi

UAV. The technique takes as input the code that is automatically

generated by the Simulink toolset from carefully crafted control

models, and can be configured to generate different types

and numbers of mutants. The results demonstrate how small

and typical software changes can dramatically impact control

performance. Implication. A robustness measure, similar to

traditional control theory robustness [9], can be developed to

help control and software engineers improve controller designs

as software complexity increases in modern CPSs.

To summarize, this paper makes the following contributions:

• We present an empirical study investigating control

software to better understand its evolution

• We contribute a novel controller change categorization

scheme and suite of controller-aware mutation operators

derived from widely-used, safety-critical control software.

• We show how to exploit derived mutation operators

that can map software changes directly to controller

performance, paving the way for design of controllers

robust to software changes.

II. RELATED WORK

Most work at the intersection of software and control has

examined the impacts of the disparity between the continuous

mathematical models representing physical systems and con-

trollers and the fundamentally discrete nature of computing [10].

Such research focuses on the effects of computation (e.g.,

quantization, delay) on the controller and seeks to find ways

to incorporate them into controller design [1]. This is the

substance of digital control theory [11].

However, the control community does not generally examine

the role the software development process plays in impacting

control design. But examining control software and its evolution

could have far reaching impacts. For example, in the process

of software maintenance, a year after the controller design,

if a key calculation alters the precision by changing fabs()

to fabsf()1 does this impact system stability? Does a

software change to limit stack size, a limitation of the computer

architecture, cause a function call chain to fail, impacting

controller performance? A study of control software evolution

can provide insight into how these effects could be mitigated

either in the control model or in the software evolution process.

This motivation has led to some work focusing on software

and control systems. Feron has examined how to integrate

proofs of important control system properties, such as stability,

directly into software [12]. This can alert the software

developer when sensitive code is being modified, and provide

a mechanism for verification processes to assess correctness.

But unless the annotation process is less costly, the sources

of unsoundness controlled, and the tools well integrated into

the developer’s environment and workflow, such strategies will

struggle to gain mainstream acceptance [13], [14].

In safety-critical systems, model-based design strategies

ideally create a 1:1 correspondence between the model and the

software [10], [15], [16]. This strategy has been included in the

most recent revisions of DO-178C “Software Considerations

in Airborne Systems and Equipment Certification” [17] and its

supplements [18]. This is done by building models in MATLAB,

Simulink, Stateflow, or other tools, verifying these models, and

then autogenerating corresponding code. In this paradigm the
1fabs operates on type double while fabsf operates on type float.

152

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 15,2020 at 19:36:17 UTC from IEEE Xplore. Restrictions apply.

code autogeneration tool must be certified to produce provably

correct results. While this strategy links the model and software

it may only exist in domain-specific applications [3], and

may not link third-party software libraries, drivers, or other

specialized pieces of code used in development of the system,

or may be incomplete. Indeed, the vast majority of control

systems onboard UASs - a safety critical system - are not

developed using model-based design, but rather, use hand

coded controllers such as ArduPilot.

The software engineering community has developed tech-

niques to cope with the validation and verification of systems

that includes control software (e.g., [19]–[23]), or their sound

application to assist in self-adaptation [24]. Unfortunately,

outside of highly regulated safety-critical systems, use of these

strategies is limited due to high costs. This is particularly

noticeable in the extremely active UAS industry where open

source autopilots (e.g., ArduPilot [7], Paparazzi UAV [8],

PX4 [25]) are used extensively on various types of hardware

with contrastingly very light regulations and rigor in design

and test processes.

Software evolution has been an active research topic for

decades, and the realization that successful systems evolve and

how it evolves has led to laws of software evolution [26], and

a rich suite of techniques to understand, handle, and support

changes associated with all the entities involved in the software

development process [27]. The focus of the study in this paper

is on analyzing the evolution of control software developed

independently of model-based design [16], synthesis [20], or

domain-specific annotations in code [12].

Following established practices [28], we analyzed two

bodies of small, open-source, unregulated, safety-critical control

software for which there are hundreds of available code changes

recorded with commit level granularity. We have chosen these

bodies of software for two key reasons. First, a large and

increasing portion of critical software development with wide-

reaching impacts is being developed in lightly controlled

development and largely unregulated environments — such as

the UAS industry. Second, understanding how the software

evolves and reasoning about where mismatches with the model

are likely to occur can pinpoint areas that future studies and

techniques must target.

Finally, our mutation technique builds on a large body of

work on mutation testing, which aims to evaluate the strength

of a test suite in terms of the percentage of code versions with

seeded code changes it can detect. Those versions are called

mutants, and a test suite is said to kill a mutant when the

presence of the change is detected by the test suite. There is

a large number of mutation approaches available [29], [30],

as well as several analyses to improve the effectiveness and

efficiency of the mutation process [31], [32]. Unlike all prior

work, we utilize mutation in our setting as a way to mimic the

evolution we observed in widely-used safety-critical control

software, and then to assess the impact of those mutations on

controller operations.

III. STUDY

The following research questions will provide a foundation

for understanding and characterizing control software evolution,

and will underscore future tools that incorporate this knowledge

into a framework for controller development:

RQ1: How does the software implementing a control system

evolve? We seek to quantify the degree and nature of changes

in control software in the absence of an explicit control model.

RQ2: To what degree can the changes in the control software

be captured by a control model or constitute mismatches

between the model and the software? We conservatively focus

on characterizing the space of software changes that are rarely

part of the control model.

RQ3: What are the impacts of software evolution in the

performance of controllers? We are principally concerned with

studying the mismatches that arise between control models and

control software.

A. Analysis Artifacts

We required artifacts that included significant control soft-

ware systems with many available versions reflecting their

evolution. The first artifact is the popular ArduPilot [7], that

provides a sophisticated control system for autopilot support

that can operate on a variety of vehicles including airplanes,

multirotors, helicopters, and boats2. It has over nine years of

well maintained history, and its code base is accessible through

a git repository [33] that stores the code changes committed

by the developers since 2010. As of May 2019, the repository

includes 448 contributors that have committed almost 38,000

changes. The latest version of ArduPilot contains approximately

250k lines of code (LOC)3 in C/C++. We focus our analysis on

the evolution of the core control files that provide coverage of

functionality associated with position and attitude control. We
2The ArduPilot website reports that over one million vehicles use this code
base, including companies like 3DR, PrecisionHawk, AgEagle, Insitu Boeing,
Kespry, branches of the US military, and NASA among others.

