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Abstract—The advancement in deep learning and edge com-
puting has enabled intelligent mobile augmented reality (MAR)
on resource limited mobile devices. However, today very few
deep learning based MAR applications are applied in mobile
devices because they are significantly energy-guzzling. In this
paper, we design a user preference based energy-aware edge-
based MAR system that enables MAR clients to dynamically
change their configuration parameters, such as CPU frequency
and computation model size, based on their user preferences,
camera sampling rates, and available radio resources at the
edge server. Our proposed dynamic MAR configuration adap-
tations can minimize the per frame energy consumption of
multiple MAR clients without degrading their preferred MAR
performance metrics, such as service latency and detection
accuracy. To thoroughly analyze the interactions among MAR
configuration parameters, user preferences, camera sampling
rate, and per frame energy consumption, we propose, to the
best of our knowledge, the first comprehensive analytical energy
model for MAR clients. Based on the proposed analytical model,
we develop a LEAF optimization algorithm to guide the MAR
configuration adaptation and server radio resource allocation.
Extensive evaluations are conducted to validate the performance
of the proposed analytical model and LEAF algorithm.

I. INTRODUCTION

With the advancement in Deep Learning in the past few
years, we are able to create intelligent machine learning
models to accurately detect and classify complex objects in
the physical world. This advancement has the potential to
make Mobile Augmented Reality (MAR) applications highly
intelligent and widely adaptable in various scenarios, such
as tourism, education, and entertainment. Thus, implementing
MAR applications on popular mobile architectures is a new
trend in modern technologies.

However, only a few MAR applications are implemented
in mobile devices and are developed based on deep learning
frameworks because (i) performing deep learning algorithms
on mobile devices is significantly energy-guzzling; (ii) deep
learning algorithms are computation-intensive and executing
locally in resource limited mobile devices may not provide
acceptable performance for MAR clients [1]. To solve these
issues, a promising approach is to transfer MAR input im-
age/video frames to an edge server which is powerful enough
to execute the deep learning algorithms.

Motivations. Although compared to running a deep learning
algorithm locally on a mobile device, edge-based approach
may extend the device’s battery life to some extent, it is still
considerably energy consuming due to conducting multiple
pre-processes on the mobile device, such as camera sampling,
screen rendering, image conversion, and data transmission [2].
For instance, based on the measurement from our developed
MAR testbed, a 3000 mAh smartphone battery is exhausted
within approximately 2.3 hours for executing our developed
MAR application which continuously transmits the latest
camera sampled image frames to an edge server for object
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detection. Therefore, the energy efficiency of MAR devices
becomes a bottleneck, which impedes MAR clients to obtain
better MAR performance. For example, decreasing the energy
consumption of an MAR device is always at the cost of
reducing the object detection accuracy. Therefore, improving
the energy efficiency of MAR devices and balancing the trade-
offs between energy efficiency and other MAR performance
metrics are crucial to edge-based MAR systems.

Challenges. An accurate analytical energy model is signif-
icantly important for understanding how energy is consumed
in an MAR device and for guiding the design of energy-aware
MAR systems. However, to the best of our knowledge, there
is no existing energy model developed for MAR devices or
applications. Developing a comprehensive MAR energy model
that is general enough to handle any MAR architecture and
application is very challenging. This is because (i) interactions
between MAR configuration parameters (e.g., client’s CPU
frequency and computation model size) and MAR device’s
energy consumption are complex and lack analytic under-
standings; (ii) interactions between these configurations and
the device’s energy consumption may also vary with different
mobile architectures.

In addition, designing an energy-aware solution for mobile
devices in edge-based MAR systems is also challenging, even
after we obtain an analytical energy model. This is because:
(i) complicated pre-processes on MAR devices increase the
complexity of the problem. Compared to conventional compu-
tation offloading systems, besides data transmission, there are
also a variety of pre-processing tasks (e.g., camera sampling,
screen rendering, and image conversion) necessarily to be
performed on MAR devices, which are also energy consuming.
For example, over 60% of the energy is consumed by camera
sampling and screen rendering, based on observations from our
developed testbed. Therefore, we have to take into account the
energy efficiency of these pre-processing tasks while designing
an energy-aware approach for MAR clients. (ii) Considering
the user preference constraint of individual MAR clients
also increases the complexity of the problem. For example,
maintaining a high detection accuracy for a client who prefers
a precise MAR while decreasing its energy consumption is
very challenging. As stated previously, reducing the energy
consumption of the MAR device without degrading other
performance metrics is no easy task. (iii) In practical scenarios,
an edge server is shared by multiple MAR clients. Individual
client’s energy efficiency is also coupled with the radio re-
source allocation at the edge server. Such a coupling makes
it computationally hard to optimally allocate radio resources
and improve each client’s energy efficiency.

Our Contributions. In this paper, we study these research
challenges and design a user preference based energy-aware
edge-based MAR system. The novel contributions of this paper
are summarized as follows:

1) We design and implement an edge-based MAR system
to analyze the interactions between MAR configurations
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Fig. 1. The processing pipeline of the edge-based MAR system developed in this paper.

and the client’s energy consumption. Based on our ex-
perimental study, we summarize several insights which
can potentially guide the design of energy-aware MAR
systems.

