
Exploiting Simultaneous Multithreading in
Priority-Driven Hard Real-Time Systems

Sims Hill Osborne, Shareef Ahmed, Saujas Nandi, and James H. Anderson
Department of Computer Science

University of North Carolina
Chapel Hill, North Carolina, U.S.A.

{shosborn, shareef, saujas, anderson} @cs.unc.edu

Abstract—Simultaneous Multithreading (SMT) has the
ability to dramatically improve real-time scheduling, but
existing methods are cumbersome, frequently need specialized
hardware, or are limited to producing table-based sched-
ules. Here, an easily portable method for quickly applying
SMT to priority-driven hard real-time systems is given.
Using a combination of integer linear programming and
heuristic bin-packing, a partitioned Earliest-Deadline-First
(EDF) scheduler that takes advantage of SMT is produced.
The integer linear programming and partitioning are done
offline, but generally require only a few seconds, even given
over a hundred tasks. A large-scale schedulability study is
conducted, showing that compared to partitioned scheduling
without SMT, the schedulable utilization for the considered
hardware platform is nearly doubled in the best cases.

Index Terms—real-time systems, simultaneous multi-
threading, hard real-time, scheduling algorithms

I. INTRODUCTION

Simultaneous Multithreading (SMT), a technology that
allows multiple programs to execute in parallel on a single
computing core, is capable of dramatically increasing the
ability of a given hardware platform to schedule real-
time systems [5, 8, 9, 10, 14, 15, 16, 17]. This benefit
can be achieved by taking advantage of SMT’s ability
to increase throughput while avoiding situations where
increased execution times for individual programs—an
inevitable consequence of SMT—cause deadline misses.

Unfortunately, previous work on applying SMT to hard
real-time systems requires either purpose-built hardware
[16, 17], modifications to basic interactions between the
operating system (OS) and hardware [5, 8, 9], or a table-
driven schedule [14], which may be undesirable for many
applications. In the last case, our own prior work, the meth-
ods used to create scheduling tables are time-consuming,
thus limiting their applicability to larger systems. These
drawbacks limit the industrial applicability of SMT. Even
so, industrial users are eager to make use of SMT; in
particular, multiple developers have expressed interest to
the U.S. Federal Aviation Administration (FAA) in using
SMT in safety-critical systems [12].

Work was supported by NSF grants CNS 1563845, CNS 1717589, and
CPS 1837337, ARO grant W911NF-17-1-0294, ONR grant N00014-20-
1-2698, and funding from General Motors

In this work, we attempt to bridge the gap between the
theoretical potential of SMT and applying that potential
to an existing system that assumes off-the-shelf hardware
and priority-driven scheduling. With that in mind, we show
how to use SMT to transform an otherwise unschedulable
task system into a task system that can be scheduled
using Earliest-Deadline-First (EDF) or another priority-
driven scheduler. We do so without sacrificing safety and
without relying on a customized hardware platform or OS.
As an added bonus to industrial users, we show that our
transformation step can be performed quickly—under three
seconds, in the majority of scenarios we considered, and
in less than a minute for all considered scenarios—so that
this stage of testing potential systems will not become
a bottleneck in the development process. We judge our
methods’ success via a large-scale schedulability study in
which we track both the proportion of task systems that
can be scheduled on a given platform and how much time
is needed to conduct each test.

Contribution and organization. We show within the
context of our schedulability study that when we apply
our transformation process, the transformed system can
be successfully scheduled with partitioned EDF, even, in
some cases, when the original system has total utilization
approaching double what could be scheduled on the given
hardware platform without SMT. Furthermore, the trans-
formation step can be completed in under a minute, even
given a system that includes hundreds of tasks. While this
may seem like a long time, it is reasonable for a one-time,
offline step, particularly considering the possible benefits.
The resulting schedule will be no less safe than scheduling
the same task system without using SMT.

In Sec. II, we cover necessary background information,
including an overview of SMT technology, a review of
partitioned EDF scheduling, and an explanation of how
we quantify safety. In Sec. III, we give a solution to our
problem. The steps of our solution are depicted graphically
in Fig. 1. Beginning with an initial task system τ, we use an
integer linear program (ILP) to transform it into a system

1

τ
Initial task system

τR1

Subsystem on core 1

τR

Transformed system using SMT

τRm

Subsystem on core m
τR2

Subsystem on core 2
...

Transform system using an ILP

Partition onto separate cores

Schedule subsystems individually

Fig. 1: The steps to achieve partitioned scheduling with SMT.

τR that uses SMT1. The decision to use SMT is made on
a per-task basis. This choice is fundamental to the rest of
our process, as SMT usage affects many aspects of task
behavior. We then partition τR into subsystems that are
assigned to individual cores, with subsystem τR` denoting
the set of tasks assigned to core π`. Subsystems on
separate cores can then be scheduled using EDF scheduling
or another online scheduling algorithm. In Sec. IV, we
evaluate our methods via a large-scale schedulability study.
In this study, we consider both how large of a task system
(in terms of total utilization) can be scheduled on a given
hardware platform and how long the transformation step
takes. In Sec. V, we conclude and suggest directions for
future work.

II. BACKGROUND

In this section, we detail our assumptions regarding our
task and hardware platform, provide an overview of SMT
technology, and cover key concepts related to partitioned
EDF scheduling.

A. Task and Platform Model

We consider the problem of scheduling a periodic hard
real-time task system τ that consists of n independent
tasks. Each task τi releases a single job every Ti time
units— Ti gives the task’s period—starting at time 0, and
each job is assumed to have a maximum cost of Ci ≤ Ti
time units. We briefly discuss the determination of safe
Ci values in Sec. II-C below. The ath job released by
τi is denoted τi.a, and tasks are denoted τi = (Ci, Ti).
Each task τi has a utilization given by ui = Ci

Ti
. The total

utilization of all tasks is given by U. We assume implicit
deadlines: every job must complete within Ti time units
of its release. Our methods work best when the number of
distinct periods within τ is small relative to our hardware
platform’s core count, but we do not enforce a strict cutoff
for the number of different periods.

When SMT is not used for a particular task, every job of
that task is fully preemptable; accounting for the costs of

1We use the “R” superscript to avoid any confusion with T for time.

preemption is a well-studied topic. Here, we assume that all
task costs are inflated to account for the costs of preemp-
tions without SMT. We assume that interference between
jobs executing on separate cores, due to causes including
cache conflicts, DRAM conflicts, memory bus conflicts,
general OS support, and I/O conflicts, is negligible.2 The
system is scheduled correctly if it can be shown that no
job will ever miss a deadline. An individual task is said
to be scheduled correctly if no job of that task will ever
miss a deadline. We introduce additional task notation, and
discuss how we handle preemptions when SMT is used, as
part of our overview of SMT below.