3LOC - Lines of Code - is a count of lines in the text of source code excluding
comment lines [34].

Fig. 2: Overview of the study analysis process to address the first two research questions.

153

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 15,2020 at 19:36:17 UTC from IEEE Xplore. Restrictions apply.

analyzed 585 commits4, where each commit included changes

to at least one of the target files.

The second artifact is Paparazzi UAV [8], which has over 13

years of development history. Paparazzi UAV provides autopilot

capabilities for fixed-wing, and rotorcraft vehicles. The code

base is accessible through a git repository [35]. As of May

2019 there are 99 contributors and ~15,400 changes. The latest

version of Paparazzi UAV contains approximately 212k LOC

in C/C++. We again selected control files central to position

and attitude control, and analyzed 379 commits, where each

commit included changes to at least one of the target files.

Neither ArduPilot nor Paparazzi UAV have formal models of

the controller, and do not practice complete model-based design.

These controllers are maintained and modified primarily

at the code-level. This is common practice among small

companies, researchers, and hobbyists in areas not subject

to strict regulation and certification requirements. Because

ArduPilot and Paparazzi UAV provide safety-critical software

to unmanned systems without a rigorous certification/verifi-

cation process, they provide an excellent example of control

software development that may be (at best) weakly linked to a

mathematical model with provable guarantees.

B. Analysis Process

Figure 2 depicts a high-level overview of the study analysis

process to address the first two research questions, which

consists of a set of filtering and analysis steps. The process

to answer RQ1 starts by systematically querying the git

repositories to quantify the degree of changes in terms of size,

frequency, and people involved. To do this, we downloaded

the latest repositories, and developed a set of scripts, in

combination with the git client management tool Giteye [36],

to collect the data.

To better understand the changes, we devised a procedure

to identify commits that are most likely associated with

changes to the control system. This procedure focused on

the developers’ comments and code changes, and was partially

automated through a syntactic file search using common control

keywords (e.g., control, derivative, error, feedforward, filter,

frame, frequency, gain, integral, kalman, proportional) and

also keywords specific to the target autopilot controller (e.g.,

acceleration, altitude, distance, pitch, roll, yaw, waypoint, speed,

velocity). This process also took into consideration the online

documentation explaining the roles of key configurable parame-

ters and variable naming practices. Although we were biased

in our selection toward conservatively including potentially

impactful changes, our process is incomplete and a more

rigorous strategy of what, precisely, constitutes a “control

software” change is needed.

The resulting commits (489 for ArduPilot and 275 for

Paparazzi UAV) were further analyzed to discriminate between

changes deemed semantically equivalent such as those caused

by documentation, refactoring, or abstraction to ease the

maintenance of the software without directly impacting the
4In git, a commit consists of one or more changed files identified as a single
change unit by the developer and assigned a single identification.

functionality. For example, code found to be repeated may

be extracted into a function call. This, theoretically, has no

impact on the controller as it is purely a software maintenance

change. This filtering left 396 ArduPilot and 154 Paparazzi

UAV commits/changes impacting the controller directly.

The process to answer RQ2 (cf. Figure 2) filtered the re-

maining commits by making a qualitative analysis to determine

whether the change could have been handled in a control model.

Since neither ArduPilot nor Paparazzi UAV have formal control

models, our assessment consists of a conservative judgement of

whether, if a mathematical model of the control system would

be available, such a model could accommodate a given change.

It is conservative in that, when in doubt, we assume that a

control model could handle such a change. Our judgment of

what can be modeled is based on traditional control theory

[11], modern model-based design strategies [3], [16], and

emerging research [37]. More specifically, unless the changes

are tightly associated with: 1) the computing architecture, 2) the

representations of data in that architecture, 3) the discretization

of time and space to function in that architecture, or 4) the

handling of anomalies due to that software functions, we

assume it could be represented in a control model. When

we determine that a control model would not typically include

such a change, we assume it constitutes a mismatch between

model and code that could have an impact on the system

behavior. We then proceed to classify each change into one of

four categories that emerged as we analyzed these mismatches

and grouped them according to their characteristics, defined

in Table I. This classification procedure was costly, with

some changes requiring minutes and others requiring hours

and the participation of multiple authors. Furthermore, this

classification process was iterative as new mismatches emerged

that either did not fit existing categories or fit multiple ones.

To address RQ3, we introduce a technique and corresponding

tool we have developed to help mimic and analyze the software

controller evolution and its impacts. Mutation analysis is a

practice used to assess the robustness of software test suites

apropos small, isolated changes in the software [29]. The

tool, an overview of which is shown in Figure 5, generates

code from Simulink models, mutates the code, compiles it,

executes a test suite, and compares the output to the output

of the original design. Our test suite for each mutant is a step

response characterized by key control design quantities. The

tool mutates the generated code according to our categories

shown in Table I. We are primarily concerned with studying

the mismatches that occur between control models and control

software. As a result, the tool is focused on mutating code

generated from Simulink because: i) model-based design is

an increasingly important methodology but the evolution of

model-based designs and corresponding generated code needs

more study, and ii) model-based design should maintain a 1:1

correspondence between the design and generated code, but

many changes that could be made in the code may not be

represented in the design.

Our mutation tool is capable of handling C and C++

programming languages. This is done by constructing the

154

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 15,2020 at 19:36:17 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Definitions and Examples of Categories for Mismatches Between Models and Software

Category ArduPilot Paparazzi UAV

Resource
Attributes

Definition: A software change resulting from features or limitations of the computing architecture, including software and hardware. Such
changes are often intended to better fit or utilize existing resources such as memory, energy, or bandwidth.

This change stores variables in flash memory instead of static random
access memory.

Commit id: 452749149fd4d3e910e6ed22a6f861d5862a4b0

Committers comment: convert AC_PID library to AP_Param

...