2) We propose, to the best of our knowledge, the first
comprehensive energy model which identifies (i) the
tradeoffs among the energy consumption, service latency,
and detection accuracy, and (ii) the interactions among
MAR configuration parameters (i.e., CPU frequency and
computation model size), user preferences, camera sam-
pling rate, network bandwidth, and per frame energy
consumption for a multi-user edge-based MAR system.

3) We propose an energy-efficient optimization algorithm,
LEAF, which guides MAR configuration adaptations and
radio resource allocations at the edge server, and mini-
mizes the per frame energy consumption while satisfying
variant clients’ user preferences.

II. RELATED WORK

Energy Modeling. Energy modeling has been widely used
for investigating the factors that influence the energy consump-
tion of mobile devices. [3]-[10] propose energy models of
WiFi and LTE data transmission with respect to the network
performance metrics, such as data and retransmission rates,
respectively. [11]-[14] propose multiple power consumption
models to estimate the energy consumption of mobile CPUs.
However, none of them can be directly applied to estimate the
energy consumed by MAR applications. This is because MAR
applications introduce a variety of (i) energy consuming com-
ponents (e.g., camera sampling and image conversion) that are
not considered in the previous models and (ii) configuration
variables (e.g., computation model size and camera sample
rate) that also significantly influence the energy consumption
of mobile devices.

Computation Offloading. Most existing research on com-
putation offloading focuses on how to make offloading de-
cisions. [15]-[17] coordinate the scheduling of offloading
requests for multiple applications to further reduce the wireless
energy cost caused by the long tail problem. [18] proposes
an energy-efficient offloading approach for multicore-based
mobile devices. However, these solutions cannot be applied
to improving the energy efficiency of mobile devices in MAR
offloading cases. This is because (i) a variety of pre-processing
tasks in MAR executions, such as camera sampling, screen
rendering, and image conversion, are not taken into account
and (ii) besides the latency constraint that is considered in
most existing computation offloading approaches, detection
accuracy is also a key performance metric, which must be
considered while designing an MAR offloading solution. In

addition, although some existing work proposes to study the
tradeoffs between the MAR service latency and detection
accuracy [19]-[21], none of them considered (i) the energy
consumption of the MAR device and (ii) the whole processing
pipeline of MAR (i.e., starting from the camera sampling to
obtaining detection results).

CPU Frequency Scaling. Our work is also related to
CPU frequency scaling. For modern mobile devices, such as
smartphones, CPU frequency and the voltage provided to the
CPU can be adjusted at run-time, which is called Dynamic
Voltage and Frequency Scaling (DVFS). Prior work [15], [22]-
[24] proposes various DVFS strategies to reduce the mobile
device energy consumption under various applications, such
as video streaming [15] and delay-tolerant applications [23].
However, to the best of our knowledge, there have been no
efforts factoring in the energy efficiency of MAR applications
in the context of mobile device DVFS.

III. EXPERIMENTAL RESULTS ON FACTORS AFFECTING
MAR CLIENT ENERGY EFFICIENCY

In this section, we describe our preliminary experiments to
evaluate the impact of various factors on the energy efficiency
of an MAR client, service latency, and detection accuracy in
an edge-based MAR system. Specifically, these experimental
results provide (i) observations on interactions between energy
consumption and MAR configuration parameters, such as
MAR client’s CPU frequency, computation model size, camera
sampling rate, and user preference, (ii) bases of modeling the
energy consumption of an MAR client, and (iii) insights on
designing an energy-efficient optimization algorithm.

A. Testbed Setup

Our testbed consists of three major components: MAR
client, edge server, and power monitor. Note that this paper
focuses on the MAR application in which an MAR client
captures physical environmental information through the cam-
era and sends the information to an edge server for object
detection. The detailed processing pipeline is shown in Fig. 1.

Edge Server. The edge server is developed to process
received image frames and to send the detection results back to
the MAR client. We implement an edge server on an Nvidia
Jetson AGX Xavier, which connects to a WiFi access point
(AP) through a 1Gbps Ethernet cable. The transmission latency
between the server and AP can be ignored. Two major modules
are implemented on the edge server: (i) the communication
handler which establishes a TCP socket connection with the
MAR device and (ii) the analytics handler which performs
object detection for the MAR client. In this paper, the analytics
handler is designed based on a custom framework called
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Fig. 2. CPU fregflll)ency vs. power and service latency(b()computation model
size: 3202 pixels).

Darknet [25] with GPU acceleration and runs YOLOv3 [26],
a large Convolutional Neural Networks (CNN) model. The
YOLOV3 model used in our experiments is trained on COCO
dataset [27] and can detect 80 classes.

MAR Client. We implement an MAR client on a rooted
Nexus 6 smartphone which is equipped with Qualcomm
Snapdragon 805 SoC (System-on-Chip). The CPU frequency
ranges from 0.3 GHz to 2.649 GHz. The MAR client transfers
the converted RGB frames to the edge server through a TCP
socket connection. To avoid the processing of stale frames,
the MAR client sends the latest camera captured frame to the
server and waits for the detection result before sending the
next frame for detection.