Our hardware platform π consists of m identical com-
puting cores. Each core can support either one job that uses
the whole core or two jobs that employ SMT at any given
time; these conditions match those of both Intel and AMD
processors that support SMT. We refer to tasks whose jobs
are scheduled to execute in parallel on a single core as
paired tasks (formally defined in Def. 3 below). Tasks that
do not use SMT are referred to as solo tasks.

B. Overview of SMT Technology

On modern computers, each core uses instruction-level
parallelism within jobs to execute multiple instructions per
cycle. When SMT is enabled, this behavior is expanded to
allow multiple jobs to execute instructions within a single
cycle. An overview is given in Ex. 1 and Fig. 2 below, both
of which closely follow explanations found in our previous
work [14]. Further information on the fundamentals of
SMT can be found in the works of Eggers et al. [6].
For a detailed discussion of factors that can affect SMT
execution in practice, see [2, 3].
Ex. 1. At the top of Fig. 2, jobs of tasks τ1 (darker colored)
and τ2 (lighter colored) execute sequentially without SMT
on a core that can accept two instructions per cycle. When
fewer than two instructions are ready, as in cycles 3 and
4, execution resources are wasted. τ1 finishes at the end of
6 cycles and τ2 at the end of 12. In the second part of the
figure, the same jobs employ SMT to execute in parallel,
thereby reducing the number of lost cycles. τ1 finishes after
8 cycles and τ2 after 10. SMT thus delays the completion
of τ1, but speeds up the completion of τ2 since it does not
have to wait for τ1 to complete before beginning its own
execution.

In addition to increasing the execution time of indi-
vidual jobs, SMT can make it more difficult to predict
job execution times due to interactions between jobs that
share a core. To mitigate this problem, we require that jobs
employing SMT be simultaneously co-scheduled.
Def. 1. [14] Two jobs are simultaneously co-scheduled if
both begin execution simultaneously on separate hardware

2How to limit this interference is an ongoing research topic; our prior
work [14] includes references to many papers on this topic.

2

X
X

X X X
X

X

X

X

X Task 1 ଵ

Instruction Slot

Task 2 ଶ

Instruction Slot

Idle
Instruction Slot X

Cycles0 2 4 6 8 10 12

X
X

Fig. 2: Top: task execution without SMT.
Bottom: execution with SMT.

threads of the same core, and when one job completes, the
remaining job continues on the same core until complete.
τi.a:j.b denotes the simultaneously co-scheduled jobs τi.a
and τj.b. J

Simultaneously co-scheduled jobs require their own
definitions for execution costs.
Def. 2. [14] The joint cost to simultaneously execute jobs
of τi and τj , denoted by Ci:j , is defined as the execution
time for both jobs assuming they begin simultaneously. In
Fig. 2, the joint cost of τ1 and τ2 is given by C1:2 = 10.
If i = j, then Ci:j = Ci, indicating solo execution for τi.
Jobs with nothing co-scheduled are solo jobs. J

We require simultaneous co-scheduling to limit the
possibilities we need to consider when determining the
execution costs of paired tasks. Without this restriction,
we would need to consider in addition to the case of Ex. 1
the time required to execute τ1 if it began while τ2 was
already executing on the same core, the time required to
execute τ1 if τ2 began executing later on the same core,
and many other possibilities, creating an insurmountable
timing-analysis burden.

C. Safety

With or without SMT, safely running a task system
requires that stated values for Ci and Ci:j accurately reflect
the true costs for these items. Determining these values is
non-trivial; indeed, finding the true worst-case execution
times (WCETs) for tasks on modern, complex processors
may be essentially impossible [4]. If a platform includes
multiple cores or supports SMT, timing analysis becomes
harder still. For this reason, we use measurement-based
probabilistic timing analysis (MBPTA) for both solo and
paired tasks. The key to producing a safe measurement-
based analysis is that execution times need to be mea-
sured in circumstances that match their anticipated run-
time circumstances. For this reason, we do not allow
unrestricted preemptions on tasks that use SMT. If we did
allow unrestricted preemptions, our measurements would
need to account for all possible ways in which tasks could
be preempted, but we are not aware of any existing work
that considers how to account for preemption overheads
with SMT (we plan to address this topic in future work).

In our model, the stated costs Ci and Ci:j are estimates
of the true WCETs based on the maximum observed
execution time for a given task over many jobs. A task
system is, roughly speaking, safe enough if all stated costs
Ci and Ci:j are such that the probability of the actual cost
of an arbitrary job of τi or τi:j being no more than its stated
cost is at least a given value q, where q approaches one.
Determining an appropriate value of q is an application-
specific decision; further details of this model, including
how to determine Ci and Ci:j values given a particular q,
are covered in [14].

D. Scheduling Tasks using SMT with Partitioned EDF

In this work, we make co-scheduling decisions—our
transformation step—at the task level rather than the job
level. Doing so creates a much simpler decision process
and allows for the use of priority-based scheduling algo-
rithms, such as EDF. To do so, we combine individual tasks
into paired tasks.
Def. 3. If τi and τj are paired tasks, then the scheduler
views τi.a and τj.a as a single schedulable entity with
cost Ci:j and relative deadline Ti for all a, i.e., τi.a:j.a
is simultaneously co-scheduled for all a. We require that
two paired tasks share a common period. J

To schedule τ across multiple cores, we first determine
which tasks should be paired together—we discuss this
topic further in Sec. III—and then assign tasks and paired
tasks to individual cores. Treating each paired task as a
single unit, we then test the tasks assigned to each core
for schedulability. We refer to the subset of τ assigned to
core π` as τ ` and say that it has total utilization U `.

Dealing with preemptions. Safely preempting paired
tasks requires careful consideration. The most conservative
approach is to make all paired tasks non-preemptable; this
is essentially what we did in [14]. However, we can allow
more flexibility without introducing undue variation in
execution costs by permitting preemption only when SMT
is not actually in use. Notice that in Fig. 2, τ1 finishes
before τ2. We suspect this scenario to be the typical case;
it is unlikely that two jobs will finish at the exact same
time. Once the first job has been completed, there is no
reason that the remaining job cannot be preempted.