+const AP_Param::GroupInfo AC_PID::var_info[] PROGMEM={

+ AP_GROUPINFO("P", AC_PID, _kp),

+ AP_GROUPINFO("I", AC_PID, _ki),

+ AP_GROUPINFO("D", AC_PID, _kd),

The horizontal feedforward gain is defined as 0. This is later used
for multiplication bit operation to determine the control command for
horizontal guidance navigation. Bit representations of control variables
cannot be represented in the control model.

Commit id: 5de51d35588fa0080db7b8416924a900b405b4e9

Committers comment: [guidance] fix IGAIN precision and

add VGAIN based on #682 this may introduce too large

horizontal guidance IGAIN in rotorcraft airframe files

...

+#ifndef GUIDANCE_H_VGAIN

+#define GUIDANCE_H_VGAIN 0

+#endif

guidance_h_cmd_earth.x = pd_x +

((guidance_h_vgain * guidance_h_speed_ref.x) >> 17) +

((guidance_h_again * guidance_h_accel_ref.x) >> 8);

Precision
and
Accuracy

Definition: A software change that modifies a measured value or a numerical calculation in order to more closely mimic continuous
mathematics. Such changes often consist of utilizing improved functions in advanced math libraries or newer sensor devices, and simply
using types with more bits for representation.

Replaces fast_atan with atanf to improve accuracy and precision
for calculating the target pitch angle.

Commit id: 872583f4412ade16a31e8b7bd0363c294a20d301

Committers comment:AC_AttitudeControl removed

→֒ fast_atan

...

-_pitch_target = constrain_float(fast_atan(

→֒ -accel_forward/(GRAVITY_MSS * 100))*
→֒ (18000/M_PI_F),-lean_angle_max,lean_angle_max);

+_pitch_target = constrain_float(atanf(

→֒ -accel_ forward/(GRAVITY_MSS * 100))*
→֒ (18000/M_PI_F),-lean_angle_max,lean_angle_max);

Replaces int32 with float to improve accuracy and precision for
calculating the angular rate set point.

Commit id: 0c95b9e26edaba085f210b41d0a8325b607d9ada

Committers comment: [rotorcraft] converted PI rate

controller to floating point closes #1624

...

- struct Int32Rates stabilization_rate_sp;

+ struct FloatRates stabilization_rate_sp;

Time
and
Space
Model

Definition: A software change resulting from the intrinsic discrete nature of the computing system in representing time and space. Such
changes often consist of handling the inherent mismatch between continuous and discrete paradigms in representing and manipulating time in
the calculations of derivatives and integrals, in the manipulation of variables associated with the vehicle location or motion, or in governing
the periodic execution of certain pieces of code (e.g., tasks).

This change alters the time representation from seconds to milliseconds
to more frequently check the position controller activity.

Commit id: 88ec13b10d913d72cdb0b24ba2e1244e6ed37734

Committers comment: fix build

...

- if (dt > POSCONTROL_ACTIVE_TIMEOUT_SEC) {

+ if (dt > POSCONTROL_ACTIVE_TIMEOUT_MS*1.0e-3f) {

This change alters the execution frequency of the navigation task from
10 Hz to 16 Hz.

Commit id: 624ce9eea923bff55e3c913363e9b42fe9cd6aab

Committers comment: navigation function in guidance;

frequency set at 16 Hz

...

- RunOnceEvery(50, nav_periodic_task_10Hz());

+ RunOnceEvery(32, nav_periodic_task());

Exception
Handling

Definition: A software change resulting from the handling of anomalous conditions that would otherwise result in computational failures. Such
changes often consist in additional support for conditions to adhere to either mathematical laws (e.g., dividing by zero), or computational
laws (e.g., unexpected input, seg fault, etc.).

This change checks whether the input variable to the PID controller
is infinite or undefined before using it to calculate the PID terms of
the controller.

Commit id: ae77c18a1933dcb00eb9fc838872119b2250915c

Committers comment: Input to the PID controller is

protect against NaN and INF.

...

+ // don’t pass in inf or NaN

+ if (isfinite(input)){

This change prevents a divide by zero error by ensuring the variable
is greater than zero before being used to calculate the navigation ratio
for the vehicle controller.

Commit id: 7f91efa2854fee702a6601256dea5ff195e58f80

Committers comment: Fixed Error preventing AGR climb

from working. Navigation would not blend.

...

+if (AGR_BLEND_START > AGR_BLEND_END &&

→֒ AGR_BLEND_END > 0){

...

+nav_ratio = AGR_CLIMB_NAV_RATIO + (1 -

→֒ AGR_CLIMB_NAV_RATIO)*(1 -

→֒ (fabs (altitude_error) - GR_BLEND_END) /

→֒ (AGR_BLEND_START - AGR_BLEND_END));

abstract syntax tree (AST) [38] of each program. We use Clang

3.8.2 and LLVM 4.0 for this and use the MatchFinder class

of Clang to process the AST. To support repeatability, we have

built this software infrastructure inside an operating-system-

level virtualization, called docker (version 1.13.1).

To study the effects of the mutated software code, we used

three different, complex system design models developed in

Simulink: an automotive cruise control, a helicopter, and a

155

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 15,2020 at 19:36:17 UTC from IEEE Xplore. Restrictions apply.

Boeing 747. The automotive cruise controller contains 14

Matlab blocks, and is available at [39]. The helicopter system

contains 40 blocks, and is provided by MATLAB [40]. The third

system is an airspeed controller for a Boeing 747 containing

465 blocks [41].

Mutation Tool. Figure 5 shows the overall architecture

of the mutation tool, which contains three main phases. In

the first phase, it generates the C code from the Simulink

models and automatically derives AST for the generated code.

It then parses the AST to identify the locations where the

code could be mutated. Mutation templates, obtained from

software abstractions of our mismatch categories in Table I,

are used to identify where code can be mutated. The templates

are constructed such that many locations in the code can be

mutated by a single template in a variety of ways. The tool

randomly chooses a location and applies the mutation.

In total, we have implemented 21 unique template mutators

for the three categories of Precision and Accuracy, Exception

Handling, and Time and Space Model as detailed in Table III.

The Resource Attributes category in Table I is excluded due

to the tight dependence on specific hardware configurations.