Power Monitor. The power monitor is responsible for
measuring the power consumption of the MAR client. We use
Monsoon Power Monitor [28], which can sample at 5000 Hz,
to provide power supply for the MAR device.

Key Performance Metrics. We define three performance
metrics to evaluate the MAR system:

o Per frame energy consumption: The per frame energy
consumption is the total amount of energy consumed in
an MAR client by successfully performing the object
detection on one image frame. It includes the energy
consumed by camera sampling (i.e., image generation),
screen rendering (i.e., preview), image conversion, com-
munication, and operating system.

o Service latency: The service latency is the total time
needed to derive the detection result on one image frame.
It includes the latency of image conversion, transmission,
and inference.

e Accuracy: The mean average precision (mAP) is a com-
monly used performance metric to evaluate the detection
accuracy of a visual object detection algorithm [29],
where a greater accuracy is indicated by a higher mAP.

B. The Impact of CPU Frequency on Power Consumption and
Service Latency

In this experiment, we seek to investigate how the
CPU frequency impacts the power consumption of
the MAR device and the service latency. We set the
test device to the Userspace Governor and change
its CPU frequency manually by writing files in the
/sys/devices/system/cpu/ [cpu#]/cpufreq
virtual file system with root privilege. The results are
shown in Fig. 2. The lower the CPU frequency, the longer
service latency the MAR client derives and the less power it
consumes. However, the reduction of the service latency and
the increase of the power consumption is disproportional.
For example, as compared to 1.03 GHz, 1.72 GHz reduces
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Fig. 3. Computation model size vs. energy consumption and service latency.

about 2% service latency but increases about 15% power
consumption. As compared to 0.3 GHz, 0.72 GHz reduces
about 60% service latency, but only increases about 20%
power consumption.

Insight: This result advocates adapting the client’s CPU
frequency for the service latency reduction by trading as little
increase of the per frame energy consumption as possible,
where the per frame energy consumption is calculated by the
power multiplies the service latency.

C. The Impact of Computation Model Size on Energy Con-
sumption and Service Latency

In this experiment, we implement six object detection algo-
rithms based on the YOLOvV3 framework [26] with different
computation model sizes. The test device works on the default
CPU governor, Interactive. Increasing the model size always
results in a gain of mAP. However, the gain on mAP becomes
smaller as the increase of the model sizes [20]. In addition, the
per frame energy consumption and the service latency boost
85% and 130%, respectively, when the model size increases
from 1282 to 6082 pixels, as shown in Fig. 3(a) and 3(b).

Insight: This result inspires us to trade mAP for the per
frame energy consumption and service latency reduction when
the model size is large.

D. The Impact of Camera FPS on Power Consumption

In this experiment, we vary the MAR client’s camera FPS to
explore how it impacts the device’s power consumption, where
the camera FPS is defined as the number of frames that the
camera samples per second. Fig. 4(a) shows that a large camera
FPS leads to a high power consumption. However, as shown
in Fig. 1, not every camera captured image frame is sent to the
edge server for detection. Because of the need (i) to avoid the
processing of stale frames and (ii) to decrease the transmission
energy consumption, only the latest camera sampled image
frame is transmitted to the server. This may result in the
MAR client expending significant reactive power for sampling
non-detectable image frames. In Fig. 4(b), we quantify the
sampling efficiency with the variation of the camera FPS. As
we expected, a large camera FPS leads to a lower sampling
efficiency (e.g., less than 2% of the power is consumed for
sampling the detectable image frames when the camera FPS
is set to 30). However, in most MAR applications, users
usually request a high camera FPS for a smoother preview
experience, which is critical for tracking targets in physical
environments. Interestingly, increasing CPU frequency can
reduce the reactive power for sampling, as shown in Fig. 4(b).

Insight: This result demonstrates that when a high camera
FPS is requested, increasing CPU frequency can promote the
sampling efficiency but may also boost the power consumption.
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Fig. 4. Camera FPS vs. power and sampling efficiency (computation model
size: 3202 pixels).
Therefore, finding a CPU frequency that can balance this
tradeoff is critical.

E. User Preference

An MAR client may have variant preferences in different
implementation cases, including:

« Latency-preferred. The MAR application of cognitive
assistance [30], where a wearable device helps visually
impaired people to navigate on a street, may require a low
service latency but can tolerate a relatively high number
of false positives (i.e., false alarms are fine but missing
any potential threats on the street is costly).

o Accuracy-preferred. An MAR application for recom-
mending products in shopping malls or supermarkets
may tolerate a long latency but requires high detection
accuracy and preview smoothness.

o Preview-preferred. The MAR drawing assistant appli-
cation [31], where a user is instructed to trace virtual
drawings from the phone, may tolerate a long latency
(i.e., only needs to periodically detect the position of the
paper where the user is drawing on) but requires a smooth
preview to track the lines that the user is drawing.

Insight: This observation infers that the user preference’s

diversity may significantly affect the tradeoffs presented above.
For instance, for the accuracy-preferred case, trading detec-
tion accuracy for the per frame energy consumption or service
latency reduction works against the requirement of the user.