To test for schedulability under the rule that paired tasks
are preemptable only at certain times, we need a term for
the time during which a task is not preemptable.
Def. 4. Let the inner cost of paired task τi:j , denoted C ′

i:j ,
give the maximum amount of time during which a job of
the paired task τi:j is non-preemptable. Typically, this is
equivalent to the time required for the first of the paired
jobs τi and τj to complete, although we will discuss other
possibilities. For example, in Fig. 2, C ′

1:2 is 8, assuming
the pair can be preempted only if one of the two jobs has
completed. If we assume that each job of τi:j is completely
non-preemptable, then C ′

i:j = Ci:j . J

3

In terms of schedulability testing, a paired task’s in-
ner cost is equivalent to a non-preemptable section. A
uniprocessor EDF schedulability test that accounts for non-
preemptable sections within otherwise preemptable tasks is
given by Liu in [11].
Def. 5. Let τi’s blocking term bi be the maximum total
time for which a job of task τi may be prevented from
executing by lower-priority jobs. J

Theorem 1. [11] Scheduling τ via EDF on a uniprocessor
will result in all deadlines being met if

n∑
k=1

uk +
bi
Ti
≤ 1 (1)

holds for all τi ∈ τ.
If tasks have been partitioned, Exp. (1) can be applied

to partitioned EDF by considering only the tasks in τ ` for
each core π`.

When we partition τR onto individual cores, we will
make use of the following corollary:
Corollary 1. [11] Given task τk, bk is equal to the
maximum value of C ′

i:j for any paired task τi:j on the
same core for which Tk < Ti holds (recall that for τi and
τj to be paired, Ti = Tj must hold).

Preemption points. If banning preemptions while SMT
is in use prevents a task system from being scheduled
correctly, we can consider using preemption points. Pre-
emption points are statically inserted into a task’s source
code prior to runtime. At runtime, a job that is blocking
a higher-priority job will be preempted once a preemption
point is reached. The programmer’s challenge in this case
is to place preemption points to limit the maximum amount
of time for which a job can be non-preemptable, thereby
capping bi in Theorem 1. This topic has been recently
addressed by Baruah and Fisher [1]. A similar principle
can be applied to paired tasks. With preemption points in
place, it is possible to measure execution times between
them, allowing for tasks to be preempted at the selected
points without compromising safety.

In our schedulability tests (Sec. IV), we consider the
effect of placing preemption points so that maximum C ′

i:j

values can be guaranteed. We find that in some cases,
particularly when a task system contains many periods,
their use can improve schedulability dramatically, but in
other cases they make little to no difference.

III. SCHEDULING HEURISTICS

In this section, we describe the full process of schedul-
ing a system with SMT. We do so in three steps; each step
is detailed in its own subsection. First, we transform our
starting task system τ into a new system, τR, that employs
SMT for some tasks. Second, we partition the tasks and
paired tasks of τR onto individual computing cores. Third,

we test each core individually to see if employing EDF
on that core will produce a correct schedule. The first two
steps are to be done offline, but the scheduling of individual
cores is to be done online.

A. Transforming the System

In this subsection we show how to transform τ into an
equivalent system τR in which some tasks are replaced
by paired tasks. “Equivalent” here means that if τR is
scheduled correctly, then τ is also scheduled correctly.
The idea behind using paired tasks is to decrease the total
amount of time needed to correctly schedule both of the
two tasks within a pair. Since we require that paired tasks
share a period, a paired task τi:j has the same relative
deadline as its component tasks τi and τj . Consequently, if
τi:j is scheduled correctly, then τi and τj are also scheduled
correctly. It follows that τ can be correctly scheduled
by combining some tasks into pairs and then correctly
scheduling all solo tasks and all task pairs, treating each
task pair as if it were a single task.

To aid in our explanations, we define a system’s total
utilization when task pairs are treated as if they were
individual tasks.

Def. 6. The transformed utilization UR of system τR is
given by∑

∀i:τi is a solo task

ui +
∑

∀i,j:i>j,τi and τj are paired

Ci:j
Ti

. (2)

We use UR` for the equivalent term when considering only
the tasks and task-pairs assigned to a single core π`. J

When considering if a portion of τR is schedulable
on a single core, we can safely replace the summation
in Exp. (1) with UR`.

Which tasks should be paired? Given the role that
total utilization plays in determining schedulability, it is
reasonable to define task pairs so as to minimize total
paired utilization. We can do so using an ILP with decision
variables xi,j for all tasks τi and τj within τ.

Def. 7. For all i and all j such that Ti = Tj , let xi:j equal
1 if τi and τj are paired with each other and 0 otherwise.
For i = j, let xi:j equal 1 if τi is a solo task in τR and
0 otherwise. Since we do not consider pairing tasks where
Ti 6= Tj , we define xi:j = 0 for those cases. J

With Def. 7 in place we can write UR as follows:

n∑
i=1

n∑
j=i

xi:j ·
Ci:j
Ti

. (3)

Recall from Def. 2 that for solo tasks, we define Ci:j = Ci;

hence for i = j,
Ci:j

Ti
= ui.

4

ILP constraints. In order for τR to be equivalent to τ,
all tasks within τ must be accounted for in τR. To enforce
this rule, we require that

∀i ≤ n :
n∑
j=1

xi:j = 1 (4)

holds; essentially, all tasks within τ must appear in τR

either as a solo task or as part of a paired task.
Additionally, just as τ will be unschedulable if Ci > Ti

holds for any task, τR will be unschedulable if Ci:j > Ti
holds for any paired task τi:j . We therefore require that the
following holds:

xi:j · Ci:j ≤ Ti, (5)

i.e., τi and τj may be paired only if Ci:j ≤ Ti holds. Since
we require that only tasks sharing a period may be paired,
we do not need a separate restriction governing the relative
values of Ci:j and Tj .

Finally, note that Def. 7 actually defines both xi:j and
xj:i for each possible task pair. To avoid any inconsisten-
cies, we add the restriction that

∀i, j : xi:j = xj:i. (6)

We define our ILP as minimizing Exp. (3) subject to
Exps. (4) through (6). Despite using integer variables,
our ILP executed reasonably quickly in the experiments
presented in Sec. IV. We discuss execution times in more
detail in Sec. IV.

B. Partitioning the Transformed System

After defining τR, our next step is to partition it onto
the individual cores of π. Even without considering non-
preemptive sections, assigning tasks and task pairs to cores
so that all cores are schedulable is a bin-packing problem.
While bin-packing is NP-complete in the strong sense,
multiple well-studied approximation algorithms for it exist.
We use two of these algorithms—worst-fit decreasing
and best-fit decreasing bin-packing—and two algorithm
variations of our own, giving us a total of four partitioning
algorithms. After assigning tasks to cores, schedulability
is tested per Theorem 1 and Corollary 1. In all cases, we
assign tasks to cores in non-increasing order of Ci:j

Ti
and

view each core as a single bin with capacity 1.0.
Worst-fit decreasing and best-fit decreasing. In worst-

fit bin packing, each task or paired task is placed on the
core that will maximize remaining capacity on the selected
core. In best-fit bin packing, each task or paired task is
placed on the core that will minimize remaining capacity
on the selected core.