In the second phase, the tool compiles and executes the

mutated code to obtain a step input response from the mutated

code to compare against the original model. We quantify the

control performance via 8 traditional control step response

metrics: rise time, settling time, settling min, settling max,

overshoot, undershoot, peak, and peak time [11].

Finally, in the third phase, we verify whether the mutated

code has altered the performance of the controller. This was

done by comparing the step response characteristics values

with their counterparts obtained by running the original system.

C. Threats to validity

This study has shortcomings that may impact the validity

of the findings. First, the scope of the study is limited to

the software side of controller evolution. This choice was

intentional and allowed us to quickly leverage readily available

data while decoupling the evolution occuring in software

from that which would occur in a model. Future studies of

controller design evolution, controller design coupled with

control software, and impact on system performance will

provide a broader understanding of the topic.

Second, our study is focused on two control software

systems. This choice was opportunistic in that Ardupilot

and Paparazzi have been widely deployed, so findings in

these code bases can still be valid for similar systems (e.g.,

LibrePilot [42], PX4 [25]). Likewise, even though the cost

of analyzing hundreds of commits limited the scope of files

studied, those files perform different controller tasks and were

designed by different groups of developers. As a result, we

anticipate these findings will also apply to other files designed

by other developers. We also acknowledge that the granularity

of changes we studied (i.e., commits) may not expose all code

changes made by developers.

Third, our analysis had a quantitative aspect that is partially

automated and highly reproducible, and a qualitative aspect that

in many instances required us to make judgment calls. Such

judgment calls are subject to many biases, which we tried to

reduce by defining clear criteria for filtering and classification,

by having multiple authors check different parts of the results,

and by iterating and revisiting the results as anomalies emerged.

We have prepared a website with the mutation docker and

detailed data5.

IV. RESULTS

In this section, we report and interpret the results of our

study that we have conducted in the context of this work.

Answers to RQ1 – How Much do Controllers Evolve?

We quantify the evolution of the selected ArduPilot and

Paparazzi UAV control files, and the results thereof are captured

in Table II, summarizing the control software evolution across

various files for each subject system. Specifically, it reports on

initial and final LOC, # of commits, LOC changed, and people

involved for each of the files of interest. Changes were made

by 28 developers who changed 15,066 LOC over 964 commits

throughout the lifetime of the files. The guiding principle in this

analysis is to examine the evolution of control software, and as

a result, throughout the presented results we focus on changes

to the software which excludes the first commit representing

the initial implementation.

The Growth metric, shown in row 8 of Table II, assesses

how much the software grows over its lifetime. Growth is

computed as
(X−Y)

Y
% where X is the number of lines of code,

excluding comments, in the latest commit (row 4 in Table II)

and Y is the number of lines of code (excluding comments)

in the earliest commit (row 3 in Table II). Growth captures

the net lines of code changed including changes stemming

from model clarifications, new features, bug fixes, and software

maintenance. As an example for this metric, AC_PID.cpp had

54 lines of code initially, and in the latest commit has 141 lines

of code, a growth of 161%. The ArduPilot files have an average

growth rate of 131% while the Paparazzi UAV files average

growth rate is 198%, implying that the initial implementations

for both systems required significant changes to complete

them and refine them, and more generally that these control

files, like any successful software, grow in complexity as they

evolve. In some cases, like for AP_Baro.cpp, we notice a

dramatic growth of almost ~600% to abstract common features,

support more devices, and improve calibration. Other files like

AC_PosControl.cpp exhibit a more stable development

from the start with only ~10% growth.

Growth does not, however, capture the amount of change

occurring in a file. To measure this, code churn is defined as the

total number of lines of code changed (row 6 in Table II) [43].

For example, the code churn for AC_AttitudeControl.-

cpp is 3350 lines of code with an average of over 26 lines

changed per each of its 127 commits. To further emphasize

the seriousness of code churn for control software, we use a

metric we call “Rewrite Rate”, that captures how many times

the original controller has been essentially rewritten from a

software perspective. Rewrite Rate is computed as Z

Y
, where

5https://nimbus.unl.edu/CE/controllerevolution.html

156

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 15,2020 at 19:36:17 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Overview of Control Software Evolution

ArduPilot Paparazzi UAV

Filename(→) A
C
_
P
I
D
.
c
-

p
p

A
C
_
P
o
s
C
o
-

n
t
r
o
l
.
c
p
-

p A
C
_
A
t
t
i
t
-

u
d
e
C
o
n
t
r
-

o
l
.
c
p
p

A
C
_
W
P
N
a
v
-

.
c
p
p

A
P
_
B
a
r
o
.
-

c
p
p

Total s
t
a
b
i
l
i
z
-

a
t
i
o
n
_
a
t
-

t
i
t
u
d
e
.
c

s
t
a
b
i
l
i
z
-

a
t
i
o
n
_
a
t
-

t
i
t
u
d
e
_
e
-

u
l
e
r
_
i
n
t
-

.
c

s
t
a
b
i
l
i
z
-

a
t
i
o
n
_
r
a
-

t
e
.
c

g
u
i
d
a
n
c
e
-

_
h
.
c

b
a
r
o
_
b
o
a
-

r
d
.
c

Total

Initial commit 1/28/12 2/14/14 2/14/14 4/13/13 6/27/12 10/19/06 07/26/09 02/10/09 02/10/09 08/21/10

Latest commit 2/18/17 4/27/17 6/22/17 7/9/17 7/7/17 02/19/17 03/22/16 04/27/16 12/23/17 12/27/17

Initial LOC 54 601 152 166 55 1028 135 89 36 126 77 463

Latest LOC 141 661 440 754 382 2378 323 195 150 546 168 1382

Commits 37 134 127 185 102 585 72 52 60 159 36 379

Code churn 463 1672 3350 3252 1043 9780 707 636 757 2859 327 5286

Developers 6 3 3 4 6 8 10 5 5 12 5 20

Growth (%) 161.1 10.0 189.5 354.2 594.6 131.3 139.3 119.1 316.7 333.3 118.2 198.5

Rewrite Rate 8.57 2.78 22.04 19.59 18.96 9.51 5.24 7.15 21.03 22.69 4.25 11.42

Z is the code churn and Y is LOC in the earliest commit.