IV. PROPOSED SYSTEM ARCHITECTURE

Based on the above insights, we propose an edge-based
MAR system that can reduce the per frame energy consump-
tion of MAR clients by dynamically selecting the optimal
combination of MAR configurations (i.e., CPU frequency
and computation model size) and radio resource allocations
according to user preferences, camera FPS, and available radio
resources at the edge server. To derive the optimal MAR
configurations and radio resource allocations, we propose
an optimization algorithm (LEAF) that supports low-energy,
accurate, and fast MAR applications. LEAF can jointly opti-
mize the CPU frequency, computation model size, and radio
resource allocation (explained in detail in Section VI).

Fig. 5 shows the overview of our proposed system. In
the first step, MAR clients send their service requests and
selected camera FPS and user preferences to an edge server.
In the second step, according to the received camera FPS
and user preferences, the edge server determines the optimal
CPU frequency, computation model size, and allocated radio
resource for each MAR client using our proposed LEAF
algorithm. The determined CPU frequency and computation

] 1. Service Request

Camera FPS,
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MAR Configurations

CPU Frequency

Model Size
G
CNN m |
AR

Fig. 5. Overview of the proposed edge-based MAR system.
model size are then sent back to corresponding MAR clients as
MAR configuration messages. In the third step, MAR clients
set their CPU frequency to the optimal value and resize their
latest camera sampled image frames based on the received
optimal computation model size. After the CPU frequency
adaptation and image frame resizing, MAR clients transmit
their image frames to the edge server for object detection.
In the final step, the edge server returns detection results to
corresponding MAR clients.

However, designing such a system is challenging. From
the presented insights in the previous section, the interactions
among the MAR system configuration variables, user pref-
erence, camera FPS, and the per frame energy consumption
are complicated. (i) Some configuration variables improve one
performance metric but impair another one. For example, a
lower computation model size reduces the service latency
but decreases the detection accuracy. (ii) Some configuration
variables may affect the same metric in multiple ways. For
example, selecting a higher CPU frequency can decrease the
per frame energy consumption by increasing the sampling
efficiency, but it increases the CPU power, which conversely
increases the per frame energy consumption. Unfortunately,
there is no analytical model for characterizing these interac-
tions in the MAR system and it is not possible to design a
prominent optimization algorithm without thoroughly analyz-
ing these interactions.

2. Configurations I—
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V. PROPOSED ANALYTICAL MODEL AND PROBLEM
FORMULATION

In this section, we thoroughly investigate the complicated
interactions among the MAR configuration parameters, user
preference, camera FPS, and the key performance metrics
presented in Section III. We first propose a comprehensive
analytical model to theoretically dissect the per frame energy
consumption and service latency. The proposed model is gen-
eral enough to handle any MAR device and application. Then,
using the proposed model, we further model multiple fine-
grained interactions, whose theoretical properties are complex
and hard to understand, via a data-driven methodology. Finally,
based on the above proposed models, we formulate the MAR
reconfiguration as an optimization problem.

A. Analytics-based Modeling Methodology

We consider an edge-based MAR system with K MAR
clients and one edge server, where clients are connected to
the edge server via a single-hop wireless network. Denote X
as the set of MAR clients. The per frame service latency of
the kth MAR client can be defined as

LY = LE, + Lf, + Liay, M
where L is the image conversion latency caused by con-
verting a buffered camera captured image frame from YUV
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Fig. 6. The impact of CPU frequency on the power consumption of image generation and preview.

to RGB; L is the transmission latency incurred by sending
the converted RGB image frame from the kth client to its
connected edge server; and Lfn is the inference latency of the
object detection on the server. According to the MAR pipeline
depicted in Fig. 1, the per frame energy consumption of the
kth MAR client can be defined as

E Elkmq + Ef‘u + Ecom + Ebsa (2)
where EF

img 18 the image generation and preview energy con-
sumption incurred by image sampling, processing, and preview
rendering; E¥ is the image conversion energy consumption;
E% . is the wireless communication energy consumption,
which includes four phases: promotion, data transmission, tail,
and idle; and Ezlfs is the MAR device base energy consumption.

The Model of Image Generation and Preview. Image
generation is the process that an MAR client transfers its
camera sensed continuous light signal to a displayable image
frame. Preview is the process of rendering the latest generated
image frame on the client’s screen. As these two processes
are executed in parallel with the main thread, their execution
delays are not counted in the per frame service latency.

As depicted in Fig. 3(a), the energy consumption of image
generation and preview is the largest portion of the per frame
energy consumption. To understand how energy is consumed
in image generation and preview and what configuration
variables impact it, we conduct a set of experiments. We find
that the power consumption of image generation and preview
highly depends on the CPU frequency. Fig. 6 shows the power
consumption of image generation and preview under different
CPU frequencies, where the camera FPS is set to 15. A higher
CPU frequency results in a higher average power consumption.
In addition, the image generation delay is also closely related
to the CPU frequency, where a higher CPU frequency always
leads to a shorter delay. However, the delay of rendering a
preview is only related to the GPU frequency, which is out of
the scope of this paper. Thus, we consider the preview delay as
a fixed value with any CPU frequencies. We model the energy
consumption of the kth MAR client’s image generation and
preview within a service latency as

k tSt(fk) k tpr b
Eimg = /; Pgt(fk)dt+/0 prv(fk)dt “fpsk - L7,
where P;t, P;fm, ot tpro are the power consumption of

image generation, preview, the delay of image generation, and
preview, respectively; fj is the CPU frequency; fpsy is the
camera FPS; P;t, Pkm, and t}g“t are functions of fy.