Period-aware bin-packing. In our second two algo-
rithms, we modify the worst-fit and best-fit algorithms in
an attempt to limit the number of different periods on any
one core; note that one consequence of Corollary 1 is that

if all tasks on a given core share the same period, then no
task is subject to priority-inversion blocking. In this case,
the core is schedulable if and only if UR` ≤ 1 holds.

In period-aware worst-fit partitioning, we again attempt
to place tasks and task-pairs on cores in non-increasing
order of Ci:j

Ti
. In this method, we potentially make two

attempts to assign each task to a core. In the first attempt,
we use worst-fit bin-packing to assign a task or paired
task to a core, but we consider only cores on which all
previously assigned tasks have the same period as the
current task. If a task or paired task is assigned to a core
at this point, we move on to the next task or paired task.
If the task or pair cannot be placed onto a core using this
method, we consider all cores of the platform and assign
the task using the standard worst-fit decision process.

Period-aware best-fit partitioning is similar—we first
attempt to schedule each task considering only cores
without any different periods—but using best-fit rather than
worst-fit bin-packing to determine the assignments of tasks
to cores.

C. Testing Individual Cores

Our final step is to test each core for schedulability
using Theorem 1. To do so, we treat each paired task as
if it were a single task. After tasks have been partitioned,
the process is no different from uniprocessor scheduling
without SMT. While we use EDF in this paper, there is
no reason why another uniprocessor scheduling algorithm,
such as rate-monotonic (RM) scheduling, cannot be used;
the only change needed to use a different per-core schedul-
ing algorithm would be to use a different schedulability test
than that of Theorem 1.

IV. EXPERIMENTS

In this section, we present our experimental results. To
evaluate our scheduling methods, we conducted a schedu-
lability study in which we created tens of thousands of syn-
thetic tasks across nearly 2,000 scheduling scenarios. For
each scenario, we compared the effectiveness of schedul-
ing task systems using our ILP combined with our four
bin-packing algorithms—worst-fit, best-fit, period-aware
worst-fit, and period-aware best-fit—against scheduling the
same systems without SMT. In the last case, our baseline,
scheduling is attempted using partitioned EDF, with worst-
fit decreasing bin-packing as the partitioning algorithm.

A. Experimental Setup

We examined 1,728 scenarios, with each scenario de-
fined by a core count, per-task utilization range, period set,
SMT interaction model, and an inner cost model.

The first three factors of our scenario definition require
only a brief explanation. The last two are covered in more
detail below. We considered core counts of four, eight,
and sixteen. Solo per-task utilizations were drawn from

5

four uniform ranges: (0, 0.4) (low), (0.3, 0.7) (medium),
(0.6, 1) (high), or (0, 1) (wide). Periods were drawn from
either the set {20, 40, 60, 80, 100} (five periods) or the set
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100} (ten periods).

Each task was created by selecting a utilization from the
appropriate distribution and a period from the appropriate
set, with all periods within a set having equal probability.
Periods and utilizations were selected independently. A
solo task execution cost was then assigned as a function of
utilization and period. For each scenario, we determined
schedulability ratios (i.e., the percentage of schedulable
task sets) for task systems ranging in total utilization from
m
2 to 2m—recall that m denotes the core count—using

each of our four bin-packing algorithms to partition τR

onto separate cores after having transformed τ into τR

using our ILP. We compared these results to a baseline of
schedulability ratios found without SMT using partitioned
EDF, with partitioning determined by decreasing worst-fit
bin-packing.

In order for our study to be useful, we need to model
realistic relationships between values for Ci, Cj , Ci:j , and
C ′
i:j . To do so, we used benchmark data we presented in

our prior work [14], where we compared worst-observed
execution times with and without SMT for programs
selected from the TACLeBench sequential benchmarks,
which is representative of real-world embedded and real-
time workloads [7].

Modeling Ci:j. Previously [14], we modeled Ci:j by
defining a multithreading score, which determines Ci:j
given Ci and Cj . We repeat that definition here.
Def. 8. [14] If τi:j is a task pair for which Ci ≥ Cj holds,
then the multithreading score Mi:j satisfies the following:

Ci:j = Ci +Mi:j · Cj . J

If Mi:j ≥ 1 holds, then there is no benefit to pairing
τi and τj together. If Mi:j < 1 holds, then pairing jobs of
the two tasks is potentially beneficial, with lower values
indicating greater benefit.

In [14], We found that Mi:j > 1 was frequently the
case when Ci and Cj differed by a factor of 10 or more.
For this reason, we do not permit tasks with solo costs
differing by a factor of 10 or more to be paired. For tasks
whose solo execution costs were within a factor of 10,
we found that most Mi:j values fell between 0.1 and 0.8.
These results are summarized in Fig. 3. As in [14] , we
determined the Mi:j values of our synthetic tasks by giving
each pair either a 0.0, 0.1, or 0.2 probability of having
Mi:j ≥ 1. We refer to this value as the split, i.e., a split
of 0.1 indicates that each task pair has a 10% chance of
being declared unsuitable for SMT. If a task pair was not
selected to have Mi:j ≥ 1, then we determined its Mi:j

value based on one of three normal distributions—(0.45,
0.12), (0.6, 0.07), or (0.45, .06)—or one of three uniform

figs/scoreHisto.pdf

Fig. 3: Histogram showing the distribution of Mi:j values for
pairs where Ci ≤ 10 · Cj . Based on data from [14].

distributions—(0.1, 0.8), (0.4, 0.8), or (0.27, 0.63). All of
the normal distributions were truncated, with any negative
value produced replaced by 0.01. Further discussion on the
data and reasoning behind these values is given in [14].

Modeling C′
i:j. The C ′

i:j parameter is original to our
present work. Here we consider five methods, presented
below, of modeling its relationship to our other cost param-
eters, Ci, Cj , and Ci:j . Note that values for C ′

i:j have no
impact on the transformation and partitioning steps of our
process; they are only used to test per-core schedulability,
after SMT usage has been determined and tasks have been
partitioned among individual cores.

No preemption. In this model, our first and most
pessimistic, we assumed that C ′

i:j = Ci:j , i.e., every
paired task is non-preemptable. While this assumption is
conservative, particularly when Ci is much greater than
Cj , testing schedulability under this condition allowed us
to be confident we have considered the true worst-case
scenario. It also is essentially what we assumed in [14],
allowing us to make a comparison between the process
used here and in [14]. The latter can potentially schedule
systems with greater total utilization than can be done with
the current approach—largely due to deciding when to use
SMT on a per-job rather than per-task basis—but is limited
to table-based scheduling and may require prohibitively
large amounts of time to compute a scheduling table.