Note that high growth does not necessarily mean high churn.

For instance, AP_Baro.cpp in the ArduPilot project exhibits

the highest growth of all files, but AC_AttitudeContr-

ol.cpp shows the highest code churn. About half of the

analyzed files represent Rewrite Rates of around or above 20,

indicating those control files have almost nothing in common

with the original versions. To give perspective, even the file

with the lowest growth rate, AC_PosControl.cpp, has been

rewritten almost three times.

For control designers this implies that a controller imple-

mented in software may significantly diverge from the

original design without a correspondence to the model

unless those ties are continuously enforced. It also means

that if a tight correspondence between the model and software

is not enforced, a large amount of time must be spent updating

the controller to correspond with the software (dashed arrow

in Figure 1) or most likely the model will become obsolete

along with its proven guarantees.

Answers to RQ2 – What Evolution Results from Model

and Software Mismatches?

If control models and software evolve independently it is

critical to understand what kind of changes prevent a 1:1

correspondence between them. We classified the 102 ArduPilot

commits and the 17 Paparazzi UAV commits from the last stage

of Figure 2 into the four categories defined in Table I. These

categories represent the primary mismatches resulting from the

incongruences between control models of the physical system

and the computational paradigm of software implementation.

In the right hand column are examples to clarify the types

of changes in these categories. The mismatched commits and

classifications distribution are shown in Figure 3. Each commit

could have an arbitrary number of LOC changed, and hence a

single commit may have multiple mismatches and be classified

into more than one category.

Overall, from Figure 3, the distribution of mismatches

is similar across ArduPilot and Paparazzi UAV. However,

the quantity in ArduPilot is five times larger than Paparazzi

UAV despite having smaller growth, rewrite rate, and fewer

developers involved (cf. Table II). This is due, in part, to

the larger number of commits that affect the control model

in ArduPilot, and that, in Paparazzi UAV, some control

elements were externalized into a separate configuration file

(e.g., sampling periods) to isolate potential changes to the

system.

Observing the categories, “Precision & Accuracy” was

the biggest source of mismatches between model and soft-

ware (cf. Figure 3), accounting for 41% of the ArduPilot

and 40% of the Paparazzi UAV mismatches. This implies

developers prioritized improvements to the precision and

accuracy of calculations to either 1) more closely mimic

continuous mathematical assumptions of infinite precision,

or, 2) prioritize improvement in computational system

performance while sacrifing precision and accuracy. We

observe that some of these changes were not particulary

complex (changing an int to float), while others involved

utilizing special functions from a math software library. Still

others, like switching fabs to fabsf, seem to sacrifice

precision presumably to be consistent in the use of float

to represent decimals and avoid unnecessary conversions

potentially saving unnecessary computations at runtime. These

mismatches were pervasive throughout the evolution of all files.

“Time and Space Model” mismatches are concerned with

accounting for and tracking discrete time in control software.

While we considered discretized space in the same category,

which would be more prominent in control software incor-

porating, for example, a computer vision component, we did

not observe any discretized space mismatches in this set of

files. Ensuring consistency between periodic execution of a

controller and associated computation of discrete derivative and

integral equivalents is critical for correct control performance.

Fig. 3: Mismatches across ArduPilot and Paparazzi UAV.

157

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 15,2020 at 19:36:17 UTC from IEEE Xplore. Restrictions apply.

We observed many changes that focused on improving this

consistency in a programming language (C/C++) that does

not natively provide semantic support for timing [44]. Most

of these mismatches occur in the navigation/guidance (AC_W-

PNav.cpp and guidance_h.c), and position controller

(AC_PosControl.cpp) portions of the controller software.

Our results reporting on the number of changes involving

timing provide further support for Lee’s claims that timing

in computation is a major obstacle to the development of

combined cyber-physical models in which determinism is

preserved [44]. Although many of these mismatches could be

incorporated into the model by using MATLAB toolboxes such

as “TrueTime” [45] or checked using other timing verification

strategies like UPPAAL [46], these are often costly and continue

to be underutilized in many development environments like

the one we have studied.

Often overlooked by control designers are the undefined

mathematical operations in engineered systems such as dividing

by zero, or multiplying by ∞. In mathematical models

these exceptions are built into the assumptions of continuous

mathematics and are implicitly avoided. In software they

must be explicitly avoided with lines of code protecting

potentially undefined operations from causing the program to

end prematurely or perform incorrectly. This exception handling

also extends to software and computing architectural rules that

must be obeyed (e.g., handling NULL pointers). The combined

36 total mismatches in this category (row 4 of Table IV in

the Appendix) suggest that even software developers may take

implicit assumptions about exception handling for granted. As

the code evolves these exceptions are dealt with possibly in

response to failed test cases or bug reports.

Fig. 4: Percentage of live mutants across the performance

metrics for Boeing 747 airspeed controller.
Finally, computing architectural issues result in mismatches

we classified as “Resource Attribute.” Modern programming

language abstractions have helped reduce these mismatches

as compilers and libraries allow flexibility and optimizations

without special programmer knowledge, and operating systems

provide virtual memory and thread handling for executing

processes. The small number of mismatches in this category

is likely a result of the non-specialized hardware platform

for ArduPilot and Paparazzi UAV. Had the control software

required a specialized Digital Signal Processing (DSP) chip,

or Graphical Processing Unit (GPU) we would have expected

to see more mismatches in this category to accommodate

those special-purpose computing architectures. Nevertheless,

this category represents an important side-effect of software

implementations of controllers - unless the control model ex-

plicitly captures the details of each target hardware architecture,

programming language, 3rd-party library or hardware driver,

and operating system there will likely be mismatches between

the model and implementation.

We further observe the number of mismatches per file is

correlated with code churn in the file, with AC_AttitudeC-

ontrol.cpp and guidance_h.c being the most affected.

Still, AC_AttitudeControl.cpp seems to be the excep-

tion, suggesting that other factors (e.g., abstractions, refactoring)

likely contributed to the evolution changes for AC_Attit-

udeControl.cpp. Generally, however, mismatch changes

track proportionally with the total number of changes.