The Model of Image Conversion. Image conversion is
processed through the MAR client’s CPU; hence, the con-

version latency and power consumption highly depend on the

CPU frequency. We define L¥ and EX a function of fj.
Therefore, the major source of the power consumption of the
image conversion is the CPU computation. The power con-
sumption of mobile CPUs can be divided into two components,
Pt = Prar+ Pjymmic [13], where P, is independent and
Pfynamic is dependent upon the CPU frequency. (i) Pcqr is
the power originating from leakage effects and is in essence
not useful for the CPU’s purpose. In this paper, we consider
Py, a constant value e. (ii) denamw is the power consumed
by the logic gate switching at f), and is proportional to V;2 fy,
where V}, is the supply voltage for the CPU. Due to the DVFS
for the power saving purpose, e.g. a higher f; will be supplied
by a larger Vj, each f; matches with a specific Vj, where
Vie o< (a1 fx + a2); aq and ag are two positive coefficients.
Thus, the energy consumption of converting a single image
frame of the kth MAR client can be modeled as

Et, = PhLe, = (o1 fil + 2010 fi + aafi +€) - Leu(fi). @)
The Model of Wireless Communication and Inference.
Intuitively, the wireless communication latency is related to
the data size of the transmitted image frame (determined by
the frame resolution) and wireless data rate. As the data size
of detection results is usually small, we do not consider the
latency caused by returning the detection results [20]. In this
paper, we use s; (pixels) to represent the computation model
size of the kth MAR client. The client must send image frames
whose resolutions are not smaller than s? to the edge server
to obtain the corresponding detection accuracy. Thus, the most
efficient way is to transmit the image frame with the resolution
of s7 to the server. Denote o as the number of bits required to
represent the information carried by one pixel. The data size
of an image frame is calculated as os? bits. Let By, be the
wireless bandwidth derived by the kth MAR client. We model
the transmission latency of the ktl; client as
k 05k
Ltr - R7k7 (5)
where Ry is the average wireless data rate of the kth client,
which is a function of By.

In addition to the computation model size and wireless
bandwidth, the transmission latency is also determined by
the MAR client’s CPU frequency. This is because the image
transmission uses TCP as the transport layer protocol, and
TCP utilizes substantial CPU capacity to handle congestion
avoidance, buffer, and retransmission requests. For example,
when the CPU frequency is low, the remaining CPU capacity
may not be adequate to process the TCP task; thus, the TCP
throughput is decreased. Therefore, R is also a function of
fx, i.e., Ri(By, fr). In this paper, Ry (B, fi) is defined as

Ri(By, fx) = ri**(Bx) - i (fi), (6)
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Fig. 7. MAR client’s wireless interface power consumption.

where r]"**(By,) is the network throughput, which is not
affected by the variation of the MAR client’s CPU frequency,
and is only determined by the bandwidth (more comprehensive
model of this part can be found in [3], which is out of the
scope of this paper); 7} ( fx) represents the impact of the CPU
frequency on the TCP throughput.

In WiFi networks, when transmitting a single image frame,
the MAR client’s wireless interface experiences four phases:
promotion, data transmission, tail, and idle. When an image
transmission request comes, the wireless interface enters the
promotion phase. Then, it enters the data transmission phase to
send the image frame to the edge server. After completing the
transmission, the wireless interface is forced to stay in the tail
phase for a fixed duration and waits for other data transmission
requests and the detection results. If the MAR client does not
receive the detection result in the tail phase, it enters the idle
phase and waits for the feedback from its associated edge
server. Fig. 7 depicts the measured power consumption of
the MAR client that transmits a 3840 x 2160 pixel image
with different throughput. We find that the average power
consumption of the data transmission phase increases as the
throughput grows. However, the average power consumption
and the duration of promotion and tail phases are almost
constant. Therefore, we model the energy consumption of the
kth MAR client in the duration that starts from the promotion
phase to obtaining the object detection result as

Eicom = Ptkr(Rk (Bk, fk))Lfr + Pi]illetfdle + Pprotpv‘o + Ptailttaih

(7)
where PE, PF,.. P,.,, and P, are the average power

tro 7
consumption of the data transmission, idle, promotion, and
tail phases, respectively; tfdle, Lpro, and ;44 are the durations

of the idle, promotion, and tail phases, respectively;

Pluetine = {07k me(sk) S baiy - (g)

Py - (LGf(sk) - ttail)7 LGf(sk) > ttail,
where P is the MAR device’s base power consumption;
Lk f (sk) 1s the inference latency on the edge server, which is
determined by the computation model size [20]. Note that our
proposed wireless communication model can also be used in
other wireless networks (e.g., LTE).