Double cost. In this model, we defined C ′
i:j as the time

during which both jobs are executing and then assumed
that C ′

i:j = min(Ci:j , 2 · Cj), with τj being the task with
the shorter solo cost. This model is still quite conservative;
we found our data from [14] shows only one paired task
in which C ′

i:j > 2 ·Cj held after excluding tasks for which
Ci and Cj differ by more than a factor of 10. Other works
[2, 3, 10, 15] have also found that it is rare for execution
times to double in the presence of SMT.

Data driven. In this model, we used the same definition
of C ′

i:j as in the double cost model, but rather than
assuming that C ′

i:j = min(Ci:j , 2 ·Cj), we based our C ′
i:j

values on how much time was actually required in [14] for
the faster-executing job of each pair to finish, with minimal
added conservatism. Again excluding cases where Ci and
Cj differed by more than a factor of 10, we found that
in the majority of cases, the execution time of τj alone
within the pair τi:j—i.e. C ′

i:j under this model—ranged
from slightly greater than Cj to 1.8 · Cj . There was one
outlier for which we had C ′

i:j ≈ 10 · Cj .3 This data is
shown graphically in Fig. 4.

3This value occurred with a benchmark, petrinet, that is extremely short
and was often difficult to measure.

6

Fig. 4: Histogram showing the distribution of
time SMT is in use

solo execution time of shorter job , i.e.
C′

i:j

Cj
, when using the definitions in

our data driven model. Based on data from [14].

With that in mind, we gave each potential paired task
in this model a 2% chance that C ′

i:j = min(10 ·Cj , Ci:j).
This step allows for the possibility of

C′
i:j

Cj
being as

great as the maximum relative to Cj , 10 · Cj , that we
observed in practice. 2% overstates our observed frequency
of this occurrence; our outlier was a single sample out of
84 possibilities. Apart from that possibility, we set each
C ′
i:j value as a uniform random variable in the range

[1.1 · Cj ,min(1.8 · Cj , Ci:j)]. Some pessimism persists in
this model, as our observed C ′

i:j values can be seen in
Fig. 4 to skew towards the lower end of that range and we
do not allow the possibility in our model of C ′

i:j < 1.1 ·Cj
holding despite having observed that possibility in practice.

It is noteworthy that in some of our collected data,
C ′
i:j < Cj holds, meaning that in some cases, a job requires

less time to complete with SMT than without. At present,
we do not have a good explanation for this behavior, and
so we pessimistically exclude it from our modeling. We
intend to investigate this phenomenon in future work.

Preemption points. In this model, we attempted to
capture the effects of allowing preemption points within a
task system. In our preemption points model, we assumed
that any code we execute has preemption points inserted
so that no job will be non-preemptable for more than 10
time units. In this case, we defined C ′

i:j as the minimum
of 10 and what it would have been under the data driven
model. We chose 10 with the idea that if each time unit
corresponds to one millisecond, placing preemption points
to limit non-preemptable sections to 10 ms should be
achievable without causing exceptionally high overheads.

Full preemption. Here we assumed that all tasks are
fully preemptable, even when there are paired jobs run-
ning at the same time. In practice, allowing unrestricted
preemptions along with SMT would tend to make the
already difficult timing-analysis problem discussed in [14]
even harder, possibly making it impossible to guarantee a
safe timing analysis for hard-real tasks. However, testing

this approach allowed us to see the cost of limiting
preemptions. In addition, this approach may be viable for
soft real-time and non-safety-critical systems, where some
additional uncertainty in timing analysis may be tolerable.

B. Schedulability Results

To determine whether a task system was schedulable,
we attempted to transform4 and partition each system cre-
ated so that the resulting sub-systems were all schedulable
on their assigned cores per Theorem 1.

For each scenario considered, we summarize our results
in a graph that shows the schedulability ratio of systems
ranging in total utilization from 3m

4 to 2m, with each point
on the graph corresponding to approximately 100 systems.5

For each scenario, we show only the partitioning algorithm
that produced the best results. Since the partitioning algo-
rithms all execute quickly, it is entirely practical to run all
four for each task system and then choose the best result.

We use two metrics to summarize the proportion of
systems that are schedulable under each scenario. We
define relative schedulable area (RSA) as the area under
the schedulability curve divided by the core count m for
each scenario. In calculating RSAs, we assumed that the
schedulability ratio is constant between total utilization 0.0
and m

2 , which is the smallest utilization we tested in each
scenario. This assumption results in RSAs being somewhat
understated in the lowest-performing scenarios. An ideal
(e.g., fluid) scheduler, not using SMT, that can preempt
and migrate jobs arbitrarily would have an RSA of 1.0;
it could schedule all task systems with total utilization at
most m and no task systems with greater utilization.

In addition to RSA, we define a scenario’s partitioned
improvement (PI) as the RSA for a given scenario and
partitioning algorithm divided by the RSA for that same
scenario using our baseline scheduling algorithm. We use
PI to show the benefit of our methods in cases where
partitioned scheduling without SMT falls well short of an
ideal scheduler to begin with; for example, the scenario
shown in Fig. 13 has an RSA of 0.93 Based on that statistic
alone, one might include that SMT is not effective in this
case. However, the scenario has a PI of 1.11 showing an
improvement over partitioned scheduling without SMT.

Our full set of graphs is included in an online appendix
[13]. Here, we show the graphs that give the best, worst,
and median results for both RSA and PI when using
the full-preemption and data-driven models. These graphs
demonstrate several trends we saw in our results.

4We used Gurobi Optimizer, a commercial optimization programming
solver with free academic licensing, to execute the required ILP.

5While we calculated schedulability for utilizations in the range
[m
2
, 2m], our graphs only show results in the range [3m

4
, 2m]; in the

majority of cases, we found that all systems with utilization less than 3m
4

could be scheduled.

7

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

16 Cores, Task Util~U(0, 0.4), 5 Periods
Mult. Thread Score~N(0.45, 0.12), split=0

Baseline (RSA=0.99)
Data Driven (RSA=1.66, PI=1.68)
Full Pre. (RSA=1.91, PI=1.93)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

16 Cores, Task Util~U(0.3, 0.7), 5 Periods
Mult. Thread Score~N(0.45, 0.12), split=0

Baseline (RSA=0.89)
Data Driven (RSA=1.42, PI=1.59)
Full Pre. (RSA=1.65, PI=1.85)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

16 Cores, Task Util~U(0.6, 1), 5 Periods
Mult. Thread Score~N(0.45, 0.12), split=0

Baseline (RSA=0.82)
Data Driven (RSA=1.50, PI=1.84)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

16 Cores, Task Util~U(0, 1), 5 Periods
Mult. Thread Score~N(0.45, 0.12), split=0

Baseline (RSA=0.93)
Data Driven (RSA=1.48, PI=1.59)
Full Pre. (RSA=1.70, PI=1.82)

Fig. 5: The best RSA and PI in the full preemptions model
and the best RSA in the data driven model.