Comparing AC_AttitudeControl.cpp and AC_WPN-

av.cpp reveals that despite having roughly similar starting

code size and total LOC changed in their lifetime, AC_Attit-

udeControl.cpp has only 30% as many mismatch changes.

AC_PosControl.cpp and AC_WPNav.cpp have similar

mismatch changes even though AC_WPNav.cpp was initially

much smaller but grew to be twice as large and have much

higher code churn. This is not surprising as AC_WPNav.c-

pp is the navigation code library that calculates the desired

velocity, and acceleration to reach the destination. When the

user provides the destination, AC_WPNav.cpp creates a flight

path using spline waypoints and ensures the vehicle operates

within the set range of acceleration, velocity, and speed, and

determines whether the vehicle has reached its target. Such a

software module is critical and difficult to develop correctly

due in part to the many calculations requiring many vehicle

and environmental parameters. Supporting this conclusion is

a similar observation for guidance_h.c in Paparazzi UAV

given its high relative mismatches, churn, and growth compared

with other Paparazzi UAV files. This is perhaps the apex of

joint model and software integration.

Answers to RQ3 – What are the Impacts of Software

Changes on Control Performance?

Using our mutation tool (cf. Figure 5), we generated a

total of 1539 mutants from the control models of the three

subject systems: an automotive cruise control, a helicopter, and

a Boeing 747. Table III provides details on the number of

mutants, the number compiled, and the number executed for

each system. The tool covered a considerable percentage of

the code, altering more than one-third of the code in each of

the systems. Compilation errors were the result of rare syntax

mismatches. Occasionally, a mutant would fail to execute due

to a runtime error. Overall, more than 97.6% of the mutants

(1503 mutants out of the 1539 mutants) were successfully

compiled and executed. This demonstrates the strength and

robustness of our mutation tool that relies on various categories

of mutation operators mined from the repositories of widely-

used, safety-critical control software.

158

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 15,2020 at 19:36:17 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Mutation output details for all three systems

Mutation Operator Mismatches
Cruise control Helicopter Boeing 747

mutants # compiled # executed # mutants # compiled # executed # mutants # compiled # executed

int T → uint32 T

Precision
and
Accuracy

2 2 2 6 6 6 3 3 3

int T → real T 2 1 1 6 1 1 3 0 0

uint32 T → int T 0 0 0 0 0 0 3 3 3

real T → int T 1 1 1 3 3 3 46 46 46

d* → d*.0f 75 74 74 109 108 108 263 258 258

d* → d*.0 75 74 74 109 108 108 263 258 258

d*.0f or d*.0 → d* 85 85 84 125 125 124 144 144 142

double F() → (float) F() 0 0 0 0 0 0 37 37 37

if(rtIsNaN(X)) → if(!rtIsNaN(X))

Exception
handling

0 0 0 3 3 2 3 3 3

if(rtIsInf(X)) → if(!rtIsInf(X)) 0 0 0 0 0 0 2 2 2

insert if statment - check divide by 0 0 0 0 0 0 0 18 16 16

multiply denominator by zero 24 24 24 24 24 24 31 31 31

datatype of time is multiplied by 1000 Time
and
Space
Model

6 5 5 18 17 17 20 17 17

datatype of time in ifstmt() is negated 4 4 3 4 4 3 0 0 0

variable of time is multiplied by 1000 2 2 2 2 2 2 3 3 3

variable of time in ifstmt() is negated 7 7 7 10 10 10 1 1 1

Total 283 279 277 416 408 406 840 822 820

Number of lines in file 279 449 1290

Number of unique mutated locations* 84 193 435

Total mutation coverage 30.10% 42.98% 33.72%

*Unique mutated location is the number of lines that got changed by the mutation tool.

We designed an oracle to classify the results as either “live”

or “dead.” Using the 8 step response quantities from the system

(cf. Section III-B), we classify a system as “live” if k out

of 8 step response metrics have an output value within a

certain threshold percent of the original design, where k is

varied from 1 to 8. If not, the mutant is considered “dead.”

In this paradigm “live” mutants represent a controller that

does not exhibit performance variation within the threshold

percent – indicating a robustness to software changes. We varied

this threshold between 0% to 100% to capture the amount of

variation in a step response that might be considered acceptable.

Thresholds above 10% resulted in an inability to discriminate

performance as all mutants would either be live or dead.

Figure 4 shows details for the Boeing 747 airspeed controller

(other artifacts produced similar results). Each cell represents

the percentage of live mutants with the number of metrics

within the corresponding threshold percent. For example,

consider Figure 4 (row 6, col 6), where 2.195% of mutants

were live with six performance metrics within 50% error.

Recalling that “live” mutants in our tool represent controller

mutants whose output does not differ from the model within

the specified parameters. Figure 4 indicates the robustness

of the specific controllers to software mutations—a software

parallel to the robustness characterization of controller gains in

traditional control theory [47]. More concretely, the airspeed

controller in Figure 4, is one of the least robust to software

changes given the sharp decline in live mutants for the number

of metrics above 5 within a certain threshold.

More generally, our observations suggest that at a particular

threshold all the mutants are either all live or all dead under the

same inputs. This shows the fragility of the control designs

which generate significantly different responses with just

a single change to the software. Interestingly, only a few

quantities in the system response were responsible for this

dramatic change. For example, in the cruise control system,

only the PeakTime quantity was not within the threshold limit.

In that system, all mutants were dead, but only PeakTime

was significantly impacted. For the helicopter system, only the

SettlingMin quantity was highly impacted by our mutations but

caused all the mutants to die. Our investigation further suggests

that these two controllers are not robust to software changes

and their inevitably accompanying evolution. For the Boeing

747, on the other hand, altitude was almost not affected by the

mutations. Airspeed was only mildly affected. This suggests a

controller that is robust to software changes and maintenance

that are part of a healthy controller evolution.

The key impact of our tool is that much like a change in

control gain can be directly mapped to a change in system

response [47], this tool moves us toward directly mapping

control software changes to a change in system response. This

opens the door for studying how to design controllers that lead

to robust software implementations.