The Model of Base Energy. In this paper, the base
energy consumption is defined as the energy consumed by
the MAR clients’ CPU without any workloads, except running
its operating system, and the energy consumed by the screen
without any rendering. Because the screen’s brightness is not
a critical factor that affects the object detection performance,
it is considered as a constant value in our proposed power
model. Thus, the base power consumption is only a function

of the CPU frequency. We model the base energy consumption
of the kth MAR client within a service latency as

Pbs(fk) . ( Llnf(sk)"_ttazl)
B. Regression-based Modeling Methodology

As shown in Subsection V-A, some interactions or functions
in our proposed analytical models still cannot be expressed
clearly in an analytic form. This is because of (i) the lack of
analytic understandings of some interactions and (ii) specific
coefficients/functions that may vary with different MAR de-
vice models. For example, in (4), the specific coefficients in
Pk (f1.) are unknown due to the lack of theoretical knowledge
and vary with different MAR device models.

Therefore, we propose a data-driven methodology to address
the above challenge, where those interactions with inadequate
analytic understandings can be modeled and trained offline
via empirical measurements and regression analyses. Note
that regression-based modeling methodology is one of the
most widely used approaches in developing mobile CPU’s
property models (e.g., CPU power and temperature variation
modeling) and has shown to be effective in estimating CPU
properties [11], [12], [15]. We use our testbed to collect
measurements. The test MAR device is selected to work at
18 different CPU frequencies ranging from 0.3 to 2.649 GHz.
In addition, in order to obtain fine-grained regression models
and eliminate the interference among different workloads on
the device power consumption, we develop three Android
applications; each is applied with a specific function of the
MAR client, which includes image generation and preview,
image conversion, and image transmission applications. The
developed regression models are shown in Fig. 8 and Table I.
Note that to obtain a statistical confidence in the experimental
results, each data point in Fig. 8 is derived by generating,
transmitting, and detecting 1000 image frames and calculating
the average values. The root mean square error (RMSE) is
applied for calculating the average model-prediction error in
the units of the variable of interest [32].

C. Problem Formulation

Based on the above proposed models, we formulate the
MAR reconfiguration as a multi-objective optimization prob-
lem [33]. We aim to minimize the per frame energy consump-
tion of multiple MAR clients in the system while satisfying
the user preference (i.e., stated in Section III-E) of each.
We introduce two positive weight parameters A and A%
to characterize the user preference of the kth MAR client,
where \¥ and A% can be specified by the client. We adopt
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Fig. 8. The proposed regression-based models.
the weighted sum method [34] to express the multi-object
optimization problem as .
P p 2 min Q= E (E}C + )\Ika — A’;Ak)
. .8k, B,VkEKX
Py min Q=Y (BF +ALF - XA {fi s, B, ¥hEX kek o
»Sk,Br,YkEK
{fiersk,Br.vkeR} kex st. C1,C2,C5
st. Ci: E B < Bmaz; Cy: Smin < s < Smaka c K.
kex (10) According to the BCD method, we propose the LEAF
Co: L" < Ly, Vk € K algorithm which solves Problem &7 by sequentially fixing
Cs : Foin < fr < Frnax, Vk € K; two of three variables and updating the remaining one. We

Ca : Sk € {Smin, - Smaa }, Vk € K;
where Ay is an object detection accuracy function in terms
of the kth MAR client selected computation model size s7
(e.g., A(s2) = 1 — 1.578e~ 65107 "sx [20]): Lk s the
maximum tolerable service latency of the kth client; B4,
is the maximum wireless bandwidth that an edge server can
provide for its associated MAR clients. In practical scenarios,
an edge server may simultaneously offer multiple different
services for its associated users, e.g., video streaming, voice
analysis, and content caching. Hence, the edge server may
reallocate its bandwidth resource based on the user distribu-
tion. In this paper, we assume that B,,,, varies with time
randomly. The constraint C; represents that MAR clients’
derived bandwidth cannot exceed the total bandwidth allocated
for the MAR service on the edge server; the constraint Cs
guarantees that the service latency of MAR clients are no
larger than their maximum tolerable latency; the constraints
C3 and (4 are the constraints of the MAR device’s CPU
frequency and computation model size configurations, where
S 1s a discrete variable and its values depend on the available
computation models in the MAR system.

VI. PROPOSED LEAF OPTIMIZATION ALGORITHM

As shown in the previous section, problem & is a mixed-
integer non-linear programming problem (MINLP) which is
difficult to solve [35]. In order to solve this problem, we
propose the LEAF algorithm based on the block coordinate
descent (BCD) method [36].