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

16 Cores, Task Util~U(0, 0.4), 5 Periods
Mult. Thread Score~N(0.45, 0.12), split=0

Baseline (RSA=0.99)
Data Driven (RSA=1.66, PI=1.68)
Full Pre. (RSA=1.91, PI=1.93)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

16 Cores, Task Util~U(0.3, 0.7), 5 Periods
Mult. Thread Score~N(0.45, 0.12), split=0

Baseline (RSA=0.89)
Data Driven (RSA=1.42, PI=1.59)
Full Pre. (RSA=1.65, PI=1.85)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

16 Cores, Task Util~U(0.6, 1), 5 Periods
Mult. Thread Score~N(0.45, 0.12), split=0

Baseline (RSA=0.82)
Data Driven (RSA=1.50, PI=1.84)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Utilization

0.0

0.2

0.4

0.6

0.8

1.0
Sc

he
du

la
bi

lit
y

Ra
tio

16 Cores, Task Util~U(0, 1), 5 Periods
Mult. Thread Score~N(0.45, 0.12), split=0

Baseline (RSA=0.93)
Data Driven (RSA=1.48, PI=1.59)
Full Pre. (RSA=1.70, PI=1.82)

Fig. 6: The best PI in the data driven model.

In some cases, we found that two or more different inner
cost models produced near-identical results. Graphically,
this result produced graphs that were difficult to read. To
avoid this problem, we do not print lines for inner cost
models that had the same RSA within two significant digits
as the data-driven model.
Obs. 1. With the full preemption model, applying SMT
always gave an improvement compared to partitioned
EDF, and, in the best cases, nearly doubled schedulable
utilization. RSAs ranged from a high of 1.91 (Fig. 5 to a
low of 0.83 (Fig. 7) and PIs from a high of 1.93 (Fig. 5
to a low of 1.01 (Fig. 8).
Obs. 2. With the data driven model, applying SMT im-
proved schedulability in more than half of all scenarios,
as shown by the median PI of 1.11 (Fig. 13). In the best
data driven case, RSA equaled 1.66 (Fig. 5) and PI 1.84
(Fig. 6).
Obs. 3. Applying SMT did not always improve schedu-
lability when using the data-driven model, as shown in
Fig. 9. The worst results for models other than full pre-
emption typically occurred when the period count was
greater than the core count, as seen in Fig. 9. In these
cases, the problem is that the ILP creates a task system that
can be scheduled only by allowing more task preemption

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

16 Cores, Task Util~U(0, 0.4), 10 Periods
Mult. Thread Score~U(0.4, 0.8), split=0

Baseline (RSA=0.99)
Data Driven (RSA=0.90, PI=0.91)
Full Pre. (RSA=1.26, PI=1.27)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

16 Cores, Task Util~U(0.3, 0.7), 10 Periods
Mult. Thread Score~U(0.4, 0.8), split=0

Baseline (RSA=0.89)
Data Driven (RSA=0.97, PI=1.09)
Full Pre. (RSA=1.00, PI=1.12)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

16 Cores, Task Util~U(0.6, 1), 10 Periods
Mult. Thread Score~U(0.4, 0.8), split=0

Baseline (RSA=0.82)
Data Driven (RSA=0.83, PI=1.02)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

16 Cores, Task Util~U(0, 1), 10 Periods
Mult. Thread Score~U(0.4, 0.8), split=0

Baseline (RSA=0.93)
No Pre. (RSA=0.87, PI=0.94)
Data Driven (RSA=0.89, PI=0.96)
Full Pre. (RSA=0.95, PI=1.03)

Fig. 7: The worst RSA in the full preemption model.
3 4 5 6 7 8

Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

4 Cores, Task Util~U(0, 0.4), 10 Periods
Mult. Thread Score~U(0.4, 0.8), split=0.1

Baseline (RSA=0.96)
No Pre. (RSA=0.48, PI=0.50)
Double Cost (RSA=0.52, PI=0.55)
Data Driven (RSA=0.55, PI=0.57)
Pre. Points (RSA=0.60, PI=0.63)
Full Pre. (RSA=1.09, PI=1.14)

3 4 5 6 7 8
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

4 Cores, Task Util~U(0.3, 0.7), 10 Periods
Mult. Thread Score~U(0.4, 0.8), split=0.1

Baseline (RSA=0.85)
Data Driven (RSA=0.88, PI=1.03)

3 4 5 6 7 8
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

4 Cores, Task Util~U(0.6, 1), 10 Periods
Mult. Thread Score~U(0.4, 0.8), split=0.1

Baseline (RSA=0.87)
Data Driven (RSA=0.87, PI=1.01)

3 4 5 6 7 8
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

4 Cores, Task Util~U(0, 1), 10 Periods
Mult. Thread Score~U(0.4, 0.8), split=0.1

Baseline (RSA=0.90)
Data Driven (RSA=0.86, PI=0.96)
Full Pre. (RSA=0.91, PI=1.02)

Fig. 8: The worst PI in the full preemption model.

6 7 8 9 10 11 12 13 14 15 16
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

8 Cores, Task Util~U(0, 0.4), 10 Periods
Mult. Thread Score~U(0.27, 0.63), split=0.2

Baseline (RSA=0.98)
No Pre. (RSA=0.39, PI=0.40)
Double Cost (RSA=0.47, PI=0.48)
Data Driven (RSA=0.52, PI=0.53)
Pre. Points (RSA=0.60, PI=0.62)
Full Pre. (RSA=1.26, PI=1.29)

6 7 8 9 10 11 12 13 14 15 16
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

8 Cores, Task Util~U(0.3, 0.7), 10 Periods
Mult. Thread Score~U(0.27, 0.63), split=0.2

Baseline (RSA=0.87)
Data Driven (RSA=0.94, PI=1.09)
Full Pre. (RSA=0.98, PI=1.13)

6 7 8 9 10 11 12 13 14 15 16
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

8 Cores, Task Util~U(0.6, 1), 10 Periods
Mult. Thread Score~U(0.27, 0.63), split=0.2

Baseline (RSA=0.83)
Data Driven (RSA=0.86, PI=1.03)

6 7 8 9 10 11 12 13 14 15 16
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