V. CONCLUSIONS

A deeper understanding of the types and quantity of evolution

that occur in controllers can help the control and software

communities develop new models and development strategies

to maintain the integrity of key properties verified in the model

and/or software. We have directly studied this evolution in two

dominant open-source control software suites, ArduPilot and

Paparazzi UAV, used extensively in safety-critical UAS. Results

show that control software evolves quickly, with controllers

being entirely rewritten through their lifetime. We introduced

categories capturing some of the inherent mismatches between

typical control models and control software not previously

identified. To facilitate more rapid study of this evolution we

built a mutation tool that can rapidly change control code

and compare its performance against the original designs. The

159

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 15,2020 at 19:36:17 UTC from IEEE Xplore. Restrictions apply.

impact of this tool is the ability to map software changes

directly to controller performance, thereby paving the way for

studying the design of controllers robust to software changes.

REFERENCES

[1] B. Wittenmark, K. J. Åström, and K.-E. Årzén, “Computer control: An
overview,” IFAC Professional Brief, vol. 1, 2002.

[2] D. C. Schmidt, “Model-driven engineering,” COMPUTER-IEEE COM-

PUTER SOCIETY-, vol. 39, no. 2, p. 25, 2006.
[3] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-integrated

development of embedded software,” Proceedings of the IEEE, vol. 91,
no. 1, pp. 145–164, 2003.

[4] J. Daafouz, P. Riedinger, and C. Iung, “Stability analysis and control
synthesis for switched systems: A switched Lyapunov function approach,”
IEEE transactions on automatic control, vol. 47, no. 11, pp. 1883–1887,
2002.

[5] L. V. Nguyen, K. A. Hoque, S. Bak, S. Drager, and T. T. Johnson, “Cyber-
physical specification mismatches,” ACM Transactions on Cyber-Physical

Systems, vol. 2, no. 4, pp. 1–26, 2018.
[6] T. T. Johnson, S. Bak, and S. Drager, “Cyber-physical specification

mismatch identification with dynamic analysis,” in Proceedings of the

ACM/IEEE Sixth International Conference on Cyber-Physical Systems,
2015, pp. 208–217.

[7] ArduPilot, “ArduPilot Open Source Autopilot,” 2018. [Online]. Available:
http://ardupilot.org/

[8] PaparazziUAV, “PaparazziUAV,” 2018. [Online]. Available: https:
//wiki.paparazziuav.org/wiki/Main Page

[9] M. Green and D. J. Limebeer, Linear robust control. Courier Corporation,
2012.

[10] M. Zimmer, J. K. Hedrick, and E. A. Lee, “Ramifications of software
implementation and deployment: A case study on yaw moment controller
design,” in 2015 American Control Conference (ACC), July 2015, pp.
2014–2019.

[11] G. F. Franklin, M. L. Workman, and D. Powell, Digital Control of

Dynamic Systems. Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA, 1998.

[12] E. Feron, “From control systems to control software,” IEEE Control

Systems Magazine, vol. 30, no. 6, pp. 50–71, Dec. 2010.
[13] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t

software developers use static analysis tools to find bugs?” in Proceedings

of the 2013 International Conference on Software Engineering, ser. ICSE
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 672–681.

[14] M. Christakis and C. Bird, “What developers want and need from program
analysis: An empirical study,” in Proceedings of the 31st IEEE/ACM

International Conference on Automated Software Engineering, ser. ASE
2016. New York, NY, USA: ACM, 2016, pp. 332–343.

[15] J. Porter, G. Karsai, P. Völgyesi, H. Nine, P. Humke, G. Hemingway,
R. Thibodeaux, and J. Sztipanovits, “Towards Model-Based Integration of
Tools and Techniques for Embedded Control System Design, Verification,
and Implementation.” in MoDELS Workshops. Springer, 2008, pp. 20–34.

[16] T. Erkkinen and B. Potter, “Model-based design for DO-178B with qual-
ified tools,” in AIAA Modeling and Simulation Technologies Conference

and Exhibit, 2009.
[17] L. Rierson, Developing Safety-Critical Software: A Practical Guide for

Aviation Software and DO-178C Compliance. CRC Press, 2013.
[18] D. Cofer and S. Miller, “DO-333 certification case studies,” in NASA

Formal Methods Symposium. Springer, 2014, pp. 1–15.
[19] R. Majumdar, I. Saha, K. Ueda, and H. Yazarel, “Compositional

equivalence checking for models and code of control systems,” in 52nd

IEEE Conference on Decision and Control. IEEE, 2013, pp. 1564–1571.
[20] V. Braberman, N. D’Ippolito, N. Piterman, D. Sykes, and S. Uchitel,

“Controller synthesis: From modelling to enactment,” in Proceedings of

the 2013 International Conference on Software Engineering, ser. ICSE
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 1347–1350.

[21] R. Matinnejad, S. Nejati, L. Briand, T. Bruckmann, and C. Poull, “Search-
based automated testing of continuous controllers: Framework, tool
support, and case studies,” Information and Software Technology, vol. 57,
pp. 705–722, Jan. 2015.

[22] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, HyTech: A model checker

for hybrid systems. Berlin, Heidelberg: Springer Berlin Heidelberg,
1997, pp. 460–463.

[23] M. Kwiatkowska, G. Norman, and D. Parker, “Controller dependability
analysis by probabilistic model checking,” Control Engineering Practice,
vol. 15, no. 11, pp. 1427 – 1434, 2007, special Issue on Manufacturing
Plant Control: Challenges and Issues.

[24] A. Filieri, H. Hoffmann, and M. Maggio, “Automated design of self-
adaptive software with control-theoretical formal guarantees,” in Pro-

ceedings of the 36th International Conference on Software Engineering,
ser. ICSE 2014. New York, NY, USA: ACM, 2014, pp. 299–310.

[25] pixhawk, “Pixhawk Flight Controller Hardware Project,” 2018. [Online].
Available: https://pixhawk.org/start

[26] M. M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, Sept 1980.

[27] T. Mens and S. Demeyer, Software Evolution, 1st ed. Springer Publishing
Company, Incorporated, 2008.

[28] M. D’Ambros, H. Gall, M. Lanza, and M. Pinzger, Analysing Software

Repositories to Understand Software Evolution. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 37–67.