To solve problem &2, we relax the discrete variable s, into
continuous variable sj. The problem is relaxed as

iterate the process until the value of each variable converges.
Vy(z) is denoted as the partial derivative of function y cor-

responding to variable z. Denote Proj, (x) as the Euclidean

projection of z onto X’; Proj(z) £ argmin, y ||z — v]|%.
The procedure of our proposed solution is summarized as:
o Given s} and By, we can derive a new fj according to

I = Projy, (£ = wvQr (17)) ke ks (12
where 7, > 0 is a constant step size and Xy is the
bounded domain constrained by C3. Based on the BCD
method, we repeat (12) until the derived fj, is converged
and then update fj.

e Given fi and By, we can derive a new s according to

s](cjﬂ) = Proné (s}e(j) — e VQk (SAk(ﬁ)) Vk e, (13)
where 7; > 0 is a constant step size and X; is the
bounded domain constrained by Cj. Based on the BCD
method, we repeat (13) until the derived s}, is converged
and then update s.

o Given f; and sj, the problem is simplified to

i = EF £ \FLF —)\5a
{BkI,Ti}/lchleic} Q é’:c( + A1 2 Ak)
sit. Ch: Z Br < Bnag; (14)
ke

Cy: LF < LF.. VkeK;
where constraints C's and é4 are irrelevant to this prob-
lem.

The Lagrangian dual decomposition method is utilized to
solve the above problem, where the Lagrangian function is
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L(Br, i, B) = Y (B + ML" — X3 Ay)

ke (15)
+ M(Z Bk - Bm(mc) + Z Bk(Lk - Ll’fnaz)v
ke ke

where p and 3 are the Lagrange multipliers, (i.e., 3 is
a Lagrange multiplier vector), corresponding to constraints
C1 and (4, respectively. The Lagrangian dual problem can
therefore be expressed as

max ,B8)= min L(Bg,u,
max 9(p, B) P (Bk, 1, 3) 6
st. pw>0,82>0.

Here, g(u,3) is concave with respect to Bj.
Lemma 1. The problem &7, is convex with respect to By.

Proof. For any feasible B;, B;,Vi, j € K, we have

82@ 0’ { 7é ja
OB,0B, _{\ij’z(l/rm‘”) i— i (17
195 i T 9B0B; J>
where WU, — 1IPsiBatlf)+Bors(F) 4P (O)+Pos(f)+A]os]
L ri(fi)
2 .mazx
which is positive, and 85113/1_ TaBj ) 0.67273? > 0. Thus,

the Hessian matrix H = ( is symmetric and

82
positive definite. Constraint C; is linear and C5 is convex
with respect to By. Constraints C3 and C4 are irrelevant to

By.. Therefore, & is strictly convex with respect to B,. [

Therefore, based on the Karush-Kuhn-Tucker (KKT) condi-
tion [37], the sufficient and necessary condition of the optimal
allocated bandwidth for the kth MU can be expressed as

O (fr, Sk, Br)
0.677u '

[£Psi(Bge (fi)+Epro(f:))+P{(0)+ Pos (fi) + A +Br]os?

By = (18)

where @), = =TeA .

Next, the sub-gradient method [37] is used to solve the dual
problem. Based on the sub-gradient method, the dual variables
of the kth MAR clients in the (j + 1)th iteration are

{,ugfrl) = max {0, [,u(j) + ﬂﬁVg(u(j))] } ,Vk € K;

B = max {0, [69 + 9{va(s)] } vk € k;

19)

where ¥ > 0 and 195 > 0 are the constant step sizes.

Based on the above mathematical analysis, we propose an
MAR optimization algorithm, LEAF, which can dynamically
determines the CPU frequency of multiple MAR devices,
selects the computation model sizes, and allocates the wireless
bandwidth resources. The pseudo code of the proposed LEAF
MAR algorithm is presented in Algorithm 1. First, the LEAF
is initialized with the lowest CPU frequency, the smallest com-
putation model size, and evenly allocated bandwidth resources
among MAR devices. We then iteratively update fx, Sk, and
By, until the LEAF converges (i.e., line 7-8 in Algorithm 1).
In addition, s, is a relaxed value of the computation model
size. Thus, it may not match any pre-installed computation
model in a real system. In this case, the LEAF selects the
computation model size sj that is the closest to the relaxed
one sy (i.e., line 10 in Algorithm 1). Since the LEAF MAR

algorithm is developed based on the BCD method and follows
the convergence results in [36], we claim that the LEAF
converges to a local optimal solution.

Algorithm 1: The LEAF MAR Algorithm

Input: )\If, )\’2“, Lfmz, Bmaz, fpsg, and 7, Vk € K.
Output: fy, sg, and By, Vk € K.

1 By + Bmaz/"q, Sk 4 Smin, Vk €K, i+ 1;

2 while True do

3 fr < solving &1 with fixed s} and By;

4 Sk < solving &1 with fixed f and By;

5 By, < solving &1 with fixed fj and sj;
6

7

8

Qi+ Sperc(BF + ARLF — 2k Ay
if!(Qbi —Qi—1)/Q;| < 7 then

reak; > Converges

9 141+ 1;
arg min

s€{Smin---Smax

11 return fy, s, and By, Vk € K.

10 s, = s — Sk|, Vk € K;
k | k|

VII. PERFORMANCE EVALUATION

In this section, we evaluate both the proposed MAR analyt-
ical energy model and LEAF algorithm. We first validate our
analytical model by comparing the estimated energy consump-
tion with the physical energy measurement (obtained from
our developed testbed described in Section III). The Mean
Absolute Percentage Error (MAPE) is used for quantifying
the estimation error. Then, we evaluate the per frame energy
consumption, service latency, and detection accuracy of the
proposed LEAF algorithm under variant bandwidth and user
preferences through data-driven simulations.