8 Cores, Task Util~U(0, 1), 10 Periods
Mult. Thread Score~U(0.27, 0.63), split=0.2

Baseline (RSA=0.91)
No Pre. (RSA=0.87, PI=0.95)
Data Driven (RSA=0.89, PI=0.97)
Full Pre. (RSA=0.96, PI=1.05)

Fig. 9: The worst RSA and worst PI in the data driven
model.

than we permit; recall that the ILP does not consider inner
costs, and that its only restriction on per-task costs is that
Ci:j ≤ Ti must hold.
Obs. 4. The impact of which preemption model is used
on overall schedulability varies greatly. In some scenarios,
such as that of Fig. 8, it makes essentially no difference,
whereas in others, such as Fig. 9, the difference is dramatic.
This result suggests that in some cases, further work on
means to allow more preemptions of SMT-enabled tasks

8

6 7 8 9 10 11 12 13 14 15 16
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

8 Cores, Task Util~U(0, 0.4), 10 Periods
Mult. Thread Score~N(0.45, 0.06), split=0

Baseline (RSA=0.98)
No Pre. (RSA=0.54, PI=0.55)
Double Cost (RSA=0.56, PI=0.57)
Data Driven (RSA=0.59, PI=0.61)
Pre. Points (RSA=0.73, PI=0.74)
Full Pre. (RSA=1.72, PI=1.76)

6 7 8 9 10 11 12 13 14 15 16
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

8 Cores, Task Util~U(0.3, 0.7), 10 Periods
Mult. Thread Score~N(0.45, 0.06), split=0

Baseline (RSA=0.87)
Data Driven (RSA=1.00, PI=1.14)
Pre. Points (RSA=1.02, PI=1.16)
Full Pre. (RSA=1.27, PI=1.45)

6 7 8 9 10 11 12 13 14 15 16
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

8 Cores, Task Util~U(0.6, 1), 10 Periods
Mult. Thread Score~N(0.45, 0.06), split=0

Baseline (RSA=0.83)
Data Driven (RSA=1.19, PI=1.43)

6 7 8 9 10 11 12 13 14 15 16
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio
8 Cores, Task Util~U(0, 1), 10 Periods

Mult. Thread Score~N(0.45, 0.06), split=0
Baseline (RSA=0.92)
No Pre. (RSA=1.04, PI=1.13)
Double Cost (RSA=1.05, PI=1.15)
Data Driven (RSA=1.06, PI=1.16)
Pre. Points (RSA=1.09, PI=1.19)
Full Pre. (RSA=1.30, PI=1.41)

Fig. 10: Median RSA in the full preemption model.

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

16 Cores, Task Util~U(0, 0.4), 5 Periods
Mult. Thread Score~U(0.4, 0.8), split=0.1

Baseline (RSA=0.99)
Data Driven (RSA=1.11, PI=1.13)
Full Pre. (RSA=1.29, PI=1.31)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

16 Cores, Task Util~U(0.3, 0.7), 5 Periods
Mult. Thread Score~U(0.4, 0.8), split=0.1

Baseline (RSA=0.90)
Data Driven (RSA=1.02, PI=1.13)
Full Pre. (RSA=1.04, PI=1.16)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

16 Cores, Task Util~U(0.6, 1), 5 Periods
Mult. Thread Score~U(0.4, 0.8), split=0.1

Baseline (RSA=0.82)
Data Driven (RSA=0.84, PI=1.02)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

16 Cores, Task Util~U(0, 1), 5 Periods
Mult. Thread Score~U(0.4, 0.8), split=0.1

Baseline (RSA=0.93)
Data Driven (RSA=0.94, PI=1.01)
Full Pre. (RSA=0.99, PI=1.07)

Fig. 11: Median PI in the full preemption model.

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

16 Cores, Task Util~U(0, 0.4), 10 Periods
Mult. Thread Score~U(0.27, 0.63), split=0

Baseline (RSA=0.99)
Data Driven (RSA=0.97, PI=0.98)
Full Pre. (RSA=1.37, PI=1.39)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

16 Cores, Task Util~U(0.3, 0.7), 10 Periods
Mult. Thread Score~U(0.27, 0.63), split=0

Baseline (RSA=0.90)
Data Driven (RSA=1.00, PI=1.12)
Full Pre. (RSA=1.08, PI=1.21)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

16 Cores, Task Util~U(0.6, 1), 10 Periods
Mult. Thread Score~U(0.27, 0.63), split=0

Baseline (RSA=0.82)
Data Driven (RSA=0.87, PI=1.06)

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

16 Cores, Task Util~U(0, 1), 10 Periods
Mult. Thread Score~U(0.27, 0.63), split=0

Baseline (RSA=0.93)
No Pre. (RSA=0.92, PI=0.98)
Data Driven (RSA=0.93, PI=1.00)
Pre. Points (RSA=0.95, PI=1.01)
Full Pre. (RSA=1.03, PI=1.10)

Fig. 12: Median RSA in the data driven model.

3 4 5 6 7 8
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

4 Cores, Task Util~U(0, 0.4), 10 Periods
Mult. Thread Score~N(0.45, 0.06), split=0

Baseline (RSA=0.96)
No Pre. (RSA=0.48, PI=0.50)
Double Cost (RSA=0.55, PI=0.57)
Data Driven (RSA=0.60, PI=0.62)
Pre. Points (RSA=0.65, PI=0.67)
Full Pre. (RSA=1.51, PI=1.58)

3 4 5 6 7 8
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

4 Cores, Task Util~U(0.3, 0.7), 10 Periods
Mult. Thread Score~N(0.45, 0.06), split=0

Baseline (RSA=0.84)
Data Driven (RSA=0.93, PI=1.11)
Full Pre. (RSA=1.05, PI=1.25)

3 4 5 6 7 8
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

4 Cores, Task Util~U(0.6, 1), 10 Periods
Mult. Thread Score~N(0.45, 0.06), split=0

Baseline (RSA=0.86)
Data Driven (RSA=1.09, PI=1.27)

3 4 5 6 7 8
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

4 Cores, Task Util~U(0, 1), 10 Periods
Mult. Thread Score~N(0.45, 0.06), split=0

Baseline (RSA=0.90)
No Pre. (RSA=0.95, PI=1.06)
Data Driven (RSA=0.97, PI=1.07)
Pre. Points (RSA=0.98, PI=1.09)
Full Pre. (RSA=1.09, PI=1.21)

Fig. 13: Median PI in the data driven model.