[29] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37,
no. 5, pp. 649–678, Sept 2011.

[30] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and
G. Fraser, “Are mutants a valid substitute for real faults in software
testing?” in Proceedings of the 22Nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering, ser. FSE 2014.
New York, NY, USA: ACM, 2014, pp. 654–665.

[31] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman,
“Chapter six - mutation testing advances: An analysis and survey,” ser.
Advances in Computers, A. M. Memon, Ed. Elsevier, 2019, vol. 112,
pp. 275 – 378.

[32] T. Laurent, M. Papadakis, M. Kintis, C. Henard, Y. L. Traon, and
A. Ventresque, “Assessing and improving the mutation testing practice
of pit,” in 2017 IEEE International Conference on Software Testing,

Verification and Validation (ICST), March 2017, pp. 430–435.
[33] Ardupilot development team, “Ardupilot git repository,” 2018, accessed:

2018-1-11. [Online]. Available: https://github.com/ArduPilot/ardupilot
[34] V. Nguyen, S. Deeds-Rubin, T. Tan, and B. Boehm, “A SLOC counting

standard,” in Cocomo Ii Forum, vol. 2007, 2007, pp. 1–16.
[35] Paparazzi development team, “Paparazzi git repository,” 2018, accessed:

2018-1-11. [Online]. Available: https://github.com/paparazzi/paparazzi
[36] Giteye team, “Giteye,” 2019. [Online]. Available: https://www.collab.net/

products/giteye
[37] S. A. Chowdhury, S. Mohian, S. Mehra, S. Gawsane, T. T. Johnson, and

C. Csallner, “Automatically finding bugs in a commercial cyber-physical
system development tool chain with slforge,” in Proceedings of the 40th

International Conference on Software Engineering. ACM, 2018, pp.
981–992.

[38] I. Neamtiu, J. S. Foster, and M. Hicks, “Understanding source code
evolution using abstract syntax tree matching,” ACM SIGSOFT Software

Engineering Notes, vol. 30, no. 4, pp. 1–5, 2005.
[39] U. of Michigan, “Cruise Control System Documentation,” 2018, accessed:

2018-10-11. [Online]. Available: http://ctms.engin.umich.edu/CTMS/
index.php?example=CruiseControl\§ion=SimulinkModeling

[40] MathWorks, “Helicopter System Documentation,” 2018, accessed:
2018-10-11. [Online]. Available: https://www.mathworks.com/help/
control/examples/multi-loop-control-of-a-helicopter.html

[41] G. Campa, “Airlib,” 2018, accessed: 2018-10-11. [Online]. Available:
https://www.mathworks.com/matlabcentral/fileexchange/3019-airlib

[42] L. Pilot, “LibrePilot – Open – Collaborative – Free,” 2018. [Online].
Available: https://www.librepilot.org/site/index.html

[43] G. A. Hall and J. C. Munson, “Software evolution: Code delta and code
churn,” Journal of Systems and Software, vol. 54, no. 2, pp. 111–118,
2000.

[44] E. A. Lee, “The past, present and future of cyber-physical systems: A
focus on models,” Sensors, vol. 15, no. 3, pp. 4837–4869, 2015.

[45] D. Henriksson, A. Cervin, and K.-E. Årzén, “TrueTime: Simulation
of control loops under shared computer resources,” IFAC Proceedings

Volumes, vol. 35, no. 1, pp. 417–422, 2002.
[46] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,”

International Journal on Software Tools for Technology Transfer (STTT),
vol. 1, no. 1, pp. 134–152, 1997.

[47] M. M. Seron, J. H. Braslavsky, and G. C. Goodwin, Fundamental

limitations in filtering and control. Springer Science & Business Media,
2012.

160

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 15,2020 at 19:36:17 UTC from IEEE Xplore. Restrictions apply.

APPENDIX

This appendix provides additional details of our analysis.

Figure 5 shows a block diagram of our mutation tool discussed

in Section III-B. Expanding on Figure 3, Table IV shows a

more detailed view of the distribution of mismatches in each

category for each file we analyzed.

Figure 6 captures the details of our mutation analysis for

the Boeing 747 altitude controller. Each cell represents the

percentage of live mutants with the number of metrics within

the corresponding threshold percent. In contrast to the airspeed

controller in Figure 4, the Boeing 747 altitude controller in

Figure 6 is the most robust controller we tested as evidenced by

the large percentage of live mutants for almost any threshold

and number of metrics.

Fig. 5: Mutation Tool Architecture.

Fig. 6: Percentage of live mutants across the performance

metrics for Boeing 747 altitude controller.

TABLE IV: Classification Results of Mismatches Between Models and Software

ArduPilot Paparazzi UAV

Category(↓) / Filename (→)

A
C
_
P
I
D
.
c
p
p

A
C
_
P
o
s
C
o
n
t
r
-

o
l
.
c
p
p

A
C
_
A
t
t
i
t
u
d
e
-

C
o
n
t
r
o
l
.
c
p
p

A
C
_
W
P
N
a
v
.
c
p
p

A
P
_
B
a
r
o
.
c
p
p

Total s
t
a
b
i
l
i
z
a
t
i
-

o
n
_
a
t
t
i
t
u
d
e
-

.
c

s
t
a
b
i
l
i
z
a
t
i
-

o
n
_
a
t
t
i
t
u
d
e
-

_
e
u
l
e
r
_
i
n
t
.
c

s
t
a
b
i
l
i
z
a
t
i
-

o
n
_
r
a
t
e
.
c

g
u
i
d
a
n
c
e
_
h
.
c

b
a
r
o
_
b
o
a
r
d
.
c

Total

Resource Attributes 1 2 0 1 0 4 0 0 0 3 0 3

Precision and Accuracy 7 15 7 13 9 49 0 1 2 5 0 8

Time and Space Model 2 15 3 11 8 37 0 0 0 1 1 2

Exception Handling 4 6 2 12 5 29 1 1 0 5 0 7

Total Commits With Mismatches 12 29 11 32 18 102 1 2 2 11 1 17

161

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 15,2020 at 19:36:17 UTC from IEEE Xplore. Restrictions apply.