A. Analytical Model Validation

The measured power and duration of promotion and tail
phases in WiFi are shown in Table II (note that LTE has
different values [38]). As shown in Fig. 9, we validate the
proposed analytical model with respect to MAR client’s CPU
frequency, computation model size, allocated bandwidth, and
camera FPS. Each measured data is the average of the per
frame energy consumption of 1000 image frames. The calcu-
lated MAPE of these four cases are 6.1%=+3.4%, 7.6%+4.9%,
6.9% + 3.9%, and 3.7% =+ 2.6%, respectively. Therefore, our
proposed energy model can estimate the MAR per frame
energy consumption very well.

TABLE II
POWER AND DURATION OF PROMOTION & TAIL PHASES.
Ppro (W) tpro (8) Praig (W) Liair (8)
1.97 £0.08 | 0.034 +£0.004 | 1.61+0.15 | 0.21 £0.02

B. Performance Evaluation of LEAF

We simulate an edge-based MAR system with an edge
server and multiple MAR clients. Each MAR client may select
a different camera FPS, which is obtained randomly in the
range of [1, 30] frames. The default user preference is A\; = 0.3
and Ay = 1.8. We compare our proposed LEAF algorithm with
two other algorithms summarized as follows:

o FACT + Interactive: It uses FACT [20] to select the
computation model size, which is optimized for the
tradeoff between the service latency and the detection
accuracy. As FACT does not consider the MAR client’s
CPU frequency scaling and radio resource allocation at
the edge server, we use Interactive to conduct CPU
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Fig. 10. Optimality.
frequency scaling and the radio resource is allocated
evenly. Note that FACT does not consider the energy
efficiency of MAR clients either.

« Energy-optimized only solution: It selects the optimal
CPU frequency, computation model size, and bandwidth
allocation by minimizing the per frame energy consump-
tion of MAR clients in the system without considering
user preferences, which is named as MINE.

Optimality. We first validate the optimality of our proposed
LEAF algorithm. As shown in Fig. 10, LEAF always obtains
the minimal ) compared to the other two algorithms under
variant maximum available bandwidth and user preference.

Comparison under Variant Max. Bandwidth. We then
evaluate the impact of the maximum available bandwidth on
the performance of the proposed LEAF. As presented in Sec-
tion V-C, in practical environments, the maximum bandwidth
at an edge server for serving its associated MAR clients may
vary with the user distribution. For each MAR client, the
value of the allocated bandwidth directly impacts not only the
service latency and the per frame energy consumption but also
the detection accuracy. The evaluation results are depicted in
Fig. 11. (i) Compared to FACT, the proposed LEAF decreases
up to 40% per frame energy consumption and 35% service
latency with less than 9% loss of object detection accuracy
when the Max. bandwidth is 300 Mbps. The performance gap
between LEAF and FACT is due to the gain derived through
optimizing the clients’ CPU frequency and the server radio re-
source allocation. (i) Compared to MINE, the proposed LEAF
significantly improves the detection accuracy at the cost of a
slightly increase of the service latency and per frame energy.
The performance gap between LEAF and MINE reflects the
gain derived through considering the user preference.

Comparison under Variant User Preferences. Finally,
we evaluate the impact of the user preference on the per-
formance of the proposed LEAF by varying the value of
A2/A1, as shown in Fig. 12. User preference impacts the
tradeoffs among the per frame energy consumption, service
latency, and detection accuracy. When Ay /A1 grows, the MAR
client emphasizes on the detection accuracy by trading the

= 0 0.2
0 50 100 150 200 250 300 350 400 450 500 10 50 100 150 200 250 300 350 400 450 500

Max. Bandwidth (Mbps) Max. Bandwidth (Mbps)

(a) ()
Fig. 11. System performance vs. Max. bandwidth.
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service latency and per frame energy. Since MINE does not
consider the user preference, the variation of Ao/A; does not
change its performance. (i) Compared to FACT, the proposed
LEAF reduces over 20% per frame energy consumption while
maintaining the same detection accuracy (A2/A; = 100). (ii)
Compared to MINE, the proposed LEAF is able to enhance
over 50% accuracy while ensuring similar per frame energy
and service latency (A2/\; = 2). Fig. 12 also shows that,
as compared to FACT, the proposed LEAF offers more fine-
grained and diverse user preference options for MAR clients.

VIII. CONCLUSION

In this paper, we proposed a user preference based energy-
aware edge-based MAR system that can reduce the per frame
energy consumption of MAR clients without compromising
their user preferences by dynamically selecting the optimal
combination of MAR configurations and radio resource al-
locations according to user preferences, camera FPS, and
available radio resources at the edge server. To the best of
our knowledge, we built the first analytical energy model
for thoroughly investigating the interactions among MAR
configuration parameters, user preferences, camera sampling
rate, and per frame energy consumption in edge-based MAR
systems. Based on the proposed analytical model, we proposed
the LEAF optimization algorithm to guide the optimal MAR
configurations and resource allocations. The performance of
the proposed analytical model is validated against real energy
measurements from our testbed and the LEAF algorithm is
evaluated through extensive data-driven simulations.
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