TABLE I: Period-aware advantages (Def. 9)

Inner cost model Period-aware advantage

No Preemption 0.75
Double Cost 0.75
Data Driven 0.74
Preemption Points 0.21
Full Preemption 0.01

would be time well spent.
Obs. 5. The period-aware algorithms provided a large
advantage under the no-preemption, double-cost, and data-
driven preemption models, but were less advantageous
using the preemption points and full preemption models.
We summarize our findings on the period-aware advantage
(defined below) of each model in Table I.
Def. 9. For each inner cost model, we define its period-
aware advantage as the proportion of scenarios in which at
least one of the period-aware partitioning algorithms gave
a strictly greater RSA than both the best-fit and worst-fit
algorithms.
Obs. 6. In no case did our ILP require more than 37
seconds to execute, and only one required more than 30
seconds. The median time required was 2.54 seconds. No
four-core system required more than 9 seconds, and no 8-
core system required more than 24 seconds. In contrast,
ILP execution times of 60 seconds were frequently insuf-
ficient in our previous work [14], even on systems of only
four cores.

Execution times are summarized in Fig. 14. For each
scenario, we recorded only the maximum time required
by any ILP, meaning that our discussion here overstates
the typical execution time needed. Note that since we con-
sidered preemption only after partitioning tasks, each ILP
provided data for all five of our preemption models. In total
we recorded 432 execution times. Our schedulability tests
were performed on a research cluster consisting of 2.5 and
2.3 GHz cores, with tests for many scenarios running in
parallel. We suspect that individual ILPs ran significantly
slower than they would have had our experiments not run
in parallel.

As to whether our ILP execution-time requirements are
practical, less than 1 minute is certainly reasonable for an
offline step, since that will only be done once per system.
Our shortest times—the fastest 5% of our ILPs required
less than 100 ms to run—could even be practical to run
online as part of a task system allowing dynamic task entry
and exit.

V. CONCLUSION

Within the context of our schedulability study, we found
that when allowing tasks to be preemptable, schedulability
was increased by a factor of 1.5 or more in 31% of tested
scenarios. The same improvement was seen in 13% of

9

Fig. 14: Histogram showing the distribution of maximum ILP
runtimes for each scenario.

scenarios using either data driven inner costs or allowing
no preemption at all. Furthermore, we saw schedulability
improvements of 1.8 or more in 11% of scenarios that
allowed full preemption and in 2% of scenarios using either
the data driven or no preemption models.

In future work, we plan to investigate the effects of
allowing preemption while SMT is active; by doing so,
we hope to enable results that are close to those of our
somewhat idealized full-preemption model. If we find that
preemptions have a significant detrimental effect on SMT-
enabled execution, we will need to rely more on the ability
of our period-aware partitioning algorithms to obviate the
need for preemptions. Even in systems without SMT,
period-aware partitioning may be a useful tool to reduce
the need for preemptions; in practice, though we do not
model it here, increasing preemptions in a system may
come at a cost of reduced schedulability. If that cost can
be avoided, so much the better.

The process we have given here may also be suitable
for dynamic systems, in which tasks can enter and leave a
system during run-time. Given that our transformation step
and partitioning algorithms both execute quickly, it may be
possible to execute them periodically as scheduled jobs in
a live system, with the goal of rebalancing a system whose
task mix has changed. For this to be practical, we would
need to be able to guarantee run-times for the currently
offline portions of our algorithm. In addition, we intend to
integrate our work on SMT into a mixed-criticality context.

REFERENCES

[1] S. Baruah and N. Fisher. Choosing preemption points to minimize
typical running times. In Proceedings of the 27th International
Conference on Real-Time Networks and Systems, RTNS ’19, page
198–208, New York, NY, USA, 2019. Association for Computing
Machinery.

[2] J. Bulpin. Operating system support for simultaneous multithreaded
processors. PhD thesis, University of Cambridge, King’s College,
2005.

[3] J. Bulpin and I. Pratt. Multiprogramming performance of the
Pentium 4 with hyperthreading. In Third Annual Workshop on
Duplicating, Deconstruction and Debunking, pages 53–62, June
2004.

[4] A. Burns and S. Edgar. Predicting computation time for advanced
processor architectures. In ECRTS 2000, pages 89–96, Feb. 2000.

[5] F. J. Cazorla, P. M. W. Knijnenburg, R. Sakellariou, E. Fernandez,
A. Ramirez, and M. Valero. Predictable performance in SMT
processors: synergy between the OS and SMTs. IEEE Transactions
on Computers, 55(7):785–799, July 2006.

[6] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm, and
D. M. Tullsen. Simultaneous multithreading: a platform for next-
generation processors. IEEE Micro, 17(5):12–19, Sept 1997.

[7] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch,
C. Rochange, M. Schoeberl, R. B. Sørensen, P. Wägemann, and
S. Wegener. TACLeBench: A Benchmark Collection to Support
Worst-Case Execution Time Research. In WCET 2016, pages 2:1–
2:10, 2016.

[8] T. Gomes, P. Garcia, S. Pinto, J. Monteiro, and A. Tavares. Bringing
hardware multithreading to the real-time domain. IEEE Embedded
Systems Letters, 8(1):2–5, March 2016.

[9] T. Gomes, S. Pinto, P. Garcia, and A. Tavares. RT-SHADOWS:
Real-time system hardware for agnostic and deterministic OSes
within softcore. In ETFA 2015, pages 1–4, Sept 2015.

[10] R. Jain, C. J. Hughes, and S. V. Adve. Soft real-time scheduling on
simultaneous multithreaded processors. In RTSS 2002, pages 134–
145. Institute of Electrical and Electronics Engineers Inc., 2002.

[11] J.W.S. Liu. Real-Time Systems. Prentice Hall, 2000.
[12] B. Ocker. FAA special topics. In Collaborative Workshop: Solutions

for Certification of Multicore Processors, Nov. 2018.
[13] S. Osborne, S. Ahmed, S. Nandi, and J. H. Anderson. Exploiting si-

multaneous multithreading in priority-driven hard real-time systems
(longer version with additional material), 2020.

[14] S. Osborne and J. H. Anderson. Simultaneous multithreading and
hard real time: Can it be safe? (in submission). 2020.

[15] S. Osborne, J. Bakita, and J. H. Anderson. Simultaneous multi-
threading applied to real time. In ECRTS 2019, 2019.

[16] K. Suito, K. Fujii, H. Matsutani, and N. Yamasaki. Dependable re-
sponsive multithreaded processor for distributed real-time systems.
In 2012 IEEE COOL Chips XV, pages 1–3, April 2012.

[17] M. Zimmer, D. Broman, C. Shaver, and E. A. Lee. FlexPRET: A
processor platform for mixed-criticality systems. In RTAS 2014,
pages 101–110, April 2014.

10

